1
|
Jiang Q, Zhu L, Zeng H, Basang Z, Suolang Q, Huang J, Cai Y. Evolutionary adaptations generally reverse phenotypic plasticity to restore ancestral phenotypes during new environment adaptation in cattle. Ecol Evol 2024; 14:e11489. [PMID: 38840586 PMCID: PMC11150418 DOI: 10.1002/ece3.11489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 06/07/2024] Open
Abstract
Phenotype plasticity and evolution adaptations are the two main ways in which allow populations to deal with environmental changes, but the potential relationship between them remains controversial. Using a reciprocal transplant approach with cattle adapted to the Tibetan Plateau and adjacent lowlands, we aim to investigate the relative contributions of evolutionary processes and phenotypic plasticity in driving both phenotypic and transcriptomic changes under natural conditions. We observed that while numerous genetic transcriptomic changes were evident during the forward adaptation to highland environments, plastic changes predominantly facilitate the transformation of transcriptomes into a preferred state when Tibetan cattle are reintroduced to lowland habitats. Genes with ancestral plasticity are generally reversed by evolutionary adaptations and show a closer expression level to the ancestral stage in evolved Tibetan cattle. A similar trend was also observed at the phenotypes level, with a majority of biochemical and hemorheology phenotypes showing a tendency to revert to their ancestral patterns, suggesting the restoration of ancestral expression levels is a widespread evolutionary trend during adaptation. The findings of our study contribute to the debate regarding the relative contributions of plasticity and genetic changes in mammal environment adaptation. Furthermore, we highlight that the restoration of ancestral phenotypes represents a general pattern in cattle new environment adaptation.
Collapse
Affiliation(s)
- Qiang Jiang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
- Institute of Animal Science and Veterinary MedicineShandong Academy of Agricultural SciencesJinanChina
| | - Li Zhu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and TechnologyYunnan Agricultural UniversityKunmingChina
| | - Hao Zeng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and TechnologyYunnan Agricultural UniversityKunmingChina
| | - Zhuzha Basang
- Institute of Animal Science and Veterinary MedicineTibet Academy of Agricultural and Animal Husbandry SciencesLhasaChina
| | - Quji Suolang
- Institute of Animal Science and Veterinary MedicineTibet Academy of Agricultural and Animal Husbandry SciencesLhasaChina
| | - Jinming Huang
- Institute of Animal Science and Veterinary MedicineShandong Academy of Agricultural SciencesJinanChina
| | - Yafei Cai
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
2
|
Erkosar B, Dupuis C, Cavigliasso F, Savary L, Kremmer L, Gallart-Ayala H, Ivanisevic J, Kawecki TJ. Evolutionary adaptation to juvenile malnutrition impacts adult metabolism and impairs adult fitness in Drosophila. eLife 2023; 12:e92465. [PMID: 37847744 PMCID: PMC10637773 DOI: 10.7554/elife.92465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023] Open
Abstract
Juvenile undernutrition has lasting effects on adult metabolism of the affected individuals, but it is unclear how adult physiology is shaped over evolutionary time by natural selection driven by juvenile undernutrition. We combined RNAseq, targeted metabolomics, and genomics to study the consequences of evolution under juvenile undernutrition for metabolism of reproductively active adult females of Drosophila melanogaster. Compared to Control populations maintained on standard diet, Selected populations maintained for over 230 generations on a nutrient-poor larval diet evolved major changes in adult gene expression and metabolite abundance, in particular affecting amino acid and purine metabolism. The evolved differences in adult gene expression and metabolite abundance between Selected and Control populations were positively correlated with the corresponding differences previously reported for Selected versus Control larvae. This implies that genetic variants affect both stages similarly. Even when well fed, the metabolic profile of Selected flies resembled that of flies subject to starvation. Finally, Selected flies had lower reproductive output than Controls even when both were raised under the conditions under which the Selected populations evolved. These results imply that evolutionary adaptation to juvenile undernutrition has large pleiotropic consequences for adult metabolism, and that they are costly rather than adaptive for adult fitness. Thus, juvenile and adult metabolism do not appear to evolve independently from each other even in a holometabolous species where the two life stages are separated by a complete metamorphosis.
Collapse
Affiliation(s)
- Berra Erkosar
- Department of Ecology and Evolution, University of LausanneLausanneSwitzerland
| | - Cindy Dupuis
- Department of Ecology and Evolution, University of LausanneLausanneSwitzerland
| | - Fanny Cavigliasso
- Department of Ecology and Evolution, University of LausanneLausanneSwitzerland
| | - Loriane Savary
- Department of Ecology and Evolution, University of LausanneLausanneSwitzerland
| | - Laurent Kremmer
- Department of Ecology and Evolution, University of LausanneLausanneSwitzerland
| | - Hector Gallart-Ayala
- Metabolomics Unit, Faculty of Biology and Medicine, University of LausanneLausanneSwitzerland
| | - Julijana Ivanisevic
- Metabolomics Unit, Faculty of Biology and Medicine, University of LausanneLausanneSwitzerland
| | - Tadeusz J Kawecki
- Department of Ecology and Evolution, University of LausanneLausanneSwitzerland
| |
Collapse
|
3
|
Cavigliasso F, Savary L, Spangenberg JE, Gallart-Ayala H, Ivanisevic J, Kawecki TJ. Experimental evolution of metabolism under nutrient restriction: enhanced amino acid catabolism and a key role of branched-chain amino acids. Evol Lett 2023; 7:273-284. [PMID: 37475747 PMCID: PMC10355184 DOI: 10.1093/evlett/qrad018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/04/2023] [Accepted: 04/24/2023] [Indexed: 07/22/2023] Open
Abstract
Periodic food shortage is a common ecological stressor for animals, likely to drive physiological and metabolic adaptations to alleviate its consequences, particularly for juveniles that have no option but to continue to grow and develop despite undernutrition. Here we study changes in metabolism associated with adaptation to nutrient shortage, evolved by replicate Drosophila melanogaster populations maintained on a nutrient-poor larval diet for over 240 generations. In a factorial metabolomics experiment we showed that both phenotypic plasticity and genetically-based adaptation to the poor diet involved wide-ranging changes in metabolite abundance; however, the plastic response did not predict the evolutionary change. Compared to nonadapted larvae exposed to the poor diet for the first time, the adapted larvae showed lower levels of multiple free amino acids in their tissues-and yet they grew faster. By quantifying accumulation of the nitrogen stable isotope 15N we show that adaptation to the poor diet led to an increased use of amino acids for energy generation. This apparent "waste" of scarce amino acids likely results from the trade-off between acquisition of dietary amino acids and carbohydrates observed in these populations. The three branched-chain amino acids (leucine, isoleucine, and valine) showed a unique pattern of depletion in adapted larvae raised on the poor diet. A diet supplementation experiment demonstrated that these amino acids are limiting for growth on the poor diet, suggesting that their low levels resulted from their expeditious use for protein synthesis. These results demonstrate that selection driven by nutrient shortage not only promotes improved acquisition of limiting nutrients, but also has wide-ranging effects on how the nutrients are used. They also show that the abundance of free amino acids in the tissues does not, in general, reflect the nutritional condition and growth potential of an animal.
