1
|
Konovalova A, Søgaard-Andersen L, Kroos L. Regulated proteolysis in bacterial development. FEMS Microbiol Rev 2013; 38:493-522. [PMID: 24354618 DOI: 10.1111/1574-6976.12050] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/03/2013] [Accepted: 10/14/2013] [Indexed: 11/30/2022] Open
Abstract
Bacteria use proteases to control three types of events temporally and spatially during the processes of morphological development. These events are the destruction of regulatory proteins, activation of regulatory proteins, and production of signals. While some of these events are entirely cytoplasmic, others involve intramembrane proteolysis of a substrate, transmembrane signaling, or secretion. In some cases, multiple proteolytic events are organized into pathways, for example turnover of a regulatory protein activates a protease that generates a signal. We review well-studied and emerging examples and identify recurring themes and important questions for future research. We focus primarily on paradigms learned from studies of model organisms, but we note connections to regulated proteolytic events that govern bacterial adaptation, biofilm formation and disassembly, and pathogenesis.
Collapse
Affiliation(s)
- Anna Konovalova
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | | |
Collapse
|
2
|
Evolutionary history and functional characterization of three large genes involved in sporulation in Bacillus cereus group bacteria. J Bacteriol 2011; 193:5420-30. [PMID: 21821775 DOI: 10.1128/jb.05309-11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bacillus cereus group of bacteria is a group of closely related species that are of medical and economic relevance, including B. anthracis, B. cereus, and B. thuringiensis. Bacteria from the Bacillus cereus group encode three large, highly conserved genes of unknown function (named crdA, crdB, and crdC) that are composed of 16 to 35 copies of a repeated domain of 132 amino acids at the protein level. Bioinformatic analysis revealed that there is a phylogenetic bias in the genomic distribution of these genes and that strains harboring all three large genes mainly belong to cluster III of the B. cereus group phylogenetic tree. The evolutionary history of the three large genes implicates gain, loss, duplication, internal deletion, and lateral transfer. Furthermore, we show that the transcription of previously identified antisense open reading frames in crdB is simultaneously regulated with its host gene throughout the life cycle in vitro, with the highest expression being at the onset of sporulation. In B. anthracis, different combinations of double- and triple-knockout mutants of the three large genes displayed slower and less efficient sporulation processes than the parental strain. Altogether, the functional studies suggest an involvement of these three large genes in the sporulation process.
Collapse
|
3
|
Hobley L, King JR, Sockett RE. Bdellovibrio predation in the presence of decoys: Three-way bacterial interactions revealed by mathematical and experimental analyses. Appl Environ Microbiol 2006; 72:6757-65. [PMID: 17021228 PMCID: PMC1610274 DOI: 10.1128/aem.00844-06] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bdellovibrio bacteriovorus is a small, gram-negative, motile bacterium that preys upon other gram-negative bacteria, including several known human pathogens. Its predation efficiency is usually studied in pure cultures containing solely B. bacteriovorus and a suitable prey. However, in natural environments, as well as in any possible biomedical uses as an antimicrobial, Bdellovibrio is predatory in the presence of diverse decoys, including live nonsusceptible bacteria, eukaryotic cells, and cell debris. Here we gathered and mathematically modeled data from three-member cultures containing predator, prey, and nonsusceptible bacterial decoys. Specifically, we studied the rate of predation of planktonic late-log-phase Escherichia coli S17-1 prey by B. bacteriovorus HD100, both in the presence and in the absence of Bacillus subtilis nonsporulating strain 671, which acted as a live bacterial decoy. Interestingly, we found that although addition of the live Bacillus decoy did decrease the rate of Bdellovibrio predation in liquid cultures, this addition also resulted in a partially compensatory enhancement of the availability of prey for predation. This effect resulted in a higher final yield of Bdellovibrio than would be predicted for a simple inert decoy. Our mathematical model accounts for both negative and positive effects of predator-prey-decoy interactions in the closed batch environment. In addition, it informs considerations for predator dosing in any future therapeutic applications and sheds some light on considerations for modeling the massively complex interactions of real mixed bacterial populations in nature.
Collapse
Affiliation(s)
- Laura Hobley
- Institute of Genetics, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | | | | |
Collapse
|
4
|
Steil L, Serrano M, Henriques AO, Völker U. Genome-wide analysis of temporally regulated and compartment-specific gene expression in sporulating cells of Bacillus subtilis. Microbiology (Reading) 2005; 151:399-420. [PMID: 15699190 DOI: 10.1099/mic.0.27493-0] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Temporal and compartment-specific control of gene expression during sporulation inBacillus subtilisis governed by a cascade of four RNA polymerase subunits.σFin the prespore andσEin the mother cell control early stages of development, and are replaced at later stages byσGandσK, respectively. Ultimately, a comprehensive description of the molecular mechanisms underlying spore morphogenesis requires the knowledge of all the intervening genes and their assignment to specific regulons. Here, in an extension of earlier work, DNA macroarrays have been used, and members of the four compartment-specific sporulation regulons have been identified. Genes were identified and grouped based on: i) their temporal expression profile and ii) the use of mutants for each of the four sigma factors and abofAallele, which allowsσKactivation in the absence ofσG. As a further test, artificial production of active alleles of the sigma factors in non-sporulating cells was employed. A total of 439 genes were found, including previously characterized genes whose transcription is induced during sporulation: 55 in theσFregulon, 154σE-governed genes, 113σG-dependent genes, and 132 genes underσKcontrol. The results strengthen the view that the activities ofσF,σE,σGandσKare largely compartmentalized, both temporally as well as spatially, and that the major vegetative sigma factor (σA) is active throughout sporulation. The results provide a dynamic picture of the changes in the overall pattern of gene expression in the two compartments of the sporulating cell, and offer insight into the roles of the prespore and the mother cell at different times of spore morphogenesis.
