1
|
Biou V, Adaixo RJD, Chami M, Coureux PD, Laurent B, Enguéné VYN, de Amorim GC, Izadi-Pruneyre N, Malosse C, Chamot-Rooke J, Stahlberg H, Delepelaire P. Structural and molecular determinants for the interaction of ExbB from Serratia marcescens and HasB, a TonB paralog. Commun Biol 2022; 5:355. [PMID: 35418619 PMCID: PMC9008036 DOI: 10.1038/s42003-022-03306-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 03/22/2022] [Indexed: 01/20/2023] Open
Abstract
ExbB and ExbD are cytoplasmic membrane proteins that associate with TonB to convey the energy of the proton-motive force to outer membrane receptors in Gram-negative bacteria for iron uptake. The opportunistic pathogen Serratia marcescens (Sm) possesses both TonB and a heme-specific TonB paralog, HasB. ExbBSm has a long periplasmic extension absent in other bacteria such as E. coli (Ec). Long ExbB's are found in several genera of Alphaproteobacteria, most often in correlation with a hasB gene. We investigated specificity determinants of ExbBSm and HasB. We determined the cryo-EM structures of ExbBSm and of the ExbB-ExbDSm complex from S. marcescens. ExbBSm alone is a stable pentamer, and its complex includes two ExbD monomers. We showed that ExbBSm extension interacts with HasB and is involved in heme acquisition and we identified key residues in the membrane domain of ExbBSm and ExbBEc, essential for function and likely involved in the interaction with TonB/HasB. Our results shed light on the class of inner membrane energy machinery formed by ExbB, ExbD and HasB.
Collapse
Affiliation(s)
- Valérie Biou
- grid.508487.60000 0004 7885 7602Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, UMR 7099 CNRS, F-75005 Paris, France ,grid.450875.b0000 0004 0643 538XInstitut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Ricardo Jorge Diogo Adaixo
- grid.6612.30000 0004 1937 0642Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Mohamed Chami
- grid.6612.30000 0004 1937 0642Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Pierre-Damien Coureux
- grid.10877.390000000121581279Laboratoire de Biologie Structurale de la Cellule, BIOC, UMR7654 CNRS/Ecole polytechnique, Palaiseau, France
| | - Benoist Laurent
- grid.450875.b0000 0004 0643 538XInstitut de Biologie Physico-Chimique, F-75005 Paris, France ,grid.508487.60000 0004 7885 7602Plateforme de Bioinformatique, Université de Paris, FRC 550 CNRS, F-75005 Paris, France
| | - Véronique Yvette Ntsogo Enguéné
- grid.508487.60000 0004 7885 7602Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, UMR 7099 CNRS, F-75005 Paris, France ,grid.450875.b0000 0004 0643 538XInstitut de Biologie Physico-Chimique, F-75005 Paris, France ,grid.5335.00000000121885934Present Address: Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA UK
| | - Gisele Cardoso de Amorim
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, C3BI, Institut Pasteur, CNRS UMR3528, CNRS, USR3756 Paris, France ,grid.8536.80000 0001 2294 473XPresent Address: Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ Brasil
| | - Nadia Izadi-Pruneyre
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, C3BI, Institut Pasteur, CNRS UMR3528, CNRS, USR3756 Paris, France
| | - Christian Malosse
- grid.428999.70000 0001 2353 6535Mass Spectrometry for Biology Unit, CNRS USR 2000, Institut Pasteur, 75015 Paris, France
| | - Julia Chamot-Rooke
- grid.428999.70000 0001 2353 6535Mass Spectrometry for Biology Unit, CNRS USR 2000, Institut Pasteur, 75015 Paris, France
| | - Henning Stahlberg
- grid.6612.30000 0004 1937 0642Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland ,grid.9851.50000 0001 2165 4204Present Address: Centre d’imagerie Dubochet UNIL-EPFL-UNIGE & Laboratoire de microscopie électronique biologique UNIL-EPFL, Lausanne, Switzerland
| | - Philippe Delepelaire
- grid.508487.60000 0004 7885 7602Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, UMR 7099 CNRS, F-75005 Paris, France ,grid.450875.b0000 0004 0643 538XInstitut de Biologie Physico-Chimique, F-75005 Paris, France
| |
Collapse
|
2
|
Novel colicin Fy of Yersinia frederiksenii inhibits pathogenic Yersinia strains via YiuR-mediated reception, TonB import, and cell membrane pore formation. J Bacteriol 2012; 194:1950-9. [PMID: 22343298 DOI: 10.1128/jb.05885-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A novel colicin type, designated colicin Fy, was found to be encoded and produced by the strain Yersinia frederiksenii Y27601. Colicin Fy was active against both pathogenic and nonpathogenic strains of the genus Yersinia. Plasmid YF27601 (5,574 bp) of Y. frederiksenii Y27601 was completely sequenced. The colicin Fy activity gene (cfyA) and the colicin Fy immunity gene (cfyI) were identified. The deduced amino acid sequence of colicin Fy was very similar in its C-terminal pore-forming domain to colicin Ib (69% identity in the last 178 amino acid residues), indicating pore forming as its lethal mode of action. Transposon mutagenesis of the colicin Fy-susceptible strain Yersinia kristensenii Y276 revealed the yiuR gene (ykris001_4440), which encodes the YiuR outer membrane protein with unknown function, as the colicin Fy receptor molecule. Introduction of the yiuR gene into the colicin Fy-resistant strain Y. kristensenii Y104 restored its susceptibility to colicin Fy. In contrast, the colicin Fy-resistant strain Escherichia coli TOP10F' acquired susceptibility to colicin Fy only when both the yiuR and tonB genes from Y. kristensenii Y276 were introduced. Similarities between colicins Fy and Ib, similarities between the Cir and YiuR receptors, and the detected partial cross-immunity of colicin Fy and colicin Ib producers suggest a common evolutionary origin of the colicin Fy-YiuR and colicin Ib-Cir systems.
Collapse
|
3
|
Legionella pneumophila LbtU acts as a novel, TonB-independent receptor for the legiobactin siderophore. J Bacteriol 2011; 193:1563-75. [PMID: 21278293 DOI: 10.1128/jb.01111-10] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gram-negative Legionella pneumophila produces a siderophore (legiobactin) that promotes lung infection. We previously determined that lbtA and lbtB are required for the synthesis and secretion of legiobactin. DNA sequence and reverse transcription-PCR (RT-PCR) analyses now reveal the presence of an iron-repressed gene (lbtU) directly upstream of the lbtAB-containing operon. In silico analysis predicted that LbtU is an outer membrane protein consisting of a 16-stranded transmembrane β-barrel, multiple extracellular domains, and short periplasmic tails. Immunoblot analysis of cell fractions confirmed an outer membrane location for LbtU. Although replicating normally in standard media, lbtU mutants, like lbtA mutants, were impaired for growth on iron-depleted agar media. While producing typical levels of legiobactin, lbtU mutants were unable to use supplied legiobactin to stimulate growth on iron-depleted media and displayed an inability to take up iron. Complemented lbtU mutants behaved as the wild type did. The lbtU mutants were also impaired for infection in a legiobactin-dependent manner. Together, these data indicate that LbtU is involved in the uptake of legiobactin and, based upon its location, is most likely the Legionella siderophore receptor. The sequence and predicted two-dimensional (2D) and 3D structures of LbtU were distinct from those of all known siderophore receptors, which generally contain a 22-stranded β-barrel and an extended N terminus that binds TonB in order to transduce energy from the inner membrane. This observation coupled with the fact that L. pneumophila does not encode TonB suggests that LbtU is a new type of receptor that participates in a form of iron uptake that is mechanistically distinct from the existing paradigm.
Collapse
|
4
|
Abstract
Serratia marcescens possesses two functional TonB paralogs, TonB(Sm) and HasB, for energizing TonB-dependent transport receptors (TBDT). Previous work had shown that HasB is specific to heme uptake in the natural host and in Escherichia coli expressing the S. marcescens TBDT receptor HasR, whereas the S. marcescens TonB and E. coli TonB proteins function equally well with various TBDT receptors for heme and siderophores. This has raised the question of the target of this specificity. HasB could be specific either to heme TBDT receptors or only to HasR. To resolve this question, we have cloned in E. coli another S. marcescens heme receptor, HemR, and we show here that this receptor is TonB dependent and does not work with HasB. This demonstrates that HasB is not dedicated to heme TBDT receptors but rather forms a specific pair with HasR. This is the first reported case of a specific TonB protein working with only one TBDT receptor in one given species. We discuss the occurrence, possible molecular mechanisms, and selective advantages of such dedicated TonB paralogs.
