1
|
Guimarães LSF, de Carvalho-Junior L, Façanha GL, Resende NDS, Neves LM, Cardoso SJ. Meta-analysis of the thermal pollution caused by coastal nuclear power plants and its effects on marine biodiversity. MARINE POLLUTION BULLETIN 2023; 195:115452. [PMID: 37677976 DOI: 10.1016/j.marpolbul.2023.115452] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023]
Abstract
The rise in seawater temperature due to industrial activities is one of the main threats to marine biodiversity. In nuclear power plants, large volumes of water are used for their operation, returning to the ecosystem at higher temperatures. A global meta-analysis was performed to evaluate the thermal effects caused by coastal nuclear power plants on marine organisms. We found 853 articles of which, 99 were included in the qualitative analysis and 75 in the meta-analysis. The meta-analysis showed an increase of 4.38 °C in water temperature near the outfall, and the temperature variation of each study was found to be associated with the power plant latitudes. The main effects on organisms were related to changes in the structure and composition of aquatic communities, with species abundance, distribution, dominance, and density being the most cited ones. Among the affected groups, photosynthesizing microorganisms were the most cited, potentially contributing to shifts in ecosystem dynamics.
Collapse
Affiliation(s)
- Luiza Soares Ferreira Guimarães
- Laboratory of Plankton Ecology, Department of Zoology, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG 36036-900, Brazil
| | - Lécio de Carvalho-Junior
- Laboratory of Plankton Ecology, Department of Zoology, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG 36036-900, Brazil; Laboratory of Aquatic Ecology and Environmental Education, Department of Environmental Sciences, Campus Três Rios, Federal Rural University of Rio de Janeiro, Três Rios, RJ 25802-100, Brazil
| | - Gabriela Lima Façanha
- Laboratory of Plankton Ecology, Department of Zoology, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG 36036-900, Brazil
| | - Nathália da Silva Resende
- Laboratory of Plankton Ecology, Department of Zoology, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG 36036-900, Brazil; Graduate Program in Biodiversity and Nature Conservation, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG 36036-900, Brazil
| | - Leonardo Mitrano Neves
- Laboratory of Aquatic Ecology and Environmental Education, Department of Environmental Sciences, Campus Três Rios, Federal Rural University of Rio de Janeiro, Três Rios, RJ 25802-100, Brazil
| | - Simone Jaqueline Cardoso
- Laboratory of Plankton Ecology, Department of Zoology, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG 36036-900, Brazil; Graduate Program in Biodiversity and Nature Conservation, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG 36036-900, Brazil.
| |
Collapse
|
2
|
Huang W, Chen Y, Wu Q, Feng Y, Wang Y, Lu Z, Chen J, Chen B, Xiao Z, Meng L, Huang X, Wang Y, Yu K. Reduced genetic diversity and restricted gene flow of broadcast-spawning coral Galaxea fascicularis in the South China Sea reveals potential degradation under environmental change. MARINE POLLUTION BULLETIN 2023; 193:115147. [PMID: 37331272 DOI: 10.1016/j.marpolbul.2023.115147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/20/2023]
Abstract
Under the dual effects of climate change and anthropogenic activities, coral reefs in the South China Sea (SCS) are at serious risk of degradation. Galaxea fascicularis is a widely distributed species in the SCS, and the study of its genetics, survival, and adaptability is conducive to further understanding the future characteristics of coral reefs in the SCS. In this study, 146 G. fascicularis samples were selected from 9 survey stations across 12 latitudes in the SCS, and 8 pairs of microsatellite markers were used to characterize their genetic diversity and structure. The results showed moderate genetic diversity index values (Ar = 3.444-4.147, He = 0.634-0.782, Ho = 0.367-0.586). The AMOVA results and pairwise FST values showed a moderate level of genetic differentiation (ΦST = 0.119, P < 0.05) among G. fascicularis populations in the SCS, whereas its genetic structure showed high genetic differentiation (FST = 0.062-0.225) among relatively high-latitude populations (n = 3) and low genetic differentiation (FST = 0.012-0.064) in low-latitude populations (n = 6). The living environment of relatively high-latitude populations is disturbed by high-intensity human activities, leading to the specialization of local populations. Mantel test results showed a significant positive correlation between genetic differentiation among G. fascicularis populations and sea surface temperature (SST) variance (R2 = 0.4885; Mantel test, p = 0.010 < 0.05) in addition to geographical distance (R2 = 0.1134; Mantel, test p = 0.040 < 0.05), indicating that SST and geographical isolation were primary factors affecting the genetic structure of this species in the SCS. The lower genetic diversity and limited gene flow of G. fascicularis indicate limited genetic adaptation, and corresponding vulnerability may be more pronounced under future environmental changes. These findings provide a theoretical basis for the conservation and restoration of coral reefs in the SCS.
Collapse
Affiliation(s)
- Wen Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Yinmin Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Qian Wu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Yi Feng
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Yonggang Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Zhiying Lu
- The Ocean College, Hainan University, Haikou 570228, China
| | - Jinlian Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Zunyong Xiao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Linqing Meng
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Xueyong Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Yan Wang
- The Ocean College, Hainan University, Haikou 570228, China.
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China.
| |
Collapse
|
3
|
McRae CJ, Keshavmurthy S, Chen HK, Ye ZM, Meng PJ, Rosset SL, Huang WB, Chen CA, Fan TY, Côté IM. Baseline dynamics of Symbiodiniaceae genera and photochemical efficiency in corals from reefs with different thermal histories. PeerJ 2023; 11:e15421. [PMID: 37283898 PMCID: PMC10239617 DOI: 10.7717/peerj.15421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/25/2023] [Indexed: 06/08/2023] Open
Abstract
Ocean warming and marine heatwaves induced by climate change are impacting coral reefs globally, leading to coral bleaching and mortality. Yet, coral resistance and resilience to warming are not uniform across reef sites and corals can show inter- and intraspecific variability. To understand changes in coral health and to elucidate mechanisms of coral thermal tolerance, baseline data on the dynamics of coral holobiont performance under non-stressed conditions are needed. We monitored the seasonal dynamics of algal symbionts (family Symbiodiniaceae) hosted by corals from a chronically warmed and thermally variable reef compared to a thermally stable reef in southern Taiwan over 15 months. We assessed the genera and photochemical efficiency of Symbiodiniaceae in three coral species: Acropora nana, Pocillopora acuta, and Porites lutea. Both Durusdinium and Cladocopium were present in all coral species at both reef sites across all seasons, but general trends in their detection (based on qPCR cycle) varied between sites and among species. Photochemical efficiency (i.e., maximum quantum yield; Fv/Fm) was relatively similar between reef sites but differed consistently among species; no clear evidence of seasonal trends in Fv/Fm was found. Quantifying natural Symbiodiniaceae dynamics can help facilitate a more comprehensive interpretation of thermal tolerance response as well as plasticity potential of the coral holobiont.
Collapse
Affiliation(s)
- Crystal J McRae
- Department of Planning and Research, National Museum of Marine Biology & Aquarium, Checheng, Pingtung, Taiwan
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | - Hung-Kai Chen
- Department of Planning and Research, National Museum of Marine Biology & Aquarium, Checheng, Pingtung, Taiwan
| | - Zong-Min Ye
- Department of Planning and Research, National Museum of Marine Biology & Aquarium, Checheng, Pingtung, Taiwan
| | - Pei-Jie Meng
- Department of Planning and Research, National Museum of Marine Biology & Aquarium, Checheng, Pingtung, Taiwan
- Graduate Institute of Marine Biology, National Dong Hwa University, Checheng, Pingtung, Taiwan
| | - Sabrina L Rosset
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Wen-Bin Huang
- Department of Natural Resources and Environmental Studies, National Dong Hwa University, Shoufeng, Hualien, Taiwan
| | | | - Tung-Yung Fan
- Department of Planning and Research, National Museum of Marine Biology & Aquarium, Checheng, Pingtung, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Isabelle M Côté
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
4
|
Alvarado-Cerón V, Muñiz-Castillo AI, León-Pech MG, Prada C, Arias-González JE. A decade of population genetics studies of scleractinian corals: A systematic review. MARINE ENVIRONMENTAL RESEARCH 2023; 183:105781. [PMID: 36371949 DOI: 10.1016/j.marenvres.2022.105781] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Coral reefs are the most diverse marine ecosystems. However, coral cover has decreased worldwide due to natural disturbances, climate change, and local anthropogenic drivers. In recent decades, various genetic methods and molecular markers have been developed to assess genetic diversity, structure, and connectivity in different coral species to determine the vulnerability of their populations. This review aims to identify population genetic studies of scleractinian corals in the last decade (2010-2020), and the techniques and molecular markers used. Bibliometric analysis was conducted to identify journals and authors working in this field. We then calculated the number of genetic studies by species and ecoregion based on data obtained from 178 studies found in Scopus and Web of Science. Coral Reefs and Molecular Ecology were the main journals published population genetics studies, and microsatellites are the most widely used molecular markers. The Caribbean, Australian Barrier Reef, and South Kuroshio in Japan are among the ecoregions with the most population genetics data. In contrast, we found limited information about the Coral Triangle, a region with the highest biodiversity and key to coral reef conservation. Notably, only 117 (out of 1500 described) scleractinian coral species have genetic studies. This review emphasizes which coral species have been studied and highlights remaining gaps and locations where such data is critical for coral conservation.
