1
|
Randolph JF, Young JK, Stoner DC, Garcelon DK. Impacts of management practices on habitat selection during juvenile mountain lion dispersal. Ecol Evol 2024; 14:e70097. [PMID: 39091328 PMCID: PMC11293884 DOI: 10.1002/ece3.70097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/14/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024] Open
Abstract
Dispersal is a complex series of movements before an individual establishes a home range. Animals must travel and forage in unfamiliar landscapes that include anthropogenic risks such as road crossings, harvest, and urban landscapes. We compare dispersal behavior of juvenile mountain lions (Puma concolor) from two geographically distinct populations in California and Nevada, USA. These two sites are ecologically similar but have different management practices; hunting is permitted in Nevada, whereas mountain lions are protected in California. We used GPS-collar data and net-squared displacement analysis to identify three dispersal states: exploratory, departure, and transient home range. We then compared each dispersal state of the two mountain lion populations using an integrated step selection analysis (iSSA). The model included explanatory variables hypothesized to influence one or more dispersal states, including distance to forest, shrub, water, hay and crop, developed lands, and four-wheel drive roads, as well as elevation and terrain ruggedness. Results revealed consistent habitat selection between sites across most landscape variables, with one notable exception: anthropogenic covariates, including distance to developed land, distance to hay and crop, and distance to four-wheeled drive roads, were only statistically significant on modeled habitat selection during dispersal in the population subject to hunting (i.e., Nevada). Results suggest that hunting (pursuit with hounds resulting in harvest) and non-lethal pursuit (pursuit with hounds but no harvest allowed) increase avoidance of anthropogenic landscapes during dispersal for juvenile mountain lions. By comparing populations, we provided valuable insights into the role of management in shaping dispersal behavior.
Collapse
Affiliation(s)
- John F. Randolph
- Department of Wildland ResourcesUtah State UniversityLoganUtahUSA
- Ecology CenterUtah State UniversityLoganUtahUSA
- Institute for Wildlife StudiesArcataCaliforniaUSA
| | - Julie K. Young
- Department of Wildland ResourcesUtah State UniversityLoganUtahUSA
- Ecology CenterUtah State UniversityLoganUtahUSA
| | - David C. Stoner
- Department of Wildland ResourcesUtah State UniversityLoganUtahUSA
- Ecology CenterUtah State UniversityLoganUtahUSA
| | | |
Collapse
|
2
|
Sultaire SM, Montgomery RA, Jackson PJ, Millspaugh JJ. Spatial patterns of reproduction suggest marginal habitat limits continued range expansion of black bears at a forest-desert ecotone. Ecol Evol 2023; 13:e10658. [PMID: 37915808 PMCID: PMC10616736 DOI: 10.1002/ece3.10658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023] Open
Abstract
Investigating spatial patterns of animal occupancy and reproduction in peripheral populations can provide insight into factors that form species range boundaries. Following historical extirpation, American black bears (Ursus americanus) recolonized the western Great Basin in Nevada from the Sierra Nevada during the late 1900s. This range expansion, however, has not continued further into the Great Basin despite the presence of additional habitat. We aimed to quantify whether reduced reproduction toward the range edge contributes to this range boundary. We analyzed black bear detections from 100 camera traps deployed across black bear distribution in western Nevada using a multistate occupancy model that quantified the probability of occupancy and reproduction (i.e., female bears with cubs occupancy) in relation to changes in habitat type and habitat amount toward the range boundary. We detected a strong effect of habitat amount and habitat type on the probability of black bear occupancy and reproduction. At similar levels of landscape-scale habitat amount (e.g., 50%), estimated probability of occupancy for adult bears in piñon-juniper woodlands near the range boundary was 0.39, compared to ~1.0 in Sierra Nevada mixed-conifer forest (i.e., core habitat). Furthermore, estimated probability of cub occupancy, conditional on adult bear occupancy, in landscapes with 50% habitat was 0.32 in Great Basin piñon-juniper woodlands, compared to 0.92 in Sierra Nevada mixed-conifer forest. Black bear range in the western Great Basin conforms to the center-periphery hypothesis, with piñon-juniper woodland at the range edge supporting ecologically marginal habitat for the species compared to habitat in the Sierra Nevada. Further geographic expansion of black bears in the Great Basin may be limited by lower occupancy of reproducing females in piñon-juniper woodland. Center-periphery range dynamics may be common in large carnivore species, as their dispersal ability allows them to colonize low-quality habitat near range edges.
Collapse
|
3
|
Sultaire SM, Kawai‐Harada Y, Kimmel A, Greeson EM, Jackson PJ, Contag CH, Lackey CW, Beckmann JP, Millspaugh JJ, Montgomery RA. Black bear density and habitat use variation at the Sierra Nevada‐Great Basin Desert transition. J Wildl Manage 2023. [DOI: 10.1002/jwmg.22358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Sean M. Sultaire
- Wildlife Biology Program University of Montana 32 Campus Drive Missoula MT 59812 USA
| | - Yuki Kawai‐Harada
- Institute for Quantitative Health Science and Engineering Michigan State University East Lansing MI USA
- Department of Biomedical Engineering Michigan State University East Lansing MI USA
| | - Ashley Kimmel
- Institute for Quantitative Health Science and Engineering Michigan State University East Lansing MI USA
- College of Veterinary Medicine Michigan State University East Lansing MI USA
| | - Emily M. Greeson
- Institute for Quantitative Health Science and Engineering Michigan State University East Lansing MI USA
- Department of Microbiology and Molecular Genetics Michigan State University East Lansing MI USA
| | - Patrick J. Jackson
- Nevada Department of Wildlife 6980 Sierra Center Parkway, Suite 120 Reno NV 89511 USA
| | - Christopher H. Contag
- Institute for Quantitative Health Science and Engineering Michigan State University East Lansing MI USA
- Department of Biomedical Engineering Michigan State University East Lansing MI USA
- Department of Microbiology and Molecular Genetics Michigan State University East Lansing MI USA
| | - Carl W. Lackey
- Nevada Department of Wildlife 6980 Sierra Center Parkway, Suite 120 Reno NV 89511 USA
| | - Jon P. Beckmann
- Wildlife Conservation Society Rockies Program 1050 E Main, Suite 2 Bozeman MT 59715 USA
| | - Joshua J. Millspaugh
- Wildlife Biology Program University of Montana 32 Campus Drive Missoula MT 59812 USA
| | - Robert A. Montgomery
- Wildlife Conservation Research Unit, Department of Zoology, The Recanati‐Kaplan Centre University of Oxford Tubney House, Abingdon Road Tubney Oxon OX13 5QL United Kingdom
| |
Collapse
|
4
|
Hernandez‐Santin L, Goldizen AW, Fisher DO. Northern quolls in the Pilbara persist in high‐quality habitat, despite a decline trajectory consistent with range eclipse by feral cats. CONSERVATION SCIENCE AND PRACTICE 2022. [DOI: 10.1111/csp2.12733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Lorna Hernandez‐Santin
- School of Biological Sciences University of Queensland St. Lucia Queensland Australia
- Centre for Mined Land Rehabilitation Sustainable Minerals Institute, University of Queensland St. Lucia Queensland Australia
| | - Anne W. Goldizen
- School of Biological Sciences University of Queensland St. Lucia Queensland Australia
| | - Diana O. Fisher
- School of Biological Sciences University of Queensland St. Lucia Queensland Australia
| |
Collapse
|
5
|
Tong X, Ding YY, Deng JY, Wang R, Chen XY. Source-sink dynamics assists the maintenance of a pollinating wasp. Mol Ecol 2021; 30:4695-4707. [PMID: 34347898 DOI: 10.1111/mec.16104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 12/29/2022]
Abstract
Dispersal that unites spatially subdivided populations into a metapopulation with source-sink dynamics is crucial for species persistence in fragmented landscapes. Understanding such dynamics for pollinators is particularly urgent owing to the ongoing global pollination crisis. Here, we investigated the population structure and source-sink dynamics of a pollinating wasp (Wiebesia sp. 3) of Ficus pumila in the Zhoushan Archipelago of China. We found significant asymmetry in the pairwise migrant numbers for 22 of 28 cases on the historical timescale, but only two on the contemporary timescale. Despite a small population size, the sole island not colonized by a superior competitor wasp (Wiebesia sp. 1) consistently behaved as a net exporter of migrants, supplying large sinks. Comparable levels of genetic diversity, with few private alleles and low genetic differentiation (total Fst : 0.03; pairwise Fst : 0.0005-0.0791), were revealed among all the islands. There was a significant isolation-by-distance pattern caused mainly by migration between the competition-free island and other islands, otherwise the pattern was negligible. The clustering analysis failed to detect multiple gene pools for the whole region. Thus, the sinks were most probably organized into a patchy population. Moreover, the estimates of effective population sizes were comparable between the two timescales. Thus the source-sink dynamics embedded within a well-connected population network may allow Wiebesia sp. 3 to persist at a competitive disadvantage. This study provides evidence that metapopulations in the real world may be complicated and changeable over time, highlighting the necessity to study such metapopulations in detail.