Collapse
|
5
|
Quatrini R, Lefimil C, Veloso FA, Pedroso I, Holmes DS, Jedlicki E. Bioinformatic prediction and experimental verification of Fur-regulated genes in the extreme acidophile Acidithiobacillus ferrooxidans. Nucleic Acids Res 2007; 35:2153-66. [PMID: 17355989 PMCID: PMC1874648 DOI: 10.1093/nar/gkm068] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Revised: 01/16/2007] [Accepted: 01/22/2007] [Indexed: 01/12/2023] Open
Abstract
The gamma-proteobacterium Acidithiobacillus ferrooxidans lives in extremely acidic conditions (pH 2) and, unlike most organisms, is confronted with an abundant supply of soluble iron. It is also unusual in that it oxidizes iron as an energy source. Consequently, it faces the challenging dual problems of (i) maintaining intracellular iron homeostasis when confronted with extremely high environmental loads of iron and (ii) of regulating the use of iron both as an energy source and as a metabolic micronutrient. A combined bioinformatic and experimental approach was undertaken to identify Fur regulatory sites in the genome of A. ferrooxidans and to gain insight into the constitution of its Fur regulon. Fur regulatory targets associated with a variety of cellular functions including metal trafficking (e.g. feoPABC, tdr, tonBexbBD, copB, cdf), utilization (e.g. fdx, nif), transcriptional regulation (e.g. phoB, irr, iscR) and redox balance (grx, trx, gst) were identified. Selected predicted Fur regulatory sites were confirmed by FURTA, EMSA and in vitro transcription analyses. This study provides the first model for a Fur-binding site consensus sequence in an acidophilic iron-oxidizing microorganism and lays the foundation for future studies aimed at deepening our understanding of the regulatory networks that control iron uptake, homeostasis and oxidation in extreme acidophiles.
Collapse
Affiliation(s)
- Raquel Quatrini
- Center for Bioinformatics and Genome Biology, MIFAB, Life Science Foundation and Andrés Bello University, Santiago, Chile.
| | | | | | | | | | | |
Collapse
|
6
|
Abstract
TonB, in complex with ExbB and ExbD, is required for the energy-dependent transport of ferric siderophores across the outer membrane of Escherichia coli, the killing of cells by group B colicins, and infection by phages T1 and phi80. To gain insights into the protein complex, TonB dimerization was studied by constructing hybrid proteins from complete TonB (containing amino acids 1 to 239) [TonB(1-239)] and the cytoplasmic fragment of ToxR which, when dimerized, activates the transcription of the cholera toxin gene ctx. ToxR(1-182)-TonB(1-239) activated the transcription of lacZ under the control of the ctx promoter (P(ctx)::lacZ). Replacement of the TonB transmembrane region by the ToxR transmembrane region resulted in the hybrid proteins ToxR(1-210)-TonB(33-239) and ToxR(1-210)-TonB(164-239), of which only the latter activated P(ctx)::lacZ transcription. Dimer formation was reduced but not abolished in a mutant lacking ExbB and ExbD, suggesting that these complex components may influence dimerization but are not strictly required and that the N-terminal cytoplasmic membrane anchor and the C-terminal region are important for dimer formation. The periplasmic TonB fragment, TonB(33-239), inhibits ferrichrome and ferric citrate transport and induction of the ferric citrate transport system. This competition provided a means to positively screen for TonB(33-239) mutants which displayed no inhibition. Single point mutations of inactive fragments selected in this manner were introduced into complete TonB, and the phenotypes of the TonB mutant strains were determined. The mutations located in the C-terminal half of TonB, three of which (Y163C, V188E, and R204C) were obtained separately by site-directed mutagenesis, as was the isolated F230V mutation, were studied in more detail. They displayed different activity levels for various TonB-dependent functions, suggesting function-related specificities which reflect differences in the interactions of TonB with various transporters and receptors.
Collapse
Affiliation(s)
- Annette Sauter
- Mikrobiologie/Membranphysiologie, Universität Tübingen, D-72076 Tübingen, Germany
| | | | | |
Collapse
|
7
|
Krawczyk B, Naumiuk L, Lewandowski K, Baraniak A, Gniadkowski M, Samet A, Kur J. Evaluation and comparison of random amplification of polymorphic DNA, pulsed-field gel electrophoresis and ADSRRS-fingerprinting for typingSerratia marcescensoutbreaks. ACTA ACUST UNITED AC 2003; 38:241-8. [PMID: 14522459 DOI: 10.1016/s0928-8244(03)00149-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Amplification of DNA fragments surrounding rare restriction sites (ADSRRS-fingerprinting) is a novel assay based on suppression of polymerase chain reaction (PCR). This phenomenon allows the amplification of only a limited subset of DNA fragments, since only those with two different oligonucleotides ligated at the ends of complementary DNA strands are amplified in the PCR. The DNA fragments can be easily analyzed on polyacrylamide gels, stained with ethidium bromide. We have implemented this method using a set of clinical Serratia marcescens isolates from three outbreaks ongoing in the Public Hospital in Gdańsk (Poland). Clustering of ADSRRS-fingerprinting data matched epidemiological, microbiological, random amplification of polymorphic DNA (RAPD) and pulsed-field gel electrophoresis (PFGE) data. Based on this study, we found that there is at least a similar power of discrimination between the present 'gold-standard' PFGE and the novel method, ADSRRS-fingerprinting. Although the ADSRRS-fingerprinting method may appear to be more complex than the RAPD technique, we found it fast and reproducible.
Collapse
Affiliation(s)
- Beata Krawczyk
- Department of Microbiology, Technical University of Gdańsk, ul G Narutowicza 11/12, 80-952 Gdańsk, Poland
| | | | | | | | | | | | | |
Collapse
|
8
|
Killmann H, Herrmann C, Torun A, Jung G, Braun V. TonB of Escherichia coli activates FhuA through interaction with the beta-barrel. MICROBIOLOGY (READING, ENGLAND) 2002; 148:3497-3509. [PMID: 12427941 DOI: 10.1099/00221287-148-11-3497] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
FhuA is a multifunctional protein in the outer membrane of Escherichia coli that actively transports Fe(3+)-ferrichrome and the antibiotics albomycin and rifamycin CGP 4832, and serves as a receptor for the unrelated phages T5, T1, phi80 and UC-1, colicin M and microcin J25. The energy source for active transport is the proton-motive force of the cytoplasmic membrane, which is required for all FhuA functions except infection by phage T5, and is thought to be mediated to the outer-membrane receptor FhuA by the TonB protein. The crystal structure of FhuA consists of a beta-barrel that is closed by a globular domain. The proximal region carries the TonB box (residues 7-11), for which genetic evidence exists that it interacts with the region around residue 160 of TonB. However, deletion of the TonB box along with the globular domain results in a protein, FhuAdelta5-160, that still displays TonB-dependent active ferrichrome transport across the outer membrane and confers sensitivity to the FhuA ligands. In this study synthetic nonapeptides identical in sequence to amino acids 150-158, 151-159, 152-160, 153-161 and 158-166 of TonB were shown to reduce ferrichrome transport of cells via wild-type FhuA and the corkless derivative FhuAdelta5-160, which suggests that this TonB region is involved in the interaction of TonB with the beta-barrel of FhuA. TonB missense mutants reduced the activity of FhuA and FhuAdelta5-160. TonB proteins of different Enterobacteriaceae activated FhuA and FhuAdelta5-160 to a similar degree. TonB of Pantoea agglomerans displayed low activity in an E. coli tonB mutant. Sequencing of the tonB gene of P. agglomerans revealed differences from E. coli TonB in the region around residue 160 of the deduced protein; these differences might contribute to the lower activity of the P. agglomerans TonB protein when coupled to the E. coli FhuA protein. The data support the theory that the beta-barrel receives the energy from the cytoplasmic membrane via TonB and responds to the energy input and thus represents the transporting domain of FhuA.