Collapse
Affiliation(s)
- Leif Steil
- Ernst-Moritz-Arndt-University, Medical School, Laboratory for Functional Genomics, Walther-Rathenau-Str. 49A, D-17487 Greifswald, Germany
- Max-Planck-Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
- Philipps-University Marburg, Department of Biology, Laboratory for Microbiology, D-35032 Marburg, Germany
| | - Mónica Serrano
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, Apartado 127, 2781-901 Oeiras Codex, Portugal
| | - Adriano O Henriques
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, Apartado 127, 2781-901 Oeiras Codex, Portugal
| | - Uwe Völker
- Ernst-Moritz-Arndt-University, Medical School, Laboratory for Functional Genomics, Walther-Rathenau-Str. 49A, D-17487 Greifswald, Germany
- Max-Planck-Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
- Philipps-University Marburg, Department of Biology, Laboratory for Microbiology, D-35032 Marburg, Germany
| |
Collapse
|
5
|
Eichenberger P, Fujita M, Jensen ST, Conlon EM, Rudner DZ, Wang ST, Ferguson C, Haga K, Sato T, Liu JS, Losick R. The program of gene transcription for a single differentiating cell type during sporulation in Bacillus subtilis. PLoS Biol 2004; 2:e328. [PMID: 15383836 PMCID: PMC517825 DOI: 10.1371/journal.pbio.0020328] [Citation(s) in RCA: 269] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2004] [Accepted: 07/29/2004] [Indexed: 11/24/2022] Open
Abstract
Asymmetric division during sporulation by Bacillus subtilis generates a mother cell that undergoes a 5-h program of differentiation. The program is governed by a hierarchical cascade consisting of the transcription factors: σE, σK, GerE, GerR, and SpoIIID. The program consists of the activation and repression of 383 genes. The σE factor turns on 262 genes, including those for GerR and SpoIIID. These DNA-binding proteins downregulate almost half of the genes in the σE regulon. In addition, SpoIIID turns on ten genes, including genes involved in the appearance of σK. Next, σK activates 75 additional genes, including that for GerE. This DNA-binding protein, in turn, represses half of the genes that had been activated by σK while switching on a final set of 36 genes. Evidence is presented that repression and activation contribute to proper morphogenesis. The program of gene expression is driven forward by its hierarchical organization and by the repressive effects of the DNA-binding proteins. The logic of the program is that of a linked series of feed-forward loops, which generate successive pulses of gene transcription. Similar regulatory circuits could be a common feature of other systems of cellular differentiation. A comprehensive genomic analysis of sporulation in Bacillus subtilis reveals a coordinated program of gene activation and repression, which involves 383 genes
Collapse
Affiliation(s)
- Patrick Eichenberger
- 1Department of Molecular and Cellular Biology, Harvard UniversityCambridge, MassachusettsUnited States of America
| | - Masaya Fujita
- 1Department of Molecular and Cellular Biology, Harvard UniversityCambridge, MassachusettsUnited States of America
| | - Shane T Jensen
- 2Department of Statistics, Harvard UniversityCambridge, MassachusettsUnited States of America
| | - Erin M Conlon
- 2Department of Statistics, Harvard UniversityCambridge, MassachusettsUnited States of America
| | - David Z Rudner
- 1Department of Molecular and Cellular Biology, Harvard UniversityCambridge, MassachusettsUnited States of America
| | - Stephanie T Wang
- 1Department of Molecular and Cellular Biology, Harvard UniversityCambridge, MassachusettsUnited States of America
| | - Caitlin Ferguson
- 1Department of Molecular and Cellular Biology, Harvard UniversityCambridge, MassachusettsUnited States of America
| | - Koki Haga
- 3International Environmental and Agricultural Science, Tokyo University of Agriculture and TechnologyFuchu, TokyoJapan
| | - Tsutomu Sato
- 3International Environmental and Agricultural Science, Tokyo University of Agriculture and TechnologyFuchu, TokyoJapan
| | - Jun S Liu
- 2Department of Statistics, Harvard UniversityCambridge, MassachusettsUnited States of America
| | - Richard Losick
- 1Department of Molecular and Cellular Biology, Harvard UniversityCambridge, MassachusettsUnited States of America
| |
Collapse
|
6
|
Feucht A, Evans L, Errington J. Identification of sporulation genes by genome-wide analysis of the σ
E regulon of Bacillus subtilis. Microbiology (Reading) 2003; 149:3023-3034. [PMID: 14523133 DOI: 10.1099/mic.0.26413-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Differentiation in the spore-forming bacterium Bacillus subtilis is governed by the sequential activation of five sporulation-specific transcription factors. The early mother-cell-specific transcription factor, σ
E, directs the transcription of many genes that contribute to the formation of mature, dormant spores. In this study, DNA microarrays were used to identify genes belonging to the σ
E regulon. In total, 171 genes were found to be under the control of σ
E. Of these, 101 genes had not previously been described as being σ
E dependent. Disruption of some of the previously unknown genes (ydcC, yhaL, yhbH, yjaV and yqfD) resulted in a defect in sporulation.
Collapse
Affiliation(s)
- Andrea Feucht
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Louise Evans
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Jeff Errington
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
7
|
Eichenberger P, Jensen ST, Conlon EM, van Ooij C, Silvaggi J, González-Pastor JE, Fujita M, Ben-Yehuda S, Stragier P, Liu JS, Losick R. The sigmaE regulon and the identification of additional sporulation genes in Bacillus subtilis. J Mol Biol 2003; 327:945-72. [PMID: 12662922 DOI: 10.1016/s0022-2836(03)00205-5] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We report the identification and characterization on a genome-wide basis of genes under the control of the developmental transcription factor sigma(E) in Bacillus subtilis. The sigma(E) factor governs gene expression in the larger of the two cellular compartments (the mother cell) created by polar division during the developmental process of sporulation. Using transcriptional profiling and bioinformatics we show that 253 genes (organized in 157 operons) appear to be controlled by sigma(E). Among these, 181 genes (organized in 121 operons) had not been previously described as members of this regulon. Promoters for many of the newly identified genes were located by transcription start site mapping. To assess the role of these genes in sporulation, we created null mutations in 98 of the newly identified genes and operons. Of the resulting mutants, 12 (in prkA, ybaN, yhbH, ykvV, ylbJ, ypjB, yqfC, yqfD, ytrH, ytrI, ytvI and yunB) exhibited defects in spore formation. In addition, subcellular localization studies were carried out using in-frame fusions of several of the genes to the coding sequence for GFP. A majority of the fusion proteins localized either to the membrane surrounding the developing spore or to specific layers of the spore coat, although some fusions showed a uniform distribution in the mother cell cytoplasm. Finally, we used comparative genomics to determine that 46 of the sigma(E)-controlled genes in B.subtilis were present in all of the Gram-positive endospore-forming bacteria whose genome has been sequenced, but absent from the genome of the closely related but not endospore-forming bacterium Listeria monocytogenes, thereby defining a core of conserved sporulation genes of probable common ancestral origin. Our findings set the stage for a comprehensive understanding of the contribution of a cell-specific transcription factor to development and morphogenesis.
Collapse
Affiliation(s)
- Patrick Eichenberger
- Department of Molecular and Cellular Biology, Harvard University Biological Laboratories, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Thomaides HB, Freeman M, El Karoui M, Errington J. Division site selection protein DivIVA of Bacillus subtilis has a second distinct function in chromosome segregation during sporulation. Genes Dev 2001; 15:1662-73. [PMID: 11445541 PMCID: PMC312724 DOI: 10.1101/gad.197501] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
DivIVA is a coiled-coil, tropomyosin-like protein of Gram-positive bacteria. Previous work showed that this protein is targeted to division sites and retained at the cell poles after division. In vegetative cells, DivIVA sequesters the MinCD division inhibitor to the cell poles, thereby helping to direct cell division to the correct midcell site. We now show that DivIVA has a second, quite separate role in sporulating cells of Bacillus subtilis. It again acts at the cell pole but in this case interacts with the chromosome segregation machinery to help position the oriC region of the chromosome at the cell pole, in preparation for polar division. We isolated mutations in divIVA that separate the protein's role in sporulation from its vegetative function in cell division. DivIVA therefore appears to be a bifunctional protein with distinct roles in division-site selection and chromosome segregation.