Collapse
Affiliation(s)
- Xin Tong
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Yuan-Yuan Ding
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Jun-Yin Deng
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Rong Wang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China.,Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Xiao-Yong Chen
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China.,Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| |
Collapse
|
6
|
Andreasen AM, Stewart KM, Longland WS, Beckmann JP. Prey Specialization by Cougars on Feral Horses in a Desert Environment. J Wildl Manage 2021. [DOI: 10.1002/jwmg.22087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alyson M. Andreasen
- University of Nevada, Reno, Natural Resources and Environmental Science 1664 N. Virginia Street, Mail Stop 186 Reno NV 89557 USA
| | - Kelley M. Stewart
- University of Nevada, Reno, Natural Resources and Environmental Science 1664 N. Virginia Street, Mail Stop 186 Reno NV 89557 USA
| | - William S. Longland
- USDA, Agricultural Research Service, University of Nevada Reno, 920 Valley Road Reno NV 89512 USA
| | - Jon P. Beckmann
- Wildlife Conservation Society, Rockies Program 1050 E Main, Suite 2 Bozeman MT 59715 USA
| |
Collapse
|
7
|
Logan KA, Runge JP. Effects of Hunting on a Puma Population in Colorado. WILDLIFE MONOGRAPHS 2021. [DOI: 10.1002/wmon.1061] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kenneth A. Logan
- Colorado Parks and Wildlife, 2300 S. Townsend Avenue Montrose CO 81401 USA
| | - Jonathan P. Runge
- Colorado Parks and Wildlife, 317 W. Prospect Road Fort Collins CO 80526 USA
| |
Collapse
|
8
|
Pereira JA, Thompson J, Di Bitetti MS, Fracassi NG, Paviolo A, Fameli AF, Novaro AJ. A small protected area facilitates persistence of a large carnivore in a ranching landscape. J Nat Conserv 2020. [DOI: 10.1016/j.jnc.2020.125846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Carroll EL, Hall A, Olsen MT, Onoufriou AB, Gaggiotti OE, Russell DJ. Perturbation drives changing metapopulation dynamics in a top marine predator. Proc Biol Sci 2020; 287:20200318. [PMID: 32486973 DOI: 10.1098/rspb.2020.0318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Metapopulation theory assumes a balance between local decays/extinctions and local growth/new colonisations. Here we investigate whether recent population declines across part of the UK harbour seal range represent normal metapopulation dynamics or are indicative of perturbations potentially threatening the metapopulation viability, using 20 years of population trends, location tracking data (n = 380), and UK-wide, multi-generational population genetic data (n = 269). First, we use microsatellite data to show that two genetic groups previously identified are distinct metapopulations: northern and southern. Then, we characterize the northern metapopulation dynamics in two different periods, before and after the start of regional declines (pre-/peri-perturbation). We identify source-sink dynamics across the northern metapopulation, with two putative source populations apparently supporting three likely sink populations, and a recent metapopulation-wide disruption of migration coincident with the perturbation. The northern metapopulation appears to be in decay, highlighting that changes in local populations can lead to radical alterations in the overall metapopulation's persistence and dynamics.
Collapse
Affiliation(s)
- Emma L Carroll
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand.,Scottish Oceans Institute and School of Biology, University of St Andrews, St Andrews, UK.,Sea Mammal Research Unit, University of St Andrews, St Andrews, UK
| | - Ailsa Hall
- Sea Mammal Research Unit, University of St Andrews, St Andrews, UK
| | - Morten Tange Olsen
- Section for Evolutionary Genomics, GLOBE Institute, University of Copenhagen, Denmark
| | - Aubrie B Onoufriou
- Scottish Oceans Institute and School of Biology, University of St Andrews, St Andrews, UK
| | - Oscar E Gaggiotti
- Scottish Oceans Institute and School of Biology, University of St Andrews, St Andrews, UK
| | | |
Collapse
|
10
|
Contribution of Connectivity Assessments to Green Infrastructure (GI). ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION 2020. [DOI: 10.3390/ijgi9040212] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A major goal of green infrastructure (GI) is to provide functional networks of habitats and ecosystems to maintain biodiversity long-term, while at the same time optimizing landscape and ecosystem functions and services to meet human needs. Traditionally, connectivity studies are informed by movement ecology with species-specific attributes of the type and timing of movement (e.g., dispersal, foraging, mating) and movement distances, while spatial environmental data help delineate movement pathways across landscapes. To date, a range of methods and approaches are available that (a) are relevant across any organism and movement type independent of time and space scales, (b) are ready-to-use as standalone freeware or custom GIS implementation, and (c) produce appealing visual outputs that facilitate communication with land managers. However, to enhance the robustness of connectivity assessments and ensure that current trends in connectivity modeling contribute to GI with their full potential, common denominators on which to ground planning and design strategies are required. Likewise, comparable, repeatable connectivity assessments will be needed to put results of these scientific tools into practice for multi-functional GI plans and implementation. In this paper, we discuss use and limitations of state-of-the-art connectivity methods in contributing to GI implementation.
Collapse
|
11
|
Logan KA. Puma population limitation and regulation: What matters in puma management? J Wildl Manage 2019. [DOI: 10.1002/jwmg.21753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Kenneth A. Logan
- Colorado Parks and Wildlife 2300 S. Townsend Avenue Montrose CO 81401 USA
| |
Collapse
|
12
|
Thompson LM, Klütsch CFC, Manseau M, Wilson PJ. Spatial differences in genetic diversity and northward migration suggest genetic erosion along the boreal caribou southern range limit and continued range retraction. Ecol Evol 2019; 9:7030-7046. [PMID: 31380031 PMCID: PMC6662424 DOI: 10.1002/ece3.5269] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 11/12/2022] Open
Abstract
With increasing human activities and associated landscape changes, distributions of terrestrial mammals become fragmented. These changes in distribution are often associated with reduced population sizes and loss of genetic connectivity and diversity (i.e., genetic erosion) which may further diminish a species' ability to respond to changing environmental conditions and lead to local population extinctions. We studied threatened boreal caribou (Rangifer tarandus caribou) populations across their distribution in Ontario/Manitoba (Canada) to assess changes in genetic diversity and connectivity in areas of high and low anthropogenic activity. Using data from >1,000 caribou and nine microsatellite loci, we assessed population genetic structure, genetic diversity, and recent migration rates using a combination of network and population genetic analyses. We used Bayesian clustering analyses to identify population genetic structure and explored spatial and temporal variation in those patterns by assembling networks based on R ST and F ST as historical and contemporary genetic edge distances, respectively. The Bayesian clustering analyses identified broad-scale patterns of genetic structure and closely aligned with the R ST network. The F ST network revealed substantial contemporary genetic differentiation, particularly in areas presenting contemporary anthropogenic disturbances and habitat fragmentation. In general, relatively lower genetic diversity and greater genetic differentiation were detected along the southern range limit, differing from areas in the northern parts of the distribution. Moreover, estimation of migration rates suggested a northward movement of animals away from the southern range limit. The patterns of genetic erosion revealed in our study suggest ongoing range retraction of boreal caribou in central Canada.