Collapse
Affiliation(s)
- Fanny Cavigliasso
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Loriane Savary
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Jorge E Spangenberg
- Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
| | - Hector Gallart-Ayala
- Metabolomics Unit, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Julijana Ivanisevic
- Metabolomics Unit, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Tadeusz J Kawecki
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
4
|
Ekwudo MN, Malek MC, Anderson CE, Yampolsky LY. The interplay between prior selection, mild intermittent exposure, and acute severe exposure in phenotypic and transcriptional response to hypoxia. Ecol Evol 2022; 12:e9319. [PMID: 36248677 PMCID: PMC9548574 DOI: 10.1002/ece3.9319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Hypoxia has profound and diverse effects on aerobic organisms, disrupting oxidative phosphorylation and activating several protective pathways. Predictions have been made that exposure to mild intermittent hypoxia may be protective against more severe exposure and may extend lifespan. Here we report the lifespan effects of chronic, mild, intermittent hypoxia, and short-term survival in acute severe hypoxia in four clones of Daphnia magna originating from either permanent or intermittent habitats. We test the hypothesis that acclimation to chronic mild intermittent hypoxia can extend lifespan through activation of antioxidant and stress-tolerance pathways and increase survival in acute severe hypoxia through activation of oxygen transport and storage proteins and adjustment to carbohydrate metabolism. Unexpectedly, we show that chronic hypoxia extended the lifespan in the two clones originating from intermittent habitats but had the opposite effect in the two clones from permanent habitats, which also showed lower tolerance to acute hypoxia. Exposure to chronic hypoxia did not protect against acute hypoxia; to the contrary, Daphnia from the chronic hypoxia treatment had lower acute hypoxia tolerance than normoxic controls. Few transcripts changed their abundance in response to the chronic hypoxia treatment in any of the clones. After 12 h of acute hypoxia treatment, the transcriptional response was more pronounced, with numerous protein-coding genes with functionality in oxygen transport, mitochondrial and respiratory metabolism, and gluconeogenesis, showing upregulation. While clones from intermittent habitats showed somewhat stronger differential expression in response to acute hypoxia than those from permanent habitats, contrary to predictions, there were no significant hypoxia-by-habitat of origin or chronic-by-acute treatment interactions. GO enrichment analysis revealed a possible hypoxia tolerance role by accelerating the molting cycle and regulating neuron survival through upregulation of cuticular proteins and neurotrophins, respectively.
Collapse
Affiliation(s)
- Millicent N. Ekwudo
- Department of Biological SciencesEast Tennessee State UniversityJohnson CityTennesseeUSA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Morad C. Malek
- Department of Biological SciencesEast Tennessee State UniversityJohnson CityTennesseeUSA
| | - Cora E. Anderson
- Department of Biological SciencesEast Tennessee State UniversityJohnson CityTennesseeUSA
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
| | - Lev Y. Yampolsky
- Department of Biological SciencesEast Tennessee State UniversityJohnson CityTennesseeUSA
| |
Collapse
|
5
|
Lirakis M, Nolte V, Schlötterer C. Pool-GWAS on reproductive dormancy in Drosophila simulans suggests a polygenic architecture. G3 GENES|GENOMES|GENETICS 2022; 12:6523974. [PMID: 35137042 PMCID: PMC8895979 DOI: 10.1093/g3journal/jkac027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/29/2021] [Indexed: 11/29/2022]
Abstract
The genetic basis of adaptation to different environments has been of long-standing interest to evolutionary biologists. Dormancy is a well-studied adaptation to facilitate overwintering. In Drosophila melanogaster, a moderate number of genes with large effects have been described, which suggests a simple genetic basis of dormancy. On the other hand, genome-wide scans for dormancy suggest a polygenic architecture in insects. In D. melanogaster, the analysis of the genetic architecture of dormancy is complicated by the presence of cosmopolitan inversions. Here, we performed a genome-wide scan to characterize the genetic basis of this ecologically extremely important trait in the sibling species of D. melanogaster, D. simulans that lacks cosmopolitan inversions. We performed Pool-GWAS in a South African D. simulans population for dormancy incidence at 2 temperature regimes (10 and 12°C, LD 10:14). We identified several genes with SNPs that showed a significant association with dormancy (P-value < 1e-13), but the overall modest response suggests that dormancy is a polygenic trait with many loci of small effect. Our results shed light on controversies on reproductive dormancy in Drosophila and have important implications for the characterization of the genetic basis of this trait.
Collapse
Affiliation(s)
- Manolis Lirakis
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Wien, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, 1210 Wien, Austria
| | - Viola Nolte
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Wien, Austria
| | | |
Collapse
|
6
|
Mallard F, Nolte V, Schlötterer C. The Evolution of Phenotypic Plasticity in Response to Temperature Stress. Genome Biol Evol 2020; 12:2429-2440. [PMID: 33022043 PMCID: PMC7846148 DOI: 10.1093/gbe/evaa206] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 12/23/2022] Open
Abstract
Phenotypic plasticity is the ability of a single genotype to produce different phenotypes in response to environmental variation. The importance of phenotypic plasticity in natural populations and its contribution to phenotypic evolution during rapid environmental change is widely debated. Here, we show that thermal plasticity of gene expression in natural populations is a key component of its adaptation: evolution to novel thermal environments increases ancestral plasticity rather than mean genetic expression. We determined the evolution of plasticity in gene expression by conducting laboratory natural selection on a Drosophila simulans population in hot and cold environments. After more than 60 generations in the hot environment, 325 genes evolved a change in plasticity relative to the natural ancestral population. Plasticity increased in 75% of these genes, which were strongly enriched for several well-defined functional categories (e.g., chitin metabolism, glycolysis, and oxidative phosphorylation). Furthermore, we show that plasticity in gene expression of populations exposed to different temperatures is rather similar across species. We conclude that most of the ancestral plasticity can evolve further in more extreme environments.
