1
|
Di Salvo M, Puccio S, Peano C, Lacour S, Alifano P. RhoTermPredict: an algorithm for predicting Rho-dependent transcription terminators based on Escherichia coli, Bacillus subtilis and Salmonella enterica databases. BMC Bioinformatics 2019; 20:117. [PMID: 30845912 PMCID: PMC6407284 DOI: 10.1186/s12859-019-2704-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 02/26/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND In bacterial genomes, there are two mechanisms to terminate the DNA transcription: the "intrinsic" or Rho-independent termination and the Rho-dependent termination. Intrinsic terminators are characterized by a RNA hairpin followed by a run of 6-8 U residues relatively easy to identify using one of the numerous available prediction programs. In contrast, Rho-dependent termination is mediated by the Rho protein factor that, firstly, binds to ribosome-free mRNA in a site characterized by a C > G content and then reaches the RNA polymerase to induce its release. Conversely on intrinsic terminators, the computational prediction of Rho-dependent terminators in prokaryotes is a very difficult problem because the sequence features required for the function of Rho are complex and poorly defined. This is the reason why it still does not exist an exhaustive Rho-dependent terminators prediction program. RESULTS In this study we introduce RhoTermPredict, the first published algorithm for an exhaustive Rho-dependent terminators prediction in bacterial genomes. RhoTermPredict identifies these elements based on a previously proposed consensus motif common to all Rho-dependent transcription terminators. It essentially searches for a 78 nt long RUT site characterized by a C > G content and with regularly spaced C residues, followed by a putative pause site for the RNA polymerase. We tested RhoTermPredict performances by using available genomic and transcriptomic data of the microorganism Escherichia coli K-12, both in limited-length sequences and in the whole-genome, and available genomic sequences from Bacillus subtilis 168 and Salmonella enterica LT2 genomes. We also estimated the overlap between the predictions of RhoTermPredict and those obtained by the predictor of intrinsic terminators ARNold webtool. Our results demonstrated that RhoTermPredict is a very performing algorithm both for limited-length sequences (F1-score obtained about 0.7) and for a genome-wide analysis. Furthermore the degree of overlap with ARNold predictions was very low. CONCLUSIONS Our analysis shows that RhoTermPredict is a powerful tool for Rho-dependent terminators search in the three analyzed genomes and could fill this gap in computational genomics. We conclude that RhoTermPredict could be used in combination with an intrinsic terminators predictor in order to predict all the transcription terminators in bacterial genomes.
Collapse
Affiliation(s)
- Marco Di Salvo
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Simone Puccio
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Clelia Peano
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy.,Institute of Genetics and Biomedical Research UoS of Milan, National Research Council, Rozzano, Milan, Italy
| | - Stephan Lacour
- Univ. Grenoble Alpes, CNRS, Inria, LIPhy (UMR5588), 38000, Grenoble, France
| | - Pietro Alifano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy.
| |
Collapse
|
2
|
Rifampicin-resistance, rpoB polymorphism and RNA polymerase genetic engineering. J Biotechnol 2015; 202:60-77. [DOI: 10.1016/j.jbiotec.2014.11.024] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 11/22/2014] [Accepted: 11/26/2014] [Indexed: 01/22/2023]
|
3
|
Regulatory role of the MisR/S two-component system in hemoglobin utilization in Neisseria meningitidis. Infect Immun 2009; 78:1109-22. [PMID: 20008531 DOI: 10.1128/iai.00363-09] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Outer membrane iron receptors are some of the major surface entities that are critical for meningococcal pathogenesis. The gene encoding the meningococcal hemoglobin receptor, HmbR, is both independently transcribed and transcriptionally linked to the upstream gene hemO, which encodes a heme oxygenase. The MisR/S two-component system was previously determined to regulate hmbR transcription, and its hemO and hmbR regulatory mechanisms were characterized further here. The expression of hemO and hmbR was downregulated in misR/S mutants under both iron-replete and iron-restricted conditions, and the downregulation could be reversed by complementation. No significant changes in expression of other iron receptors were detected, suggesting that the MisR/S system specifically regulates hmbR. When hemoglobin was the sole iron source, growth defects were detected in the mutants. Primer extension analysis identified a promoter upstream of the hemO-associated Correia element (CE) and another promoter at the proximal end of CE, and processed transcripts previously identified for other cotranscribed CEs were also detected, suggesting that there may be posttranscriptional regulation. MisR directly interacts with sequences upstream of the CE and upstream of the hmbR Fur binding site and thus independently regulates hemO and hmbR. Analysis of transcriptional reporters of hemO and hmbR further demonstrated the positive role of the MisR/S system and showed that the transcription of hmbR initiated from hemO was significantly reduced. A comparison of the effects of the misS mutation under iron-replete and iron-depleted conditions suggested that activation by the MisR/S system and iron-mediated repression by Fur act independently. Thus, the expression of hemO and hmbR is coordinately controlled by multiple independent regulatory mechanisms, including the MisR/S two-component system.