Collapse
Affiliation(s)
- Laura M. Thompson
- Natural Resources DNA Profiling and Forensic CentreTrent UniversityPeterboroughOntarioCanada
- Present address:
U.S. Geological SurveyNational Climate Adaptation Science CenterRestonVirginia
| | - Cornelya F. C. Klütsch
- Natural Resources DNA Profiling and Forensic CentreTrent UniversityPeterboroughOntarioCanada
- Present address:
Division of Environmental Research in the Barents RegionNorwegian Institute of Bioeconomy Research (NIBIO)SvanvikNorway
| | - Micheline Manseau
- Natural Resources DNA Profiling and Forensic CentreTrent UniversityPeterboroughOntarioCanada
- Natural Resources InstituteUniversity of ManitobaWinnipegManitobaCanada
- Landscape Science and TechnologyEnvironment and Climate Change CanadaOttawaOntarioCanada
| | - Paul J. Wilson
- Natural Resources DNA Profiling and Forensic CentreTrent UniversityPeterboroughOntarioCanada
| |
Collapse
|
13
|
Kelt DA, Heske EJ, Lambin X, Oli MK, Orrock JL, Ozgul A, Pauli JN, Prugh LR, Sollmann R, Sommer S. Advances in population ecology and species interactions in mammals. J Mammal 2019. [DOI: 10.1093/jmammal/gyz017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
AbstractThe study of mammals has promoted the development and testing of many ideas in contemporary ecology. Here we address recent developments in foraging and habitat selection, source–sink dynamics, competition (both within and between species), population cycles, predation (including apparent competition), mutualism, and biological invasions. Because mammals are appealing to the public, ecological insight gleaned from the study of mammals has disproportionate potential in educating the public about ecological principles and their application to wise management. Mammals have been central to many computational and statistical developments in recent years, including refinements to traditional approaches and metrics (e.g., capture-recapture) as well as advancements of novel and developing fields (e.g., spatial capture-recapture, occupancy modeling, integrated population models). The study of mammals also poses challenges in terms of fully characterizing dynamics in natural conditions. Ongoing climate change threatens to affect global ecosystems, and mammals provide visible and charismatic subjects for research on local and regional effects of such change as well as predictive modeling of the long-term effects on ecosystem function and stability. Although much remains to be done, the population ecology of mammals continues to be a vibrant and rapidly developing field. We anticipate that the next quarter century will prove as exciting and productive for the study of mammals as has the recent one.
Collapse
Affiliation(s)
- Douglas A Kelt
- Department of Wildlife, Fish, & Conservation Biology, University of California, Davis, CA, USA
| | - Edward J Heske
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, USA
| | - Xavier Lambin
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Madan K Oli
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | - John L Orrock
- Department of Integrative Biology, University of Wisconsin, Madison, WI, USA
| | - Arpat Ozgul
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Jonathan N Pauli
- Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, WI, USA
| | - Laura R Prugh
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA, USA
| | - Rahel Sollmann
- Department of Wildlife, Fish, & Conservation Biology, University of California, Davis, CA, USA
| | - Stefan Sommer
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Ouyang JQ, Isaksson C, Schmidt C, Hutton P, Bonier F, Dominoni D. A New Framework for Urban Ecology: An Integration of Proximate and Ultimate Responses to Anthropogenic Change. Integr Comp Biol 2019; 58:915-928. [PMID: 30376106 DOI: 10.1093/icb/icy110] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
As urban areas continue to grow, understanding how species respond and adapt to urban habitats is becoming increasingly important. Knowledge of the mechanisms behind observed phenotypic changes of urban-dwelling animals will enable us to better evaluate the impact of urbanization on current and future generations of wildlife and predict how animals respond to novel environments. Recently, urban ecology has emerged not only as a means of understanding organismal adaptation but also as a framework for exploring mechanisms mediating evolutionary phenomena. Here, we have identified four important research topics that will advance the field of urban ecology and shed light on the proximate and ultimate causes of the phenotypic differences commonly seen among species and populations that vary in their responses to urbanization. First, we address the ecological and socio-economic factors that characterize cities, how they might interact with each other, and how they affect urban species. Second, we ask which are the proximate mechanisms underlying the emergence over time of novel traits in urban organisms, focusing on developmental effects. Third, we emphasize the importance of understanding the ultimate causations that link phenotypic shifts to function. This question highlights the need to quantify the strength and direction of selection that urban individuals are exposed to, and whether the phenotypic shifts associated with life in the city are adaptive. Lastly, we stress the need to translate how individual-level responses scale up to population dynamics. Understanding the mechanistic underpinnings of variation among populations and species in their responses to urbanization will unravel species resilience to environmental perturbation, which will facilitate predictive models for sustainability and development of green cities that maintain or even increase urban biodiversity and wildlife health and wellbeing.
Collapse
Affiliation(s)
- Jenny Q Ouyang
- Department of Biology, University of Nevada, Reno, Reno, NV 89557, USA
| | | | - Chloé Schmidt
- Department of Biological Sciences, University of Manitoba, Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Pierce Hutton
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Frances Bonier
- Biology Department, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Davide Dominoni
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
15
|
Jahner JP, Matocq MD, Malaney JL, Cox M, Wolff P, Gritts MA, Parchman TL. The genetic legacy of 50 years of desert bighorn sheep translocations. Evol Appl 2019; 12:198-213. [PMID: 30697334 PMCID: PMC6346675 DOI: 10.1111/eva.12708] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/16/2018] [Accepted: 08/18/2018] [Indexed: 12/20/2022] Open
Abstract
Conservation biologists have increasingly used translocations to mitigate population declines and restore locally extirpated populations. Genetic data can guide the selection of source populations for translocations and help evaluate restoration success. Bighorn sheep (Ovis canadensis) are a managed big game species that suffered widespread population extirpations across western North America throughout the early 1900s. Subsequent translocation programs have successfully re-established many formally extirpated bighorn herds, but most of these programs pre-date genetically informed management practices. The state of Nevada presents a particularly well-documented case of decline followed by restoration of extirpated herds. Desert bighorn sheep (O. c. nelsoni) populations declined to less than 3,000 individuals restricted to remnant herds in the Mojave Desert and a few locations in the Great Basin Desert. Beginning in 1968, the Nevada Department of Wildlife translocated ~2,000 individuals from remnant populations to restore previously extirpated areas, possibly establishing herds with mixed ancestries. Here, we examined genetic diversity and structure among remnant herds and the genetic consequences of translocation from these herds using a genotyping-by-sequencing approach to genotype 17,095 loci in 303 desert bighorn sheep. We found a signal of population genetic structure among remnant Mojave Desert populations, even across geographically proximate mountain ranges. Further, we found evidence of a genetically distinct, potential relict herd from a previously hypothesized Great Basin lineage of desert bighorn sheep. The genetic structure of source herds was clearly reflected in translocated populations. In most cases, herds retained genetic evidence of multiple translocation events and subsequent admixture when founded from multiple remnant source herds. Our results add to a growing literature on how population genomic data can be used to guide and monitor restoration programs.
Collapse
Affiliation(s)
| | - Marjorie D. Matocq
- Department of Natural Resources and Environmental Science, and Program in Ecology, Evolution, and Conservation BiologyUniversity of NevadaRenoNevada
| | - Jason L. Malaney
- Department of BiologyAustin Peay State UniversityClarksvilleTennessee
| | - Mike Cox
- Nevada Department of Wildlife, and Wild Sheep Working GroupWestern Association of Fish and Wildlife AgenciesRenoNevada
| | | | | | - Thomas L. Parchman
- Department of Biology, and Program in Ecology, Evolution, and Conservation BiologyUniversity of NevadaRenoNevada
| |
Collapse
|
16
|
Genetic source–sink dynamics among naturally structured and anthropogenically fragmented puma populations. CONSERV GENET 2018. [DOI: 10.1007/s10592-018-1125-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Abstract
Conservation genetics is a branch of conservation biology that uses molecular data to assist in the conservation and management of imperiled populations, subspecies, and species. In this review, I examine conservation action plans (CAPs)—instrumental documents designed to influence conservation policy—for selected primate species. I use the information contained in CAPs as a means to guide this review. The primary genetics-based topics that are mentioned in CAPs are genetic connectivity, inbreeding, and subspecies/species delimitation. I discuss these topics as well as historical demographic inference and hybridization using examples from wild primate species to illustrate the myriad ways in which genetics can assist in conservation efforts. I also discuss some recent technological advances such as genomic capture techniques and the potential to do molecular work in remote locations.