Collapse
Affiliation(s)
| | - Viola Nolte
- Institut für Populationsgenetik, Vetmeduni Vienna, Austria
| | | |
Collapse
|
7
|
Koch EL, Guillaume F. Restoring ancestral phenotypes is a general pattern in gene expression evolution during adaptation to new environments in Tribolium castaneum. Mol Ecol 2020; 29:3938-3953. [PMID: 32844494 DOI: 10.1111/mec.15607] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 06/19/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022]
Abstract
Plasticity and evolution are two processes allowing populations to respond to environmental changes, but how both are related and impact each other remains controversial. We studied plastic and evolutionary responses in gene expression of Tribolium castaneum after exposure of the beetles to new environments that differed from ancestral conditions in temperature, humidity or both. Using experimental evolution with 10 replicated lines per condition, we were able to demonstrate adaptation after 20 generations. We measured whole-transcriptome gene expression with RNA-sequencing to infer evolutionary and plastic changes. We found more evidence for changes in mean expression (shift in the intercept of reaction norms) in adapted lines than for changes in plasticity (shifts in slopes). Plasticity was mainly preserved in selected lines and was responsible for a large part of the phenotypic divergence in expression between ancestral and new conditions. However, we found that genes with the largest evolutionary changes in expression also evolved reduced plasticity and often showed expression levels closer to the ancestral stage. Results obtained in the three different conditions were similar, suggesting that restoration of ancestral expression levels during adaptation is a general evolutionary pattern. With a larger sample in the most stressful condition, we were able to detect a positive correlation between the proportion of genes with reversion of the ancestral plastic response and mean fitness per selection line.
Collapse
Affiliation(s)
- Eva L Koch
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland.,Department of Animal and Plant Science, University of Sheffield, Sheffield, UK
| | - Frédéric Guillaume
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
| |
Collapse
|
8
|
Koch EL, Guillaume F. Additive and mostly adaptive plastic responses of gene expression to multiple stress in Tribolium castaneum. PLoS Genet 2020; 16:e1008768. [PMID: 32379753 PMCID: PMC7238888 DOI: 10.1371/journal.pgen.1008768] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 05/19/2020] [Accepted: 04/08/2020] [Indexed: 12/13/2022] Open
Abstract
Gene expression is known to be highly responsive to the environment and important for adjustment of metabolism but there is also growing evidence that differences in gene regulation contribute to species divergence and differences among locally adapted populations. However, most studies so far investigated populations when divergence had already occurred. Selection acting on expression levels at the onset of adaptation to an environmental change has not been characterized. Understanding the mechanisms is further complicated by the fact that environmental change is often multivariate, meaning that organisms are exposed to multiple stressors simultaneously with potentially interactive effects. Here we use a novel approach by combining fitness and whole-transcriptome data in a large-scale experiment to investigate responses to drought, heat and their combination in Tribolium castaneum. We found that fitness was reduced by both stressors and their combined effect was almost additive. Expression data showed that stressor responses were acting independently and did not interfere physiologically. Since we measured expression and fitness within the same individuals, we were able to estimate selection on gene expression levels. We found that variation in fitness can be attributed to gene expression variation and that selection pressures were environment dependent and opposite between control and stress conditions. We could further show that plastic responses of expression were largely adaptive, i.e. in the direction that should increase fitness.
Collapse
Affiliation(s)
- Eva L. Koch
- Department of Evolutionary Biology and Environmental Studies, University
of Zürich, Zürich, Switzerland
- Department of Animal and Plant Science, University of Sheffield, Western
Bank, Sheffield, United Kingdom
| | - Frédéric Guillaume
- Department of Evolutionary Biology and Environmental Studies, University
of Zürich, Zürich, Switzerland
| |
Collapse
|
9
|
Davis JS, Moyle LC. Constitutive and Plastic Gene Expression Variation Associated with Desiccation Resistance Differences in the Drosophila americana Species Group. Genes (Basel) 2020; 11:genes11020146. [PMID: 32019054 PMCID: PMC7073762 DOI: 10.3390/genes11020146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 02/02/2023] Open
Abstract
Stress response mechanisms are ubiquitous and important for adaptation to heterogenous environments and could be based on constitutive or plastic responses to environmental stressors. Here we quantify constitutive and plastic gene expression differences under ambient and desiccation stress treatments, in males and females of three species of Drosophila known to differ in desiccation resistance. Drosophila novamexicana survives desiccation trials significantly longer than the two subspecies of Drosophila americana, consistent with its natural species range in the desert southwest USA. We found that desiccation stress reduces global expression differences between species—likely because many general stress response mechanisms are shared among species—but that all species showed plastic expression changes at hundreds of loci during desiccation. Nonetheless, D. novamexicana had the fewest genes with significant plastic expression changes, despite having the highest desiccation resistance. Of the genes that were significantly differentially expressed between species—either within each treatment (>200 loci), constitutively regardless of treatment (36 loci), or with different species-specific plasticity (26 loci)—GO analysis did not find significant enrichment of any major gene pathways or broader functions associated with desiccation stress. Taken together, these data indicate that if gene expression changes contribute to differential desiccation resistance between species, these differences are likely shaped by a relatively small set of influential genes rather than broad genome-wide differentiation in stress response mechanisms. Finally, among the set of genes with the greatest between-species plasticity, we identified an interesting set of immune-response genes with consistent but opposing reaction norms between sexes, whose potential functional role in sex-specific mechanisms of desiccation resistance remains to be determined.
Collapse
|
10
|
Sikkink KL, Reynolds RM, Ituarte CM, Cresko WA, Phillips PC. Environmental and Evolutionary Drivers of the Modular Gene Regulatory Network Underlying Phenotypic Plasticity for Stress Resistance in the Nematode Caenorhabditis remanei. G3 (BETHESDA, MD.) 2019; 9:969-982. [PMID: 30679247 PMCID: PMC6404610 DOI: 10.1534/g3.118.200017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 01/23/2019] [Indexed: 11/18/2022]
Abstract
Organisms can cope with stressful environments via a combination of phenotypic plasticity at the individual level and adaptation at the population level. Changes in gene expression can play an important role in both. Significant advances in our understanding of gene regulatory plasticity and evolution have come from comparative studies in the field and laboratory. Experimental evolution provides another powerful path by which to learn about how differential regulation of genes and pathways contributes to both acclimation and adaptation. Here we present results from one such study using the nematode Caenorhabditis remanei We selected one set of lines to withstand heat stress and another oxidative stress. We then compared transcriptional responses to acute heat stress of both and an unselected control to the ancestral population using a weighted gene coexpression network analysis, finding that the transcriptional response is primarily dominated by a plastic response that is shared in the ancestor and all evolved populations. In addition, we identified several modules that respond to artificial selection by (1) changing the baseline level of expression, (2) altering the magnitude of the plastic response, or (3) a combination of the two. Our findings therefore reveal that while patterns of transcriptional response can be perturbed with short bouts of intense selection, the overall ancestral structure of transcriptional plasticity is largely maintained over time.