Collapse
|
4
|
Hinde P, Deighan P, Dorman CJ. Characterization of the detachable Rho-dependent transcription terminator of the fimE gene in Escherichia coli K-12. J Bacteriol 2006; 187:8256-66. [PMID: 16321930 PMCID: PMC1317003 DOI: 10.1128/jb.187.24.8256-8266.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The fim genetic switch in the chromosome of Escherichia coli K-12 is an invertible DNA element that harbors the promoter for transcription of the downstream fim structural genes and a transcription terminator that acts on the upstream fimE regulatory gene. Switches oriented appropriately for structural gene transcription also allow fimE mRNA to read through, whereas those in the opposite orientation terminate the fimE message. We show here that termination is Rho dependent and is suppressed in a rho mutant or by bicyclomycin treatment when fimE mRNA is expressed by the fimE gene, either from a multicopy recombinant plasmid or in its native chromosomal location. Two cis-acting elements within the central portion of the 314-bp invertible DNA switch were identified as contributors to Rho-dependent termination and dissected. These fim sequence elements show similarities to well-characterized Rho utilization (rut) sites and consist of a boxA motif and a C-rich and G-poor region of approximately 40 bp. Deletion of the boxA motif alone had only a subtle negative effect on Rho function. However, when this element was deleted in combination with the C-rich, G-poor region, Rho function was considerably decreased. Altering the C-to-G ratio in favor of G in this portion of the switch also strongly attenuated transcription termination. The implications of the existence of a fimE-specific Rho-dependent terminator within the invertible switch are discussed in the context of the fim regulatory circuit.
Collapse
MESH Headings
- Base Composition/genetics
- Base Composition/physiology
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- DNA, Bacterial/genetics
- DNA, Bacterial/physiology
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Enzyme Inhibitors/pharmacology
- Escherichia coli K12/genetics
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/physiology
- Fimbriae, Bacterial/genetics
- Gene Expression Regulation, Bacterial
- Integrases/genetics
- Integrases/physiology
- Models, Biological
- Promoter Regions, Genetic
- RNA, Bacterial/analysis
- RNA, Messenger/analysis
- Reverse Transcriptase Polymerase Chain Reaction
- Rho Factor/genetics
- Rho Factor/physiology
- Terminator Regions, Genetic
- Transcription, Genetic
Collapse
Affiliation(s)
- Paul Hinde
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin 2, Ireland
| | | | | |
Collapse
|
5
|
Abstract
In bacteria, conditions that uncouple translation from transcription activate intragenic terminators located within cistrons. We analyzed the function of NusA in intragenic termination, making use of two tandem terminators located within the hisG cistron, GTTE1 and GTTE2. GTTE2 is a canonical Rho site, capable to terminate with Rho alone in vitro. By contrast, GTTE1 is a suboptimal terminator, featuring a boxA element and requiring a functional NusB to terminate efficiently in vivo. We found that a functional NusA is necessary for efficient termination events to occur at both GTTE1 and 2. To enhance termination at GTTE1 in conditions in which the transcript is free of ribosomes, NusA acts at the same step as NusB and NusE/S10. In the presence of concomitant translation, termination at GTTE1 is dependent on the relative position of the translation stop codon and boxA. If translation stops upstream of boxA, NusA acts at the same step as NusB enhance termination. Ribosomes terminating translation at boxA influence termination at GTTE1. Interactions of NusA and/or NusB with ribosomal components, including NusE/S10, might facilitate termination. Differently from what observed at GTTE1, the NusA-stimulated pausing seems to be sufficient for the occurrence of complete termination events at GTTE2. A functional NusA is also necessary to prevent premature termination of normally translated transcripts. Our data support the hypothesis that NusA may program a fraction of the RNA polymerase to terminate transcription upon interactions with specific sites on the nascent mRNA and either other Nuses or ribosomes.