Collapse
Affiliation(s)
- H B Thomaides
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | | | | | |
Collapse
|
9
|
Komano T, Takabe S, Sakai H. Transcription of the insecticidal crystal protein genes of Bacillus thuringiensis. BIOTECHNOLOGY ANNUAL REVIEW 2000; 5:131-54. [PMID: 10874999 DOI: 10.1016/s1387-2656(00)05034-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Production of a large amount of insecticidal crystal proteins encoded on large plasmids is largely dependent upon the mother cell, Bacillus thuringiensis (B. thuringiensis, also Bt), specific transcription systems attributable to sporulation. In the middle stages of sporulation, cry4A is most actively transcribed from the promoter cry4A-P1. The proximal transcriptional start point of cry4A, which is under the control of the promoter P1, is used in Bacillus subtilis (B. subtilis) in the middle stage of sporulation. The nucleotide sequence that determines the cry4A-P1 promoter is homologous to the consensus sequence for the promoter of sigma E-specific genes in B. subtilis, and to those promoters of the insecticidal protein genes that are efficiently transcribed in vitro with the RNA polymerase E sigma 35 isolated from B. thuringiensis. The sigma factor sigma 35 of B. thuringiensis is highly homologous and functionally equivalent to sigma E of B. subtilis. These results suggest that the cry4A transcription from P1 is under the control of sigma E in B. subtilis, and under the control of sigma 35 in B. thuringiensis.
Collapse
Affiliation(s)
- T Komano
- Department of Genetic Engineering, Faculty of Biology-oriented Science and Technology, Kinki University, Wakayama, Japan.
| | | | | |
Collapse
|
10
|
Ichikawa H, Kroos L. Combined action of two transcription factors regulates genes encoding spore coat proteins of Bacillus subtilis. J Biol Chem 2000; 275:13849-55. [PMID: 10788508 DOI: 10.1074/jbc.275.18.13849] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During sporulation of Bacillus subtilis, spore coat proteins encoded by cot genes are expressed in the mother cell and deposited on the forespore. Transcription of the cotB, cotC, and cotX genes by final sigma(K) RNA polymerase is activated by a small, DNA-binding protein called GerE. The promoter region of each of these genes has two GerE binding sites. 5' deletions that eliminated the more upstream GerE site decreased expression of lacZ fused to cotB and cotX by approximately 80% and 60%, respectively but had no effect on cotC-lacZ expression. The cotC-lacZ fusion was expressed later during sporulation than the other two fusions. Primer extension analysis confirmed that cotB mRNA increases first during sporulation, followed by cotX and cotC mRNAs over a 2-h period. In vitro transcription experiments suggest that the differential pattern of cot gene expression results from the combined action of GerE and another transcription factor, SpoIIID. A low concentration of GerE activated cotB transcription by final sigma(K) RNA polymerase, whereas a higher concentration was needed to activate transcription of cotX or cotC. SpoIIID at low concentration repressed cotC transcription, whereas a higher concentration only partially repressed cotX transcription and had little effect on cotB transcription. DNase I footprinting showed that SpoIIID binds strongly to two sites in the cotC promoter region, binds weakly to one site in the cotX promoter, and does not bind specifically to cotB. We propose that late in sporulation the rising level of GerE and the falling level of SpoIIID, together with the position and affinity of binding sites for these transcription factors in cot gene promoters, dictates the timing and level of spore coat protein synthesis, ensuring optimal assembly of the protein shell on the forespore surface.
Collapse
Affiliation(s)
- H Ichikawa
- Department of Biochemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
11
|
Abstract
GerE is a transcription factor produced in the mother cell compartment of sporulating Bacillus subtilis. It is a critical regulator of cot genes encoding proteins that form the spore coat late in development. Most cot genes, and the gerE gene, are transcribed by sigmaK RNA polymerase. Previously, it was shown that the GerE protein inhibits transcription in vitro of the sigK gene encoding sigmaK. Here, we show that GerE binds near the sigK transcriptional start site, to act as a repressor. A sigK-lacZ fusion containing the GerE-binding site in the promoter region was expressed at a 2-fold lower level during sporulation of wild-type cells than gerE mutant cells. Likewise, the level of SigK protein (i. e. pro-sigmaK and sigmaK) was lower in sporulating wild-type cells than in a gerE mutant. These results demonstrate that sigmaK-dependent transcription of gerE initiates a negative feedback loop in which GerE acts as a repressor to limit production of sigmaK. In addition, GerE directly represses transcription of particular cot genes. We show that GerE binds to two sites that span the -35 region of the cotD promoter. A low level of GerE activated transcription of cotD by sigmaK RNA polymerase in vitro, but a higher level of GerE repressed cotD transcription. The upstream GerE-binding site was required for activation but not for repression. These results suggest that a rising level of GerE in sporulating cells may first activate cotD transcription from the upstream site then repress transcription as the downstream site becomes occupied. Negative regulation by GerE, in addition to its positive effects on transcription, presumably ensures that sigmaK and spore coat proteins are synthesized at optimal levels to produce a germination-competent spore.
Collapse
Affiliation(s)
- H Ichikawa
- Department of Biochemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | |
Collapse
|
12
|
Zhang B, Kroos L. A feedback loop regulates the switch from one sigma factor to the next in the cascade controlling Bacillus subtilis mother cell gene expression. J Bacteriol 1997; 179:6138-44. [PMID: 9324264 PMCID: PMC179520 DOI: 10.1128/jb.179.19.6138-6144.1997] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Regulation of gene expression in the mother cell compartment of sporulating Bacillus subtilis involves sequential activation and inactivation of several transcription factors. Among them are two sigma factors, sigmaE and sigmaK, and a DNA-binding protein, SpoIIID. A decrease in the level of SpoIIID is thought to relieve its repressive effect on transcription by sigmaK RNA polymerase of certain spore coat genes. Previous studies showed that sigmaK negatively regulates the level of spoIIID mRNA. Here, it is shown that sigmaK does not affect the stability of spoIIID mRNA. Rather, sigmaK appears to negatively regulate the synthesis of spoIIID mRNA by accelerating the disappearance of sigmaE RNA polymerase, which transcribes spoIIID. As sigmaK begins to accumulate by 4 h into sporulation, the sigmaE level drops rapidly in wild-type cells but remains twofold to fivefold higher in sigK mutant cells during the subsequent 4 h. In a strain engineered to produce sigmaK 1 h earlier than normal, twofold less sigmaE than that in wild-type cells accumulates. SigmaK did not detectably alter the stability of sigmaE in pulse-chase experiments. However, beta-galactosidase expression from a sigE-lacZ transcriptional fusion showed a pattern similar to the level of sigmaE protein in sigK mutant cells and cells prematurely expressing sigmaK. These results suggest that the appearance of sigmaK initiates a negative feedback loop controlling not only transcription of spoIIID, but the entire sigmaE regulon, by directly or indirectly inhibiting the transcription of sigE.