Collapse
Affiliation(s)
- Kristin L Sikkink
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403
| | - Rose M Reynolds
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403
- Department of Biology, William Jewell College, Liberty, Missouri 64068
| | - Catherine M Ituarte
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403
| | - William A Cresko
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|
11
|
Hsu SK, Jakšić AM, Nolte V, Barghi N, Mallard F, Otte KA, Schlötterer C. A 24 h Age Difference Causes Twice as Much Gene Expression Divergence as 100 Generations of Adaptation to a Novel Environment. Genes (Basel) 2019; 10:E89. [PMID: 30696109 PMCID: PMC6410183 DOI: 10.3390/genes10020089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/19/2019] [Accepted: 01/23/2019] [Indexed: 02/08/2023] Open
Abstract
Gene expression profiling is one of the most reliable high-throughput phenotyping methods, allowing researchers to quantify the transcript abundance of expressed genes. Because many biotic and abiotic factors influence gene expression, it is recommended to control them as tightly as possible. Here, we show that a 24 h age difference of Drosophilasimulans females that were subjected to RNA sequencing (RNA-Seq) five and six days after eclosure resulted in more than 2000 differentially expressed genes. This is twice the number of genes that changed expression during 100 generations of evolution in a novel hot laboratory environment. Importantly, most of the genes differing in expression due to age introduce false positives or negatives if an adaptive gene expression analysis is not controlled for age. Our results indicate that tightly controlled experimental conditions, including precise developmental staging, are needed for reliable gene expression analyses, in particular in an evolutionary framework.
Collapse
Affiliation(s)
- Sheng-Kai Hsu
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Vienna, Austria.
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, 1210 Vienna, Austria.
| | - Ana Marija Jakšić
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Vienna, Austria.
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, 1210 Vienna, Austria.
| | - Viola Nolte
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Vienna, Austria.
| | - Neda Barghi
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Vienna, Austria.
| | - François Mallard
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Vienna, Austria.
| | - Kathrin A Otte
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Vienna, Austria.
| | | |
Collapse
|
12
|
Signor S, Nuzhdin S. Dynamic changes in gene expression and alternative splicing mediate the response to acute alcohol exposure in Drosophila melanogaster. Heredity (Edinb) 2018; 121:342-360. [PMID: 30143789 PMCID: PMC6133934 DOI: 10.1038/s41437-018-0136-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/21/2018] [Accepted: 07/19/2018] [Indexed: 12/18/2022] Open
Abstract
Environmental changes typically cause rapid gene expression responses in the exposed organisms, including changes in the representation of gene isoforms with different functions or properties. Identifying the genes that respond to environmental change, including in genotype-specific ways, is an important step in treating the undesirable physiological effects of stress, such as exposure to toxins or ethanol. Ethanol is a unique environmental stress in that chronic exposure results in permanent physiological changes and the development of alcohol use disorders. Drosophila is a classic model for deciphering the mechanisms of the response to alcohol exposure, as it meets the criteria for the development of alcohol use disorders, and has similar physiological underpinnings with vertebrates. Because many studies on the response to ethanol have relied on a priori candidate genes, broad surveys of gene expression and splicing are required and have been investigated here. Further, we expose Drosophila to ethanol in an environment that is genetically, socially, and ecologically relevant. Both expression and splicing differences, inasmuch as they can be decomposed, contribute to the response to ethanol in Drosophila melanogaster. However, we find that while D. melanogaster responds to ethanol, there is very little genetic variation in how it responds to ethanol. In addition, the response to alcohol over time is dynamic, suggesting that incorporating time into studies on the response to the environment is important.
Collapse
Affiliation(s)
- Sarah Signor
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA.
| | - Sergey Nuzhdin
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
13
|
Xing S, Tao C, Song Z, Liu W, Yan J, Kang L, Lin C, Sang T. Coexpression network revealing the plasticity and robustness of population transcriptome during the initial stage of domesticating energy crop Miscanthus lutarioriparius. PLANT MOLECULAR BIOLOGY 2018; 97:489-506. [PMID: 30006693 DOI: 10.1007/s11103-018-0754-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
Coexpression network revealing genes with Co-variation Expression pattern (CE) and those with Top rank of Expression fold change (TE) played different roles in responding to new environment of Miscanthus lutarioriparius. Variation in gene expression level, the product of genetic and/or environmental perturbation, determines the robustness-to-plasticity spectrum of a phenotype in plants. Understanding how expression variation of plant population response to a new field is crucial to domesticate energy crops. Weighted Gene Coexpression Network Analysis (WGCNA) was used to explore the patterns of expression variation based on 72 Miscanthus lutarioriparius transcriptomes from two contrasting environments, one near the native habitat and the other in one harsh domesticating region. The 932 genes with Co-variation Expression pattern (CE) and other 932 genes with Top rank of Expression fold change (TE) were identified and the former were strongly associated with the water use efficiency (r ≥ 0.55, P ≤ 10-7). Functional enrichment of CE genes were related to three organelles, which well matched the annotation of twelve motifs identified from their conserved noncoding sequence; while TE genes were mostly related to biotic and/or abiotic stress. The expression robustness of CE genes with high genetic diversity kept relatively stable between environments while the harsh environment reduced the expression robustness of TE genes with low genetic diversity. The expression plasticity of CE genes was increased less than that of TE genes. These results suggested that expression variation of CE genes and TE genes could account for the robustness and plasticity of acclimation ability of Miscanthus, respectively. The patterns of expression variation revealed by transcriptomic network would shed new light on breeding and domestication of energy crops.
Collapse
Affiliation(s)
- Shilai Xing
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengcheng Tao
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihong Song
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Liu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Juan Yan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Lifang Kang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Cong Lin
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Tao Sang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
14
|
Li X, Shi L, Dai X, Chen Y, Xie H, Feng M, Chen Y, Wang H. Expression plasticity and evolutionary changes extensively shape the sugar-mimic alkaloid adaptation of nondigestive glucosidase in lepidopteran mulberry-specialist insects. Mol Ecol 2018; 27:2858-2870. [PMID: 29752760 DOI: 10.1111/mec.14720] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/10/2018] [Accepted: 04/17/2018] [Indexed: 01/28/2023]
Abstract
During the co-evolutionary arms race between plants and herbivores, insects evolved systematic adaptive plasticity to minimize the chemical defence effects of their host plants. Previous studies mainly focused on the expressional plasticity of enzymes in detoxification and digestion. However, the expressional response and adaptive evolution of other fundamental regulators against host phytochemicals are largely unknown. Glucosidase II (GII), which is composed of a catalytic GIIα subunit and a regulatory GIIβ subunit, is an evolutionarily conserved enzyme that regulates glycoprotein folding. In this study, we found that GIIα expression of the mulberry-specialist insect was significantly induced by mulberry leaf extract, 1-deoxynojirimycin (1-DNJ), whereas GIIβ transcripts were not significantly changed. Moreover, positive selection was detected in GIIα when the mulberry-specialist insects diverged from the lepidopteran order, whereas GIIβ was mainly subjected to purifying selection, thus indicating an asymmetrically selective pressure of GII subunits. In addition, positively selected sites were enriched in the GIIα of mulberry-specialist insects and located around the 1-DNJ-binding sites and in the C-terminal region, which could result in conformational changes that affect catalytic activity and substrate-binding efficiency. These results show that expression plasticity and evolutionary changes extensively shape sugar-mimic alkaloids adaptation of nondigestive glucosidase in lepidopteran mulberry-specialist insects. Our study provides novel insights into a deep understanding of the sequestration and adaptation of phytophagous specialists to host defensive compounds.