Collapse
Affiliation(s)
- Viridiana Alvarado-Cerón
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del I.P.N., Unidad Mérida. Km. 6 Antigua carretera a Progreso, Cordemex, 97310, Mérida, Yucatán, Mexico.
| | - Aarón Israel Muñiz-Castillo
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del I.P.N., Unidad Mérida. Km. 6 Antigua carretera a Progreso, Cordemex, 97310, Mérida, Yucatán, Mexico.
| | - María Geovana León-Pech
- Department of Biological Science, University of Rhode Island, 120 Flag Road, Kingston, RI, 02881, USA.
| | - Carlos Prada
- Department of Biological Science, University of Rhode Island, 120 Flag Road, Kingston, RI, 02881, USA.
| | - Jesús Ernesto Arias-González
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del I.P.N., Unidad Mérida. Km. 6 Antigua carretera a Progreso, Cordemex, 97310, Mérida, Yucatán, Mexico.
| |
Collapse
|
5
|
Keshavmurthy S, Chen TR, Liu PJ, Wang JT, Chen CA. Learning from the past is not enough to survive present and future bleaching threshold temperatures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158379. [PMID: 36055494 DOI: 10.1016/j.scitotenv.2022.158379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
In the past decade, the frequency of mass coral bleaching events has increased due to seawater temperature anomalies persisting for longer periods. Coral survival from temperature anomalies has been based on how each species in each location responds to stress, which is unique to individual species and may be due to the way stressful experiences accumulate through time in the form of ecological and physiological memory. A deeper understanding of ecological and physiological memory in corals is necessary to understand their survival strategies into the future. Laboratory experiments can help us simulate seawater temperatures experienced by corals in the past and compare their responses to those of the present and future. In this study, we sampled corals with different life history traits from one location perturbed by seawater temperature incursions (variable site) and from a second, relatively undisturbed location (stable site). We sampled across two seasons to observe the responses to bleaching threshold temperatures in the past (1998-29 °C), present (2018-31 °C), and future (2050-33 °C). Corals were healthy at 29 °C and 31 °C, but a fast-growing, temperature-susceptible coral species experienced high mortality at 33 °C compared to a slow-growing, temperature-resistant coral species. Moreover, corals from the variable site and during the spring season fared better under temperature stress. The results of this study provide insight into the possible role of life-history traits on coral's response to seasons and locations in terms of memory to long-term and short-term thermal anomalies and climate change.
Collapse
Affiliation(s)
| | - Ting-Ru Chen
- Biodiversity Research Centre, Academia Sinica, Nangang, Taipei 115, Taiwan; Institute of Oceanography, National Taiwan University, Taipei 106, Taiwan
| | - Pei-Jen Liu
- Institute of Marine Biology, National Dong Hwa University, Hualien 974, Taiwan
| | - Jih-Terng Wang
- Department of Oceanography, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Chaolun Allen Chen
- Biodiversity Research Centre, Academia Sinica, Nangang, Taipei 115, Taiwan; Department of Life Science, National Taiwan Normal University, Taipei 106, Taiwan; Department of Life Science, Tunghai University, Taichung 404, Taiwan.
| |
Collapse
|
6
|
Li M, Huang W, Wu Q, Feng Y, Chen Y, Yu K, Chen B, Yang E, Meng L, Huang X, Wang X. High genetic differentiation and moderate genetic diversity of the degenerative branching coral Pocillopora verrucosa in the tropical South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153076. [PMID: 35038534 DOI: 10.1016/j.scitotenv.2022.153076] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/08/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Global warming is causing rapid degradation of coral reefs, among which branching corals are degrading the fastest. An assessment of coral genetic diversity and adaptive potential provides a basis for coral reef protection. In this study, we selected the branching coral Pocillopora verrucosa, a widely distributed species in the tropical South China Sea (SCS), to carry out population genetic studies. To analyze the genetic diversity and structure of 319 P. verrucosa samples from 10 populations in 4 SCS regions, twelve pairs of microsatellite primers and two nuclear markers, ITS and β-tub, were selected. Microsatellite marker results showed moderate genetic diversity for P. verrucosa in the SCS, but relatively low diversity in Dazhou Island and Yongxing Island. The haplotype network showed that P. verrucosa in the SCS was derived from two ancestors, which may be linked to geographical isolation in the Pleistocene glacial period. AMOVA (ΦST = 0.3375) and FST pairwise analysis results based on β-tub showed that the populations were highly differentiated, with most FST values (21/45) > 0.25. Yongxing and Qilianyu Islands populations were significantly different from those in the Xisha area. Mantel test results showed that genetic differentiation among P. verrucosa populations was significantly and positively correlated with both mean sea surface temperature (SST) and SST variance, and was not correlated with distance, chlorophyll-a, or turbidity. The reproductive mode of brooding planulae was an important factor contributing to high genetic differentiation among populations. The moderate genetic diversity of SCS P. verrucosa indicates that this population has a certain genetic potential in the context of global changes, but the high genetic differentiation between populations increases the risk of local degradation or extinction. This study provides a theoretical basis for the protection and restoration of SCS coral reefs.
Collapse
Affiliation(s)
- Ming Li
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China; Forestry College, Guangxi University, Nanning 530004, China
| | - Wen Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| | - Qian Wu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Yi Feng
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Yinmin Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519080, China.
| | - Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Enguang Yang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Linqing Meng
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Xueyong Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Xin Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China; Gunagxi Key Lab of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Beihai 536000, China
| |
Collapse
|
7
|
McRae CJ, Huang WB, Fan TY, Côté IM. Effects of thermal conditioning on the performance of Pocillopora acuta adult coral colonies and their offspring. CORAL REEFS (ONLINE) 2021; 40:1491-1503. [PMID: 34720373 PMCID: PMC8550305 DOI: 10.1007/s00338-021-02123-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 05/25/2021] [Indexed: 05/02/2023]
Abstract
UNLABELLED Ocean warming induced by climate change is the greatest threat to the persistence of coral reefs globally. Given the current rate of ocean warming, there may not be sufficient time for natural acclimation or adaptation by corals. This urgency has led to the exploration of active management techniques aimed at enhancing thermal tolerance in corals. Here, we test the capacity for transgenerational acclimation in the reef-building coral Pocillopora acuta as a means of increasing offspring performance in warmer waters. We exposed coral colonies from a reef influenced by intermittent upwelling and constant warm-water effluent from a nuclear power plant to temperatures that matched (26 °C) or exceeded (29.5 °C) season-specific mean temperatures for three reproductive cycles; offspring were allowed to settle and grow at both temperatures. Heated colonies reproduced significantly earlier in the lunar cycle and produced fewer and smaller planulae. Recruitment was lower at the heated recruitment temperature regardless of parent treatment. Recruit survival did not differ based on parent or recruitment temperature. Recruits from heated parents were smaller and had lower maximum quantum yield (Fv/Fm), a measurement of symbiont photochemical performance. We found no direct evidence that thermal conditioning of adult P. acuta corals improves offspring performance in warmer water; however, chronic exposure of parent colonies to warmer temperatures at the source reef site may have limited transgenerational acclimation capacity. The extent to which coral response to this active management approach might vary across species and sites remains unclear and merits further investigation. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s00338-021-02123-9.