Collapse
Affiliation(s)
- Richard R. Lawler
- Department of Sociology and Anthropology, James Madison University, Harrisonburg, Virginia 22807, USA
| |
Collapse
|
18
|
Cryptic population structure reveals low dispersal in Iberian wolves. Sci Rep 2018; 8:14108. [PMID: 30237419 PMCID: PMC6147861 DOI: 10.1038/s41598-018-32369-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 09/04/2018] [Indexed: 01/07/2023] Open
Abstract
Highly mobile mammalian carnivores are expected to have the capability to maintain high levels of gene flow across large geographic scales. Nonetheless, surprising levels of genetic structure have been found in many such populations. We combined genetic and spatial behavioural information from wolves (Canis lupus) in the Iberian Peninsula (Western Europe) during the last two decades to present a particular case of low dispersal levels in a large carnivore population persisting in human-dominated landscapes. We found an exceptionally reticulated pattern of cryptic population structure emerging at two hierarchical levels, in which four or eleven meaningful genetic clusters can be recognized, respectively. These clusters were characterized by moderate-high levels of differentiation (average pairwise FST = 0.09–0.19), low levels of admixture and varying degrees of genetic diversity. The number of dispersers identified among the 11 clusters was very low (<4% out of 218 wolves). Spatial information of tracked wolves further confirmed the geographical genetic patterns (only 2 out of 85 collared wolves overlapped with more than one genetic cluster). The high levels of genetic structure in this population may be determined by the recent demographic history of this population, among other factors. The identification of meaningful genetic clusters has implications for the delineation of conservation units and, consequently, on the conservation and management actions for Iberian wolves.
Collapse
|
19
|
Evans MJ, Rittenhouse TAG, Hawley JE, Rego PW, Eggert LS. Spatial genetic patterns indicate mechanism and consequences of large carnivore cohabitation within development. Ecol Evol 2018; 8:4815-4829. [PMID: 29876060 PMCID: PMC5980631 DOI: 10.1002/ece3.4033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 02/19/2018] [Accepted: 02/26/2018] [Indexed: 12/26/2022] Open
Abstract
Patterns of human development are shifting from concentrated housing toward sprawled housing intermixed with natural land cover, and wildlife species increasingly persist in close proximity to housing, roads, and other anthropogenic features. These associations can alter population dynamics and evolutionary trajectories. Large carnivores increasingly occupy urban peripheries, yet the ecological consequences for populations established entirely within urban and exurban landscapes are largely unknown. We applied a spatial and landscape genetics approach, using noninvasively collected genetic data, to identify differences in black bear spatial genetic patterns across a rural‐to‐urban gradient and quantify how development affects spatial genetic processes. We quantified differences in black bear dispersal, spatial genetic structure, and migration between differing levels of development within a population primarily occupying areas with >6 houses/km2 in western Connecticut. Increased development disrupted spatial genetic structure, and we found an association between increased housing densities and longer dispersal. We also found evidence that roads limited gene flow among bears in more rural areas, yet had no effect among bears in more developed ones. These results suggest dispersal behavior is condition‐dependent and indicate the potential for landscapes intermixing development and natural land cover to facilitate shifts toward increased dispersal. These changes can affect patterns of range expansion and the phenotypic and genetic composition of surrounding populations. We found evidence that subpopulations occupying more developed landscapes may be sustained by male‐biased immigration, creating potentially detrimental demographic shifts.
Collapse
Affiliation(s)
- Michael J Evans
- Wildlife and Fisheries Conservation Center Department of Natural Resources and the Environment University of Connecticut Storrs CT USA
| | - Tracy A G Rittenhouse
- Wildlife and Fisheries Conservation Center Department of Natural Resources and the Environment University of Connecticut Storrs CT USA
| | - Jason E Hawley
- Wildlife Division Connecticut Department of Energy and Environmental Protection Sessions Woods WMA Burlington CT USA
| | - Paul W Rego
- Wildlife Division Connecticut Department of Energy and Environmental Protection Sessions Woods WMA Burlington CT USA
| | - Lori S Eggert
- Division of Biological Sciences University of Missouri Columbia MO USA
| |
Collapse
|
20
|
Heinrichs JA, Lawler JJ, Schumaker NH, Wilsey CB, Monroe KC, Aldridge CL. A multispecies test of source-sink indicators to prioritize habitat for declining populations. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2018; 32:648-659. [PMID: 29193292 DOI: 10.1111/cobi.13058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/23/2017] [Accepted: 10/20/2017] [Indexed: 06/07/2023]
Abstract
For species at risk of decline or extinction in source-sink systems, sources are an obvious target for habitat protection actions. However, the way in which source habitats are identified and prioritized can reduce the effectiveness of conservation actions. Although sources and sinks are conceptually defined using both demographic and movement criteria, simplifications are often required in systems with limited data. To assess the conservation outcomes of alternative source metrics and resulting prioritizations, we simulated population dynamics and extinction risk for 3 endangered species. Using empirically based habitat population models, we linked habitat maps with measured site- or habitat-specific demographic conditions, movement abilities, and behaviors. We calculated source-sink metrics over a range of periods of data collection and prioritized consistently high-output sources for conservation. We then tested whether prioritized patches identified the habitats that most affected persistence by removing them and measuring the population response. Conservation decisions based on different source-sink metrics and durations of data collection affected species persistence. Shorter time series obscured the ability of metrics to identify influential habitats, particularly in temporally variable and slowly declining populations. Data-rich source-sink metrics that included both demography and movement information did not always identify the habitats with the greatest influence on extinction risk. In some declining populations, patch abundance better predicted influential habitats for short-term regional persistence. Because source-sink metrics (i.e., births minus deaths; births and immigrations minus deaths and emigration) describe net population conditions and cancel out gross population counts, they may not adequately identify influential habitats in declining populations. For many nonequilibrium populations, new metrics that maintain the counts of individual births, deaths, and movement may provide additional insight into habitats that most influence persistence.
Collapse
Affiliation(s)
- Julie A Heinrichs
- School of Environmental and Forest Sciences, University of Washington, P.O. Box 352100, Seattle, WA 98195, U.S.A
- Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO 80523, U.S.A
| | - Joshua J Lawler
- School of Environmental and Forest Sciences, University of Washington, P.O. Box 352100, Seattle, WA 98195, U.S.A
| | - Nathan H Schumaker
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR 97331, U.S.A
| | - Chad B Wilsey
- School of Environmental and Forest Sciences, University of Washington, P.O. Box 352100, Seattle, WA 98195, U.S.A
| | - Kira C Monroe
- School of Environmental and Forest Sciences, University of Washington, P.O. Box 352100, Seattle, WA 98195, U.S.A
- Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO 80523, U.S.A
| | - Cameron L Aldridge
- Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO 80523, U.S.A
| |
Collapse
|
21
|
Ferreira da Silva MJ, Kopp GH, Casanova C, Godinho R, Minhós T, Sá R, Zinner D, Bruford MW. Disrupted dispersal and its genetic consequences: Comparing protected and threatened baboon populations (Papio papio) in West Africa. PLoS One 2018; 13:e0194189. [PMID: 29614097 PMCID: PMC5882123 DOI: 10.1371/journal.pone.0194189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/27/2018] [Indexed: 12/04/2022] Open
Abstract
Dispersal is a demographic process that can potentially counterbalance the negative impacts of anthropogenic habitat fragmentation. However, mechanisms of dispersal may become modified in populations living in human-dominated habitats. Here, we investigated dispersal in Guinea baboons (Papio papio) in areas with contrasting levels of anthropogenic fragmentation, as a case study. Using molecular data, we compared the direction and extent of sex-biased gene flow in two baboon populations: from Guinea-Bissau (GB, fragmented distribution, human-dominated habitat) and Senegal (SEN, continuous distribution, protected area). Individual-based Bayesian clustering, spatial autocorrelation, assignment tests and migrant identification suggested female-mediated gene flow at a large spatial scale for GB with evidence of contact between genetically differentiated males at one locality, which could be interpreted as male-mediated gene flow in southern GB. Gene flow was also found to be female-biased in SEN for a smaller scale. However, in the southwest coastal part of GB, at the same geographic scale as SEN, no sex-biased dispersal was detected and a modest or recent restriction in GB female dispersal seems to have occurred. This population-specific variation in dispersal is attributed to behavioural responses to human activity in GB. Our study highlights the importance of considering the genetic consequences of disrupted dispersal patterns as an additional impact of anthropogenic habitat fragmentation and is potentially relevant to the conservation of many species inhabiting human-dominated environments.