Collapse
Affiliation(s)
- Xiaotong Li
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Liangen Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiangping Dai
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yajie Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Hongqing Xie
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Min Feng
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yuyin Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Huabing Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Lea AJ, Tung J, Archie EA, Alberts SC. Developmental plasticity: Bridging research in evolution and human health. Evol Med Public Health 2018; 2017:162-175. [PMID: 29424834 PMCID: PMC5798083 DOI: 10.1093/emph/eox019] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/19/2017] [Indexed: 02/06/2023] Open
Abstract
Early life experiences can have profound and persistent effects on traits expressed throughout the life course, with consequences for later life behavior, disease risk, and mortality rates. The shaping of later life traits by early life environments, known as 'developmental plasticity', has been well-documented in humans and non-human animals, and has consequently captured the attention of both evolutionary biologists and researchers studying human health. Importantly, the parallel significance of developmental plasticity across multiple fields presents a timely opportunity to build a comprehensive understanding of this phenomenon. We aim to facilitate this goal by highlighting key outstanding questions shared by both evolutionary and health researchers, and by identifying theory and empirical work from both research traditions that is designed to address these questions. Specifically, we focus on: (i) evolutionary explanations for developmental plasticity, (ii) the genetics of developmental plasticity and (iii) the molecular mechanisms that mediate developmental plasticity. In each section, we emphasize the conceptual gains in human health and evolutionary biology that would follow from filling current knowledge gaps using interdisciplinary approaches. We encourage researchers interested in developmental plasticity to evaluate their own work in light of research from diverse fields, with the ultimate goal of establishing a cross-disciplinary understanding of developmental plasticity.
Collapse
Affiliation(s)
- Amanda J Lea
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Jenny Tung
- Department of Biology, Duke University, Durham, NC 27708, USA
- Institute of Primate Research, National Museums of Kenya, Karen, Nairobi, Kenya
- Duke University Population Research Institute, Duke University, Durham, NC 27708, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| | - Elizabeth A Archie
- Institute of Primate Research, National Museums of Kenya, Karen, Nairobi, Kenya
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Susan C Alberts
- Department of Biology, Duke University, Durham, NC 27708, USA
- Institute of Primate Research, National Museums of Kenya, Karen, Nairobi, Kenya
- Duke University Population Research Institute, Duke University, Durham, NC 27708, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
16
|
Passow CN, Henpita C, Shaw JH, Quackenbush CR, Warren WC, Schartl M, Arias-Rodriguez L, Kelley JL, Tobler M. The roles of plasticity and evolutionary change in shaping gene expression variation in natural populations of extremophile fish. Mol Ecol 2017; 26:6384-6399. [PMID: 28926156 DOI: 10.1111/mec.14360] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 12/22/2022]
Abstract
The notorious plasticity of gene expression responses and the complexity of environmental gradients complicate the identification of adaptive differences in gene regulation among populations. We combined transcriptome analyses in nature with common-garden and exposure experiments to establish cause-effect relationships between the presence of a physiochemical stressor and expression differences, as well as to test how evolutionary change and plasticity interact to shape gene expression variation in natural systems. We studied two evolutionarily independent population pairs of an extremophile fish (Poecilia mexicana) living in toxic, hydrogen sulphide (H2 S)-rich springs and adjacent nontoxic habitats and assessed genomewide expression patterns of wild-caught and common-garden-raised individuals exposed to different concentrations of H2 S. We found that 7.7% of genes that were differentially expressed between sulphidic and nonsulphidic ecotypes remained differentially expressed in the laboratory, indicating that sources of selection other than H2 S-or plastic responses to other environmental factors-contribute substantially to gene expression patterns observed in the wild. Concordantly differentially expressed genes in the wild and the laboratory were primarily associated with H2 S detoxification, sulphur processing and metabolic physiology. While shared, ancestral plasticity played a minor role in shaping gene expression variation observed in nature, we documented evidence for evolved population differences in the constitutive expression as well as the H2 S inducibility of candidate genes. Mechanisms underlying gene expression variation also varied substantially across the two ecotype pairs. These results provide a springboard for studying evolutionary modifications of gene regulatory mechanisms that underlie expression variation in locally adapted populations.
Collapse
Affiliation(s)
| | - Chathurika Henpita
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Jennifer H Shaw
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Corey R Quackenbush
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Wesley C Warren
- McDonnell Genome Institute, Washington University, St. Louis, MO, USA
| | - Manfred Schartl
- Physiological Chemistry, University of Würzburg, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, Würzburg, Germany.,Hagler Institute for Advanced Studies and Department of Biology, Texas A&M University, College Station, TX, USA
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, México
| | - Joanna L Kelley
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Michael Tobler
- Division of Biology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
17
|
Coggins BL, Collins JW, Holbrook KJ, Yampolsky LY. Antioxidant capacity, lipid peroxidation, and lipid composition changes during long-term and short-term thermal acclimation in Daphnia. J Comp Physiol B 2017; 187:1091-1106. [DOI: 10.1007/s00360-017-1090-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/02/2017] [Accepted: 03/15/2017] [Indexed: 11/28/2022]
|
18
|
Jones BM, Kingwell CJ, Wcislo WT, Robinson GE. Caste-biased gene expression in a facultatively eusocial bee suggests a role for genetic accommodation in the evolution of eusociality. Proc Biol Sci 2017; 284:20162228. [PMID: 28053060 PMCID: PMC5247497 DOI: 10.1098/rspb.2016.2228] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/05/2016] [Indexed: 12/18/2022] Open
Abstract
Developmental plasticity may accelerate the evolution of phenotypic novelty through genetic accommodation, but studies of genetic accommodation often lack knowledge of the ancestral state to place selected traits in an evolutionary context. A promising approach for assessing genetic accommodation involves using a comparative framework to ask whether ancestral plasticity is related to the evolution of a particular trait. Bees are an excellent group for such comparisons because caste-based societies (eusociality) have evolved multiple times independently and extant species exhibit different modes of eusociality. We measured brain and abdominal gene expression in a facultatively eusocial bee, Megalopta genalis, and assessed whether plasticity in this species is functionally linked to eusocial traits in other bee lineages. Caste-biased abdominal genes in M. genalis overlapped significantly with caste-biased genes in obligately eusocial bees. Moreover, caste-biased genes in M. genalis overlapped significantly with genes shown to be rapidly evolving in multiple studies of 10 bee species, particularly for genes in the glycolysis pathway and other genes involved in metabolism. These results provide support for the idea that eusociality can evolve via genetic accommodation, with plasticity in facultatively eusocial species like M. genalis providing a substrate for selection during the evolution of caste in obligately eusocial lineages.