Collapse
Affiliation(s)
- Helmut Killmann
- Mikrobiologie/Membranphysiologie1 and Organische Chemie2, Universität Tübingen,D-72076 Tübingen, Germany
| | - Christina Herrmann
- Mikrobiologie/Membranphysiologie1 and Organische Chemie2, Universität Tübingen,D-72076 Tübingen, Germany
| | - Ayse Torun
- Mikrobiologie/Membranphysiologie1 and Organische Chemie2, Universität Tübingen,D-72076 Tübingen, Germany
| | - Günther Jung
- Mikrobiologie/Membranphysiologie1 and Organische Chemie2, Universität Tübingen,D-72076 Tübingen, Germany
| | - Volkmar Braun
- Mikrobiologie/Membranphysiologie1 and Organische Chemie2, Universität Tübingen,D-72076 Tübingen, Germany
| |
Collapse
|
9
|
Paquelin A, Ghigo JM, Bertin S, Wandersman C. Characterization of HasB, a Serratia marcescens TonB-like protein specifically involved in the haemophore-dependent haem acquisition system. Mol Microbiol 2001; 42:995-1005. [PMID: 11737642 DOI: 10.1046/j.1365-2958.2001.02628.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Gram-negative bacteria, the TonB-ExbB-ExbD inner membrane multiprotein complex is required for active transport of diverse molecules through the outer membrane. We present evidence that Serratia marcescens, like several other Gram-negative bacteria, has two TonB proteins: the previously characterized TonBSM, and also HasB, a newly identified component of the has operon that encodes a haemophore-dependent haem acquisition system. This system involves a soluble extracellular protein (the HasA haemophore) that acquires free or haemoprotein-bound haem and presents it to a specific outer membrane haemophore receptor (HasR). TonBSM and HasB are significantly similar and can replace each other for haem acquisition. However, TonBSM, but not HasB, mediates iron acquisition from iron sources other than haem and haemoproteins, showing that HasB and TonBSM only display partial redundancy. The reconstitution in Escherichia coli of the S. marcescens Has system demonstrated that haem uptake is dependent on the E. coli ExbB, ExbD and TonB proteins and that HasB is non-functional in E. coli. Nevertheless, a mutation in the HasB transmembrane anchor domain allows it to replace TonBEC for haem acquisition. As the change affects a domain involved in specific TonBEC-ExbBEC interactions, HasB may be unable to interact with ExbBEC, and the HasB mutation may allow this interaction. In E. coli, the HasB mutant protein was functional for haem uptake but could not complement the other TonBEC-dependent functions, such as iron siderophore acquisition, and phage DNA and colicin uptake. Our findings support the emerging hypothesis that TonB homologues are widespread in bacteria, where they may have specific functions in receptor-ligand uptake systems.
Collapse
Affiliation(s)
- A Paquelin
- Unité des Membranes bactériennes, Institut Pasteur (CNRS URA 2172), 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
10
|
Patton TG, Katz S, Sobieski RJ, Crupper SS. Genotyping of clinical Serratia marcescens isolates: a comparison of PCR-based methods. FEMS Microbiol Lett 2001; 194:19-25. [PMID: 11150660 DOI: 10.1111/j.1574-6968.2001.tb09440.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The polymerase chain reaction (PCR)-based procedures of randomly amplified polymorphic DNA (RAPD) and repetitive element (RE)-based PCR were used to amplify total DNA prepared from each of 62 clinical Serratia marcescens isolates. Three different random primers, designated 1060, 1254 and 1283, were used individually in RAPD-PCR. Primers representing enterobacterial repetitive intergenic consensus (ERIC) sequences, extragenic palindromic (REP) elements, and polymorphic GC-rich repetitive sequences (PGRS) constituted the repetitive element-PCR. We were able to generate 40, 40 and 58 genotypic groupings using the 1060, 1254 and 1283 RAPD primers, respectively. Using the ERIC, REP and PGRS primers, 19, 54 and 60 unique genotypic profiles were yielded, respectively. The PGRS primers, which were developed to amplify GC-rich repetitive sequences in the genome of Mycobacteria, were the most discriminatory. These data indicate that both of these PCR-based approaches are a valid means of discriminating strain differences among isolates of S. marcescens and the amount of differentiation depends on the primer used. These techniques should prove useful for routine surveillance or in examining outbreaks of S. marcescens in clinical settings.
Collapse
Affiliation(s)
- T G Patton
- Department of Biological Sciences, 1200 Commercial, Emporia State University, Emporia, KS 66801, USA
| | | | | | | |
Collapse
|
11
|
Enard C, Expert D. Characterization of a tonB mutation in Erwinia chrysanthemi 3937: TonB(Ech) is a member of the enterobacterial TonB family. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 8):2051-2058. [PMID: 10931909 DOI: 10.1099/00221287-146-8-2051] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The pectinolytic enterobacterium Erwinia chrysanthemi 3937 causes a systemic disease in its natural host, the African violet (Saintpaulia: ionantha). It produces two structurally unrelated siderophores, chrysobactin and achromobactin. Chrysobactin makes a large contribution to invasive growth of the bacterium in its host. Insertion mutants of a chrysobactin-defective strain were constructed and screened on the universal CAS-agar medium used for siderophore detection. A set of mutants affected in the production of achromobactin were identified. This paper describes a mutant affected in the transport of all the ferrisiderophores used by the bacterium as iron sources. Molecular analysis revealed that the insertion mutation disrupts the tonB gene. The predicted Er. chrysanthemi TonB protein has a molecular mass of 27600 Da and shares 20-58% identity with the TonB proteins from 20 other bacterial species. The pathogenicity of the tonB mutant was assessed by inoculation of African violets. The impairment in the spread of symptoms was similar in the tonB mutant to that in chrysobactin-defective mutants. However, the pectinolytic activity, the major pathogenicity determinant in Er. chrysanthemi, appeared to be stimulated twofold in the tonB mutant.
Collapse
Affiliation(s)
- Corine Enard
- Laboratoire de Pathologie Végétale, UMR INRA/INA-PG, 16 rue Claude Bernard, 75231 Paris cedex 05, France1
| | - Dominique Expert
- Laboratoire de Pathologie Végétale, UMR INRA/INA-PG, 16 rue Claude Bernard, 75231 Paris cedex 05, France1
| |
Collapse
|
12
|
Pradel E, Guiso N, Menozzi FD, Locht C. Bordetella pertussis TonB, a Bvg-independent virulence determinant. Infect Immun 2000; 68:1919-27. [PMID: 10722583 PMCID: PMC97367 DOI: 10.1128/iai.68.4.1919-1927.2000] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In gram-negative bacteria, high-affinity iron uptake requires the TonB/ExbB/ExbD envelope complex to release iron chelates from their specific outer membrane receptors into the periplasm. Based on sequence similarities, the Bordetella pertussis tonB exbB exbD locus was identified on a cloned DNA fragment. The tight organization of the three genes suggests that they are cotranscribed. A putative Fur-binding sequence located upstream from tonB was detected in a Fur titration assay, indicating that the tonB exbB exbD operon may be Fur-repressed in high-iron growth conditions. Putative structural genes of the beta-subunit of the histone-like protein HU and of a new two-component regulatory system were identified upstream from tonB and downstream from exbD, respectively. A B. pertussis DeltatonB exbB::Km(r) mutant was constructed by allelic exchange and characterized. The mutant was impaired for growth in low-iron medium in vitro and could not use ferrichrome, desferal, or hemin as iron sources. Levels of production of the major bacterial toxins and adhesins were similar in the TonB(+)/TonB(-) pair. The DeltatonB exbB mutant was still responsive to chemical modulators of virulence; thus, the BvgA/BvgS two-component system is not TonB dependent. Nevertheless, in vivo in the mouse respiratory infection model, the colonization ability of the mutant was reduced compared to the parental strain.