Collapse
Affiliation(s)
- Crystal J. McRae
- Department of Natural Resources and Environmental Studies, National Dong Hwa University, Hualien, Taiwan
- Department of Biological Sciences, Simon Fraser University, British Columbia, Canada
| | - Wen-Bin Huang
- Department of Natural Resources and Environmental Studies, National Dong Hwa University, Hualien, Taiwan
| | - Tung-Yung Fan
- Institute of Marine Biology, National Dong Hwa University, Pingtung, Taiwan
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
| | - Isabelle M. Côté
- Department of Biological Sciences, Simon Fraser University, British Columbia, Canada
| |
Collapse
|
8
|
Jain SS, Afiq-Rosli L, Feldman B, Levy O, Phua JW, Wainwright BJ, Huang D. Homogenization of Endosymbiont Communities Hosted by Equatorial Corals during the 2016 Mass Bleaching Event. Microorganisms 2020; 8:microorganisms8091370. [PMID: 32906741 PMCID: PMC7564173 DOI: 10.3390/microorganisms8091370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 01/08/2023] Open
Abstract
Thermal stress drives the bleaching of reef corals, during which the endosymbiotic relationship between Symbiodiniaceae microalgae and the host breaks down. The endosymbiont communities are known to shift in response to environmental disturbances, but how they respond within and between colonies during and following bleaching events remains unclear. In 2016, a major global-scale bleaching event hit countless tropical reefs. Here, we investigate the relative abundances of Cladocopium LaJeunesse & H.J.Jeong, 2018 and Durusdinium LaJeunesse, 2018 within and among Pachyseris speciosa colonies in equatorial Singapore that are known to host both these Symbiodiniaceae clades. Bleached and unbleached tissues from bleaching colonies, as well as healthy colonies, during and following the bleaching event were sampled and analyzed for comparison. The nuclear ribosomal internal transcribed spacer (ITS) regions were separately amplified and quantified using a SYBR Green-based quantitative polymerase chain reaction (qPCR) method and Illumina high-throughput sequencing. We found Cladocopium to be highly abundant relative to Durusdinium. The relative abundance of Durusdinium, known to be thermally tolerant, was highest in post-bleaching healthy colonies, while bleached and unbleached tissues from bleaching colonies as well as tissue from healthy colonies during the event had depressed proportions of Durusdinium. Given the importance of Durusdinium for thermal tolerance and stress response, it is surprising that bleached tissue showed limited change over healthy tissue during the bleaching event. Moreover, colonies were invariably dominated by Cladocopium during bleaching, but a minority of colonies were Durusdinium-dominant during non-bleaching times. The detailed characterization of Symbiodiniaceae in specific colonies during stress and recovery will provide insights into this crucial symbiosis, with implications for their responses during major bleaching events.
Collapse
Affiliation(s)
- Sudhanshi S. Jain
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore; (L.A.-R.); (J.W.P.)
- Correspondence: (S.S.J.); (D.H.)
| | - Lutfi Afiq-Rosli
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore; (L.A.-R.); (J.W.P.)
- Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore 119227, Singapore
| | - Bar Feldman
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel; (B.F.); (O.L.)
| | - Oren Levy
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel; (B.F.); (O.L.)
| | - Jun Wei Phua
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore; (L.A.-R.); (J.W.P.)
| | - Benjamin J. Wainwright
- Yale-NUS College, National University of Singapore, 16 College Avenue West, Singapore 138527, Singapore;
| | - Danwei Huang
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore; (L.A.-R.); (J.W.P.)
- Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore 119227, Singapore
- Correspondence: (S.S.J.); (D.H.)
| |
Collapse
|
9
|
Keshavmurthy S, Tee HS, Kao KW, Wang JT, Chen CA. Specificity trumps flexibility-location-based stable associations between Symbiodiniaceae genera and Platygyra verweyi (Scleractinia; Merulinidae). PeerJ 2020; 8:e8791. [PMID: 32411505 PMCID: PMC7207216 DOI: 10.7717/peerj.8791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/24/2020] [Indexed: 11/30/2022] Open
Abstract
This study monitored symbiont communities bi-monthly in native coral cores used in a reciprocal transplantation of the coral Platygyra verweyi over two years (2014–2016) and samples of mother colonies from three locations with variable thermal regimes; our results show that associating with multiple Symbiodiniaceae genera (Cladocopium spp. and Durusdinium spp.) is not a prerequisite for symbiont shuffling. Platygyra verweyi associates with certain Symbiodiniaceae genera based on location. Results of quantitative real-time PCR indicated small-scale temporal changes in Symbiodiniaceae genera compositions from 2014 to 2016; however, these changes were not enough to invoke shuffling or switching, despite degree heating weeks exceeding 6 °C-weeks in 2014 and 4 °C-weeks in 2015, which usually resulted in substantial coral bleaching. Microsatellite analysis of the P. verweyi host showed no genetic differences among the study locations. Our results suggest that P. verweyi undergoes long-term acclimatization and/or adaptation based on microgeographic and local environmental conditionsby altering its combinations of associated Symbiodiniaceae. Results also suggest that shuffling might not be as common a phenomenon as it has been given credit for; corals thrive through specific associations, and many corals could still be vulnerable to climate change-induced stress, despite being promiscuous or able to associate with rare and background Symbiodiniaceae genera.
Collapse
Affiliation(s)
| | - Hwee Sze Tee
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.,Taiwan International Graduate Program, International Internship Program, Academia Sinica, Taipei, Taiwan
| | - Kuo-Wei Kao
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.,Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| | - Jih-Terng Wang
- Department of Oceanography, National Sun Yat-Sen University, Kaoshuing, Taiwan
| | - Chaolun Allen Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.,Institute of Oceanography, National Taiwan University, Taipei, Taiwan.,Department of Life Science, Tunghai University, Taichung, Taiwan
| |
Collapse
|
10
|
Leptoria phrygia in Southern Taiwan shuffles and switches symbionts to resist thermal-induced bleaching. Sci Rep 2020; 10:7808. [PMID: 32385394 PMCID: PMC7210888 DOI: 10.1038/s41598-020-64749-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/16/2020] [Indexed: 11/29/2022] Open
Abstract
Symbiodiniaceae communities in some corals often shuffle or switch after severe bleaching events, one of the major threats to coral survival in a world with climate change. In this study we reciprocally transplanted five Leptoria phrygia colonies between two sites with significantly different temperature regimes and monitored them for 12 months. Our ITS2 amplicon deep sequencing demonstrated that L. phrygia acclimatized to maintain a strong and stable association with Durusdinium D17, D. trenchii, and D. glynnii, but also remained flexible and formed a short-term association with different Cladocopium. Most interestingly, two colonies shuffled between Durusdinium and Cladocopium without the occurrence of bleaching; one colony even switched its dominant Cladocopium after generic shuffling. Both dominant Cladocopium were originally rare with relative abundances as low as 0.024%. This is the first record of adult corals switching dominant symbiont without bleaching.
Collapse
|
11
|
Xu H, Feng B, Xie M, Ren Y, Xia J, Zhang Y, Wang A, Li X. Physiological Characteristics and Environment Adaptability of Reef-Building Corals at the Wuzhizhou Island of South China Sea. Front Physiol 2020; 11:390. [PMID: 32411015 PMCID: PMC7201098 DOI: 10.3389/fphys.2020.00390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/01/2020] [Indexed: 01/01/2023] Open
Abstract
The health of coral reef has declined significantly around the world due to the impact of human activities and natural environment changes, and corals have to develop effective resistance mechanisms to survive. In this study, we examined the physiological characteristics and Symbiodiniaceae types of four dominant scleractinian corals in the reefs at the Wuzhizhou Island (WZZ) in South China Sea. The water environmental conditions are complex on the north side of WZZ due to regional geography and tourism development, and all corals had their unique physiological conditions and Symbiodiniaceae types. For all corals of this study, the rETRm ax and protein content were significantly lower and the SOD enzyme activity was significantly higher in the north than in the south. Interestingly, ITS2 genotyping showed that Galaxea fascicularis contained dominant Symbiodiniaceae either genotype C21 or D1a depending on the regional environmental stress, and had stronger heterotrophy than the other three coral species. In addition, the light use efficiency of the dominant Symbiodiniaceae type C1 for Pocillopora verrucosa was significantly lower in the north and the half saturating irradiance was stable. Besides, Montipora truncata and P. verrucosa increased their density of the symbiotic zooxanthella C1 in the north to offset the decline of photosynthetic efficiency and thus supply energy. For Porites lutea and G. fascicularis, their half saturating irradiance declined sharply in the north, where P. lutea resorted to heterotrophic feeding to balance the energy budget when the number of zooxanthellas fell short and G. fascicularis reduced its energy reserve significantly when the energy source was limited. We thus demonstrated the differences in the physiological responses and energy metabolism strategies between the zooxanthella and the host coral of the four reef-building coral species under the stress of complex water environment on the north side of WZZ. The corals were found to cope with natural and anthropogenic stressors by adjusting the nutrient input sources and the energy structure metabolism of coral hosts or adapting to more sustainable relationship with Symbiodiniaceae clades. The corals exhibited their capacity against long-term disturbances by developing their own successful resistance mechanisms at symbiotic relationship and energy metabolism level.