Collapse
Affiliation(s)
- Beryl M Jones
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Smithsonian Tropical Research Institute, Panama City 20521-9100, Panama
| | - Callum J Kingwell
- Smithsonian Tropical Research Institute, Panama City 20521-9100, Panama
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - William T Wcislo
- Smithsonian Tropical Research Institute, Panama City 20521-9100, Panama
| | - Gene E Robinson
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
19
|
Experimental Evolution of Gene Expression and Plasticity in Alternative Selective Regimes. PLoS Genet 2016; 12:e1006336. [PMID: 27661078 PMCID: PMC5035091 DOI: 10.1371/journal.pgen.1006336] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 09/01/2016] [Indexed: 11/23/2022] Open
Abstract
Little is known of how gene expression and its plasticity evolves as populations adapt to different environmental regimes. Expression is expected to evolve adaptively in all populations but only those populations experiencing environmental heterogeneity are expected to show adaptive evolution of plasticity. We measured the transcriptome in a cadmium-enriched diet and a salt-enriched diet for experimental populations of Drosophila melanogaster that evolved for ~130 generations in one of four selective regimes: two constant regimes maintained in either cadmium or salt diets and two heterogeneous regimes that varied either temporally or spatially between the two diets. For populations evolving in constant regimes, we find a strong signature of counter-gradient evolution; the evolved expression differences between populations adapted to alternative diets is opposite to the plastic response of the ancestral population that is naïve to both diets. Based on expression patterns in the ancestral populations, we identify a set of genes for which we predict selection in heterogeneous regimes to result in increases in plasticity and we find the expected pattern. In contrast, a set of genes where we predicted reduced plasticity did not follow expectation. Nonetheless, both gene sets showed a pattern consistent with adaptive expression evolution in heterogeneous regimes, highlighting the difference between observing “optimal” plasticity and improvements in environment-specific expression. Looking across all genes, there is evidence in all regimes of differences in biased allele expression across environments (“allelic plasticity”) and this is more common among genes with plasticity in total expression. Different developmental environments change how genes are expressed and what phenotypes are produced. Here we examine how the responsiveness of gene expression to different environments (“expression plasticity”) evolves in populations adapted to constant environments or heterogeneous ones (temporal or spatial heterogeneity) using experimental populations of D. melanogaster. We find the plastic response of the ancestral population that is naïve to both environments is generally opposed by the evolved differences between populations adapted to alternative environments. Populations that live in heterogeneous environments show evidence of adaptive expression evolution in genes predicted to evolve changes in plasticity.
Collapse
|
20
|
Jakšić AM, Schlötterer C. The Interplay of Temperature and Genotype on Patterns of Alternative Splicing in Drosophila melanogaster. Genetics 2016; 204:315-25. [PMID: 27440867 PMCID: PMC5012396 DOI: 10.1534/genetics.116.192310] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/08/2016] [Indexed: 01/02/2023] Open
Abstract
Alternative splicing is the highly regulated process of variation in the removal of introns from premessenger-RNA transcripts. The consequences of alternative splicing on the phenotype are well documented, but the impact of the environment on alternative splicing is not yet clear. We studied variation in alternative splicing among four different temperatures, 13, 18, 23, and 29°, in two Drosophila melanogaster genotypes. We show plasticity of alternative splicing with up to 10% of the expressed genes being differentially spliced between the most extreme temperatures for a given genotype. Comparing the two genotypes at different temperatures, we found <1% of the genes being differentially spliced at 18°. At extreme temperatures, however, we detected substantial differences in alternative splicing-with almost 10% of the genes having differential splicing between the genotypes: a magnitude similar to between species differences. Genes with differential alternative splicing between genotypes frequently exhibit dominant inheritance. Remarkably, the pattern of surplus of differences in alternative splicing at extreme temperatures resembled the pattern seen for gene expression intensity. Since different sets of genes were involved for the two phenotypes, we propose that purifying selection results in the reduction of differences at benign temperatures. Relaxed purifying selection at temperature extremes, on the other hand, may cause the divergence in gene expression and alternative splicing between the two strains in rarely encountered environments.
Collapse
Affiliation(s)
- Ana Marija Jakšić
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Vienna, Austria Vienna Graduate School of Population Genetics, Vetmeduni Vienna, 1210 Vienna, Austria
| | | |
Collapse
|
21
|
Elgart M, Stern S, Salton O, Gnainsky Y, Heifetz Y, Soen Y. Impact of gut microbiota on the fly's germ line. Nat Commun 2016; 7:11280. [PMID: 27080728 PMCID: PMC4835552 DOI: 10.1038/ncomms11280] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 03/09/2016] [Indexed: 12/20/2022] Open
Abstract
Unlike vertically transmitted endosymbionts, which have broad effects on their host's germ line, the extracellular gut microbiota is transmitted horizontally and is not known to influence the germ line. Here we provide evidence supporting the influence of these gut bacteria on the germ line of Drosophila melanogaster. Removal of the gut bacteria represses oogenesis, expedites maternal-to-zygotic-transition in the offspring and unmasks hidden phenotypic variation in mutants. We further show that the main impact on oogenesis is linked to the lack of gut Acetobacter species, and we identify the Drosophila Aldehyde dehydrogenase (Aldh) gene as an apparent mediator of repressed oogenesis in Acetobacter-depleted flies. The finding of interactions between the gut microbiota and the germ line has implications for reproduction, developmental robustness and adaptation. The gut microbiota can play various roles in the host's physiology, but is not known to influence the germ line. Here, Elgart et al. show that certain extracellular gut bacteria can affect oogenesis and embryo development in the fruit fly.
Collapse
Affiliation(s)
- Michael Elgart
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shay Stern
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Orit Salton
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yulia Gnainsky
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yael Heifetz
- Department of Entomology, The Hebrew University, Rehovot 76100, Israel
| | - Yoav Soen
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
22
|
Chang D, Duda TF. Age-related association of venom gene expression and diet of predatory gastropods. BMC Evol Biol 2016; 16:27. [PMID: 26818019 PMCID: PMC4730619 DOI: 10.1186/s12862-016-0592-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 01/13/2016] [Indexed: 11/29/2022] Open
Abstract
Background Venomous organisms serve as wonderful systems to study the evolution and expression of genes that are directly associated with prey capture. To evaluate the relationship between venom gene expression and prey utilization, we examined these features among individuals of different ages of the venomous, worm-eating marine snail Conus ebraeus. We determined expression levels of six genes that encode venom components, used a DNA-based approach to evaluate the identity of prey items, and compared patterns of venom gene expression and dietary specialization. Results C. ebraeus exhibits two major shifts in diet with age—an initial transition from a relatively broad dietary breadth to a narrower one and then a return to a broader diet. Venom gene expression patterns also change with growth. All six venom genes are up-regulated in small individuals, down-regulated in medium-sized individuals, and then either up-regulated or continued to be down-regulated in members of the largest size class. Venom gene expression is not significantly different among individuals consuming different types of prey, but instead is coupled and slightly delayed with shifts in prey diversity. Conclusion These results imply that changes in gene expression contribute to intraspecific variation of venom composition and that gene expression patterns respond to changes in the diversity of food resources during different growth stages. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0592-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dan Chang
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, Michigan, USA. .,Department of Statistics, University of Michigan, Ann Arbor, Michigan, USA. .,Present address: University of California Santa Cruz, 1156 High Street -- Mail Stop EEBiology, Santa Cruz, CA, 95064, USA.