Collapse
Affiliation(s)
- E Pradel
- INSERM U447, Institut Pasteur de Lille, 59019 Lille Cedex, France
| | | | | | | |
Collapse
|
13
|
Occhino DA, Wyckoff EE, Henderson DP, Wrona TJ, Payne SM. Vibrio cholerae iron transport: haem transport genes are linked to one of two sets of tonB, exbB, exbD genes. Mol Microbiol 1998; 29:1493-507. [PMID: 9781885 DOI: 10.1046/j.1365-2958.1998.01034.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vibrio cholerae was found to have two sets of genes encoding TonB, ExbB and ExbD proteins. The first set (tonB1, exbB1, exbD1) was obtained by complementation of a V. cholerae tonB mutant. In the mutant, a plasmid containing these genes permitted transport via the known V. cholerae high-affinity iron transport systems, including uptake of haem, vibriobactin and ferrichrome. When chromosomal mutations in exbB1 or exbD1 were introduced into a wild-type V. cholerae background, no defect in iron transport was noted, indicating the existence of additional genes that can complement the defect in the wild-type background. Another region of the V. cholerae chromosome was cloned that encoded a second functional TonB/Exb system (tonB2, exbB2, exbD2). A chromosomal mutation in exbB2 also failed to exhibit a defect in iron transport, but a V. cholerae strain that had chromosomal mutations in both the exbB1 and exbB2 genes displayed a mutant phenotype similar to that of an Escherichia coli tonB mutant. The genes encoding TonB1, ExbB1, ExbD1 were part of an operon that included three haem transport genes (hutBCD), and all six genes appeared to be expressed from a single Fur-regulated promoter upstream of tonB1. A plasmid containing all six genes permitted utilization of haem by an E. coli strain expressing the V. cholerae haem receptor, HutA. Analysis of the hut genes indicated that hutBCD, which are predicted to encode a periplasmic binding protein (HutB) and cytoplasmic membrane permease (HutC and HutD), were required to reconstitute the V. cholerae haem transport system in E. coli. In V. cholerae, the presence of hutBCD stimulated growth when haemin was the iron source, but these genes were not essential for haemin utilization in V. cholerae.
Collapse
Affiliation(s)
- D A Occhino
- Department of Microbiology and Institute for Cellular and Molecular Biology, University of Texas, Austin 78712, USA
| | | | | | | | | |
Collapse
|
14
|
Wiggerich HG, Klauke B, Köplin R, Priefer UB, Pühler A. Unusual structure of the tonB-exb DNA region of Xanthomonas campestris pv. campestris: tonB, exbB, and exbD1 are essential for ferric iron uptake, but exbD2 is not. J Bacteriol 1997; 179:7103-10. [PMID: 9371459 PMCID: PMC179653 DOI: 10.1128/jb.179.22.7103-7110.1997] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The nucleotide sequence of a 3.6-kb HindIII-SmaI DNA fragment of Xanthomonas campestris pv. campestris revealed four open reading frames which, based on sequence homologies, were designated tonB, exbB, exbD1, and exbD2. Analysis of translational fusions to alkaline phosphatase and beta-galactosidase confirmed that the TonB, ExbB, ExbD1, and ExbD2 proteins are anchored in the cytoplasmic membrane. The TonB protein of X. campestris pv. campestris lacks the conserved (Glu-Pro)n and (Lys-Pro)m repeats but harbors a 13-fold repeat of proline residues. By mutational analysis, the tonB, exbB, and exbD1 genes were shown to be essential for ferric iron import in X. campestris pv. campestris. In contrast, the exbD2 gene is not involved in the uptake of ferric iron.
Collapse
Affiliation(s)
- H G Wiggerich
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Germany
| | | | | | | | | |
Collapse
|
15
|
Ghigo JM, Létoffé S, Wandersman C. A new type of hemophore-dependent heme acquisition system of Serratia marcescens reconstituted in Escherichia coli. J Bacteriol 1997; 179:3572-9. [PMID: 9171402 PMCID: PMC179150 DOI: 10.1128/jb.179.11.3572-3579.1997] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The utilization by Serratia marcescens of heme bound to hemoglobin requires HasA, an extracellular heme-binding protein. This unique heme acquisition system was studied in an Escherichia coli hemA mutant that was a heme auxotroph. We identified a 92-kDa iron-regulated S. marcescens outer membrane protein, HasR, which alone enabled the E. coli hemA mutant to grow on heme or hemoglobin as a porphyrin source. The concomitant secretion of HasA by the HasR-producing hemA mutant greatly facilitates the acquisition of heme from hemoglobin. This is the first report of a synergy between an outer membrane protein and an extracellular heme-binding protein, HasA, acting as a heme carrier, which we termed a hemophore.
Collapse
Affiliation(s)
- J M Ghigo
- Unité de Physiologie Cellulaire, Institut Pasteur (CNRS URA 1300), Paris, France
| | | | | |
Collapse
|
16
|
Stojiljkovic I, Srinivasan N. Neisseria meningitidis tonB, exbB, and exbD genes: Ton-dependent utilization of protein-bound iron in Neisseriae. J Bacteriol 1997; 179:805-12. [PMID: 9006036 PMCID: PMC178763 DOI: 10.1128/jb.179.3.805-812.1997] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have recently cloned and characterized the hemoglobin (Hb) receptor gene, hmbR, from Neisseria meningitidis. To identify additional proteins that are involved in Hb utilization, the N. meningitidis Hb utilization system was reconstituted in Escherichia coli. Five cosmids from N. meningitidis DNA library enabled a heme-requiring (hemA), HmbR-expressing mutant of E. coli to use Hb as both porphyrin and iron source. Nucleotide sequence analysis of DNA fragments subcloned from the Hb-complementing cosmids identified four open reading frames, three of them homologous to Pseudomonas putida, E. coli, and Haemophilus influenzae exbB, exbD, and tonB genes. The N. meningitidis TonB protein is 28.8 to 33.6% identical to other gram-negative TonB proteins, while the N. meningitidis ExbD protein shares between 23.3 and 34.3% identical amino acids with other ExbD and TolR proteins. The N. meningitidis ExbB protein was 24.7 to 36.1% homologous with other gram-negative ExbB and TolQ proteins. Complementation studies indicated that the neisserial Ton system cannot interact with the E. coli FhuA TonB-dependent outer membrane receptor. The N. meningitidis tonB mutant was unable to use Hb, Hb-haptoglobin complexes, transferrin, and lactoferrin as iron sources. Insertion of an antibiotic cassette in the 3' end of the exbD gene produced a leaky phenotype. Efficient usage of heme by N. meningitidis tonB and exbD mutants suggests the existence of a Ton-independent heme utilization mechanism. E. coli complementation studies and the analysis of N. meningitidis hmbR and hpu mutants suggested the existence of another Hb utilization mechanism in this organism.
Collapse
Affiliation(s)
- I Stojiljkovic
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia 30322, USA.
| | | |
Collapse
|
17
|
Poole K, Zhao Q, Neshat S, Heinrichs DE, Dean CR. The Pseudomonas aeruginosa tonB gene encodes a novel TonB protein. MICROBIOLOGY (READING, ENGLAND) 1996; 142 ( Pt 6):1449-1458. [PMID: 8704984 DOI: 10.1099/13500872-142-6-1449] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The Pseudomonas aeruginosa tonB gene was cloned by complementation of the tonB mutation of Pseudomonas putida strain TE516 (W. Bitter, J. Tommassen & P.J. Weisbeek, 1993, Mol Microbiol 7, 117-130). The gene was 1025 bp in length, capable of encoding a protein of 36860 Da. As with previously described TonB proteins, the P. aeruginosa TonB (TonBp.a.) was rich in Pro residues (18.1%) and contained Glu-Pro/Lys-Pro repeats. Unlike previously described TonB proteins, however, TonBp.a. lacked an N-terminal membrane anchor (signal) sequence and contained, instead, a predicted internal signal/anchor sequence, expected to yield an atypical N-terminal cytoplasmic domain in this protein. TonB proteins are essential components in iron-siderophore uptake in bacteria, apparently functioning as energy transducers in coupling the energized state of the cytoplasmic membrane to outer-membrane receptor function. As expected, tonB derivatives of P. aeruginosa were defective in siderophore-mediated iron acquisition. tonB gene expression was inducible by iron-limitation, consistent with the identification of a Fur consensus binding sequence upstream of the gene. TonBp.a. showed substantially greater similarity to the Escherichia coli TonB protein than the Pseudomonas putida protein (31% identity vs. 20% identity) and tonBp.a. was able to complement deficiencies in the acquisition of ferric enterobactin and vitamin B12, and sensitivity to phage phi 80 of an E. coli tonB strain. The larger size of TonBp.a. and its ability to function in both E. coli and P. putida make it a unique TonB protein whose characterization should enhance our understanding of TonB function in bacteria.