Collapse
Affiliation(s)
- Huili Xu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
- College of Marine Science, Hainan University, Haikou, China
| | - Boxuan Feng
- College of Marine Science, Hainan University, Haikou, China
| | - Minrui Xie
- College of Marine Science, Hainan University, Haikou, China
| | - Yuxiao Ren
- College of Marine Science, Hainan University, Haikou, China
| | - Jingquan Xia
- College of Marine Science, Hainan University, Haikou, China
| | - Yu Zhang
- College of Marine Science, Hainan University, Haikou, China
| | - Aimin Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
- College of Marine Science, Hainan University, Haikou, China
| | - Xiubao Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
- College of Marine Science, Hainan University, Haikou, China
| |
Collapse
|
12
|
Thermal Stress and Resilience of Corals in a Climate-Changing World. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2019. [DOI: 10.3390/jmse8010015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Coral reef ecosystems are under the direct threat of increasing atmospheric greenhouse gases, which increase seawater temperatures in the oceans and lead to bleaching events. Global bleaching events are becoming more frequent and stronger, and understanding how corals can tolerate and survive high-temperature stress should be accorded paramount priority. Here, we review evidence of the different mechanisms that corals employ to mitigate thermal stress, which include association with thermally tolerant endosymbionts, acclimatisation, and adaptation processes. These differences highlight the physiological diversity and complexity of symbiotic organisms, such as scleractinian corals, where each species (coral host and microbial endosymbionts) responds differently to thermal stress. We conclude by offering some insights into the future of coral reefs and examining the strategies scientists are leveraging to ensure the survival of this valuable ecosystem. Without a reduction in greenhouse gas emissions and a divergence from our societal dependence on fossil fuels, natural mechanisms possessed by corals might be insufficient towards ensuring the ecological functioning of coral reef ecosystems.
Collapse
|
13
|
Abstract
The significance of symbioses between eukaryotic hosts and microbes extends from the organismal to the ecosystem level and underpins the health of Earth’s most threatened marine ecosystems. Despite rapid growth in research on host-associated microbes, from individual microbial symbionts to host-associated consortia of significantly relevant taxa, little is known about their interactions with the vast majority of marine host species. We outline research priorities to strengthen our current knowledge of host–microbiome interactions and how they shape marine ecosystems. We argue that such advances in research will help predict responses of species, communities, and ecosystems to stressors driven by human activity and inform future management strategies. The significance of symbioses between eukaryotic hosts and microbes extends from the organismal to the ecosystem level and underpins the health of Earth’s most threatened marine ecosystems. This Perspective article outlines research priorities to strengthen our current knowledge of host-microbiome interactions, to help predict responses to anthropogenic stressors and to inform future management strategies.
Collapse
|
14
|
Coral Reef Resilience in Taiwan: Lessons from Long-Term Ecological Research on the Coral Reefs of Kenting National Park (Taiwan). JOURNAL OF MARINE SCIENCE AND ENGINEERING 2019. [DOI: 10.3390/jmse7110388] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Coral reefs in the Anthropocene are being subjected to unprecedented levels of stressors, including local disturbances—such as overfishing, habitat destruction, and pollution—and large-scale destruction related to the global impacts of climate change—such as typhoons and coral bleaching. Thus, the future of corals and coral reefs in any given community and coral-Symbiodiniaceae associations over time will depend on their level of resilience, from individual corals to entire ecosystems. Herein we review the environmental settings and long-term ecological research on coral reefs, based on both coral resilience and space, in Kenting National Park (KNP), Hengchun Peninsula, southern Taiwan, wherein fringing reefs have developed along the coast of both capes and a semi-closed bay, known as Nanwan, within the peninsula. These reefs are influenced by a branch of Kuroshio Current, the monsoon-induced South China Sea Surface Current, and a tide-induced upwelling that not only shapes coral communities, but also reduces the seawater temperature and creates fluctuating thermal environments which over time have favoured thermal-resistant corals, particularly those corals close to the thermal effluent of a nuclear power plant in the west Nanwan. Although living coral cover (LCC) has fluctuated through time in concordance with major typhoons and coral bleaching between 1986 and 2019, spatial heterogeneity in LCC recovery has been detected, suggesting that coral reef resilience is variable among subregions in KNP. In addition, corals exposed to progressively warmer and fluctuating thermal environments show not only a dominance of associated, thermally-tolerant Durusdinium spp. but also the ability to shuffle their symbiont communities in response to seasonal variations in seawater temperature without bleaching. We demonstrate that coral reefs in a small geographical range with unique environmental settings and ecological characteristics, such as the KNP reef, may be resilient to bleaching and deserve novel conservation efforts. Thus, this review calls for conservation efforts that use resilience-based management programs to reduce local stresses and meet the challenge of climate change.
Collapse
|
15
|
Leveque S, Afiq-Rosli L, Ip YCA, Jain SS, Huang D. Searching for phylogenetic patterns of Symbiodiniaceae community structure among Indo-Pacific Merulinidae corals. PeerJ 2019; 7:e7669. [PMID: 31565579 PMCID: PMC6746223 DOI: 10.7717/peerj.7669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/13/2019] [Indexed: 11/20/2022] Open
Abstract
Over half of all extant stony corals (Cnidaria: Anthozoa: Scleractinia) harbour endosymbiotic dinoflagellates of the family Symbiodiniaceae, forming the foundational species of modern shallow reefs. However, whether these associations are conserved on the coral phylogeny remains unknown. Here we aim to characterise Symbiodiniaceae communities in eight closely-related species in the genera Merulina, Goniastrea and Scapophyllia, and determine if the variation in endosymbiont community structure can be explained by the phylogenetic relatedness among hosts. We perform DNA metabarcoding of the nuclear internal transcribed spacer 2 using Symbiodiniaceae-specific primers on 30 coral colonies to recover three major endosymbiont clades represented by 23 distinct types. In agreement with previous studies on Southeast Asian corals, we find an abundance of Cladocopium and Durusdinium, but also detect Symbiodinium types in three of the eight coral host species. Interestingly, differences in endosymbiont community structure are dominated by host variation at the intraspecific level, rather than interspecific, intergeneric or among-clade levels, indicating a lack of phylogenetic constraint in the coral-endosymbiont association among host species. Furthermore, the limited geographic sampling of four localities spanning the Western and Central Indo-Pacific preliminarily hints at large-scale spatial structuring of Symbiodiniaceae communities. More extensive collections of corals from various regions and environments will help us better understand the specificity of the coral-endosymbiont relationship.
Collapse
Affiliation(s)
- Sébastien Leveque
- National University of Singapore, Singapore, Singapore.,Université de La Rochelle, La Rochelle, Singapore
| | | | | | | | - Danwei Huang
- National University of Singapore, Singapore, Singapore
| |
Collapse
|
16
|
Wang JT, Wang YT, Keshavmurthy S, Meng PJ, Chen CA. The coral Platygyra verweyi exhibits local adaptation to long-term thermal stress through host-specific physiological and enzymatic response. Sci Rep 2019; 9:13492. [PMID: 31530828 PMCID: PMC6748984 DOI: 10.1038/s41598-019-49594-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/23/2019] [Indexed: 11/25/2022] Open
Abstract
Climate change threatens coral survival by causing coral bleaching, which occurs when the coral's symbiotic relationship with algal symbionts (Symbiodiniaceae) breaks down. Studies on thermal adaptation focus on symbionts because they are accessible both in vitro and in hospite. However, there is little known about the physiological and biochemical response of adult corals (without Symbiodiniaceae) to thermal stress. Here we show acclimatization and/or adaptation potential of menthol-bleached aposymbiotic coral Platygyra verweyi in terms of respiration breakdown temperature (RBT) and malate dehydrogenase (MDH) enzyme activity in samples collected from two reef sites with contrasting temperature regimes: a site near a nuclear power plant outlet (NPP-OL, with long-term temperature perturbation) and Wanlitong (WLT) in southern Taiwan. Aposymbiotic P. verweyi from the NPP-OL site had a 3.1 °C higher threshold RBT than those from WLT. In addition, MDH activity in P. verweyi from NPP-OL showed higher thermal resistance than those from WLT by higher optimum temperatures and the activation energy required for inactivating the enzyme by heat. The MDH from NPP-OL also had two times higher residual activity than that from WLT after incubation at 50 °C for 1 h. The results of RBT and thermal properties of MDH in P. verweyi demonstrate potential physiological and enzymatic response to a long-term and regular thermal stress, independent of their Symbiodiniaceae partner.
Collapse
Affiliation(s)
- Jih-Terng Wang
- Department of Biotechnology, Tajen University, Pingtung, 907, Taiwan.
| | - Yi-Ting Wang
- Department of Biotechnology, Tajen University, Pingtung, 907, Taiwan
| | | | - Pei-Jei Meng
- National Museum of Marine Biology and Aquarium, Pingtung, 944, Taiwan
- Institute of Marine Biodiversity and Evolution, National Dong Hwa University, Pingtung, 944, Taiwan
| | - Chaolun Allen Chen
- Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan.
- Institute of Oceanography, National Taiwan University, Taipei, 108, Taiwan.
