1
|
Abstract
We review literature on the metabolism of ribo- and deoxyribonucleotides, nucleosides, and nucleobases in Escherichia coli and Salmonella,including biosynthesis, degradation, interconversion, and transport. Emphasis is placed on enzymology and regulation of the pathways, at both the level of gene expression and the control of enzyme activity. The paper begins with an overview of the reactions that form and break the N-glycosyl bond, which binds the nucleobase to the ribosyl moiety in nucleotides and nucleosides, and the enzymes involved in the interconversion of the different phosphorylated states of the nucleotides. Next, the de novo pathways for purine and pyrimidine nucleotide biosynthesis are discussed in detail.Finally, the conversion of nucleosides and nucleobases to nucleotides, i.e.,the salvage reactions, are described. The formation of deoxyribonucleotides is discussed, with emphasis on ribonucleotidereductase and pathways involved in fomation of dUMP. At the end, we discuss transport systems for nucleosides and nucleobases and also pathways for breakdown of the nucleobases.
Collapse
|
2
|
Transcription start site sequence and spacing between the -10 region and the start site affect reiterative transcription-mediated regulation of gene expression in Escherichia coli. J Bacteriol 2014; 196:2912-20. [PMID: 24891446 DOI: 10.1128/jb.01753-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reiterative transcription is a reaction catalyzed by RNA polymerase, in which nucleotides are repetitively added to the 3' end of a nascent transcript due to upstream slippage of the transcript without movement of the DNA template. In Escherichia coli, the expression of several operons is regulated through mechanisms in which high intracellular levels of UTP promote reiterative transcription that adds extra U residues to the 3' end of a nascent transcript during transcription initiation. Immediately following the addition of one or more extra U residues, the nascent transcripts are released from the transcription initiation complex, thereby reducing the level of gene expression. Therefore, gene expression can be regulated by internal UTP levels, which reflect the availability of external pyrimidine sources. The magnitude of gene regulation by these mechanisms varies considerably, even when control mechanisms are analogous. These variations apparently are due to differences in promoter sequences. One of the operons regulated (in part) by UTP-sensitive reiterative transcription in E. coli is the carAB operon, which encodes the first enzyme in the pyrimidine nucleotide biosynthetic pathway. In this study, we used the carAB operon to examine the effects of nucleotide sequence at and near the transcription start site and spacing between the start site and -10 region of the promoter on reiterative transcription and gene regulation. Our results indicate that these variables are important determinants in establishing the extent of reiterative transcription, levels of productive transcription, and range of gene regulation.
Collapse
|
3
|
Regulation of pyrimidine biosynthetic gene expression in bacteria: repression without repressors. Microbiol Mol Biol Rev 2008; 72:266-300, table of contents. [PMID: 18535147 DOI: 10.1128/mmbr.00001-08] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SUMMARY DNA-binding repressor proteins that govern transcription initiation in response to end products generally regulate bacterial biosynthetic genes, but this is rarely true for the pyrimidine biosynthetic (pyr) genes. Instead, bacterial pyr gene regulation generally involves mechanisms that rely only on regulatory sequences embedded in the leader region of the operon, which cause premature transcription termination or translation inhibition in response to nucleotide signals. Studies with Escherichia coli and Bacillus subtilis pyr genes reveal a variety of regulatory mechanisms. Transcription attenuation via UTP-sensitive coupled transcription and translation regulates expression of the pyrBI and pyrE operons in enteric bacteria, whereas nucleotide effects on binding of the PyrR protein to pyr mRNA attenuation sites control pyr operon expression in most gram-positive bacteria. Nucleotide-sensitive reiterative transcription underlies regulation of other pyr genes. With the E. coli pyrBI, carAB, codBA, and upp-uraA operons, UTP-sensitive reiterative transcription within the initially transcribed region (ITR) leads to nonproductive transcription initiation. CTP-sensitive reiterative transcription in the pyrG ITRs of gram-positive bacteria, which involves the addition of G residues, results in the formation of an antiterminator RNA hairpin and suppression of transcription attenuation. Some mechanisms involve regulation of translation rather than transcription. Expression of the pyrC and pyrD operons of enteric bacteria is controlled by nucleotide-sensitive transcription start switching that produces transcripts with different potentials for translation. In Mycobacterium smegmatis and other bacteria, PyrR modulates translation of pyr genes by binding to their ribosome binding site. Evidence supporting these conclusions, generalizations for other bacteria, and prospects for future research are presented.