Collapse
Affiliation(s)
- Keith Poole
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario, K7L 3N6Canada
| | - Qixun Zhao
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario, K7L 3N6Canada
| | - Shádi Neshat
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario, K7L 3N6Canada
| | - David E Heinrichs
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario, K7L 3N6Canada
| | - Charles R Dean
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario, K7L 3N6Canada
| |
Collapse
|
18
|
Larsen RA, Myers PS, Skare JT, Seachord CL, Darveau RP, Postle K. Identification of TonB homologs in the family Enterobacteriaceae and evidence for conservation of TonB-dependent energy transduction complexes. J Bacteriol 1996; 178:1363-73. [PMID: 8631714 PMCID: PMC177811 DOI: 10.1128/jb.178.5.1363-1373.1996] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The transport of Fe(III)-siderophore complexes and vitamin B12 across the outer membrane of Escherichia coli requires the TonB-dependent energy transduction system. A set of murine monoclonal antibodies (MAbs) was generated against an E. coli TrpC-TonB fusion protein to facilitate structure and function studies. In the present study, the epitopes recognized by these MAbs were mapped, and their distribution in gram-negative organisms was examined. Cross-species reactivity patterns obtained against TonB homologs of known sequence were used to refine epitope mapping, with some epitopes ultimately confirmed by inhibition experiments using synthetic polypeptides. Epitopes recognized by this set of MAbs were conserved in TonB homologs for 9 of 12 species in the family Enterobacteriaceae (including E. coli), including previously unidentified TonB homologs in Shigella, Citrobacter, Proteus, and Kluyvera species. These homologs were also detected by a polyclonal alpha-TrpC-TonB serum that additionally recognized the known Yersinia enterocolitica TonB homolog and a putative TonB homolog in Edwardsiella tarda. These antibody preparations failed to detect the known TonB homologs of either Pseudomonas putida or Haemophilus influenzae but did identify potential TonB homologs in several other nonenteric gram-negative species. In vivo chemical cross-linking experiments demonstrated that in addition to TonB, auxiliary components of the TonB-dependent energy transduction system are broadly conserved in members of the family Enterobacteriaceae, suggesting that the TonB system represents a common system for high-affinity active transport across the gram-negative outer membrane.
Collapse
Affiliation(s)
- R A Larsen
- Department of Microbiology, Washington State University, Pullman 99164, USA
| | | | | | | | | | | |
Collapse
|
19
|
Chapter 28 Communication between membranes in tonB-dependent transport across the bacterial outer membrane. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1383-8121(96)80069-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
20
|
Aduse-Opoku J, Muir J, Slaney JM, Rangarajan M, Curtis MA. Characterization, genetic analysis, and expression of a protease antigen (PrpRI) of Porphyromonas gingivalis W50. Infect Immun 1995; 63:4744-54. [PMID: 7591131 PMCID: PMC173680 DOI: 10.1128/iai.63.12.4744-4754.1995] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Previous studies of the serum immunoglobulin G antibody response of periodontal patients have demonstrated significant reactivity to a cell surface or extracellular arginine-specific protease of Porphyromonas gingivalis which migrates as an approximately 50-kDa band on sodium dodecyl sulfate-polyacrylamide gels. In the present report, two forms of the enzyme (ArgI and ArgIA) with this electrophoretic behavior were isolated. ArgI is a heterodimer of alpha and beta subunits, and ArgIA is a monomer composed of the catalytically active alpha component alone. The gene encoding ArgI (prpR1 encoding protease polyprotein ArgI) was cloned from Sau3AI digests of P. gingivalis W50 DNA into pUC18. Sequence analysis demonstrated that the alpha and beta components are contiguous on the initial translation product and are flanked by large N- and C-terminal extensions. prpR1 is 97.5% identical to the rgp-1 gene from P. gingivalis H66. prpR1 expression in Escherichia coli demonstrated the presence of an internal transcription-translation initiation site which could permit independent expression of different regions of the polyprotein. Immunochemical analysis of P. gingivalis mid-logarithmic-phase cultures suggested that the processing of PrpRI may be closely coupled to its synthesis, with only the final stages taking place at the cell surface. Southern hybridization studies demonstrated that the prpR1 gene is widely distributed in other P. gingivalis strains and that a second homologous locus to the alpha component and at least two other homologous loci to the beta component are present on the P. gingivalis chromosome. These data indicate that the ArgI protease of P. gingivalis is a member of a family of sequence-related gene products which may share both functional and antigenic properties.
Collapse
Affiliation(s)
- J Aduse-Opoku
- Department of Oral Microbiology, London Hospital Medical College, England
| | | | | | | | | |
Collapse
|
21
|
Braun V. Energy-coupled transport and signal transduction through the gram-negative outer membrane via TonB-ExbB-ExbD-dependent receptor proteins. FEMS Microbiol Rev 1995; 16:295-307. [PMID: 7654405 DOI: 10.1111/j.1574-6976.1995.tb00177.x] [Citation(s) in RCA: 256] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Iron in the form of ferric siderophore complexes and vitamin B12 are transported through the outer membrane of Gram-negative bacteria by a mechanism which consumes energy. There is no known energy source in the outer membrane or in the adjacent periplasmic space so that energy is provided by the electrochemical potential across the cytoplasmic membrane. Energy flows from the cytoplasmic into the outer membrane via a complex consisting of the TonB, ExbB and ExbD proteins which are anchored in the cytoplasmic membrane. It is proposed that the TonB--ExbB--ExbD complex opens--via an energized conformation of the TonB protein--channels in the outer membrane, formed by proteins which serves as highly specific binding sites for the various ferric siderophores and vitamin B12. In addition, outer membrane receptors together with the TonB--ExbB--ExbD complex are directly involved in induction of the transcription of ferric citrate and pseudobactin transport genes of Escherichia coli and Pseudomonas putida, respectively.
Collapse
Affiliation(s)
- V Braun
- Mikrobiologie II, Universität Tübingen, Germany
| |
Collapse
|
22
|
Larsen RA, Thomas MG, Wood GE, Postle K. Partial suppression of an Escherichia coli TonB transmembrane domain mutation (delta V17) by a missense mutation in ExbB. Mol Microbiol 1994; 13:627-40. [PMID: 7997175 DOI: 10.1111/j.1365-2958.1994.tb00457.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Active transport of vitamin B12 and Fe(III)-siderophore complexes across the outer membrane of Escherichia coli appears to be dependent upon the ability of the TonB protein to couple cytoplasmic membrane-generated protonmotive force to outer membrane receptors. TonB is supported in this role by an auxiliary protein, ExbB, which, in addition to stabilizing TonB against the activities of endogenous envelope proteases, directly contributes to the energy transduction process. The topological partitioning of TonB and ExbB to either side of the cytoplasmic membrane restricts the sites of interaction between these proteins primarily to their transmembrane domains. In this study, deletion of valine 17 within the aminoterminal transmembrane anchor of TonB resulted in complete loss of TonB activity, as well as loss of detectable in vivo crosslinking into a 59 kDa complex believed to contain ExbB. The delta V17 mutation had no effect on TonB export. The loss of crosslinking appeared to reflect conformational changes in the TonB/ExbB pair rather than loss of interaction since ExbB was still required for some stabilization of TonB delta V17. Molecular modeling suggested that the delta V17 mutation caused a significant change in the predicted conserved face of the TonB amino-terminal membrane anchor. TonB delta V17 was unable to achieve the 23 kDa proteinase K-resistant form in lysed sphaeroplasts that is characteristic of active TonB. Wild-type TonB also failed to achieve the proteinase K-resistant configuration when ExbB was absent. Taken together these results suggested that the delta V17 mutation interrupted productive TonB-ExbB interactions. The apparent ability to crosslink to ExbB as well as a limited ability to transduce energy were restored by a second mutation (A39E) in or near the first predicted transmembrane domain of the ExbB protein. Consistent with the weak suppression, a 23 kDa proteinase K-resistant form of TonB delta V17 was not observed in the presence of ExbBA39E. Neither the ExbBA39E allele nor the absence of ExbB affected TonB or TonB delta V17 export. Unlike the tonB delta V17 mutation, the exbBA39E mutation did not greatly alter a modelled ExbB transmembrane domain structure. Furthermore, the suppressor ExbBA39E functioned normally with wild-type TonB, suggesting that the suppressor was not allele specific. Contrary to expectations, the TonB delta V17, ExbBA39E pair resulted in a TonB with a greatly reduced half-life (approximately 10 min). These results together with protease susceptibility studies suggest that ExbB functions by modulating the conformation of TonB.