- Department of Life Science, Tunghai University, Taichung, 404, Taiwan.
| |
Collapse
|
17
|
Carballo-Bolaños R, Denis V, Huang YY, Keshavmurthy S, Chen CA. Temporal variation and photochemical efficiency of species in Symbiodinaceae associated with coral Leptoria phrygia (Scleractinia; Merulinidae) exposed to contrasting temperature regimes. PLoS One 2019; 14:e0218801. [PMID: 31251761 PMCID: PMC6599219 DOI: 10.1371/journal.pone.0218801] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 06/10/2019] [Indexed: 11/19/2022] Open
Abstract
The Symbiodinaceae are paradoxical in that they play a fundamental role in the success of scleractinian corals, but also in their dismissal when under stress. In the past decades, the discovery of the endosymbiont's genetic and functional diversity has led people to hope that some coral species can survive bleaching events by associating with a stress-resistant symbiont that can become dominant when seawater temperatures increase. The variety of individual responses encouraged us to scrutinize each species individually to gauge its resilience to future changes. Here, we analyse the temporal variation in the Symbiodinaceae community associated with Leptoria phrygia, a common scleractinian coral from the Indo-Pacific. Coral colonies were sampled from two distant reef sites located in southern Taiwan that differ in temperature regimes, exemplifying a 'variable site' (VS) and a 'steady site' (SS). We investigated changes in the relative abundance of the dominant symbiont and its physiology every 3-4 months from 2016-2017. At VS, 11 of the 12 colonies were dominated by the stress-resistant Durusdinium spp. (>90% dominance) and only one colony exhibited co-dominance between Durusdinium spp. and Cladocopium spp. Every colony displayed high photochemical efficiency across all sampling periods, while showing temporal differences in symbiont density and chlorophyll a concentration. At SS, seven colonies out of 13 were dominated by Cladocopium spp., five presented co-dominance between Durusdinium spp./Cladocopium spp. and only one was dominated by Durusdinium spp. Colonies showed temporal differences in photochemical efficiency and chlorophyll a concentration during the study period. Our results suggest that VS colonies responded physiologically better to high temperature variability by associating with Durusdinium spp., while in SS there is still inter-colonial variability, a feature that might be advantageous for coping with different environmental changes.
Collapse
Affiliation(s)
- Rodrigo Carballo-Bolaños
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Vianney Denis
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| | - Ya-Yi Huang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Chaolun Allen Chen
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan
- Department of Life Science, Tunghai University, Taichung, Taiwan
| |
Collapse
|
18
|
Repeated and Prolonged Temperature Anomalies Negate Symbiodiniaceae Genera Shuffling in the Coral Platygyra verweyi (Scleractinia; Merulinidae). Zool Stud 2018; 57:e55. [PMID: 31966295 DOI: 10.6620/zs.2018.57-55] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/15/2018] [Indexed: 01/09/2023]
Abstract
Kuo-Wei Kao, Shashank Keshavmurthy, Cing-Hsin Tsao, Jih-Terng Wang, and Chaolun Allen Chen (2018) With climate change, global average sea surface temperatures are expected to increase by 1.0-3.7°C by the end of this century. Even a 1.0°C increase in seawater temperature from local long-term summer maxima lasting for weeks to months results in bleaching and/or mortality in reef-building corals. Studies on coral resistance mechanisms have proposed a correlation between shuffling of different Symbiodiniaceae genera (changing the dominant Symbiodiniaceae genera) and putative thermal tolerance in corals. Although it was suggested that some corals can increase their tolerance by 1.0-1.5°C through shuffling to thermally tolerant Durusdinium trenchii (formerly D1a), the effects of accumulated thermal stress due to prolonged high temperatures on the survival of corals that have shuffled have not been investigated. We show herein that prolonged exposure to high temperature (> 10.43-degree heating weeks) can drastically reduce coral survival rate even after it has shuffled to stress-tolerant Symbiodiniaceae genera. Our study suggests that there is a limit to the capacity of for shuffling, and hence is likely to lose its efficacy in the future as repeated and prolonged thermal stress events become more frequent and pronounced.
Collapse
|
19
|
Bellis ES, Edlund RB, Berrios HK, Lessios HA, Denver DR. Molecular signatures of host specificity linked to habitat specialization in Exaiptasia sea anemones. Ecol Evol 2018; 8:5413-5426. [PMID: 29938062 PMCID: PMC6010850 DOI: 10.1002/ece3.4058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/24/2018] [Accepted: 02/27/2018] [Indexed: 12/17/2022] Open
Abstract
Rising ocean temperatures associated with global climate change induce breakdown of the symbiosis between coelenterates and photosynthetic microalgae of the genus Symbiodinium. Association with more thermotolerant partners could contribute to resilience, but the genetic mechanisms controlling specificity of hosts for particular Symbiodinium types are poorly known. Here, we characterize wild populations of a sea anemone laboratory model system for anthozoan symbiosis, from contrasting environments in Caribbean Panama. Patterns of anemone abundance and symbiont diversity were consistent with specialization of holobionts for particular habitats, with Exaiptasia pallida/S. minutum (ITS2 type B1) abundant on vertical substrate in thermally stable, shaded environments but E. brasiliensis/Symbiodinium sp. (ITS2 clade A) more common in shallow areas subject to high temperature and irradiance. Population genomic sequencing revealed a novel E. pallida population from the Bocas del Toro Archipelago that only harbors S. minutum. Loci most strongly associated with divergence of the Bocas-specific population were enriched in genes with putative roles in cnidarian symbiosis, including activators of the complement pathway of the innate immune system, thrombospondin-type-1 repeat domain proteins, and coordinators of endocytic recycling. Our findings underscore the importance of unmasking cryptic diversity in natural populations and the role of long-term evolutionary history in mediating interactions with Symbiodinium.
Collapse
Affiliation(s)
- Emily S. Bellis
- Department of Integrative BiologyOregon State UniversityCorvallisOregon
| | - Reid. B. Edlund
- Department of Integrative BiologyOregon State UniversityCorvallisOregon
| | - Hazel K. Berrios
- Department of Biological SciencesArkansas State UniversityJonesboroArkansas
| | | | - Dee R. Denver
- Department of Integrative BiologyOregon State UniversityCorvallisOregon
| |
Collapse
|
20
|
Zhou G, Cai L, Li Y, Tong H, Jiang L, Zhang Y, Lei X, Guo M, Liu S, Qian PY, Huang H. Temperature-Driven Local Acclimatization of Symbiodnium Hosted by the Coral Galaxea fascicularis at Hainan Island, China. Front Microbiol 2017; 8:2487. [PMID: 29312196 PMCID: PMC5733085 DOI: 10.3389/fmicb.2017.02487] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 11/29/2017] [Indexed: 11/13/2022] Open
Abstract
The success of coral reef ecosystems largely depends on mutualistic symbiosis between scleractinian corals and the dinoflagellate photosymbiont Symbiodinium spp. However, further investigation is needed to elucidate the flexibility of coral-algae associations in response to environmental changes. In this study, we applied a molecular method (high-throughput internal transcribed spacer 2 region of ribosomal RNA gene amplicon sequencing) to explore diversity and flexibility of Symbiodinium associated with Galaxea fascicularis, an ecologically important scleractinian coral species collected at five locations around Hainan Island, South China Sea. The results revealed a high diversity of Symbiodinium subclades with C2r and D17 being dominant in G. fascicularis. Clade D Symbiodinium occurred most frequently in habitats where the annual average sea surface temperatures are the highest, suggesting that temperature is an important factor in determining Symbiodinium D abundance in G. fascicularis. The distribution of coral-Symbiodinium associations are possibly mediated by trade-off mechanisms which change the relative abundance of Symbiodinium clades/subclades under different environmental conditions. These findings provide further evidence that reef-building corals such as G. fascicularis can shuffle their symbionts to cope with environmental changes, and have implications for our understanding of the ecology of flexible coral-algal symbiosis.
Collapse
Affiliation(s)
- Guowei Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Tropical Marine Biological Research Station in Hainan, Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya, China
| | - Lin Cai
- Shenzhen Research Institute and Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| | - Yuanchao Li
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, China
| | - Haoya Tong
- Shenzhen Research Institute and Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| | - Lei Jiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Yuyang Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Xinming Lei
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Minglan Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Sheng Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Pei-Yuan Qian
- Shenzhen Research Institute and Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| | - Hui Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Tropical Marine Biological Research Station in Hainan, Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya, China
| |
Collapse
|
21
|
Genetic structure of coral-Symbiodinium symbioses on the world's warmest reefs. PLoS One 2017; 12:e0180169. [PMID: 28666005 PMCID: PMC5493405 DOI: 10.1371/journal.pone.0180169] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/12/2017] [Indexed: 12/02/2022] Open
Abstract
Corals in the Arabian/Persian Gulf (PAG) survive extreme sea temperatures (summer mean: >34°C), and it is unclear whether these corals have genetically adapted or physiologically acclimated to these conditions. In order to elucidate the processes involved in the thermal tolerance of PAG corals, it is essential to understand the connectivity between reefs within and outside of the PAG. To this end, this study set out to investigate the genetic structure of the coral, Platygyra daedalea, and its symbiotic algae in the PAG and neighbouring Gulf of Oman. Using nuclear markers (the ITS region and an intron of the Pax-C gene), this study demonstrates genetic divergence of P. daedalea on reefs within the thermally extreme PAG compared with those in the neighbouring Gulf of Oman. Isolation by distance of P. daedalea was supported by the ITS dataset but not the Pax-C intron. In addition, the symbiont community within the PAG was dominated by C3 symbionts, while the purportedly thermotolerant clade D was extremely rare and was common only at sites outside of the PAG. Analysis of the psbAncr indicates that the C3 variant hosted by P. daedalea in the PAG belongs to the newly described species, Symbiodinium thermophilum. The structuring of the coral and symbiont populations suggests that both partners of the symbiosis may contribute to the high bleaching thresholds of PAG corals. While limited gene flow has likely played a role in local adaptation within the PAG, it also indicates limited potential for natural export of thermal tolerance traits to reefs elsewhere in the Indian Ocean threatened by climate change.