Collapse
Affiliation(s)
- M Stella Carlomagno
- Dipartimento di Biologia e Patologia Cellulare e Molecolare L. Califano, Università degli Studi di Napoli Federico II, Via S. Pansini 5, 80131 Naples, Italy.
| | | |
Collapse
|
6
|
Carrano L, Alifano P, Corti E, Bucci C, Donadio S. A new inhibitor of the transcription-termination factor Rho. Biochem Biophys Res Commun 2003; 302:219-25. [PMID: 12604334 DOI: 10.1016/s0006-291x(03)00131-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study we describe BI-K0058, a new inhibitor of the transcription-termination factor Rho belonging to a different chemical class from bicyclomycin, the only known antibiotic acting on Rho. BI-K0058 inhibits the poly(C)-dependent ATPase activity of Rho with an IC(50) of 25 microM as well as in vitro transcription-termination of two natural substrates, the Salmonella enterica hisG cistron and the f1 phage intergenic region. BI-K0058 does not affect photolabeling of Rho by ATP. The results of gel mobility shift experiments with a natural RNA substrate demonstrate that BI-K0058 inhibits the formation of the ATP-independent high affinity Rho-RNA complex.
Collapse
Affiliation(s)
- Lucia Carrano
- Biosearch Italia, via R. Lepetit 34, 21040 Gerenzano, VA, Italy.
| | | | | | | | | |
Collapse
|
7
|
Salvatore P, Pagliarulo C, Colicchio R, Zecca P, Cantalupo G, Tredici M, Lavitola A, Bucci C, Bruni CB, Alifano P. Identification, characterization, and variable expression of a naturally occurring inhibitor protein of IS1106 transposase in clinical isolates of Neisseria meningitidis. Infect Immun 2001; 69:7425-36. [PMID: 11705917 PMCID: PMC98831 DOI: 10.1128/iai.69.12.7425-7436.2001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Transposition plays a role in the epidemiology and pathogenesis of Neisseria meningitidis. Insertion sequences are involved in reversible capsulation and insertional inactivation of virulence genes encoding outer membrane proteins. In this study, we have investigated and identified one way in which transposon IS1106 controls its own activity. We have characterized a naturally occurring protein (Tip) that inhibits the transposase. The inhibitor protein is a truncated version of the IS1106 transposase lacking the NH(2)-terminal DNA binding sequence, and it regulates transposition by competing with the transposase for binding to the outside ends of IS1106, as shown by gel shift and in vitro transposition assays. IS1106Tip mRNA is variably expressed among serogroup B meningococcal clinical isolates, and it is absent in most collection strains belonging to hypervirulent lineages.
Collapse
Affiliation(s)
- P Salvatore
- Dipartimento di Biologia e Patologia Cellulare e Molecolare "L. Califano," Università di Napoli "Federico II," Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Sohanpal BK, Kulasekara HD, Bonnen A, Blomfield IC. Orientational control of fimE expression in Escherichia coli. Mol Microbiol 2001; 42:483-94. [PMID: 11703669 DOI: 10.1046/j.1365-2958.2001.02655.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Phase-variable expression of type 1 fimbriae is, in part, controlled by site-specific DNA inversion of the fim switch in Escherichia coli. Of the two fim recombinases (FimB and FimE) that catalyse the inversion reaction, FimE exhibits a strong bias for phase switching from the ON to the OFF orientation. The specificity associated with fimE is the result of two different mechanisms: (i) FimE exhibits a preference for the invertible element in the ON orientation as substrate for recombination; (ii) the invertible element in the OFF orientation acts in cis to inhibit recombinase activity (orientational control). We show here that the invertible element negatively regulates fimE, even though expression of a fimE-lacZYA transcriptional fusion is unaffected by orientational control. The fimE transcript extends into the invertible region and hence switch ON-specific and switch OFF-specific mRNA contain different sequences. Furthermore, we show that orientational control is suppressed by the insertion of a structured RNA (tRNA(Gly)) between fimE and the fim switch, indicating that the switch OFF-specific mRNA is inactivated by 3' to 5' degradation. Analysis of the fim switch reveals that it contains two inhibitory elements that exert orientational control independently.