Collapse
Affiliation(s)
- R A Larsen
- Department of Microbiology, Washington State University, Pullman 99164
| | | | | | | |
Collapse
|
23
|
Traub I, Braun V. Energy-coupled colicin transport through the outer membrane of Escherichia coli K-12: mutated TonB proteins alter receptor activities and colicin uptake. FEMS Microbiol Lett 1994; 119:65-70. [PMID: 8039672 DOI: 10.1111/j.1574-6968.1994.tb06868.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The current model of TonB-dependent colicin transport through the outer membrane of Escherichia coli proposes initial binding to receptor proteins, vectorial release from the receptors and uptake into the periplasm from where the colicins, according to their action, insert into the cytoplasmic membrane or enter the cytoplasm. The uptake is energy-dependent and the TonB protein interacts with the receptors as well as with the colicins. In this paper we have studied the uptake of colicins B and Ia, both pore-forming colicins, into various tonB point mutants. Colicin Ia resistance of the tonB mutant (G186D, R204H) was consistent with a defective Cir receptor-TonB interaction while colicin Ia resistance of E. coli expressing TonB of Serratia marcescens, or TonB of E. coli carrying a C-terminal fragment of the S. marcescens TonB, seemed to be caused by an impaired colicin Ia-TonB interaction. In contrast, E. coli tonB (G174R, V178I) was sensitive to colicin Ia and resistant to colicin B unless TonB, ExbB and ExbD were overproduced which resulted in colicin B sensitivity. The differential effects of tonB mutations indicate differences in the interaction of TonB with receptors and colicins.
Collapse
|
24
|
Jarosik GP, Sanders JD, Cope LD, Muller-Eberhard U, Hansen EJ. A functional tonB gene is required for both utilization of heme and virulence expression by Haemophilus influenzae type b. Infect Immun 1994; 62:2470-7. [PMID: 8188372 PMCID: PMC186533 DOI: 10.1128/iai.62.6.2470-2477.1994] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Haemophilus influenzae is nearly unique among facultatively anaerobic bacteria in its absolute requirement for exogenously supplied heme for aerobic growth. In this study, a mutant analysis strategy was used to facilitate identification of H. influenzae cell envelope components involved in the uptake of heme. Chemical mutagenesis was employed to produce a mutant of a nontypeable H. influenzae strain unable to utilize either protein-bound forms of heme or low levels of free heme. This mutant was transformed with a plasmid shuttle vector-based genomic library constructed from the same wild-type nontypeable H. influenzae strain, and a growth selection technique was used to obtain a recombinant clone that could utilize heme. Analysis of the DNA insert in the recombinant plasmid revealed the presence of several open reading frames, one of which encoded a 28-kDa protein with significant similarity to the TonB protein of Escherichia coli. This H. influenzae gene product was able to complement a tonB mutation in E. coli, allowing the E. coli tonB mutant to form single colonies on minimal medium containing vitamin B12. When this H. influenzae gene was inactivated by insertional mutagenesis techniques and introduced into the chromosome of wild-type strains of H. influenzae type b, the resultant transformants lost their abilities to utilize heme and produce invasive disease in an animal model. Genetic restoration of the ability to express this TonB homolog resulted in the simultaneous acquisition of both heme utilization ability and virulence. These results indicate that the H. influenzae TonB protein is required not only for heme utilization by this pathogen in vitro, but also for virulence of H. influenzae type b in an animal model.
Collapse
Affiliation(s)
- G P Jarosik
- Department of Microbiology, University of Texas Southwestern Medical Center at Dallas 75235
| | | | | | | | | |
Collapse
|
25
|
Affiliation(s)
- M P Williamson
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, U.K
| |
Collapse
|
26
|
Abstract
TonB protein couples cytoplasmic membrane electrochemical potential to active transport of iron-siderophore complexes and vitamin B12 through high-affinity outer membrane receptors of Gram-negative bacteria. The mechanism of energy transduction remains to be determined, but important concepts have already begun to emerge. Consistent with its function, TonB is anchored in the cytoplasmic membrane by its uncleaved amino terminus while largely occupying the periplasm. Both the connection to the cytoplasmic membrane and the amino acid sequences of the anchor are essential for activity. TonB directly associates with a number of envelope proteins, among them the outer membrane receptors and cytoplasmic membrane protein ExbB. ExbB and TonB interact through their respective transmembrane domains. ExbB is proposed to recycle TonB to an active conformation following energy transduction to the outer membrane. TonB most likely associates with the outer membrane receptors through its carboxy terminus, which is required for function. In contrast, the novel proline-rich region of TonB can be deleted without affecting function. A model that incorporates this information, as well as tempered speculation, is presented.
Collapse
Affiliation(s)
- K Postle
- Department of Microbiology, Washington State University, Pullman 99164-4233
| |
Collapse
|
27
|
Larsen RA, Wood GE, Postle K. The conserved proline-rich motif is not essential for energy transduction by Escherichia coli TonB protein. Mol Microbiol 1993; 10:943-53. [PMID: 7934870 DOI: 10.1111/j.1365-2958.1993.tb00966.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
TonB protein functions as an energy transducer, coupling cytoplasmic membrane electrochemical potential to the active transport of vitamin B12 and Fe(III)-siderophore complexes across the outer membrane of Escherichia coli and other Gram-negative bacteria. Accumulated evidence indicates that TonB is anchored in the cytoplasm, but spans the periplasmic space to interact physically with outer membrane receptors. It has been presumed that this ability is caused by a conserved (Glu-Pro)n-(Lys-Pro)m repeat motif, predicted to assume a rigid, linear conformation of sufficient length to reach the outer membrane. Based on in vitro studies with synthetic peptides and purified FhuA outer membrane receptor, it has been suggested that this region contains a site that directly binds outer membrane receptors and is essential for energy transduction. We have found a TonB lacking the (Glu-Pro)n-(Lys-Pro)m repeat motif (TonB delta(66-100)). TonB delta(66-100) is fully capable of irreversible phi 80 adsorption, except under physiological circumstances where the periplasmic space is expanded. Based on the ability of TonB delta(66-100) to interact with outer membrane receptors and components of the energy transduction apparatus under normal physiological conditions, it is evident that the TonB proline-rich region has no role in energy transduction other than to provide a physical extension sufficient to reach the outer membrane.
Collapse
Affiliation(s)
- R A Larsen
- Department of Microbiology, Washington State University, Pullman 99164
| | | | | |
Collapse
|
28
|
Murphy TF, Kirkham C, Lesse AJ. The major heat-modifiable outer membrane protein CD is highly conserved among strains of Branhamella catarrhalis. Mol Microbiol 1993; 10:87-97. [PMID: 7968522 DOI: 10.1111/j.1365-2958.1993.tb00906.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The outer membrane of Branhamella catarrhalis contains a major, heat-modifiable outer membrane protein called CD which has epitopes on the surface of the intact bacterium. The gene encoding CD was cloned and expressed in Escherichia coli. The protein migrates in gels as a doublet, indicating that CD is encoded by single gene whose gene product has two stable conformations. The nucleotide sequence of the gene encoding CD was determined and shows homology with the OprF outer membrane protein of Pseudomonas species. The CD protein contains a proline-rich region, which appears to account for its aberrant migration in gels. Restriction fragment-length analysis of 30 isolates of B. catarrhalis with oligonucleotide probes corresponding to sequences in the CD gene produced identical patterns in Southern blot assays. The major heat-modifiable outer membrane protein CD shares homology with the OprF protein and is highly conserved among strains of B. catarrhalis.
Collapse
Affiliation(s)
- T F Murphy
- Division of Infectious Diseases, State University of New York at Buffalo 14215
| | | | | |
Collapse
|
29
|
Chen CY, Berish SA, Morse SA, Mietzner TA. The ferric iron-binding protein of pathogenic Neisseria spp. functions as a periplasmic transport protein in iron acquisition from human transferrin. Mol Microbiol 1993; 10:311-8. [PMID: 7934822 DOI: 10.1111/j.1365-2958.1993.tb01957.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The ferric iron-binding protein (Fbp) expressed by pathogenic Neisseria spp. has been proposed to play a central role in the high-affinity acquisition of iron from human transferrin. The results of this investigation provide evidence that Fbp participates in this process as a functional analogue of a Gram-negative periplasmic-binding protein component, which operates as a part of a general active transport process for the receptor-mediated, high-affinity transport of iron from human transferrin. Known properties of Fbp are correlated with those of other well-characterized periplasmic-binding proteins, including structural features and the reversible binding of ligand. Predictive of a periplasmic-binding protein, which functions in the high-affinity acquisition of iron, is that Fbp is a transient participant in the process of iron acquisition from human transferrin. Evidence for this is demonstrated by results of pulse-chase experiments. Taken together, the data described here and elsewhere suggest that pathogenic Neisseria spp. use a periplasmic-binding protein-mediated active transport mechanism for the acquisition of iron from human transferrin.