Collapse
Affiliation(s)
- Maria Joana Ferreira da Silva
- Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
- CAPP, School of Social and Political Sciences, University of Lisbon, Rua Almerindo Lessa, Lisboa, Portugal
- * E-mail:
| | - Gisela H. Kopp
- Cognitive Ethology Laboratory, German Primate Center, Göttingen, Germany
| | - Catarina Casanova
- CAPP, School of Social and Political Sciences, University of Lisbon, Rua Almerindo Lessa, Lisboa, Portugal
| | - Raquel Godinho
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, Porto, Portugal
- Department of Zoology, Faculty of Sciences, University of Johannesburg, Auckland Park, South Africa
| | - Tânia Minhós
- Departamento de Antropologia, Faculdade de Ciências Sociais e Humanas, Universidade Nova de Lisboa, Lisboa, Portugal
- Centre for Research in Anthropology (CRIA), Instituto Universitário de Lisboa, Lisboa, Portugal
- IGC, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, Oeiras, Portugal
| | - Rui Sá
- Departamento de Ciências Ambientais, Universidade Lusófona da Guiné, Rua Vitorino Costa, Bissau, Guiné-Bissau
- Research Centre for Anthropology and Health, Universidade de Coimbra, Calçada Martim de Freitas, Coimbra, Portugal
| | - Dietmar Zinner
- Cognitive Ethology Laboratory, German Primate Center, Göttingen, Germany
| | - Michael W. Bruford
- Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
- Sustainable Places Research Institute, Cardiff University, Cardiff, Wales, United Kingdom
| |
Collapse
|
22
|
Andreasen AM, Stewart KM, Sedinger JS, Lackey CW, Beckmann JP. Survival of cougars caught in non-target foothold traps and snares. J Wildl Manage 2018. [DOI: 10.1002/jwmg.21445] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Alyson M. Andreasen
- University of Nevada-Reno; Natural Resources and Environmental Sciences; 1664 N. Virginia Street, Mail Stop 186 Reno NV 89557 USA
| | - Kelley M. Stewart
- University of Nevada-Reno; Natural Resources and Environmental Sciences; 1664 N. Virginia Street, Mail Stop 186 Reno NV 89557 USA
| | - James S. Sedinger
- University of Nevada-Reno; Natural Resources and Environmental Sciences; 1664 N. Virginia Street, Mail Stop 186 Reno NV 89557 USA
| | - Carl W. Lackey
- Nevada Department of Wildlife; 1100 Valley Road Reno NV 89512 USA
| | - Jon P. Beckmann
- Wildlife Conservation Society; North America Program; 212 S. Wallace Avenue, Suite 101 Bozeman MT 59715 USA
| |
Collapse
|
23
|
Spatial variation in anthropogenic mortality induces a source–sink system in a hunted mesopredator. Oecologia 2018; 186:939-951. [DOI: 10.1007/s00442-018-4072-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 01/15/2018] [Indexed: 11/25/2022]
|
24
|
Malaney JL, Lackey CW, Beckmann JP, Matocq MD. Natural rewilding of the Great Basin: Genetic consequences of recolonization by black bears (Ursus americanus
). DIVERS DISTRIB 2017. [DOI: 10.1111/ddi.12666] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Jason L. Malaney
- Department of Natural Resources and Environmental Science; University of Nevada; Reno NV USA
- Program in Ecology, Evolution, and Conservation Biology; University of Nevada Reno; Reno NV USA
| | - Carl W. Lackey
- Game Division; Nevada Department of Wildlife; Reno NV USA
| | - Jon P. Beckmann
- Wildlife Conservation Society; North America Program; Bozeman MT USA
| | - Marjorie D. Matocq
- Department of Natural Resources and Environmental Science; University of Nevada; Reno NV USA
- Program in Ecology, Evolution, and Conservation Biology; University of Nevada Reno; Reno NV USA
| |
Collapse
|
25
|
Kierepka EM, Kilgo JC, Rhodes OE. Effect of compensatory immigration on the genetic structure of coyotes. J Wildl Manage 2017. [DOI: 10.1002/jwmg.21320] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - John C. Kilgo
- USDA Forest ServiceSouthern Research StationP.O. Box 700New EllentonSC29809USA
| | - Olin E. Rhodes
- University of GeorgiaSavannah River Ecology LaboratoryAikenSC29802USA
| |
Collapse
|
26
|
Eklund A, López-Bao JV, Tourani M, Chapron G, Frank J. Limited evidence on the effectiveness of interventions to reduce livestock predation by large carnivores. Sci Rep 2017; 7:2097. [PMID: 28522834 PMCID: PMC5437004 DOI: 10.1038/s41598-017-02323-w] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/10/2017] [Indexed: 11/09/2022] Open
Abstract
Successful coexistence between large carnivores and humans is conditional upon effective mitigation of the impact of these species on humans, such as through livestock depredation. It is therefore essential for conservation practitioners, carnivore managing authorities, or livestock owners to know the effectiveness of interventions intended to reduce livestock predation by large carnivores. We reviewed the scientific literature (1990-2016), searching for evidence of the effectiveness of interventions. We found experimental and quasi-experimental studies were rare within the field, and only 21 studies applied a case-control study design (3.7% of reviewed publications). We used a relative risk ratio to evaluate the studied interventions: changing livestock type, keeping livestock in enclosures, guarding or livestock guarding dogs, predator removal, using shock collars on carnivores, sterilizing carnivores, and using visual or auditory deterrents to frighten carnivores. Although there was a general lack of scientific evidence of the effectiveness of any of these interventions, some interventions reduced the risk of depredation whereas other interventions did not result in reduced depredation. We urge managers and stakeholders to move towards an evidence-based large carnivore management practice and researchers to conduct studies of intervention effectiveness with a randomized case-control design combined with systematic reviewing to evaluate the evidence.
Collapse
Affiliation(s)
- Ann Eklund
- Grimsö Wildlife Research Station, Department of Ecology, Swedish University of Agricultural Sciences, SE-730 91, Riddarhyttan, Sweden.