Collapse
Affiliation(s)
- B Zhang
- Department of Biochemistry, Michigan State University, East Lansing 48824, USA
| | | |
Collapse
|
13
|
Decatur A, McMurry MT, Kunkel BN, Losick R. Translation of the mRNA for the sporulation gene spoIIID of Bacillus subtilis is dependent upon translation of a small upstream open reading frame. J Bacteriol 1997; 179:1324-8. [PMID: 9023218 PMCID: PMC178832 DOI: 10.1128/jb.179.4.1324-1328.1997] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We report the existence of a small open reading frame (usd) that is located between the promoter and coding sequence for the sporulation gene spoIIID in Bacillus subtilis. The mRNA from the usd-spoIIID operon contains an inverted repeat sequence that is predicted to form a stem-loop structure that would sequester the ribosome binding site for spoIIID. A mutation eliminating the ribosome binding site for the upstream open reading frame caused an oligosporogenous phenotype and interfered with the translation, but not the transcription, of the downstream gene spoIIID. We propose that efficient synthesis of SpoIIID requires that the putative stem-loop structure be disrupted by translation through the upstream open reading frame.
Collapse
Affiliation(s)
- A Decatur
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | |
Collapse
|
14
|
Zhang B, Daniel RA, Errington J, Kroos L. Bacillus subtilis SpoIIID protein binds to two sites in the spoVD promoter and represses transcription by sigmaE RNA polymerase. J Bacteriol 1997; 179:972-5. [PMID: 9006059 PMCID: PMC178786 DOI: 10.1128/jb.179.3.972-975.1997] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Bacillus subtilis spoVD gene encodes a penicillin-binding protein required for spore morphogenesis. SpoIIID is a sequence-specific DNA-binding protein that activates or represses the transcription of many different genes. We have defined the spoVD promoter region and demonstrated that it is recognized by sigmaE RNA polymerase in vitro and that SpoIIID represses spoVD transcription. Two strong SpoIIID-binding sites were mapped in the spoVD promoter region, one overlapping the -35 region and the other encompassing the -10 region and the transcriptional start site.
Collapse
Affiliation(s)
- B Zhang
- Department of Biochemistry, Michigan State University, East Lansing 48824, USA
| | | | | | | |
Collapse
|
15
|
Henriques AO, Bryan EM, Beall BW, Moran CP. cse15, cse60, and csk22 are new members of mother-cell-specific sporulation regulons in Bacillus subtilis. J Bacteriol 1997; 179:389-98. [PMID: 8990290 PMCID: PMC178708 DOI: 10.1128/jb.179.2.389-398.1997] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We report on the characterization of three new transcription units expressed during sporulation in Bacillus subtilis. Two of the units, cse15 and cse60, were mapped at about 123 degrees and 62 degrees on the genetic map, respectively. Their transcription commenced around h 2 of sporulation and showed an absolute requirement for sigmaE. Maximal expression of both cse15 and cse60 further depended on the DNA-binding protein SpoIIID. Primer extension results revealed -10 and -35 sequences upstream of the cse15 and cse60 coding sequences very similar to those utilized by sigmaE-containing RNA polymerase. Alignment of these and other regulatory regions led to a revised consensus sequence for sigmaE-dependent promoters. A third transcriptional unit, designated csk22, was localized at approximately 173 degrees on the chromosome. Transcription of csk22 was activated at h 4 of sporulation, required the late mother-cell regulator sigmaK, and was repressed by the GerE protein. Sequences in the csk22 promoter region were similar to those of other sigmaK-dependent promoters. The cse60 locus was deduced to encode an acidic product of only 60 residues. A 37.6-kDa protein apparently encoded by cse15 was weakly related to the heavy chain of myosins, as well as to other myosin-like proteins, and is predicted to contain a central, 100 residue-long coiled-coil domain. Finally, csk22 is inferred to encode a 18.2-kDa hydrophobic product with five possible membrane-spanning helices, which could function as a transporter.
Collapse
Affiliation(s)
- A O Henriques
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
16
|
Roels S, Losick R. Adjacent and divergently oriented operons under the control of the sporulation regulatory protein GerE in Bacillus subtilis. J Bacteriol 1995; 177:6263-75. [PMID: 7592393 PMCID: PMC177468 DOI: 10.1128/jb.177.21.6263-6275.1995] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The DNA-binding protein GerE is the latest-acting regulatory protein in the mother cell line of gene expression during sporulation in Bacillus subtilis. GerE directs the transcription of several genes that encode structural components of the protein coat that encases the mature spore. We report on the identification and characterization of a cluster of additional genes whose transcription is dependent on GerE. These genes, which are located in the replication terminus region of the chromosome (181 degrees on the genetic map), are arranged in adjacent and divergently oriented operons called cgeAB and cgeCDE, which consist of two and at least three genes, respectively. CgeD, the product of the second member of the cgeCDE operon, is strikingly similar to the product of a B. subtilis gene (ipa-63d) of unknown function and is similar at its amino terminus to certain glycosyl transferases involved in polysaccharide biosynthesis. Strains with mutations in the cgeAB and cgeCDE operons produce spores with altered surface properties, on which basis we propose that proteins encoded by these operons influence maturation of the outermost layer of the spore, perhaps by glycosylation of coat proteins at the spore surface.