| | - Thomas F Duda
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, Michigan, USA. .,Smithsonian Tropical Research Institute, Balboa, Ancόn, Republic of Panama.
| |
Collapse
|
23
|
Ragland GJ, Almskaar K, Vertacnik KL, Gough HM, Feder JL, Hahn DA, Schwarz D. Differences in performance and transcriptome-wide gene expression associated withRhagoletis(Diptera: Tephritidae) larvae feeding in alternate host fruit environments. Mol Ecol 2015; 24:2759-76. [DOI: 10.1111/mec.13191] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/30/2015] [Accepted: 04/01/2015] [Indexed: 01/22/2023]
Affiliation(s)
- Gregory J. Ragland
- Department of Entomology; Kansas State University; 123 W. Waters Hall Manhattan KS 66502 USA
- Environmental Change Initiative; University of Notre Dame; 1400 E. Angela Blvd. South Bend IN 46617 USA
- Department of Biological Sciences; University of Notre Dame; 100 Galvin Life Sciences Center; Notre Dame IN 46556 USA
| | - Kristin Almskaar
- Department of Biology; Western Washington University; 510 High Street MS 9160 Bellingham WA 98225 USA
| | - Kim L. Vertacnik
- Department of Biology; Western Washington University; 510 High Street MS 9160 Bellingham WA 98225 USA
| | - Harlan M. Gough
- Department of Biology; Western Washington University; 510 High Street MS 9160 Bellingham WA 98225 USA
| | - Jeffrey L. Feder
- Environmental Change Initiative; University of Notre Dame; 1400 E. Angela Blvd. South Bend IN 46617 USA
- Department of Biological Sciences; University of Notre Dame; 100 Galvin Life Sciences Center; Notre Dame IN 46556 USA
| | - Daniel A. Hahn
- Department of Entomology and Nematology; University of Florida; 1881 Natural Area Drive; Gainesville FL 32611 USA
| | - Dietmar Schwarz
- Department of Biology; Western Washington University; 510 High Street MS 9160 Bellingham WA 98225 USA
| |
Collapse
|
24
|
Schlötterer C, Kofler R, Versace E, Tobler R, Franssen SU. Combining experimental evolution with next-generation sequencing: a powerful tool to study adaptation from standing genetic variation. Heredity (Edinb) 2015; 114:431-40. [PMID: 25269380 PMCID: PMC4815507 DOI: 10.1038/hdy.2014.86] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/01/2014] [Accepted: 07/14/2014] [Indexed: 12/20/2022] Open
Abstract
Evolve and resequence (E&R) is a new approach to investigate the genomic responses to selection during experimental evolution. By using whole genome sequencing of pools of individuals (Pool-Seq), this method can identify selected variants in controlled and replicable experimental settings. Reviewing the current state of the field, we show that E&R can be powerful enough to identify causative genes and possibly even single-nucleotide polymorphisms. We also discuss how the experimental design and the complexity of the trait could result in a large number of false positive candidates. We suggest experimental and analytical strategies to maximize the power of E&R to uncover the genotype-phenotype link and serve as an important research tool for a broad range of evolutionary questions.
Collapse
Affiliation(s)
- C Schlötterer
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| | - R Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| | - E Versace
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - R Tobler
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vienna, Austria
| | - S U Franssen
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| |
Collapse
|
25
|
Chen J, Nolte V, Schlötterer C. Temperature stress mediates decanalization and dominance of gene expression in Drosophila melanogaster. PLoS Genet 2015; 11:e1004883. [PMID: 25719753 PMCID: PMC4342254 DOI: 10.1371/journal.pgen.1004883] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/10/2014] [Indexed: 11/18/2022] Open
Abstract
The regulatory architecture of gene expression remains an area of active research. Here, we studied how the interplay of genetic and environmental variation affects gene expression by exposing Drosophila melanogaster strains to four different developmental temperatures. At 18°C we observed almost complete canalization with only very few allelic effects on gene expression. In contrast, at the two temperature extremes, 13°C and 29°C a large number of allelic differences in gene expression were detected due to both cis- and trans-regulatory effects. Allelic differences in gene expression were mainly dominant, but for up to 62% of the genes the dominance swapped between 13 and 29°C. Our results are consistent with stabilizing selection causing buffering of allelic expression variation in non-stressful environments. We propose that decanalization of gene expression in stressful environments is not only central to adaptation, but may also contribute to genetic disorders in human populations.
Collapse
Affiliation(s)
- Jun Chen
- Institut für Populationsgenetik, Vienna, Austria
| | - Viola Nolte
- Institut für Populationsgenetik, Vienna, Austria
| | | |
Collapse
|
26
|
Fry JD. Mechanisms of naturally evolved ethanol resistance in Drosophila melanogaster. J Exp Biol 2014; 217:3996-4003. [PMID: 25392459 PMCID: PMC4229365 DOI: 10.1242/jeb.110510] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/21/2014] [Indexed: 02/02/2023]
Abstract
The decaying fruit in which Drosophila melanogaster feed and breed can contain ethanol in concentrations as high as 6-7%. In this cosmopolitan species, populations from temperate regions are consistently more resistant to ethanol poisoning than populations from the tropics, but little is known about the physiological basis of this difference. I show that when exposed to low levels of ethanol vapor, flies from a tropical African population accumulated 2-3 times more internal ethanol than flies from a European population, giving evidence that faster ethanol catabolism by European flies contributes to the resistance difference. Using lines differing only in the origin of their third chromosome, however, I show that faster ethanol elimination cannot fully explain the resistance difference, because relative to African third chromosomes, European third chromosomes confer substantially higher ethanol resistance, while having little effect on internal ethanol concentrations. European third chromosomes also confer higher resistance to acetic acid, a metabolic product of ethanol, than African third chromosomes, suggesting that the higher ethanol resistance conferred by the former might be due to increased resistance to deleterious effects of ethanol-derived acetic acid. In support of this hypothesis, when ethanol catabolism was blocked with an Alcohol dehydrogenase mutant, there was no difference in ethanol resistance between flies with European and African third chromosomes.