Collapse
|
22
|
Symbiont community stability through severe coral bleaching in a thermally extreme lagoon. Sci Rep 2017; 7:2428. [PMID: 28546553 PMCID: PMC5445074 DOI: 10.1038/s41598-017-01569-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 03/31/2017] [Indexed: 01/01/2023] Open
Abstract
Coral reefs are threatened by climate change as coral-algal symbioses are currently living close to their upper thermal limits. The resilience of the algal partner plays a key role in determining the thermal tolerance of the coral holobiont and therefore, understanding the acclimatory limits of present day coral-algal symbioses is fundamental to forecasting corals' responses to climate change. This study characterised the symbiont community in a highly variable and thermally extreme (Max = 37.5 °C, Min = 16.8 °C) lagoon located in the southern Persian/Arabian Gulf using next generation sequencing of ITS2 amplicons. Despite experiencing extreme temperatures, severe bleaching and many factors that would be expected to promote the presence of, or transition to clade D dominance, the symbiont communities of the lagoon remain dominated by the C3 variant, Symbiodinium thermophilum. The stability of this symbiosis across multiple genera with different means of symbiont transmission highlights the importance of Symbiodinium thermophilum for corals living at the acclimatory limits of modern day corals. Corals in this extreme environment did not undergo adaptive bleaching, suggesting they are living at the edge of their acclimatory potential and that this valuable source of thermally tolerant genotypes may be lost in the near future under climate change.
Collapse
|
23
|
Howells EJ, Abrego D, Meyer E, Kirk NL, Burt JA. Host adaptation and unexpected symbiont partners enable reef-building corals to tolerate extreme temperatures. GLOBAL CHANGE BIOLOGY 2016; 22:2702-14. [PMID: 26864257 DOI: 10.1111/gcb.13250] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 02/02/2016] [Accepted: 02/02/2016] [Indexed: 05/18/2023]
Abstract
Understanding the potential for coral adaptation to warming seas is complicated by interactions between symbiotic partners that define stress responses and the difficulties of tracking selection in natural populations. To overcome these challenges, we characterized the contribution of both animal host and symbiotic algae to thermal tolerance in corals that have already experienced considerable warming on par with end-of-century projections for most coral reefs. Thermal responses in Platygyra daedalea corals from the hot Persian Gulf where summer temperatures reach 36°C were compared with conspecifics from the milder Sea of Oman. Persian Gulf corals had higher rates of survival at elevated temperatures (33 and 36°C) in both the nonsymbiotic larval stage (32-49% higher) and the symbiotic adult life stage (51% higher). Additionally, Persian Gulf hosts had fixed greater potential to mitigate oxidative stress (31-49% higher) and their Symbiodinium partners had better retention of photosynthetic performance under elevated temperature (up to 161% higher). Superior thermal tolerance of Persian Gulf vs. Sea of Oman corals was maintained after 6-month acclimatization to a common ambient environment and was underpinned by genetic divergence in both the coral host and symbiotic algae. In P. daedalea host samples, genomewide SNP variation clustered into two discrete groups corresponding with Persian Gulf and Sea of Oman sites. Symbiodinium within host tissues predominantly belonged to ITS2 rDNA type C3 in the Persian Gulf and type D1a in the Sea of Oman contradicting patterns of Symbiodinium thermal tolerance from other regions. Our findings provide evidence that genetic adaptation of both host and Symbiodinium has enabled corals to cope with extreme temperatures in the Persian Gulf. Thus, the persistence of coral populations under continued warming will likely be determined by evolutionary rates in both, rather than single, symbiotic partners.
Collapse
Affiliation(s)
- Emily J Howells
- Center for Genomics and Systems Biology, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - David Abrego
- Department of Natural Science and Public Health, Zayed University, P.O. Box 144534, Abu Dhabi, United Arab Emirates
| | - Eli Meyer
- Department of Integrative Biology, Oregon State University, 3029 Cordley Hall, Corvallis, OR 97331, USA
| | - Nathan L Kirk
- Department of Integrative Biology, Oregon State University, 3029 Cordley Hall, Corvallis, OR 97331, USA
| | - John A Burt
- Center for Genomics and Systems Biology, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| |
Collapse
|
24
|
Recent Advances in Understanding the Effects of Climate Change on Coral Reefs. DIVERSITY-BASEL 2016. [DOI: 10.3390/d8020012] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Bellis ES, Howe DK, Denver DR. Genome-wide polymorphism and signatures of selection in the symbiotic sea anemone Aiptasia. BMC Genomics 2016; 17:160. [PMID: 26926343 PMCID: PMC4772690 DOI: 10.1186/s12864-016-2488-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 02/17/2016] [Indexed: 12/30/2022] Open
Abstract
Background Coral reef ecosystems are declining in response to global climate change and anthropogenic impacts. Yet patterns of standing genetic variation within cnidarian species, a major determinant of adaptive potential, are virtually unknown at genome-scale resolution. We explore patterns of genome-wide polymorphism and identify candidate loci under selection in the sea anemone Aiptasia, an important laboratory model system for studying the symbiosis between corals and dinoflagellate algae of the genus Symbiodinium. Results Low coverage genome sequencing revealed large genetic distances among globally widespread lineages, novel candidate targets of selection, and considerably higher heterozygosity than previously reported for Aiptasia. More than 670,000 single nucleotide polymorphisms were identified among 10 Aiptasia individuals including two pairs of genetic clones. Evolutionary relationships based on genome-wide polymorphism supported the current paradigm of a genetically distinct population from the US South Atlantic that harbors diverse Symbiodinium clades. However, anemones from the US South Atlantic demonstrated a striking lack of shared derived polymorphism. Heterozygosity was an important feature shaping nucleotide diversity patterns: at any given SNP site, more than a third of individuals genotyped were heterozygotes, and heterozygosity within individual genomes ranged from 0.37–0.58 %. Analysis of nonsynonymous and synonymous sites suggested that highly heterozygous regions are evolving under relaxed purifying selection compared to the rest of the Aiptasia genome. Genes previously identified as having elevated evolutionary rates in Aiptasia compared to other cnidarians were found in our study to be under strong purifying selection within Aiptasia. Candidate targets of selection, including lectins and genes involved in Rho GTPase signalling, were identified based on unusual signatures of nucleotide diversity, Tajima’s D, and heterozygosity compared to genome-wide averages. Conclusions This study represents the first genome-wide analysis of Tajima’s D in a cnidarian. Our results shed light on patterns of intraspecific genome-wide polymorphism in a model for studies of coral-algae symbiosis and present genetic targets for future research on evolutionary and cellular processes in early-diverging metazoans. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2488-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emily S Bellis
- Department of Integrative Biology, Oregon State University, Corvallis, 97331, OR, USA.
| | - Dana K Howe
- Department of Integrative Biology, Oregon State University, Corvallis, 97331, OR, USA.
| | - Dee R Denver
- Department of Integrative Biology, Oregon State University, Corvallis, 97331, OR, USA.
| |
Collapse
|
26
|
Lee STM, Davy SK, Tang SL, Fan TY, Kench PS. Successive shifts in the microbial community of the surface mucus layer and tissues of the coral Acropora muricata under thermal stress. FEMS Microbiol Ecol 2015; 91:fiv142. [PMID: 26564958 DOI: 10.1093/femsec/fiv142] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2015] [Indexed: 12/29/2022] Open
Abstract
The coral mucus may harbor commensal bacteria that inhibit growth of pathogens. Therefore, there is a need to understand the dynamics of bacterial communities between the coral mucus and tissues. Nubbins of Acropora muricata were subjected to increasing water temperatures of 26°C-33°C, to simultaneously explore the bacterial diversity in coral mucus and tissues by 16S rRNA gene amplicon sequencing. Photochemical efficiency of symbiotic dinoflagellates within the corals declined above 31°C. Both the mucus and tissues of healthy A. muricata were dominated by γ-Proteobacteria, but under thermal stress there was a shift towards bacteria from the Verrucomicrobiaceae and α-Proteobacteria. Members of Cyanobacteria, Flavobacteria and Sphingobacteria also become more prominent at higher temperatures. The relative abundance of Vibrio spp. in the coral mucus increased at 29°C, but at 31°C, there was a drop in the relative abundance of Vibrio spp. in the mucus, with a reciprocal increase in the tissues. On the other hand, during bleaching, the relative abundance of Endozoicomonas spp. decreased in the tissues with a reciprocal increase in the mucus. This is the first systematic experiment that shows the potential for a bacterial community shift between the coral surface mucus and tissues in a thermally stressed coral.