Collapse
Affiliation(s)
- S Roels
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
17
|
Henriques AO, Beall BW, Roland K, Moran CP. Characterization of cotJ, a sigma E-controlled operon affecting the polypeptide composition of the coat of Bacillus subtilis spores. J Bacteriol 1995; 177:3394-406. [PMID: 7768848 PMCID: PMC177041 DOI: 10.1128/jb.177.12.3394-3406.1995] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The outermost protective structure found in endospores of Bacillus subtilis is a thick protein shell known as the coat, which makes a key contribution to the resistance properties of the mature spore and also plays a role in its interaction with compounds able to trigger germination. The coat is organized as a lamellar inner layer and an electron-dense outer layer and has a complex polypeptide composition. Here we report the cloning and characterization of an operon, cotJ, located at about 62 degrees on the B. subtilis genetic map, whose inactivation results in the production of spores with an altered pattern of coat polypeptides. The cotJ operon was identified by screening a random library of lacZ transcriptional fusions for a conditional (inducer-dependent) Lac+ phenotype in cells of a strain in which the structural gene (spoIIGB) for the early-acting, mother-cell-specific transcriptional factor sigma E was placed under the control of the IPTG (isopropyl-beta-D-thiogalactopyranoside)-inducible Pspac promoter. Sequence analysis of cloned DNA from the cotJ region complemented by genetic experiments revealed a tricistronic operon preceded by a strong sigma E-like promoter. Expression of an SP beta-borne cotJ-lacZ fusion commences at around h 2 of sporulation, as does expression of other sigma E-dependent genes, and shows an absolute requirement for sigma E. Studies with double-reporter strains bearing a cotJ-gusA fusion and lacZ fusions to other cot genes confirmed that expression of cotJ is initiated during sporulation prior to activation of genes known to encode coat structural proteins (with the sole exception of cotE). An in vitro-constructed insertion-deletion mutation in cotJ resulted in the formation of spores with no detectable morphological or resistance deficiency. However, examination of the profile of electrophoretically separated spore coat proteins from the null mutant revealed a pattern that was essentially identical to that of a wild-type strain in the range of 12 to 65 kDa, except for polypeptides of 17 and 24 kDa, the putative products of the second (cotJB) and third (cotJC) cistrons of the operon, that were missing or reduced in amount in the coat of the mutant. Polypeptides of the same apparent sizes are detected in spores of a cotE null mutant, on which basis we infer that the products of the cotJ operon are required for the normal formation of the inner layers of the coat or are themselves structural components of the coat. Because the onset of cotJ transcription is temporally coincident with the appearance of active sigma E, we speculate that the cotJ-encoded products may be involved in an early state of coat assembly.
Collapse
Affiliation(s)
- A O Henriques
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
18
|
Halberg R, Oke V, Kroos L. Effects of Bacillus subtilis sporulation regulatory protein SpoIIID on transcription by sigma K RNA polymerase in vivo and in vitro. J Bacteriol 1995; 177:1888-91. [PMID: 7896717 PMCID: PMC176822 DOI: 10.1128/jb.177.7.1888-1891.1995] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
SpoIIID is a sequence-specific, DNA-binding protein that activates or represses transcription of different genes by sigma K RNA polymerase in vitro. A Bacillus subtilis strain engineered to produce both sigma K and SpoIIID during growth showed effects of SpoIIID on expression of sigma K-dependent genes that were consistent with the effects of a small amount of SpoIIID on transcription of these genes in vitro, indicating that the strain provides a simple, in vivo method to screen for effects of SpoIIID on transcription of sigma K-dependent genes.
Collapse
Affiliation(s)
- R Halberg
- Department of Biochemistry, Michigan State University, East Lansing 48824
| | | | | |
Collapse
|
19
|
Abstract
The specificity of DNA-dependent RNA polymerase for target promotes is largely due to the replaceable sigma subunit that it carries. Multiple sigma proteins, each conferring a unique promoter preference on RNA polymerase, are likely to be present in all bacteria; however, their abundance and diversity have been best characterized in Bacillus subtilis, the bacterium in which multiple sigma factors were first discovered. The 10 sigma factors thus far identified in B. subtilis directly contribute to the bacterium's ability to control gene expression. These proteins are not merely necessary for the expression of those operons whose promoters they recognize; in many instances, their appearance within the cell is sufficient to activate these operons. This review describes the discovery of each of the known B. subtilis sigma factors, their characteristics, the regulons they direct, and the complex restrictions placed on their synthesis and activities. These controls include the anticipated transcriptional regulation that modulates the expression of the sigma factor structural genes but, in the case of several of the B. subtilis sigma factors, go beyond this, adding novel posttranslational restraints on sigma factor activity. Two of the sigma factors (sigma E and sigma K) are, for example, synthesized as inactive precursor proteins. Their activities are kept in check by "pro-protein" sequences which are cleaved from the precursor molecules in response to intercellular cues. Other sigma factors (sigma B, sigma F, and sigma G) are inhibited by "anti-sigma factor" proteins that sequester them into complexes which block their ability to form RNA polymerase holoenzymes. The anti-sigma factors are, in turn, opposed by additional proteins which participate in the sigma factors' release. The devices used to control sigma factor activity in B, subtilis may prove to be as widespread as multiple sigma factors themselves, providing ways of coupling sigma factor activation to environmental or physiological signals that cannot be readily joined to other regulatory mechanisms.
Collapse
Affiliation(s)
- W G Haldenwang
- Department of Microbiology, University of Texas Health Science Center, San Antonio 78284-7758
| |
Collapse
|
20
|
Yoshisue H, Ihara K, Nishimoto T, Sakai H, Komano T. Cloning and characterization of a Bacillus thuringiensis homolog of the spoIIID gene from Bacillus subtilis. Gene 1995; 154:23-9. [PMID: 7867944 DOI: 10.1016/0378-1119(94)00822-a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The SpoIIID protein of Bacillus subtilis (Bs) is a small DNA-binding protein that is essential for gene expression of the mother cell compartment during sporulation. We have cloned a DNA fragment from Bacillus thuringiensis (Bt) that showed a specific hybridization with the Bs spoIIID gene. Sequence analysis found an open reading frame encoding 90 amino acids (aa), which are 89% identical to the deduced aa sequence of Bs spoIIID. Upstream from the transcription start point (tsp), a nucleotide sequence highly homologous to the consensus sequence motif for the sigma 35-recognized promoters was found. Northern blot analysis has indicated that the expression of the gene is induced only at the midsporulation stage, and that the gene constitutes an operon with a downstream gene, mreB. The Bs strain carrying the spoIIID delta erm or spoIIID83 mutation completely restored sporulation ability upon introduction of the spoIIID homologous gene from Bt. These results strongly suggest that the gene we have cloned is a Bt homolog of spoIIID.
Collapse
Affiliation(s)
- H Yoshisue
- Department of Agricultural Chemistry, Faculty of Agriculture, Kyoto University, Japan
| | | | | | | | | |
Collapse
|
21
|
Lewis PJ, Nwoguh CE, Barer MR, Harwood CR, Errington J. Use of digitized video microscopy with a fluorogenic enzyme substrate to demonstrate cell- and compartment-specific gene expression in Salmonella enteritidis and Bacillus subtilis. Mol Microbiol 1994; 13:655-62. [PMID: 7997177 DOI: 10.1111/j.1365-2958.1994.tb00459.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A rapid and sensitive method for detection of cell- and compartment-specific gene expression in individual cells of both Gram-negative and Gram-positive microorganisms is described. The method combines the use of gene fusions to lacZ, and a fluorogenic beta-galactosidase substrate, fluorescein-di-(beta-D-galactopyranoside), with digitized video microscopy. All of the reporter constructs tested were successfully detected. Secondary staining of the cells with a nucleic acid-specific dye, propidium iodide, allowed cells devoid of nucleic acid to be identified, while cell nucleoid shape and the morphological stage of development could be correlated with the location of beta-galactosidase activity. The double-staining procedure was used to show that gene expression can be induced in non-culturable cells of Salmonella enteritidis produced by carbon/nitrogen starvation. The resolution was sufficient to distinguish between cells at different morphological stages of sporulation in Bacillus subtilis. This highly sensitive and rapid method may have many other applications in basic and applied microbiology.