Collapse
MESH Headings
- Bacterial Proteins/genetics
- Chromosome Inversion
- DNA-Binding Proteins/genetics
- Escherichia coli/genetics
- Escherichia coli Proteins
- Fimbriae, Bacterial/genetics
- Gene Expression Regulation, Bacterial
- Genes, Bacterial/genetics
- Genes, Switch/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Recombination, Genetic/genetics
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- B K Sohanpal
- Research School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | | | | | | |
Collapse
|
9
|
Abstract
Interactions between the antiterminator NusB and boxA elements in the nut sites are necessary to ensure lambda N-mediated processive antitermination. Similarly, in the bacterial cell, interactions between NusB and boxA elements help RNA polymerase to counteract polarity during transcription of rrn operons. We analyzed the effects of NusB on intragenic termination at the level of two tandem terminators located in the hisG cistron, GTTE1 and GTTE2. Unexpectedly, we found that NusB enhances transcription termination at the sub-optimal Rho site GTTE1. Moreover, site-directed mutagenesis of a boxA homolog located within GTTE1 and the masking of this element by translating ribosomes demonstrated that the recruitment of NusB in the termination complex is mediated by a boxA element. The mutated boxA also abolishes the formation of a NusB-dependent complex on GTTE1 RNA. On the whole, results provide evidence that interactions between NusB and boxA can enhance Rho-dependent termination.
Collapse
Affiliation(s)
- M S Carlomagno
- Dipartimento di Biologie e Patologia Cellulare e Molecolare L. Califano, Università degli Studi di Napoli Federico II, Italy.
| | | |
Collapse
|
10
|
Lavitola A, Bucci C, Salvatore P, Maresca G, Bruni CB, Alifano P. Intracistronic transcription termination in polysialyltransferase gene (siaD ) affects phase variation in Neisseria meningitidis. Mol Microbiol 1999; 33:119-27. [PMID: 10411729 DOI: 10.1046/j.1365-2958.1999.01454.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Expression of serogroup B meningococcal capsular polysaccharide is subject to frequent phase variation. A reversible +1/-1 frameshift mutation within a poly(dC) repeat altering the reading frame of the polysialyltransferase gene (siaD ), thereby causing premature arrest of translation, is responsible for loss of capsule expression. After analysis of transcription of the siaD gene from an encapsulated strain and from two unencapsulated derivatives, we have found that the siaD mRNA in the unencapsulated strains is reduced in size as a result of premature transcription termination at a cryptic Rho-dependent site within the proximal region of the siaD cistron. Termination is sensitive to bicyclomycin, a natural inhibitor of Rho activity. Bicyclomycin decreased the rates of capsule re-expression (off-on) without affecting the rates of loss of capsule expression (on-off). This finding suggested the existence of a novel mechanism linking transcription elongation termination and mutation frequency. A genetic system was therefore developed to measure phase variation of siaD-ermC' gene fusions in wild type and Rho-defective Escherichia coli strains. These studies demonstrated that in the Rho-defective E. coli strain readthrough transcription of the mutated siaD gene caused a fourfold lower off-on phase variation rate than in the congenic Rho+ strain. Analysis of phase variation of siaD-ermC' gene fusions in a DNA mismatch-defective E. coli strain suggests that the effect of transcription on mutation rates required a functional mismatch repair system.
Collapse
Affiliation(s)
- A Lavitola
- Dipartimento di Biologia e Patologia Cellulare e Molecolare 'L. Califano', Università di Napoli 'Federico I', and Centro di Endocrinologia ed Oncologia Sperimentale 'G. Salvatore' of the Consiglio Nazionale delle Ricerche, Napoli, Italy
| | | | | | | | | | | |
Collapse
|
11
|
Alifano P, Fani R, Liò P, Lazcano A, Bazzicalupo M, Carlomagno MS, Bruni CB. Histidine biosynthetic pathway and genes: structure, regulation, and evolution. Microbiol Rev 1996; 60:44-69. [PMID: 8852895 PMCID: PMC239417 DOI: 10.1128/mr.60.1.44-69.1996] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- P Alifano
- Dipartimento di Biologia e Patologia Cellulare e Molecolare L. Califano, Università degli Studi di Napoli Federico II, Italy
| | | | | | | | | | | | | |
Collapse
|
12
|
Alifano P, Rivellini F, Nappo AG, Bruni CB, Carlomagno MS. Alternative patterns of his operon transcription and mRNA processing generated by metabolic perturbation. Gene 1994; 146:15-21. [PMID: 8063100 DOI: 10.1016/0378-1119(94)90828-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Previous studies have shown that the expression of the his operon of Salmonella typhimurium is regulated at the level of transcription initiation, transcription elongation and RNA processing. We have analyzed his RNA in both prototrophic strains or strains harboring regulatory and auxotrophic mutations grown under a variety of metabolic conditions that lead to differential expression of the operon. Under some of these conditions, there is an increase in the amount of prematurely released his-specific RNA, resulting in modulation of the relative amount of full-length transcripts. Under the same metabolic conditions, there is also a modulation of RNA processing events that generate a very stable RNA species comprising the five distal cistrons. These effects appear to be due to perturbation of the translation process caused by alterations in the intracellular pool of initiator transfer RNA.