Collapse
Affiliation(s)
- Sonny T M Lee
- School of Environment, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington. PO Box 600, Wellington 6140, New Zealand
| | - Sen-Lin Tang
- Microbial Lab, Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Tung-Yung Fan
- Science Education Department and Industry Academia Collaboration Center, National Museum of Marine Biology and Aquarium, Checheng, Pingtung 944, Taiwan
| | - Paul S Kench
- School of Environment, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
27
|
Blackall LL, Wilson B, van Oppen MJH. Coral-the world's most diverse symbiotic ecosystem. Mol Ecol 2015; 24:5330-47. [DOI: 10.1111/mec.13400] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 09/21/2015] [Accepted: 09/24/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Linda L. Blackall
- Department of Chemistry and Biotechnology; Faculty of Science, Engineering & Technology; Swinburne University of Technology; Melbourne Vic. 3122 Australia
| | - Bryan Wilson
- Marine Microbiology Research Group; Department of Biology; University of Bergen; Thormøhlensgate 53B 5020 Bergen Norway
| | - Madeleine J. H. van Oppen
- Australian Institute of Marine Science; PMB No. 3 Townsville MC Qld. 4810 Australia
- School of BioSciences; The University of Melbourne; Parkville Vic. 3010 Australia
| |
Collapse
|
28
|
Tang CH, Ku PC, Lin CY, Chen TH, Lee KH, Lee SH, Wang WH. Intra-Colonial Functional Differentiation-Related Modulation of the Cellular Membrane in a Pocilloporid Coral Seriatopora caliendrum. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:633-643. [PMID: 26242752 DOI: 10.1007/s10126-015-9645-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 06/06/2015] [Indexed: 06/04/2023]
Abstract
Scleractinian corals have displayed phenotypic gradients of polyps within a single genotypic colony, and this has profound implications for their biology. The intrinsic polymorphism of membrane lipids and the molecular interactions involved allow cells to dynamically organize their membranes to have physicochemical properties appropriate for their physiological requirements. To gain insight into the accommodation of the cellular membrane during ontogenetic shifts, intra-colony differences in the glycerophosphocholine profiling of a pocilloporid coral, Seriatopora caliendrum, were characterized using a previously validated method. Specifically, several major polyunsaturated phosphatidylcholines showed higher levels in the distal tissue of coral branches. In contrast, the corresponding molecules with 1-2-degree less unsaturation and plasmanylcholines were expressed more highly in the proximal tissue. The lipid profiles of these two colonial positions also contrasted sharply with regard to the saturated, monounsaturated, and lyso-glycerophosphocholine ratios. Based on the biochemical and biophysical properties of these lipids, the associated modulation of cellular membrane properties could be related to the physiological requirements, including coral growth and aging, of the functionally differentiated polyps. In this study, the metabolic regulation of membrane lipids involved in the functional differentiation of polyps within a S. caliendrum colony was identified.
Collapse
Affiliation(s)
- Chuan-Ho Tang
- Department of Biology, National Museum of Marine Biology and Aquarium, 2 Houwan Rd., Checheng, Pingtung, 944, Taiwan,
| | | | | | | | | | | | | |
Collapse
|
29
|
Hsu CM, de Palmas S, Kuo CY, Denis V, Chen CA. Identification of scleractinian coral recruits using fluorescent censusing and DNA barcoding techniques. PLoS One 2014; 9:e107366. [PMID: 25211345 PMCID: PMC4161427 DOI: 10.1371/journal.pone.0107366] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 08/15/2014] [Indexed: 11/19/2022] Open
Abstract
The identification of coral recruits has been problematic due to a lack of definitive morphological characters being available for higher taxonomic resolution. In this study, we tested whether fluorescent detection of coral recruits used in combinations of different DNA-barcoding markers (cytochrome oxidase I gene [COI], open reading frame [ORF], and nuclear Pax-C intron [PaxC]) could be useful for increasing the resolution of coral spat identification in ecological studies. One hundred and fifty settlement plates were emplaced at nine sites on the fringing reefs of Kenting National Park in southern Taiwan between April 2011 and September 2012. A total of 248 living coral spats and juveniles (with basal areas ranging from 0.21 to 134.57 mm2) were detected on the plates with the aid of fluorescent light and collected for molecular analyses. Using the COI DNA barcoding technique, 90.3% (224/248) of coral spats were successfully identified into six genera, including Acropora, Isopora, Montipora, Pocillopora, Porites, and Pavona. PaxC further separated I. cuneata and I. palifera of Isopora from Acropora, and ORF successfully identified the species of Pocillopora (except P. meandrina and P. eydouxi). Moreover, other cnidarian species such as actinarians, zoanthids, and Millepora species were visually found using fluorescence and identified by COI DNA barcoding. This combination of existing approaches greatly improved the taxonomic resolution of early coral life stages, which to date has been mainly limited to the family level based on skeletal identification. Overall, this study suggests important improvements for the identification of coral recruits in ecological studies.
Collapse
Affiliation(s)
- Chia-Min Hsu
- Biodiversity Research Center, Academia Sinica, Nangang, Taipei, Taiwan
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| | | | - Chao-Yang Kuo
- Biodiversity Research Center, Academia Sinica, Nangang, Taipei, Taiwan
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
| | - Vianney Denis
- Biodiversity Research Center, Academia Sinica, Nangang, Taipei, Taiwan
| | - Chaolun Allen Chen
- Biodiversity Research Center, Academia Sinica, Nangang, Taipei, Taiwan
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan
- Taiwan International Graduate Program (TIGP)-Biodiversity, Academia Sinica, Nangang, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
30
|
Bosch TCG, Adamska M, Augustin R, Domazet-Loso T, Foret S, Fraune S, Funayama N, Grasis J, Hamada M, Hatta M, Hobmayer B, Kawai K, Klimovich A, Manuel M, Shinzato C, Technau U, Yum S, Miller DJ. How do environmental factors influence life cycles and development? An experimental framework for early-diverging metazoans. Bioessays 2014; 36:1185-94. [PMID: 25205353 DOI: 10.1002/bies.201400065] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ecological developmental biology (eco-devo) explores the mechanistic relationships between the processes of individual development and environmental factors. Recent studies imply that some of these relationships have deep evolutionary origins, and may even pre-date the divergences of the simplest extant animals, including cnidarians and sponges. Development of these early diverging metazoans is often sensitive to environmental factors, and these interactions occur in the context of conserved signaling pathways and mechanisms of tissue homeostasis whose detailed molecular logic remain elusive. Efficient methods for transgenesis in cnidarians together with the ease of experimental manipulation in cnidarians and sponges make them ideal models for understanding causal relationships between environmental factors and developmental mechanisms. Here, we identify major questions at the interface between animal evolution and development and outline a road map for research aimed at identifying the mechanisms that link environmental factors to developmental mechanisms in early diverging metazoans. Also watch the Video Abstract.
Collapse
|
31
|
Oono R, Lutzoni F, Arnold AE, Kaye L, U'Ren JM, May G, Carbone I. Genetic variation in horizontally transmitted fungal endophytes of pine needles reveals population structure in cryptic species. AMERICAN JOURNAL OF BOTANY 2014; 101:1362-1374. [PMID: 25156984 DOI: 10.3732/ajb.1400141] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
UNLABELLED • PREMISE OF THE STUDY Fungal endophytes comprise one of the most ubiquitous groups of plant symbionts, inhabiting healthy leaves and stems of all major lineages of plants. Together, they comprise immense species richness, but little is known about the fundamental processes that generate their diversity. Exploration of their population structure is needed, especially with regard to geographic distributions and host affiliations.• METHODS We take a multilocus approach to examine genetic variation within and among populations of Lophodermium australe, an endophytic fungus commonly associated with healthy foliage of pines in the southeastern United States. Sampling focused on two pine species ranging from montane to coastal regions of North Carolina and Virginia.• KEY RESULTS Our sampling revealed two genetically distinct groups within Lophodermium australe. Our analysis detected less than one migrant per generation between them, indicating that they are distinct species. The species comprising the majority of isolates (major species) demonstrated a panmictic structure, whereas the species comprising the minority of isolates (cryptic species) demonstrated isolation by distance. Distantly related pine species hosted the same Lophodermium species, and host species did not influence genetic structure.• CONCLUSIONS We present the first evidence for isolation by distance in a foliar fungal endophyte that is horizontally transmitted. Cryptic species may be common among microbial symbionts and are important to delimit when exploring their genetic structure and microevolutionary processes. The hyperdiversity of endophytic fungi may be explained in part by cryptic species without apparent ecological and morphological differences as well as genetic diversification within rare fungal species across large spatial scales.