| | - José Vicente López-Bao
- Research Unit of Biodiversity (UO/CSIC/PA), Oviedo University, Gonzalo Gutiérrez Quirós s/n, 33600, Mieres, Spain
| | - Mahdieh Tourani
- Grimsö Wildlife Research Station, Department of Ecology, Swedish University of Agricultural Sciences, SE-730 91, Riddarhyttan, Sweden.,Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
| | - Guillaume Chapron
- Grimsö Wildlife Research Station, Department of Ecology, Swedish University of Agricultural Sciences, SE-730 91, Riddarhyttan, Sweden
| | - Jens Frank
- Grimsö Wildlife Research Station, Department of Ecology, Swedish University of Agricultural Sciences, SE-730 91, Riddarhyttan, Sweden
| |
Collapse
|
27
|
Rick JA, Moen RA, Erb JD, Strasburg JL. Population structure and gene flow in a newly harvested gray wolf (Canis lupus) population. CONSERV GENET 2017. [DOI: 10.1007/s10592-017-0961-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Treves A, Chapron G, López‐Bao JV, Shoemaker C, Goeckner AR, Bruskotter JT. Predators and the public trust. Biol Rev Camb Philos Soc 2017; 92:248-270. [PMID: 26526656 PMCID: PMC5245106 DOI: 10.1111/brv.12227] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 09/09/2015] [Accepted: 09/17/2015] [Indexed: 11/30/2022]
Abstract
Many democratic governments recognize a duty to conserve environmental resources, including wild animals, as a public trust for current and future citizens. These public trust principles have informed two centuries of U.S.A. Supreme Court decisions and environmental laws worldwide. Nevertheless numerous populations of large-bodied, mammalian carnivores (predators) were eradicated in the 20th century. Environmental movements and strict legal protections have fostered predator recoveries across the U.S.A. and Europe since the 1970s. Now subnational jurisdictions are regaining management authority from central governments for their predator subpopulations. Will the history of local eradication repeat or will these jurisdictions adopt public trust thinking and their obligation to broad public interests over narrower ones? We review the role of public trust principles in the restoration and preservation of controversial species. In so doing we argue for the essential roles of scientists from many disciplines concerned with biological diversity and its conservation. We look beyond species endangerment to future generations' interests in sustainability, particularly non-consumptive uses. Although our conclusions apply to all wild organisms, we focus on predators because of the particular challenges they pose for government trustees, trust managers, and society. Gray wolves Canis lupus L. deserve particular attention, because detailed information and abundant policy debates across regions have exposed four important challenges for preserving predators in the face of interest group hostility. One challenge is uncertainty and varied interpretations about public trustees' responsibilities for wildlife, which have created a mosaic of policies across jurisdictions. We explore how such mosaics have merits and drawbacks for biodiversity. The other three challenges to conserving wildlife as public trust assets are illuminated by the biology of predators and the interacting behavioural ecologies of humans and predators. The scientific community has not reached consensus on sustainable levels of human-caused mortality for many predator populations. This challenge includes both genuine conceptual uncertainty and exploitation of scientific debate for political gain. Second, human intolerance for predators exposes value conflicts about preferences for some wildlife over others and balancing majority rule with the protection of minorities in a democracy. We examine how differences between traditional assumptions and scientific studies of interactions between people and predators impede evidence-based policy. Even if the prior challenges can be overcome, well-reasoned policy on wild animals faces a greater challenge than other environmental assets because animals and humans change behaviour in response to each other in the short term. These coupled, dynamic responses exacerbate clashes between uses that deplete wildlife and uses that enhance or preserve wildlife. Viewed in this way, environmental assets demand sophisticated, careful accounting by disinterested trustees who can both understand the multidisciplinary scientific measurements of relative costs and benefits among competing uses, and justly balance the needs of all beneficiaries including future generations. Without public trust principles, future trustees will seldom prevail against narrow, powerful, and undemocratic interests. Without conservation informed by public trust thinking predator populations will face repeated cycles of eradication and recovery. Our conclusions have implications for the many subfields of the biological sciences that address environmental trust assets from the atmosphere to aquifers.
Collapse
Affiliation(s)
- Adrian Treves
- Nelson Institute for Environmental Studies, University of Wisconsin–Madison30A Science Hall, 550 North Park StreetMadisonWI 53706U.S.A.
| | - Guillaume Chapron
- Grimsö Wildlife Research Station, Swedish University of Agricultural SciencesSE ‐ 73091 RiddarhyttanSweden
| | - Jose V. López‐Bao
- Research Unit of Biodiversity (UO/CSIC/PA)Oviedo UniversityCampus de Mieres33600 MieresSpain
| | - Chase Shoemaker
- University of Wisconsin Law School975 Bascom MallMadisonWI 53706U.S.A.
| | | | - Jeremy T. Bruskotter
- School of Environment and Natural ResourcesThe Ohio State University379D Kottman Hall, 2021 Coffey Rd.ColumbusOH 43210U.S.A.
| |
Collapse
|
29
|
Kutal M, Váňa M, Suchomel J, Chapron G, López-Bao JV. Trans-Boundary Edge Effects in the Western Carpathians: The Influence of Hunting on Large Carnivore Occupancy. PLoS One 2016; 11:e0168292. [PMID: 28002475 PMCID: PMC5176292 DOI: 10.1371/journal.pone.0168292] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/28/2016] [Indexed: 11/19/2022] Open
Abstract
The conservation and management of wolves Canis lupus in the periphery of their distribution is challenging. Edges of wolf distribution are characterized by very few and intermittent occurrences of individuals, which are modulated by multiple factors affecting the overall population such as human-caused mortality, management targets and food availability. The knowledge of population dynamics in the edges becomes crucial when hunting takes place nearby the edges, which may preclude population expansion. Here, using as example the occurrence of wolves in the Beskydy Mountains (Czech-Slovak border), which are the edge distribution of the wolf and Eurasian lynx Lynx lynx populations in the West Carpathians, we explored how food availability and hunting in the Slovakian core area affected the dynamics of wolves in the edges of this population. During 2003–2012, we monitored large carnivore occurrence by snow-tracking surveys and tested potential differences in the occurrence of these species in Beskydy Mountains and potential mechanisms behind detected patterns. Despite the proximity to the core area, with several wolf reproductions being confirmed at least in recent years, the wolf was a very rare species in Beskydy and was recorded 14 times less often than the lynx. The expected abundance of wolves in the Beskydy Mountains was inversely related to prey availability in the Slovakian core area. Wolf hunting the year before influenced the expected abundance of wolves in Beskydy area. We discuss how different life histories and legal status of both species probably account for most of the observed difference of occurrence at range margins.
Collapse
Affiliation(s)
- Miroslav Kutal
- Department of Forest Ecology, Faculty of Forestry and Wood Technology, Mendel University Brno, Brno, Czech Republic
- Friends of the Earth Czech Republic, Olomouc branch, Olomouc, Czech Republic
- * E-mail:
| | - Martin Váňa
- Friends of the Earth Czech Republic, Olomouc branch, Olomouc, Czech Republic
| | - Josef Suchomel
- Department of Zoology, Fisheries and Apiculture, Faculty of Agronomy, Mendel University Brno, Brno, Czech Republic
| | - Guillaume Chapron
- Department of Ecology, Swedish University of Agricultural Sciences (SLU), Riddarhyttan, Sweden
| | | |
Collapse
|
30
|
Norén K, Angerbjörn A, Wallén J, Meijer T, Sacks BN. Red foxes colonizing the tundra: genetic analysis as a tool for population management. CONSERV GENET 2016. [DOI: 10.1007/s10592-016-0910-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
|
32
|
|
33
|
|
34
|
Wultsch C, Waits LP, Kelly MJ. A Comparative Analysis of Genetic Diversity and Structure in Jaguars (Panthera onca), Pumas (Puma concolor), and Ocelots (Leopardus pardalis) in Fragmented Landscapes of a Critical Mesoamerican Linkage Zone. PLoS One 2016; 11:e0151043. [PMID: 26974968 PMCID: PMC4790928 DOI: 10.1371/journal.pone.0151043] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 02/23/2016] [Indexed: 01/23/2023] Open
Abstract
With increasing anthropogenic impact and landscape change, terrestrial carnivore populations are becoming more fragmented. Thus, it is crucial to genetically monitor wild carnivores and quantify changes in genetic diversity and gene flow in response to these threats. This study combined the use of scat detector dogs and molecular scatology to conduct the first genetic study on wild populations of multiple Neotropical felids coexisting across a fragmented landscape in Belize, Central America. We analyzed data from 14 polymorphic microsatellite loci in 1053 scat samples collected from wild jaguars (Panthera onca), pumas (Puma concolor), and ocelots (Leopardus pardalis). We assessed levels of genetic diversity, defined potential genetic clusters, and examined gene flow for the three target species on a countrywide scale using a combination of individual- and population-based analyses. Wild felids in Belize showed moderate levels of genetic variation, with jaguars having the lowest diversity estimates (HE = 0.57 ± 0.02; AR = 3.36 ± 0.09), followed by pumas (HE = 0.57 ± 0.08; AR = 4.20 ± 0.16), and ocelots (HE = 0.63 ± 0.03; AR = 4.16 ± 0.08). We observed low to moderate levels of genetic differentiation for all three target species, with jaguars showing the lowest degree of genetic subdivision across the country, followed by ocelots and pumas. Although levels of genetic diversity and gene flow were still fairly high, we detected evidence of fine-scale genetic subdivision, indicating that levels of genetic connectivity for wild felids in Belize are likely to decrease if habitat loss and fragmentation continue at the current rate. Our study demonstrates the value of understanding fine-scale patterns of gene flow in multiple co-occurring felid species of conservation concern, which is vital for wildlife movement corridor planning and prioritizing future conservation and management efforts within human-impacted landscapes.