Collapse
Affiliation(s)
- P J Lewis
- Sir William Dunn School of Pathology, University of Oxford, UK
| | | | | | | | | |
Collapse
|
22
|
Beall B, Moran CP. Cloning and characterization of spoVR, a gene from Bacillus subtilis involved in spore cortex formation. J Bacteriol 1994; 176:2003-12. [PMID: 8144469 PMCID: PMC205306 DOI: 10.1128/jb.176.7.2003-2012.1994] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Screening for sigma E-dependent promoters led to the isolation of a gene from Bacillus subtilis, designated spoVR, which appears to be involved in spore cortex formation. Cultures of strains carrying mutations in spoVR had an increased proportion of phase-dark spores, which correlated with an increased proportion of cortexless spores seen by electron microscopy. The numbers of heat- and chloroform-resistant phase-bright spores produced by these mutants were decreased by about 3- to 10-fold, and accumulation of dipicolinate was decreased by more than 3-fold. The spoVR gene was located on the B. subtilis chromosome immediately upstream from, and in the opposite orientation of, the phoAIV gene. Expression of spoVR was initiated at the second hour of sporulation from a sigma E-dependent promoter, and this expression did not require any of the other known mother-cell-specific transcriptional regulators. The spoVR gene was predicted to encode a product of 468 residues.
Collapse
Affiliation(s)
- B Beall
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322
| | | |
Collapse
|
23
|
Daniel RA, Drake S, Buchanan CE, Scholle R, Errington J. The Bacillus subtilis spoVD gene encodes a mother-cell-specific penicillin-binding protein required for spore morphogenesis. J Mol Biol 1994; 235:209-20. [PMID: 8289242 DOI: 10.1016/s0022-2836(05)80027-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The Bacillus subtilis spoVD gene has been cloned and sequenced. It encodes a 71,262 Da protein with extensive sequence similarity to penicillin-binding proteins from various organisms. The context of this gene in the B. subtilis chromosome, immediately upstream of the mur operon, suggests that it is related to the pbpB gene of Escherichia coli, which is involved in the synthesis of septal peptidoglycan during cell division. Expression of spoVD in E. coli leads to the synthesis of a membrane-associated protein of the size expected for SpoVD, which can bind labelled penicillin. However, insertional disruption of the spoVD gene has no effect on vegetative growth or division: a second pbp-like gene immediately upstream of spoVD is probably the functional homologue of E. coli pbpB. spoVD seems instead to have a specialized role in the morphogenesis of the spore cortex, which is a modified form of peptidoglycan. spoVD transcription appears to occur from a promoter recognized by the sigma E form of RNA polymerase. Analysis of the expression of a spoVD'-lacZ reporter gene supports this notion and indicates that a second level of negative regulation is dependent on the SpoIIID protein. SpoVD synthesis probably occurs only in the mother cell since both sigma E and SpoIIID are thought to be specific to this cell type. Such localization of SpoVD synthesis was supported by the results of a genetic test showing that expression of spoVD only in the mother cell is sufficient for spore formation. The results support the proposition that spore cortex formation is determined primarily by the mother cell.
Collapse
Affiliation(s)
- R A Daniel
- Sir William Dunn School of Pathology, University of Oxford, U.K
| | | | | | | | | |
Collapse
|
24
|
Yoshisue H, Nishimoto T, Sakai H, Komano T. Identification of a promoter for the crystal protein-encoding gene cryIVB from Bacillus thuringiensis subsp. israelensis. Gene 1993; 137:247-51. [PMID: 8299955 DOI: 10.1016/0378-1119(93)90015-u] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The cryIVB gene of Bacillus thuringiensis subsp. israelensis (Bti) codes for a 135-kDa insecticidal crystal protein, which is specifically toxic to dipteran larvae. We have identified a transcription start point (tsp) of cryIVB by a primer extension experiment. The promoter sequence alignment, together with the chronology of appearance of the transcript, suggested that cryIVB is transcribed by RNA polymerase containing sigma 35 (E sigma 35). This was confirmed by investigation of cryIVB transcription in several Bacillus subtilis sporulation mutants. Unlike the lepidopteran-specific crystal protein-encoding genes [cryIA(a) and cryIB], transcription of which is regulated by both sigma 35 and sigma 28, cryIVB transcription was controlled only by the sigma 35-dependent promoter at the midsporulation stage.
Collapse
Affiliation(s)
- H Yoshisue
- Department of Agricultural Chemistry, Faculty of Agriculture, Kyoto University, Japan
| | | | | | | |
Collapse
|
25
|
Halberg R, Kroos L. Fate of the SpoIIID switch protein during Bacillus subtilis sporulation depends on the mother-cell sigma factor, sigma K. J Mol Biol 1992; 228:840-9. [PMID: 1469717 DOI: 10.1016/0022-2836(92)90868-k] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Sporulation of Bacillus subtilis involves the differentiation of two cell types, the mother cell and the forespore. Two key regulators of mother-cell gene expression are SpoIIID, a DNA-binding protein that activates or represses transcription of many different genes, and sigma K, a subunit of RNA polymerase that directs the enzyme to transcribe genes encoding proteins that form the spore coat. Previous studies showed that SpoIIID is needed to produce sigma K, but suggested that SpoIIID represses sigma K-directed transcription of genes encoding spore coat proteins. Here we show that a feedback loop connects the levels of sigma K and SpoIIID, such that production of sigma K leads to a decrease in the level of SpoIIID. The existence of the feedback loop was demonstrated by using antibodies prepared against SpoIIID to measure the level of SpoIIID during sporulation of wild-type cells, mutants defective in sigma K production, and a mutant engineered to produce sigma K earlier than normal. The feedback loop operates at the level of synthesis and/or stability of spoIIID mRNA, as demonstrated by measuring the level of spoIIID mRNA during sporulation of wild-type cells and mutants defective in sigma K production. Our results suggest that a rise in the level of sigma K during the stage (IV) of spore cortex formation causes a decrease in the level of SpoIIID, which, at least in part, establishes the switch to the stage V (spore coat formation) pattern of mother-cell gene expression.