Collapse
Affiliation(s)
- James D Fry
- Department of Biology, University of Rochester, Rochester, NY 14627-0211, USA
| |
Collapse
|
27
|
Yampolsky LY, Zeng E, Lopez J, Williams PJ, Dick KB, Colbourne JK, Pfrender ME. Functional genomics of acclimation and adaptation in response to thermal stress in Daphnia. BMC Genomics 2014; 15:859. [PMID: 25282344 PMCID: PMC4201682 DOI: 10.1186/1471-2164-15-859] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/23/2014] [Indexed: 12/01/2022] Open
Abstract
Background Gene expression regulation is one of the fundamental mechanisms of phenotypic plasticity and is expected to respond to selection in conditions favoring phenotypic response. The observation that many organisms increase their stress tolerance after acclimation to moderate levels of stress is an example of plasticity which has been long hypothesized to be based on adaptive changes in gene expression. We report genome-wide patterns of gene expression in two heat-tolerant and two heat-sensitive parthenogenetic clones of the zooplankton crustacean Daphnia pulex exposed for three generations to either optimal (18°C) or substressful (28°C) temperature. Results A large number of genes responded to temperature and many demonstrated a significant genotype-by-environment (GxE) interaction. Among genes with a significant GxE there were approximately equally frequent instances of canalization, i.e. stronger plasticity in heat-sensitive than in heat-tolerant clones, and of enhancement of plasticity along the evolutionary vector toward heat tolerance. The strongest response observed is the across-the-board down-regulation of a variety of genes occurring in heat-tolerant, but not in heat-sensitive clones. This response is particularly obvious among genes involved in core metabolic pathways and those responsible for transcription, translation and DNA repair. Conclusions The observed down-regulation of metabolism, consistent with previous findings in yeast and Drosophila, may reflect a general compensatory stress response. The associated down-regulation of DNA repair pathways potentially creates a trade-off between short-term benefits of survival at high temperature and long-term costs of accelerated mutation accumulation. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-859) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lev Y Yampolsky
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37641, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Helanterä H, Uller T. Neutral and adaptive explanations for an association between caste-biased gene expression and rate of sequence evolution. Front Genet 2014; 5:297. [PMID: 25221570 PMCID: PMC4148897 DOI: 10.3389/fgene.2014.00297] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/08/2014] [Indexed: 12/30/2022] Open
Abstract
The castes of social insects provide outstanding opportunities to address the causes and consequences of evolution of discrete phenotypes, i.e., polymorphisms. Here we focus on recently described patterns of a positive association between the degree of caste-specific gene expression and the rate of sequence evolution. We outline how neutral and adaptive evolution can cause genes that are morph-biased in their expression profiles to exhibit historical signatures of faster or slower sequence evolution compared to unbiased genes. We conclude that evaluation of different hypotheses will benefit from (i) reconstruction of the phylogenetic origin of biased expression and changes in rates of sequence evolution, and (ii) replicated data on gene expression variation within versus between morphs. Although the data are limited at present, we suggest that the observed phylogenetic and intra-population variation in gene expression lends support to the hypothesis that the association between caste-biased expression and rate of sequence evolution largely is a result of neutral processes.
Collapse
Affiliation(s)
- Heikki Helanterä
- Department of Biosciences, Centre of Excellence in Biological Interactions, University of HelsinkiHelsinki, Finland
| | - Tobias Uller
- Department of Zoology, Edward Grey Institute, University of OxfordOxford, UK
- Department of Biology, University of LundSölvegatan, Lund, Sweden
| |
Collapse
|
29
|
Morris MRJ, Richard R, Leder EH, Barrett RDH, Aubin-Horth N, Rogers SM. Gene expression plasticity evolves in response to colonization of freshwater lakes in threespine stickleback. Mol Ecol 2014; 23:3226-40. [DOI: 10.1111/mec.12820] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/27/2014] [Accepted: 05/28/2014] [Indexed: 12/23/2022]
Affiliation(s)
- Matthew R. J. Morris
- Department of Biological Sciences; University of Calgary; 2500 University Drive NW Calgary AB Canada T2N 1N4
| | - Romain Richard
- Department of Biological Sciences; University of Calgary; 2500 University Drive NW Calgary AB Canada T2N 1N4
| | - Erica H. Leder
- Division of Genetics and Physiology, Vesilinnantie; Department of Biological Sciences; University of Turku; 20014 Turku Finland
| | - Rowan D. H. Barrett
- Redpath Museum and Department of Biology; McGill University; 859 Sherbrooke Street West Montreal QC Canada H2J 3G5
| | - Nadia Aubin-Horth
- Département de Biologie; Institut de Biologie Intégrative et des Systèmes; Université Laval; 1030 avenue de la Médecine Québec QC Canada G1V 0A6
| | - Sean M. Rogers
- Department of Biological Sciences; University of Calgary; 2500 University Drive NW Calgary AB Canada T2N 1N4
| |
Collapse
|
30
|
Morris M, Rogers SM. Integrating phenotypic plasticity within an Ecological Genomics framework: recent insights from the genomics, evolution, ecology, and fitness of plasticity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 781:73-105. [PMID: 24277296 DOI: 10.1007/978-94-007-7347-9_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
E.B. Ford's 1964 book Ecological Genetics was a call for biologists to engage in multidisciplinary work in order to elucidate the link between genotype, phenotype, and fitness for ecologically relevant traits. In this review, we argue that the integration of an ecological genomics framework in studies of phenotypic plasticity is a promising approach to elucidate the causal links between genes and the environment, particularly during colonization of novel environments, environmental change, and speciation. This review highlights some of the questions and hypotheses generated from a mechanistic, evolutionary, and ecological perspective, in order to direct the continued and future use of genomic tools in the study of phenotypic plasticity.
Collapse
Affiliation(s)
- Matthew Morris
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada,
| | | |
Collapse
|
31
|
Wang J, Chen B, Wang Y, Wang N, Garbey M, Tran-Son-Tay R, Berceli SA, Wu R. Reconstructing regulatory networks from the dynamic plasticity of gene expression by mutual information. Nucleic Acids Res 2013; 41:e97. [PMID: 23470995 PMCID: PMC3632132 DOI: 10.1093/nar/gkt147] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The capacity of an organism to respond to its environment is facilitated by the environmentally induced alteration of gene and protein expression, i.e. expression plasticity. The reconstruction of gene regulatory networks based on expression plasticity can gain not only new insights into the causality of transcriptional and cellular processes but also the complex regulatory mechanisms that underlie biological function and adaptation. We describe an approach for network inference by integrating expression plasticity into Shannon's mutual information. Beyond Pearson correlation, mutual information can capture non-linear dependencies and topology sparseness. The approach measures the network of dependencies of genes expressed in different environments, allowing the environment-induced plasticity of gene dependencies to be tested in unprecedented details. The approach is also able to characterize the extent to which the same genes trigger different amounts of expression in response to environmental changes. We demonstrated the usefulness of this approach through analysing gene expression data from a rabbit vein graft study that includes two distinct blood flow environments. The proposed approach provides a powerful tool for the modelling and analysis of dynamic regulatory networks using gene expression data from distinct environments.
Collapse
Affiliation(s)
- Jianxin Wang
- Center for Computational Biology, Beijing Forestry University, Beijing 100083, China
| | | | | | | | | | | | | | | |
Collapse
|