Collapse
Affiliation(s)
- Claudia Wultsch
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Lisette P. Waits
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Marcella J. Kelly
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, Virginia, United States of America
| |
Collapse
|
35
|
Identifying populations for management: fine-scale population structure in the New Zealand alpine rock wren (Xenicus gilviventris). CONSERV GENET 2016. [DOI: 10.1007/s10592-016-0815-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Assessing temporal genetic variation in a cougar population: influence of harvest and neighboring populations. CONSERV GENET 2015. [DOI: 10.1007/s10592-015-0790-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
37
|
A New Panel of SNP Markers for the Individual Identification of North American Pumas. JOURNAL OF FISH AND WILDLIFE MANAGEMENT 2015. [DOI: 10.3996/112014-jfwm-080] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Abstract
Pumas Puma concolor are one of the most studied terrestrial carnivores because of their widespread distribution, substantial ecological impacts, and conflicts with humans. Over the past decade, managing pumas has involved extensive efforts including the use of genetic methods. Microsatellites have been the most commonly used genetic markers; however, technical artifacts and little overlap of frequently used loci render large-scale comparison of puma genetic data across studies challenging. Therefore, a panel of genetic markers that can produce consistent genotypes across studies without the need for extensive calibrations is essential for range-wide genetic management of puma populations. Here, we describe the development of PumaPlex, a high-throughput assay to genotype 25 single nucleotide polymorphisms in pumas. We validated PumaPlex in 748 North American pumas Puma concolor couguar, and demonstrated its ability to generate reproducible genotypes and accurately identify individuals. Furthermore, in a test using fecal deoxyribonucleic acid (DNA) samples, we found that PumaPlex produced significantly more genotypes with fewer errors than 12 microsatellite loci, 8 of which are commonly used. Our results demonstrate that PumaPlex is a valuable tool for the genetic monitoring and management of North American puma populations. Given the analytical simplicity, reproducibility, and high-throughput capability of single nucleotide polymorphisms, PumaPlex provides a standard panel of markers that promotes the comparison of genotypes across studies and independent of the genotyping technology used.
Collapse
|
38
|
Everatt KT, Andresen L, Somers MJ. The Influence of Prey, Pastoralism and Poaching on the Hierarchical Use of Habitat by an Apex Predator. AFRICAN JOURNAL OF WILDLIFE RESEARCH 2015. [DOI: 10.3957/056.045.0187] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
39
|
Linking resource selection and mortality modeling for population estimation of mountain lions in Montana. Ecol Modell 2015. [DOI: 10.1016/j.ecolmodel.2015.05.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Norén K, Statham MJ, Ågren EO, Isomursu M, Flagstad Ø, Eide NE, Berg TBG, Bech-Sanderhoff L, Sacks BN. Genetic footprints reveal geographic patterns of expansion in Fennoscandian red foxes. GLOBAL CHANGE BIOLOGY 2015; 21:3299-3312. [PMID: 26058388 DOI: 10.1111/gcb.12922] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/29/2015] [Indexed: 06/04/2023]
Abstract
Population expansions of boreal species are among the most substantial ecological consequences of climate change, potentially transforming both structure and processes of northern ecosystems. Despite their importance, little is known about expansion dynamics of boreal species. Red foxes (Vulpes vulpes) are forecasted to become a keystone species in northern Europe, a process stemming from population expansions that began in the 19th century. To identify the relative roles of geographic and demographic factors and the sources of northern European red fox population expansion, we genotyped 21 microsatellite loci in modern and historical (1835-1941) Fennoscandian red foxes. Using Bayesian clustering and Bayesian inference of migration rates, we identified high connectivity and asymmetric migration rates across the region, consistent with source-sink dynamics, whereby more recently colonized sampling regions received immigrants from multiple sources. There were no clear clines in allele frequency or genetic diversity as would be expected from a unidirectional range expansion from south to north. Instead, migration inferences, demographic models and comparison to historical red fox genotypes suggested that the population expansion of the red fox is a consequence of dispersal from multiple sources, as well as in situ demographic growth. Together, these findings provide a rare glimpse into the anatomy of a boreal range expansion and enable informed predictions about future changes in boreal communities.
Collapse
Affiliation(s)
- Karin Norén
- Mammalian Ecology and Conservation Unit, Center for Veterinary Genetics, University of California Davis, Davis, CA, USA
- Department of Zoology, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Mark J Statham
- Mammalian Ecology and Conservation Unit, Center for Veterinary Genetics, University of California Davis, Davis, CA, USA
| | - Erik O Ågren
- National Veterinary Institute, Department of Pathology and Wildlife Diseases, SE-751 89, Uppsala, Sweden
| | - Marja Isomursu
- Finnish Food Safety Authority Evira, Production Animal and Wildlife Health Research Unit, Elektroniikkatie 5, FIN-90590, Oulu, Finland
| | - Øystein Flagstad
- Norwegian Institute for Nature Research, N-7485, Trondheim, Norway
| | - Nina E Eide
- Norwegian Institute for Nature Research, N-7485, Trondheim, Norway
| | | | - Lene Bech-Sanderhoff
- Naturama - Modern Natural History, Dronningemaen 30, DK-5700, Svendborg, Denmark
| | - Benjamin N Sacks
- Mammalian Ecology and Conservation Unit, Center for Veterinary Genetics, University of California Davis, Davis, CA, USA
| |
Collapse
|
41
|
Beasley JC, Dharmarajan G, Rhodes OE. Melding kin structure and demography to elucidate source and sink habitats in fragmented landscapes. Ecosphere 2015. [DOI: 10.1890/es14-00274.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- J. C. Beasley
- Department of Forestry and Natural Resources, 195 Marsteller Street, Purdue University, West Lafayette, Indiana 47907 USA
| | - G. Dharmarajan
- Department of Forestry and Natural Resources, 195 Marsteller Street, Purdue University, West Lafayette, Indiana 47907 USA
| | - O. E. Rhodes
- Department of Forestry and Natural Resources, 195 Marsteller Street, Purdue University, West Lafayette, Indiana 47907 USA
| |
Collapse
|
42
|
Lieury N, Ruette S, Devillard S, Albaret M, Drouyer F, Baudoux B, Millon A. Compensatory immigration challenges predator control: An experimental evidence-based approach improves management. J Wildl Manage 2015. [DOI: 10.1002/jwmg.850] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nicolas Lieury
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE); Aix Marseille Université, CNRS, IRD, Avignon Université, Technopôle Arbois-Méditerranée, Bâtiment Villemin-BP 80; F-13545 Aix-en-Provence cedex 04 France
| | - Sandrine Ruette
- Office National de la Chasse et de la Faune Sauvage; CNERA Prédateurs Animaux Déprédateurs; Montfort Birieux 01330 France
| | - Sebastien Devillard
- Laboratoire de Biométrie et Biologie Evolutive; Université de Lyon; Université Lyon 1; CNRS; F-69000, Lyon UMR5558 Villeurbanne F-69622 France
| | - Michel Albaret
- Office National de la Chasse et de la Faune Sauvage; CNERA Prédateurs Animaux Déprédateurs; Montfort Birieux 01330 France
| | - Franck Drouyer
- Fédération départementale des chasseurs d'Ille-et-Vilaine; Maison de la Chasse; Beauregard Saint-Symphorien 35630 France
| | - Bruno Baudoux
- Fédération départementale des chasseurs de l'Aube; Maison de la Chasse, Chemin de la Queue de la Pelle; La Rivière de Corps 10440 France
| | - Alexandre Millon
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE); Aix-Marseille Université, CNRS, IRD, Avignon Université, Technopôle Arbois-Méditerranée, Bâtiment Villemin-BP 80; Aix-en-Provence cedex 04 F-13545 France
| |
Collapse
|
43
|