Collapse
Affiliation(s)
- C Y Chen
- Division of Sexually Transmitted Diseases Laboratory Research, Centers for Disease Control and Prevention, Atlanta, Georgia 30333
| | | | | | | |
Collapse
|
30
|
Bruske AK, Heller KJ. Molecular characterization of the Enterobacter aerogenes tonB gene: identification of a novel type of tonB box suppressor mutant. J Bacteriol 1993; 175:6158-68. [PMID: 8407788 PMCID: PMC206710 DOI: 10.1128/jb.175.19.6158-6168.1993] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The tonB gene of Enterobacter aerogenes was cloned, sequenced, and expressed in Escherichia coli. It complemented an E. coli tonB mutant as efficiently as E. coli tonB, except for colicin B and D sensitivities. However, colicin B and D sensitivities were complemented by a derivative in which the aspartate at position 165 was replaced by a glutamine (TonBD-165-->Q) by site-directed mutagenesis. In E. coli, the corresponding amino acid is a glutamine (Q-160) which is known to be altered in most mutants showing suppression of the btuB451 mutation. Fourteen independent btuB451 suppressor mutations in E. aerogenes tonB which all had suffered the same point mutation resulting in a change from glycine to valine at position 239 (G-239-->V) of the C-terminal end of the protein were isolated. The mutation was located within a region which is nonessential for function of E. aerogenes TonB as well as E. coli TonB. A constructed double mutation, expressing a D-165-->Q/G-239-->V derivative, no longer acted as a btuB451 suppressor. However, it restored colicin B and D sensitivities even more efficiently than the D-165-->Q derivative. Corresponding mutations constructed in E. coli tonB, giving rise to Q-160-->D, G-234-->V, and Q-160-->D/G-234-->V derivatives, showed phenotypes comparable to the E. aerogenes mutations. We take this as evidence that at least a functional interaction between the D-165 (Q-160 in E. coli) and the G-239 (G-234 in E. coli) region is necessary for TonB function. The implications of this interaction for functional instability of TonB are discussed.
Collapse
Affiliation(s)
- A K Bruske
- Fakultät für Biologie, Universität Konstanz, Germany
| | | |
Collapse
|
31
|
Bruske AK, Anton M, Heller KJ. Cloning and sequencing of the Klebsiella pneumoniae tonB gene and characterization of Escherichia coli-K. pneumoniae TonB hybrid proteins. Gene 1993; 131:9-16. [PMID: 8370545 DOI: 10.1016/0378-1119(93)90663-n] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The tonB gene of Klebsiella pneumoniae was cloned on a 1.4-kb EcoRV fragment and expressed in Escherichia coli. Determination of the nucleotide (nt) sequence of the cloned fragment identified tonB as an open reading frame (ORF) of 729 nt. The TonB protein consists of 243 amino acids (aa) and is highly homologous to Enterobacter aerogenes TonB. The genetic context of K. pneumoniae and En. aerogenes tonB is the same, but is different from that of E. coli, Salmonella typhimurium and Serratia marcescens. K. pneumoniae tonB complemented an E. coli tonB mutant as efficiently as E. coli tonB when cloned on the same type of plasmid. Replacement of the highly hydrophobic C terminus of E. coli TonB by the weakly hydrophobic C terminus of K. pneumoniae TonB yielded a hybrid protein of the same activity as E. coli wild-type TonB. The result shows that the strong hydrophobicity of the C-terminal end is not necessary for the function of E. coli TonB.
Collapse
Affiliation(s)
- A K Bruske
- Fakultät für Biologie, Universität Konstanz, Germany
| | | | | |
Collapse
|
32
|
Abstract
Escherichia coli and related Gram-negative bacteria contain an energy-coupled transport system through the outer membrane which consists of the proteins TonB, ExbB, ExbD anchored in the cytoplasmic membrane and receptors in the outer membrane. Differences in the activities of the Escherichia coli and the Serratia marcescens TonB proteins were used to identify TonB functional domains. In E.coli TonB segments were replaced by equivalent fragments of S. marcescens TonB and the activities of the resulting chimaeric proteins were determined. In addition, E. coli TonB was truncated at the C-terminal end, and point mutants were generated using bisulphite. From the results obtained we draw the following conclusions: an important site of interaction between TonB and ExbB is located in the N-terminal region of TonB within or close to the cytoplasmic membrane since an N-terminal 44-residue fragment of TonB was stabilized by ExbB and interfered with wild-type TonB activity. In addition, the activity of a TonB derivative in which histidine residue 20 was replaced by arginine was strongly reduced, and a double mutant containing arginine-7 to histidine and alanine-22 to threonine substitutions displayed an impaired uptake of ferrichrome. Furthermore, the domain around residue 160 is involved in TonB activity. S. marcescens TonB segments of this region in E. coli TonB conferred S. marcescens TonB activities, and E. coli TonB point mutants displayed strongly impaired activities for the uptake of colicin B and M and ferric siderophores. Plasmid-encoded tonB mutants of this region showed negative complementation of chromosomal wild-type tonB, and certain tonB mutants suppressed colicin B TonB-box mutants. Uptake of colicins required different domains in TonB, for colicin B and M around residue 160 and for colicin Ia, a domain closer to the C-terminal end. Tandem duplication of the E. coli (EP)X(KP) region by insertion of the S. marcescens (EP)X(KP) region (38 residues) and replacement of lysine residue 91 by glutamate did not alter TonB activity so that no evidence was obtained for this region to be implicated in receptor binding. The aberrant electrophoretic mobility of TonB was caused by the proline-rich sequence since its removal resulted in a normal mobility.
Collapse
Affiliation(s)
- I Traub
- Mikrobiologie II, Universität Tübingen, Germany
| | | | | |
Collapse
|
33
|
Braun V, Herrmann C. Evolutionary relationship of uptake systems for biopolymers in Escherichia coli: cross-complementation between the TonB-ExbB-ExbD and the TolA-TolQ-TolR proteins. Mol Microbiol 1993; 8:261-8. [PMID: 8316079 DOI: 10.1111/j.1365-2958.1993.tb01570.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Escherichia coli possesses two energy-coupled import systems through which substances of low concentration and of a size too large to permit diffusion through the porins are translocated across the outer membrane. Group B colicins, ferric siderophores and vitamin B12 are taken up via the TonB-ExbB-ExbD, group A colicins via the TolA-TolQ-TolR system. Cross-complementation between the two systems was demonstrated in that tolQ tolR mutants transformed with plasmids carrying exbB exbD became sensitive to group A colicins, and exbB exbD mutants transformed with plasmid-encoded tolQ tolR became sensitive to group B colicins. TolQ-TolR interacted through TonB, and ExbB-ExbD interacted through TolA with the outer membrane receptors and colicins. Activity of ExbB ExbD via TolA was higher in cells lacking TonB, and activity of TolQ TolR via TonB was increased when TolA was missing. The very distinct TolA and TonB proteins mediate exclusive interaction with group A and group B receptors, respectively. ExbB-TolR and ExbD-TolQ mixtures showed little if any complementation of exbB exbD and tolQ tolR mutants indicating coevolution of ExbB with ExbD and TolQ with TolR. Sequence homology and mutual functional substitution of ExbB-ExbD and TolQ-TolR suggest the evolution of the two import systems from a single import system.
Collapse
Affiliation(s)
- V Braun
- Mikrobiologie II, Universität Tübingen, Germany
| | | |
Collapse
|
34
|
Bäumler A, Koebnik R, Stojiljkovic I, Heesemann J, Braun V, Hantke K. Survey on newly characterized iron uptake systems of Yersinia enterocolitica. ZENTRALBLATT FUR BAKTERIOLOGIE : INTERNATIONAL JOURNAL OF MEDICAL MICROBIOLOGY 1993; 278:416-24. [PMID: 8347944 DOI: 10.1016/s0934-8840(11)80858-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Iron assimilation systems have been shown to be important for virulence in Yersinia enterocolitica. In principle, iron transport in Y. enterocolitica is similarly organized as in Escherichia coli although some differences exist in the siderophores used. A TonB function was identified which in a tonB mutant was complemented by the E. coli tonB gene. Three outer membrane receptors for siderophores were cloned and sequenced: FoxA for ferrioxamine B and E, FcuA for ferrichrome and HemR for heme uptake. In addition, two receptors were identified by mutants: CccA for catechol cephalosporins and FyuA for yersiniabactin, the siderophore produced by virulent yersiniae. In addition, the FyuA protein is assumed to be the pesticin receptor.