Collapse
Affiliation(s)
- R Halberg
- Department of Biochemistry, Michigan State University, East Lansing 48824
| | | |
Collapse
|
26
|
Abstract
Formation of the asymmetrically located septum divides sporulating bacilli into two distinct cells: the mother cell and the prespore. The rigidifying wall material in the septum is subsequently removed by autolysis. Examination of published electron micrographs indicates that the two septal membranes then fuse to form a single membrane. Membrane fusion would be expected to have profound consequences for subsequent development. For example, it is suggested that fusion activates processing of pro-sigma E to sigma E in the cytoplasm by exposing it to a membrane-bound processing enzyme. Asymmetry of the fused membrane could restrict processing to one face of the membrane and hence explain why sigma E is associated with transcription in the mother cell but not in the prespore. Asymmetry of the fused membrane might also provide a mechanism for restricting the activity of another factor, sigma F, to the prespore. Attachment of the flexible fused septal membrane to the condensing prespore nucleoid could help drive the engulfment of the prespore by the mother cell.
Collapse
Affiliation(s)
- M L Higgins
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | | |
Collapse
|
27
|
Zheng L, Halberg R, Roels S, Ichikawa H, Kroos L, Losick R. Sporulation regulatory protein GerE from Bacillus subtilis binds to and can activate or repress transcription from promoters for mother-cell-specific genes. J Mol Biol 1992; 226:1037-50. [PMID: 1518043 DOI: 10.1016/0022-2836(92)91051-p] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The mother-cell line of gene expression during sporulation in Bacillus subtilis is a hierarchical cascade consisting of at least four temporally controlled gene sets, the first three of which each contain a regulatory gene for the next gene set in the pathway. gerE, a member of the penultimate gene set, is a regulatory gene whose products is required for the transcriptional activation of genes (coat protein genes cotB and cotC) in the last gene set. The gerE product also influences the expression of other members of the penultimate gene set (coat protein genes cotA and cotD appear to be repressed and activated, respectively). We now report that the purified product of gerE (GerE) is a DNA-binding protein that adheres to the promoters for cotB and cotC. We also show that GerE stimulates cotB and cotC transcription in vitro by RNA polymerase containing the mother-cell sigma factor sigma K. These findings support the view that GerE is a positively acting, regulatory protein whose appearance at a late stage of development directly activates the transcription of genes in the last known temporal class of mother-cell-expressed genes. In addition, GerE stimulates cotD transcription and inhibits cotA transcription in vitro by sigma K RNA polymerase, as expected from in vivo studies, and, unexpectedly, profoundly inhibits in vitro transcription of the gene (sigK) that encodes sigma K. The effects of GerE on cotD and sigK transcription are just the opposite of the effects exerted by the earlier-appearing, mother-cell regulatory protein spoIIID, suggesting that the ordered appearance of first SpoIIID, then GerE, ensures proper flow of the regulatory cascade controlling gene expression in the mother cell.
Collapse
Affiliation(s)
- L Zheng
- Department of Cellular and Developmental Biology, Harvard University, Cambridge, Massachusetts 02138
| | | | | | | | | | | |
Collapse
|
28
|
Errington J, Illing N. Establishment of cell-specific transcription during sporulation in Bacillus subtilis. Mol Microbiol 1992; 6:689-95. [PMID: 1573998 DOI: 10.1111/j.1365-2958.1992.tb01517.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
One of the most intriguing questions posed by bacterial spore formation concerns the establishment of cell-specific gene expression in the prespore and mother cell. Recent results now suggest that sigma factors, in addition to their temporal roles in the control of gene expression, may also be the key determinants of differential gene expression during sporulation in Bacillus subtilis. The genes encoding two sporulation-specific sigma factors, sigma E and sigma F, are expressed soon after the initiation of sporulation, before the formation of the spore septum that separates the prespore and mother cell compartments. It now appears that sigma E and sigma F direct transcription only after septation and then in a specific cell type, suggesting that the segregation of the sigma activities after septation is a key event in the establishment of differential gene expression. The mechanism responsible for this segregation is complex, involving at least seven other gene products. We discuss possible models for the interactions between the sigma factors and the establishment of cell-specific transcription.
Collapse
Affiliation(s)
- J Errington
- Sir William Dunn School of Pathology, University of Oxford, UK
| | | |
Collapse
|
29
|
Losick R, Stragier P. Crisscross regulation of cell-type-specific gene expression during development in B. subtilis. Nature 1992; 355:601-4. [PMID: 1538747 DOI: 10.1038/355601a0] [Citation(s) in RCA: 333] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Sporulation in Bacillus subtilis is a model for how cells of one type generate other differentiated cell types. During sporulation two cellular compartments arise that differ from each other and from the progenitor cell. Differential gene expression between the two is governed by the successive appearance of four transcription factors whose activities are coordinated in crisscross fashion between the two cells.
Collapse
Affiliation(s)
- R Losick
- Department of Cellular and Developmental Biology, Harvard University, Cambridge, Massachusetts 02138
| | | |
Collapse
|
30
|
Stevens CM, Daniel R, Illing N, Errington J. Characterization of a sporulation gene, spoIVA, involved in spore coat morphogenesis in Bacillus subtilis. J Bacteriol 1992; 174:586-94. [PMID: 1729247 PMCID: PMC205753 DOI: 10.1128/jb.174.2.586-594.1992] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mutations in the spoIVA locus of Bacillus subtilis abolish cortex synthesis and interfere with the synthesis and assembly of the spore coat. We have characterized the cloned spoIVA locus in terms of its physical structure and regulation during sporulation. The locus contains a single gene capable of encoding an acidic protein of 492 amino acids (molecular weight, 55,174). The gene is transcribed from a sigma E-dependent promoter soon after the formation of the spore septum. A genetic test indicated that expression of spoIVA is only necessary in the mother cell compartment for the formation of a mature spore. This, together with the phenotypic properties of spoIVA mutations, would be in accord with the hypothesis that sigma E is only active after septation and in the mother cell compartment.
Collapse
Affiliation(s)
- C M Stevens
- Sir William Dunn School of Pathology, University of Oxford, United Kingdom
| | | | | | | |
Collapse
|
31
|
Tatti KM, Jones CH, Moran CP. Genetic evidence for interaction of sigma E with the spoIIID promoter in Bacillus subtilis. J Bacteriol 1991; 173:7828-33. [PMID: 1744038 PMCID: PMC212573 DOI: 10.1128/jb.173.24.7828-7833.1991] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
During sporulation in Bacillus subtilis, new RNA polymerase sigma factors are produced. These sigma factors direct the transcription of genes that are required for this cellular differentiation. In order to determine the role of each sigma factor in this process, it is necessary to know which promoters are recognized by each sigma factor. The spoIIID gene product plays an important role in the establishment of mother cell-specific gene expression during sporulation. We found that substitution of an alanine at position 124 of the sporulation-specific sigma factor sigma E suppressed the effect of a single-base-pair transition at position -13 of the spoIIID promoter. This alanine substitution in sigma E did not suppress the effect of a transversion at position -12 of the spoIIID promoter. The allele specificity of the interaction between sigma E and the spoIIID promoter is strong evidence that sigma E directs transcription from the spoIIID promoter during sporulation. Position 124 in sigma E is located within a region that is highly conserved among the regions in other sigma factors that probably interact with the -10 regions of their cognate promoters.