Caruso N, Guerisoli M, Luengos Vidal E, Castillo D, Casanave E, Lucherini M. Modelling the ecological niche of an endangered population of Puma concolor: First application of the GNESFA method to an elusive carnivore. Ecol Modell 2015. [DOI: 10.1016/j.ecolmodel.2014.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Mijangos JL, Pacioni C, Spencer PBS, Craig MD. Contribution of genetics to ecological restoration. Mol Ecol 2014; 24:22-37. [DOI: 10.1111/mec.12995] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/17/2014] [Accepted: 11/01/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Jose Luis Mijangos
- School of Veterinary and Life Sciences; Murdoch University; Murdoch WA 6150 Australia
| | - Carlo Pacioni
- School of Veterinary and Life Sciences; Murdoch University; Murdoch WA 6150 Australia
| | - Peter B. S. Spencer
- School of Veterinary and Life Sciences; Murdoch University; Murdoch WA 6150 Australia
| | - Michael D. Craig
- School of Veterinary and Life Sciences; Murdoch University; Murdoch WA 6150 Australia
- School of Plant Biology; University of Western Australia; Crawley WA 6009 Australia
| |
Collapse
|
45
|
|
46
|
Valtonen M, Palo JU, Aspi J, Ruokonen M, Kunnasranta M, Nyman T. Causes and consequences of fine-scale population structure in a critically endangered freshwater seal. BMC Ecol 2014; 14:22. [PMID: 25005257 PMCID: PMC4106222 DOI: 10.1186/1472-6785-14-22] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 07/03/2014] [Indexed: 11/10/2022] Open
Abstract
Background Small, genetically uniform populations may face an elevated risk of extinction due to reduced environmental adaptability and individual fitness. Fragmentation can intensify these genetic adversities and, therefore, dispersal and gene flow among subpopulations within an isolated population is often essential for maintaining its viability. Using microsatellite and mtDNA data, we examined genetic diversity, spatial differentiation, interregional gene flow, and effective population sizes in the critically endangered Saimaa ringed seal (Phoca hispida saimensis), which is endemic to the large but highly fragmented Lake Saimaa in southeastern Finland. Results Microsatellite diversity within the subspecies (HE = 0.36) ranks among the lowest thus far recorded within the order Pinnipedia, with signs of ongoing loss of individual heterozygosity, reflecting very low effective subpopulation sizes. Bayesian assignment analyses of the microsatellite data revealed clear genetic differentiation among the main breeding areas, but interregional structuring was substantially weaker in biparentally inherited microsatellites (FST = 0.107) than in maternally inherited mtDNA (FST = 0.444), indicating a sevenfold difference in the gene flow mediated by males versus females. Conclusions Genetic structuring in the population appears to arise from the joint effects of multiple factors, including small effective subpopulation sizes, a fragmented lacustrine habitat, and behavioural dispersal limitation. The fine-scale differentiation found in the landlocked Saimaa ringed seal is especially surprising when contrasted with marine ringed seals, which often exhibit near-panmixia among subpopulations separated by hundreds or even thousands of kilometres. Our results demonstrate that population structures of endangered animals cannot be predicted based on data on even closely related species or subspecies.
Collapse
Affiliation(s)
- Mia Valtonen
- Department of Biology, University of Eastern Finland, Joensuu, Finland.
| | | | | | | | | | | |
Collapse
|
47
|
Brown AM, Kopps AM, Allen SJ, Bejder L, Littleford-Colquhoun B, Parra GJ, Cagnazzi D, Thiele D, Palmer C, Frère CH. Population differentiation and hybridisation of Australian snubfin (Orcaella heinsohni) and Indo-Pacific humpback (Sousa chinensis) dolphins in north-western Australia. PLoS One 2014; 9:e101427. [PMID: 24988113 PMCID: PMC4079686 DOI: 10.1371/journal.pone.0101427] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/06/2014] [Indexed: 12/02/2022] Open
Abstract
Little is known about the Australian snubfin (Orcaella heinsohni) and Indo-Pacific humpback (Sousa chinensis) dolphins (‘snubfin’ and ‘humpback dolphins’, hereafter) of north-western Australia. While both species are listed as ‘near threatened’ by the IUCN, data deficiencies are impeding rigorous assessment of their conservation status across Australia. Understanding the genetic structure of populations, including levels of gene flow among populations, is important for the assessment of conservation status and the effective management of a species. Using nuclear and mitochondrial DNA markers, we assessed population genetic diversity and differentiation between snubfin dolphins from Cygnet (n = 32) and Roebuck Bays (n = 25), and humpback dolphins from the Dampier Archipelago (n = 19) and the North West Cape (n = 18). All sampling locations were separated by geographic distances >200 km. For each species, we found significant genetic differentiation between sampling locations based on 12 (for snubfin dolphins) and 13 (for humpback dolphins) microsatellite loci (FST = 0.05–0.09; P<0.001) and a 422 bp sequence of the mitochondrial control region (FST = 0.50–0.70; P<0.001). The estimated proportion of migrants in a population ranged from 0.01 (95% CI 0.00–0.06) to 0.13 (0.03–0.24). These are the first estimates of genetic diversity and differentiation for snubfin and humpback dolphins in Western Australia, providing valuable information towards the assessment of their conservation status in this rapidly developing region. Our results suggest that north-western Australian snubfin and humpback dolphins may exist as metapopulations of small, largely isolated population fragments, and should be managed accordingly. Management plans should seek to maintain effective population size and gene flow. Additionally, while interactions of a socio-sexual nature between these two species have been observed previously, here we provide strong evidence for the first documented case of hybridisation between a female snubfin dolphin and a male humpback dolphin.
Collapse
Affiliation(s)
- Alexander M. Brown
- Murdoch University Cetacean Research Unit, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia
- * E-mail:
| | - Anna M. Kopps
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, United Kingdom
- Marine Evolution and Conservation, Centre for Ecological and Evolutionary Studies, University of Groningen, Groningen, The Netherlands
| | - Simon J. Allen
- Murdoch University Cetacean Research Unit, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia
| | - Lars Bejder
- Murdoch University Cetacean Research Unit, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia
| | | | - Guido J. Parra
- Cetacean Ecology, Behaviour and Evolution Lab, School of Biological Sciences, Flinders University, Adelaide, South Australia, Australia
- South Australian Research and Development Institute, Adelaide, South Australia, Australia
| | - Daniele Cagnazzi
- Marine Ecology Research Centre, School of Environment, Science and Engineering, Southern Cross University, Lismore, New South Wales, Australia
| | - Deborah Thiele
- Fenner School of Environment & Society, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Carol Palmer
- Marine Ecosystems, Flora and Fauna Division, Department of Land Resource Management, Palmerston, Northern Territory, Australia
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Celine H. Frère
- GeneCology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
| |
Collapse
|
48
|
Aycrigg JL, Garton EO. Linking metapopulation structure to elk population management in Idaho: a genetic approach. J Mammal 2014. [DOI: 10.1644/12-mamm-a-300] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
49
|
Assessing the impact of hunting pressure on population structure of Guinea baboons (Papio papio) in Guinea-Bissau. CONSERV GENET 2014. [DOI: 10.1007/s10592-014-0621-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
50
|
Pflüger FJ, Balkenhol N. A plea for simultaneously considering matrix quality and local environmental conditions when analysing landscape impacts on effective dispersal. Mol Ecol 2014; 23:2146-56. [DOI: 10.1111/mec.12712] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 02/23/2014] [Accepted: 03/02/2014] [Indexed: 01/14/2023]
Affiliation(s)
- Femke J. Pflüger
- Department of Wildlife Sciences; University of Goettingen; Buesgenweg 3 Goettingen 37077 Germany
| | - Niko Balkenhol
- Department of Wildlife Sciences; University of Goettingen; Buesgenweg 3 Goettingen 37077 Germany
| |
Collapse
|