Collapse
Affiliation(s)
- P Alifano
- Dipartimento di Biologia e Patologia Cellulare e Molecolare L. Califano, Università degli Studi di Napoli, Italy
| | | | | | | | | |
Collapse
|
13
|
Penfold SS, Usher K, Frost LS. The nature of the traK4 mutation in the F sex factor of Escherichia coli. J Bacteriol 1994; 176:1924-31. [PMID: 8144458 PMCID: PMC205295 DOI: 10.1128/jb.176.7.1924-1931.1994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The sequence of traK gene of the F sex factor of Escherichia coli is presented; the traK gene product is predicted to be a protein of 25,627 Da with a signal sequence of 21 amino acids to give a mature protein of 23,307 Da. The traK4 mutation is an extremely polar mutation in the F plasmid that affects F pilus synthesis and plasmid transfer. traK genes carrying the traK4 mutation and a nonpolar mutation traK105 were cloned, sequenced, and identified as an amber nonsense and a frameshift mutation, respectively. The traK4 mutation occurred within one predicted rho-dependent transcription termination element (TTE) and immediately upstream of another, while the traK105 mutation occurred after the two potential TTEs within the traK gene. S1 nuclease protection analysis and Northern (RNA) blot analysis were used to confirm that the traK4 mutation, but not the traK105 mutation, caused premature termination of transcription. Computer analysis of the F transfer region suggested the presence of TTE motifs at regular intervals throughout the 33.4-kb sequence.
Collapse
Affiliation(s)
- S S Penfold
- Department of Microbiology, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
14
|
Miloso M, Limauro D, Alifano P, Rivellini F, Lavitola A, Gulletta E, Bruni CB. Characterization of the rho genes of Neisseria gonorrhoeae and Salmonella typhimurium. J Bacteriol 1993; 175:8030-7. [PMID: 8253691 PMCID: PMC206985 DOI: 10.1128/jb.175.24.8030-8037.1993] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have cloned and sequenced the genomic regions encompassing the rho genes of Neisseria gonorrhoeae and Salmonella typhimurium. Rho factor of S. typhimurium has only three amino acid differences with respect to the Escherichia coli homolog. Northern (RNA) blots and primer extension experiments were used to characterize the N. gonorrhoeae rho transcript and to identify the transcription initiation and termination elements of this cistron. The function of the Rho factor of N. gonorrhoeae was investigated by complementation assays of rho mutants of E. coli and S. typhimurium and by in vivo transcription assays in polar mutants of S. typhimurium.
Collapse
Affiliation(s)
- M Miloso
- Dipartimento di Biologia e Patologia Cellulare e Molecolare L. Califano, Università di Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|
15
|
Affiliation(s)
- S Wright
- Wellcome/CRC Institute of Cancer and Developmental Biology, Cambridge, England
| |
Collapse
|
16
|
Morris DR, Kakegawa T, Kaspar RL, White MW. Polypyrimidine tracts and their binding proteins: regulatory sites for posttranscriptional modulation of gene expression. Biochemistry 1993; 32:2931-7. [PMID: 8457557 DOI: 10.1021/bi00063a001] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- D R Morris
- Department of Biochemistry, University of Washington, Seattle 98195
| | | | | | | |
Collapse
|
17
|
Alifano P, Piscitelli C, Blasi V, Rivellini F, Nappo AG, Bruni CB, Carlomagno MS. Processing of a polycistronic mRNA requires a 5' cis element and active translation. Mol Microbiol 1992; 6:787-98. [PMID: 1374148 DOI: 10.1111/j.1365-2958.1992.tb01529.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have characterized a major processed species of mRNA in the his operon of Salmonella typhimurium. In vivo and in vitro analyses of the his transcripts from wild-type and mutant strains using S1 nuclease protection assays, measurements of RNA stability, deletion mapping, gel retardation, and in vitro translation assays demonstrate that the distal portion of the polycistronic his mRNA is processed, resulting in increased stability. The processing event requires an upstream cis-acting element and translation of the cistron immediately downstream of the 5' end of the processed species. The cistrons contained in this segment are also independently transcribed from an internal promoter which is maximally active in the absence of readthrough transcription from the primary promoter.
Collapse
Affiliation(s)
- P Alifano
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Centro di Endocrinologia ed Oncologia Sperimentale del Consiglio Nazionale delle Richerche, Università di Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|