Collapse
Affiliation(s)
- K M Tatti
- Department of Microbiology & Immunology, Emory University, School of Medicine, Atlanta, Georgia 30322
| | | | | |
Collapse
|
32
|
Driks A, Losick R. Compartmentalized expression of a gene under the control of sporulation transcription factor sigma E in Bacillus subtilis. Proc Natl Acad Sci U S A 1991; 88:9934-8. [PMID: 1946462 PMCID: PMC52841 DOI: 10.1073/pnas.88.22.9934] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Immunoelectron microscopy was used to visualize the expression of a gene under the control of developmental transcription factor sigma E during spore formation in Bacillus subtilis. sigma E is generated by cleavage of an inactive proprotein (pro-sigma E) shortly after the formation of the sporulation septum, which partitions the sporangium into mother-cell and forespore compartments. Specific antibodies and gold-conjugated secondary antibodies were used to localize beta-galactosidase in thin sections of sporangia from cells bearing a lacZ transcriptional fusion to a gene (spoIID) under the direct control of sigma E. Transcription of spoIID was found to be induced shortly after the formation of the sporulation septum and was largely confined to the mother cell. Cell-type-specific transcription of genes under the control of sigma E could be responsible for establishing the mother-cell line of gene expression.
Collapse
Affiliation(s)
- A Driks
- Department of Cellular and Developmental Biology, Harvard University, Cambridge, MA 02138
| | | |
Collapse
|
33
|
Margolis P, Driks A, Losick R. Differentiation and the establishment of cell type during sporulation in Bacillus subtilis. Curr Opin Genet Dev 1991; 1:330-5. [PMID: 1840889 DOI: 10.1016/s0959-437x(05)80296-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Differentiation in Bacillus subtilis involves the formation of specialized cell types called the mother cell and the forespore. These differ from each other and from their parent in developmental fate. Establishment of the two cell types and their subsequent differentiation is governed by the compartmentalized action of six developmental transcription factors.
Collapse
Affiliation(s)
- P Margolis
- Department of Cellular and Developmental Biology, Harvard University, Cambridge, Massachusetts 02138
| | | | | |
Collapse
|
34
|
Illing N, Errington J. The spoIIIA operon of Bacillus subtilis defines a new temporal class of mother-cell-specific sporulation genes under the control of the sigma E form of RNA polymerase. Mol Microbiol 1991; 5:1927-40. [PMID: 1766372 DOI: 10.1111/j.1365-2958.1991.tb00816.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have cloned and characterized a 5 kbp region of the Bacillus subtilis chromosome and show that it contains the promoter-proximal part of the spoIIIA locus. The locus consists of a polycistronic operon containing at least three genes. We show that the operon is regulated at the transcriptional level, from a promoter that is first activated about 80 minutes after the induction of sporulation, immediately after septation. Expression of spoIIIA in different spo mutant backgrounds correlates with the ability of each strain to synthesize the sporulation-specific sigma factor, sigma E. Moreover, synthesis of sigma E in vegetative cells by use of an inducible promoter causes expression of mother-cell-specific genes spoIID, spoIIIA, and spoIIID, but not the prespore-specific genes, spoIIIG and spoVA. We suggest that sigma E may be the primary determinant of mother-cell-specific gene expression and that the SpoIIID protein exerts an additional level of regulation on spoIIIA, apparently by acting as a transcriptional repressor. Since the onset of spoIIID expression occurs about 10 minutes after that of spoIIIA, spoIIIA expression is transient. Thus spoIIIA defines a third temporal class of gene controlled by the sigma E form of RNA polymerase.
Collapse
Affiliation(s)
- N Illing
- Sir William Dunn School of Pathology, University of Oxford, UK
| | | |
Collapse
|
35
|
Illing N, Errington J. Genetic regulation of morphogenesis in Bacillus subtilis: roles of sigma E and sigma F in prespore engulfment. J Bacteriol 1991; 173:3159-69. [PMID: 1902463 PMCID: PMC207910 DOI: 10.1128/jb.173.10.3159-3169.1991] [Citation(s) in RCA: 122] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Electron microscopic examination of sporulating cultures of wild-type Bacillus subtilis revealed that the morphological events previously characterized as stages II and III can be divided into four substages, namely, stages IIi, IIii, IIiii, and III. The ultrastructural phenotypes of several stage II mutant strains indicate that each of the four substages has a biochemical and genetic basis. Two of the genes needed for the transition from stage II to stage III encode transcription factors sigma E and sigma F. Their roles during spore morphogenesis have been the subject of much speculation. We now show that sigma E controls genes involved in the morphological transition from stage IIi to stage IIii and then stage IIiii, while the transition to stage III may be determined by genes controlled by sigma F. The results also indicate the existence of at least two undiscovered sporulation genes involved in B. subtilis spore morphogenesis.
Collapse
Affiliation(s)
- N Illing
- Sir William Dunn School of Pathology, University of Oxford, United Kingdom
| | | |
Collapse
|
36
|
Cutting S, Driks A, Schmidt R, Kunkel B, Losick R. Forespore-specific transcription of a gene in the signal transduction pathway that governs Pro-sigma K processing in Bacillus subtilis. Genes Dev 1991; 5:456-66. [PMID: 1900494 DOI: 10.1101/gad.5.3.456] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We present studies on the regulation of a developmental gene (spoIVB) whose product is required at a late stage of morphogenesis during the process of sporulation in Bacillus subtilis. Earlier work implicated the spoIVB gene product in a signal-transduction pathway that governs the conversion of pro-sigma K to the mature and active form of the mother cell sigma factor, sigma K, in response to a signal generated within the forespore chamber of the sporangium. We now show that (1) spoIVB is induced at the engulfment stage of sporulation, (2) this transcription is restricted to the forespore, and (3) spoIVB is under the direct control of the forespore sigma factor sigma G. The discovery that spoIVB is a forespore-expressed gene suggests that the spoIVB gene product, or a developmental event under its control, triggers the processing of pro-sigma K and thereby mediates the coupling of sigma K-directed gene expression in the mother cell to sigma G-directed gene expression in the forespore. We also show that spoIVB transcription is partially dependent on the action of the mother cell regulatory gene spoIIID, a finding that suggests that the transcription of certain forespore-expressed genes is influenced by events in the mother cell.
Collapse
Affiliation(s)
- S Cutting
- Department of Cellular and Developmental Biology, Harvard University, Cambridge, Massachusetts 02138
| | | | | | | | | |
Collapse
|