Collapse
Affiliation(s)
- Ryoko Oono
- University of California-Santa Barbara, Santa Barbara, California 93106 USA Duke University, Durham, North Carolina 27708 USA North Carolina State University, Raleigh, North Carolina 27695 USA
| | | | | | - Laurel Kaye
- Duke University, Durham, North Carolina 27708 USA
| | - Jana M U'Ren
- University of Arizona, Tucson, Arizona 85721 USA
| | - Georgiana May
- University of Minnesota, St. Paul, Minnesota 55108 USA
| | - Ignazio Carbone
- North Carolina State University, Raleigh, North Carolina 27695 USA
| |
Collapse
|
32
|
Doors are closing on early development in corals facing climate change. Sci Rep 2014; 4:5633. [PMID: 25005591 PMCID: PMC5381609 DOI: 10.1038/srep05633] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 06/20/2014] [Indexed: 11/17/2022] Open
Abstract
Marine invertebrates are particularly vulnerable to climatic anomalies in early life history stages because of the time spent in the water column. Studies have focused on the effect of seawater temperature on fertilization, development, and larval stages in corals; however, none of them show comparative results along an environmental gradient. In this study, we show that temperatures in the range of 15–33°C have strong effects on fertilization rates and embryonic stages of two coral species, Acropora muricata in the subtropical environment and Acropora hyacinthus in subtropical and temperate environments. Deformations after the first cleavage stages were observed at low (15°C) and high (33°C) temperatures. Development was delayed by 6–7 h in the slightly non-optimal temperature of 20°C. We found significant differences in fertilization rates and responses of embryos from different latitudes, with temperate corals being more sensitive to extremely hot temperatures and vice versa. We hypothesize that the coral development is restricted to a narrow temperature range and deviation outside this window could inhibit a species' continuance and ecological success. Thus, it would have significant negative effects on adult populations and communities, playing a role in future of coral reef survival.
Collapse
|
33
|
Thomas L, Kendrick GA, Kennington WJ, Richards ZT, Stat M. ExploringSymbiodiniumdiversity and host specificity inAcroporacorals from geographical extremes of Western Australia with 454 amplicon pyrosequencing. Mol Ecol 2014; 23:3113-26. [DOI: 10.1111/mec.12801] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 05/12/2014] [Accepted: 05/16/2014] [Indexed: 01/09/2023]
Affiliation(s)
- L. Thomas
- The Oceans Institute (M470); The University of Western Australia; Crawley Perth WA 6009 Australia
- School of Plant Biology (M084); The University of Western Australia; Crawley Perth WA 6009 Australia
| | - G. A. Kendrick
- The Oceans Institute (M470); The University of Western Australia; Crawley Perth WA 6009 Australia
- School of Plant Biology (M084); The University of Western Australia; Crawley Perth WA 6009 Australia
| | - W. J. Kennington
- Centre for Evolutionary Biology (M092); School of Animal Biology; The University of Western Australia; Crawley Perth WA 6009 Australia
| | - Z. T. Richards
- Department of Aquatic Biology; Western Australian Museum; Welshpool Perth WA 6106 Australia
| | - M. Stat
- The Oceans Institute (M470); The University of Western Australia; Crawley Perth WA 6009 Australia
- Centre for Microscopy; Characterisation and Analysis (M010); The University of Western Australia; Crawley Perth WA 6009 Australia
- Australian Institute of Marine Science; Crawley Perth WA 6009 Australia
- CSIRO Marine and Atmospheric Research; Mount Claremont Perth WA 6010 Australia
| |
Collapse
|
34
|
Huang D, Benzoni F, Fukami H, Knowlton N, Smith ND, Budd AF. Taxonomic classification of the reef coral families Merulinidae, Montastraeidae, and Diploastraeidae (Cnidaria: Anthozoa: Scleractinia). Zool J Linn Soc 2014. [DOI: 10.1111/zoj.12140] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Danwei Huang
- Department of Earth and Environmental Sciences; University of Iowa; Iowa City IA 52242 USA
- Scripps Institution of Oceanography; University of California, San Diego; La Jolla CA 92093 USA
- Department of Biological Sciences; National University of Singapore; Singapore 117543 Singapore
| | - Francesca Benzoni
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Piazza della Scienza 2 20126 Milan Italy
| | - Hironobu Fukami
- Department of Marine Biology and Environmental Science; University of Miyazaki; Miyazaki 889-2192 Japan
| | - Nancy Knowlton
- Scripps Institution of Oceanography; University of California, San Diego; La Jolla CA 92093 USA
- Department of Invertebrate Zoology; National Museum of Natural History; Smithsonian Institution; Washington, DC 20013 USA
| | - Nathan D. Smith
- Department of Biology; Howard University; Washington, DC 20059 USA
- Department of Paleobiology; National Museum of Natural History; Smithsonian Institution; Washington, DC 20013 USA
| | - Ann F. Budd
- Department of Earth and Environmental Sciences; University of Iowa; Iowa City IA 52242 USA
| |
Collapse
|
35
|
Keshavmurthy S, Meng PJ, Wang JT, Kuo CY, Yang SY, Hsu CM, Gan CH, Dai CF, Chen CA. Can resistant coral-Symbiodinium associations enable coral communities to survive climate change? A study of a site exposed to long-term hot water input. PeerJ 2014; 2:e327. [PMID: 24765567 PMCID: PMC3994648 DOI: 10.7717/peerj.327] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 03/11/2014] [Indexed: 11/21/2022] Open
Abstract
Climate change has led to a decline in the health of corals and coral reefs around the world. Studies have shown that, while some corals can cope with natural and anthropogenic stressors either through resistance mechanisms of coral hosts or through sustainable relationships with Symbiodinium clades or types, many coral species cannot. Here, we show that the corals present in a reef in southern Taiwan, and exposed to long-term elevated seawater temperatures due to the presence of a nuclear power plant outlet (NPP OL), are unique in terms of species and associated Symbiodinium types. At shallow depths (<3 m), eleven coral genera elsewhere in Kenting predominantly found with Symbiodinium types C1 and C3 (stress sensitive) were instead hosting Symbiodinium type D1a (stress tolerant) or a mixture of Symbiodinium type C1/C3/C21a/C15 and Symbiodinium type D1a. Of the 16 coral genera that dominate the local reefs, two that are apparently unable to associate with Symbiodinium type D1a are not present at NPP OL at depths of <3 m. Two other genera present at NPP OL and other locations host a specific type of Symbiodinium type C15. These data imply that coral assemblages may have the capacity to maintain their presence at the generic level against long-term disturbances such as elevated seawater temperatures by acclimatization through successful association with a stress-tolerant Symbiodinium over time. However, at the community level it comes at the cost of some coral genera being lost, suggesting that species unable to associate with a stress-tolerant Symbiodinium are likely to become extinct locally and unfavorable shifts in coral communities are likely to occur under the impact of climate change.
Collapse
Affiliation(s)
| | - Pei-Jie Meng
- National Museum of Marine Biology/Aquarium , Checheng, Pingtung , Taiwan ; Institute of Marine Biodiversity and Evolution, National Dong Hwa University , Checheng, Pingtung , Taiwan
| | - Jih-Terng Wang
- Institute of Biotechnology, Tajen University of Science and Technology , Pintung , Taiwan
| | - Chao-Yang Kuo
- Biodiversity Research Center, Academia Sinica , Nangang, Taipei , Taiwan ; ARC Centre for Coral Reef Studies, James Cook University , Townsville , Australia
| | - Sung-Yin Yang
- University of Ryukyus, Graduate School of Engineering and Science , Okinawa , Japan
| | - Chia-Min Hsu
- Biodiversity Research Center, Academia Sinica , Nangang, Taipei , Taiwan ; Institute of Oceanography, National Taiwan University , Taipei , Taiwan
| | - Chai-Hsia Gan
- Biodiversity Research Center, Academia Sinica , Nangang, Taipei , Taiwan
| | - Chang-Feng Dai
- Institute of Oceanography, National Taiwan University , Taipei , Taiwan
| | - Chaolun Allen Chen
- Biodiversity Research Center, Academia Sinica , Nangang, Taipei , Taiwan ; Institute of Oceanography, National Taiwan University , Taipei , Taiwan ; Taiwan International Graduate Program (TIGP)-Biodiversity, Academia Sinica , Nankang, Taipei , Taiwan
| |
Collapse
|