Collapse
Affiliation(s)
- A Bäumler
- Lehrstuhl für Mikrobiologie II, Universität Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Karlsson M, Hannavy K, Higgins CF. A sequence-specific function for the N-terminal signal-like sequence of the TonB protein. Mol Microbiol 1993; 8:379-88. [PMID: 8316087 DOI: 10.1111/j.1365-2958.1993.tb01581.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
TonB is a proline-rich protein which provides a functional link between the inner and outer membranes of Gram-negative bacteria. TonB is anchored to the inner membrane via an N-terminal signal-like sequence and spans the periplasm, interacting with transport receptors in the outer membrane. We have investigated the role of the N-terminal signal-like peptide in TonB function. Replacement of the N-terminal sequence with heterologous sequences indicates that it has at least three distinct roles in TonB function: (i) to facilitate translocation of TonB across the cytoplasmic membrane; (ii) to anchor TonB to the cytoplasmic membrane; (iii) a sequence-specific functional interaction with the ExbBD proteins.
Collapse
Affiliation(s)
- M Karlsson
- Imperial Cancer Research Fund Laboratories, University of Oxford, John Radcliffe Hospital, UK
| | | | | |
Collapse
|
36
|
Koebnik R, Bäumler AJ, Heesemann J, Braun V, Hantke K. The TonB protein of Yersinia enterocolitica and its interactions with TonB-box proteins. MOLECULAR & GENERAL GENETICS : MGG 1993; 237:152-60. [PMID: 8384290 DOI: 10.1007/bf00282796] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The tonB gene is required for energy-dependent transport processes across the outer membrane of gram-negative bacteria. Using the antibiotics albomycin and ferrimycin, a tonB mutant of Yersinia enterocolitica was isolated. Comparison of the tonB mutant with the parent strain revealed that in Y. enterocolitica the uptake of ferrioxamine, ferrichrome, pesticin and heme is TonB-dependent. The tonB gene from Y. enterocolitica was sequenced and found to be similar to those of other Enterobacteria. The Y. enterocolitica tonB gene complemented a Y. enterocolitica tonB mutant. In contrast, some TonB functions of an Escherichia coli tonB mutant were not restored by the tonB gene of Y. enterocolitica. The observed differences in the ability to complement E. coli TonB functions correlated with the degree to which the TonB boxes of the receptors and colicins differed from the TonB box consensus sequence. Furthermore, the N-terminal membrane anchor of the TonB proteins and the TolA protein are likely to form an alpha-helix with an identical sequence motif (SHLS) located at one face of the alpha-helix, suggesting this region to be involved in the functional cross-talk between the TonB-ExbBD- and TolABQR-dependent transport systems across the outer membrane.
Collapse
Affiliation(s)
- R Koebnik
- Lehrstuhl Mikrobiologie II, Universität Tübingen, FRG
| | | | | | | | | |
Collapse
|
37
|
Bitter W, Tommassen J, Weisbeek PJ. Identification and characterization of the exbB, exbD and tonB genes of Pseudomonas putida WCS358: their involvement in ferric-pseudobactin transport. Mol Microbiol 1993; 7:117-30. [PMID: 8437515 DOI: 10.1111/j.1365-2958.1993.tb01103.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Catechol-cephalosporins are siderophore-like antibiotics which are taken up by cells of Pseudomonas putida WCS358 via the ferric-siderophore transport pathway. Mutants of strain WCS358 were isolated that are resistant to high concentrations of these antibiotics. These mutants failed to grow under iron-limiting conditions, and could not utilize different ferric-siderophores. The mutants fall in three complementation groups. The nucleotide sequence determination identified three contiguous open reading frames, which were homologous to the exbB, exbD and tonB genes of Escherichia coli respectively. The deduced amino acid sequence of P. putida ExbB showed 58.6% homology with its E. coli homologue, but, unlike the E. coli protein, it has a N-terminal extension of 91 amino acids. The ExbD proteins are 64.8% homologous, whereas the TonB proteins only show 27.7% homology. The P. putida exbB gene could complement an E. coli exbB mutation, but the TonB proteins were not interchangeable between the species. It is concluded that P. putida WCS358 contains an energy-coupling system between the membranes, for active transport across the outer membrane, which is comprised of a TonB-like energy-transducing protein and two accessory proteins. This system is similar to, but not completely compatible with, the E. coli system.
Collapse
Affiliation(s)
- W Bitter
- Department of Molecular Cell Biology, University of Utrecht, The Netherlands
| | | | | |
Collapse
|
38
|
Abstract
Most Serratia marcescens strains produce a new type of cytolysin (hemolysin) which is also found in other Serratia species. The hemolytic polypeptide ShlA (M(r) 162 101) is secreted across the outer membrane through the help of the ShlB protein which also involves conversion of an inactive precursor in an hemolytically active form. Both proteins are synthesized with signal sequences which are released during export across the cytoplasmic membrane. Mutants expressing inactive ShlB derivatives are impaired in activation and secretion suggesting a tight coupling between both processes. The region of ShlA for activation and secretion is confined to the N-terminal 16% of the polypeptide which contains the sequence NPNG which is also found in the Proteus hemolysin, the Bordetella pertussis filamentous hemagglutinin and two highly expressed outer membrane proteins of Haemophilus influenzae. Substitution of the first asparagine (N) residue by isoleucine converts the Serratia hemolysin into an inactive secretion incompetent form. It is concluded that this region is recognized by ShlB for activation and secretion of ShlA. The Serratia hemolysin forms defined pores in erythrocyte membranes.
Collapse
Affiliation(s)
- V Braun
- Mikrobiologie II, Universität Tübingen, FRG
| | | | | |
Collapse
|
39
|
|
40
|
Abstract
Serratia marcescens W225 expresses an unconventional iron(III) transport system. Uptake of Fe3+ occurs in the absence of an iron(III)-solubilizing siderophore, of an outer membrane receptor protein, and of the TonB and ExbBD proteins involved in outer membrane transport. The three SfuABC proteins found to catalyze iron(III) transport exhibit the typical features of periplasmic binding-protein-dependent systems for transport across the cytoplasmic membrane. In support of these conclusions, the periplasmic SfuA protein bound iron chloride and iron citrate but not ferrichrome, as shown by protection experiments against degradation by added V8 protease. The cloned sfuABC genes conferred upon an Escherichia coli aroB mutant unable to synthesize its own enterochelin siderophore the ability to grow under iron-limiting conditions (in the presence of 0.2 mM 2.2'-dipyridyl). Under extreme iron deficiency (0.4 mM 2.2'-dipyridyl), however, the entry rate of iron across the outer membrane was no longer sufficient for growth. Citrate had to be added in order for iron(III) to be translocated as an iron citrate complex in a FecA- and TonB-dependent manner through the outer membrane and via SfuABC across the cytoplasmic membrane. FecA- and TonB-dependent iron transport across the outer membrane could be clearly correlated with a very low concentration of iron in the medium. Expression of the sfuABC genes in E. coli was controlled by the Fur iron repressor gene. S. marcescens W225 was able to synthesize enterochelin and take up iron(III) enterochelin. It contained an iron(III) aerobactin transport system but lacked aerobactin synthesis. This strain was able to utilize the hydroxamate siderophores ferrichrome, coprogen, ferrioxamine B, rhodotorulic acid, and schizokinen as sole iron sources and grew on iron citrate as well. In contrast to E. coli K-12, S. marcescens could utilize heme. DNA fragments of the E. coli fhuA, iut, exbB, and fur genes hybridized with chromosomal S. marcescens DNA fragments, whereas no hybridization was obtained between S. marcescens chromosomal DNA and E. coli fecA, fhuE, and tonB gene fragments. The presence of multiple iron transport systems was also indicated by the increased synthesis of at least five outer membrane proteins (in the molecular weight range of 72,000 to 87,000) after growth in low-iron media. Serratia liquefaciens and Serratia ficaria produced aerobactin, showing that this siderophore also occurs in the genus Serratia.
Collapse
Affiliation(s)
- A Angerer
- Mikrobiologie II, Universität Tübingen, Germany
| | | | | |
Collapse
|