Collapse
|
4
|
Cheng Y, Dylla SM, Turnbough CL. A long T. A tract in the upp initially transcribed region is required for regulation of upp expression by UTP-dependent reiterative transcription in Escherichia coli. J Bacteriol 2001; 183:221-8. [PMID: 11114920 PMCID: PMC94869 DOI: 10.1128/jb.183.1.221-228.2001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, pyrimidine-mediated regulation of upp expression occurs by UTP-sensitive selection of alternative transcriptional start sites, which produces transcripts that differ in the ability to be elongated. The upp initially transcribed region contains the sequence GATTTTTTTTG (nontemplate strand). Initiation can occur at either the first or the second base in this sequence (designated G6 and A7, with numbering from the promoter -10 region). High intracellular UTP levels favor initiation at position A7; however, the resulting transcripts are subject to reiterative transcription (i.e., repetitive UMP addition) within the 8-bp T. A tract in the initially transcribed region and are aborted. In contrast, low intracellular UTP levels favor initiation at position G6, which results in transcripts that can, in part, avoid reiterative transcription and be elongated normally. In this study, we examined the regulatory requirement for the long T. A tract in the upp initially transcribed region. We constructed upp promoter mutations that shorten the T. A tract to 7, 6, 5, 4, 3, or 2 bp and examined the effects of these mutations on upp expression and regulation. The results indicate that pyrimidine-mediated regulation is gradually reduced as the T. A tract is shortened from 7 to 3 bp; at which point regulation ceases. This reduction in regulation is due to large-percentage increases in upp expression in cells grown under conditions of pyrimidine excess. Quantitation of cellular transcripts and in vitro transcription studies indicate that the observed effects of a shortened T. A tract on upp expression and regulation are due to increases in the fraction of both G6- and A7-initiated transcripts that avoid reiterative transcription and are elongated normally.
Collapse
Affiliation(s)
- Y Cheng
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | |
Collapse
|
5
|
Han X, Turnbough CL. Regulation of carAB expression in Escherichia coli occurs in part through UTP-sensitive reiterative transcription. J Bacteriol 1998; 180:705-13. [PMID: 9457878 PMCID: PMC106942 DOI: 10.1128/jb.180.3.705-713.1998] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In Escherichia coli, expression of the carAB operon is subject to cumulative repression, which occurs by ArgR-mediated repression at a downstream promoter, P2, and by pyrimidine-mediated regulation at an upstream promoter, P1. In this study, we show that pyrimidine-mediated regulation occurs in part through a mechanism involving UTP-sensitive reiterative transcription (i.e., repetitive addition of U residues to the 3' end of a nascent transcript due to transcript-template slippage). In this case, reiterative transcription occurs at the end of a run of three T x A base pairs in the initially transcribed region of the carAB P1 promoter. The sequence of this region is 5'-GTTTGC (nontemplate strand). In the proposed regulatory mechanism, increased intracellular levels of UTP promote reiterative transcription, which results in the synthesis of transcripts with the sequence GUUUU(n) (where n = 1 to >30). These transcripts are not extended downstream to include structural gene sequences. In contrast, lower levels of UTP enhance normal template-directed addition of a G residue at position 5 of the nascent transcript. This addition precludes reiterative transcription and permits normal transcript elongation capable of producing translatable carAB transcripts. Thus, carAB expression, which is necessary for pyrimidine nucleotide (and arginine) biosynthesis, increases in proportion to the cellular need for UTP. The proposed mechanism appears to function independently of a second pyrimidine-mediated control mechanism that involves the regulatory proteins CarP and integration host factor.
Collapse
Affiliation(s)
- X Han
- Department of Microbiology, University of Alabama at Birmingham, 35294, USA
| | | |
Collapse
|
6
|
Tu AH, Turnbough CL. Regulation of upp expression in Escherichia coli by UTP-sensitive selection of transcriptional start sites coupled with UTP-dependent reiterative transcription. J Bacteriol 1997; 179:6665-73. [PMID: 9352914 PMCID: PMC179593 DOI: 10.1128/jb.179.21.6665-6673.1997] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Expression of the upp gene of Escherichia coli, which encodes the pyrimidine salvage enzyme uracil phosphoribosyltransferase, is negatively regulated by pyrimidine availability. In this study, we demonstrate that this regulation occurs mainly by UTP-sensitive selection of alternative transcriptional start sites, which produces transcripts that differ in the ability to be productively elongated. The upp initially transcribed region contains the sequence GATTTTTTTTG (nontemplate strand). Transcription is initiated primarily at the first two bases in this sequence, designated G6 and A7 (counting from the promoter -10 region). High intracellular levels of UTP favor initiation at position A7; however, the resulting transcripts are subject to reiterative transcription (i.e., repetitive nucleotide addition) within the run of T residues in the initially transcribed region. The resulting AUUUUn (where n = 1 to >50) transcripts are not extended to include downstream upp sequences. In contrast, low intracellular levels of UTP strongly favor initiation at position G6, which results in transcripts that generally do not engage in reiterative transcription and thus can be normally elongated. This mechanism ensures that high levels of uracil phosphoribosyltransferase are produced only under conditions of pyrimidine limitation. The mechanisms that account for UTP-sensitive start site selection and different fates of upp transcripts, as well as the general use of UTP-dependent reiterative transcription in gene regulation, are discussed in detail.
Collapse
Affiliation(s)
- A H Tu
- Department of Microbiology, University of Alabama at Birmingham, 35294, USA
| | | |
Collapse
|
7
|
Bayles DO, Fennington GJ, Hughes TA. Sequence and phylogenetic analysis of the Rhizobium leguminosarum biovar trifolii pyrE gene, overproduction, purification and characterization of orotate phosphoribosyltransferase. Gene X 1997; 195:329-36. [PMID: 9305779 DOI: 10.1016/s0378-1119(97)00192-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The pyrE gene of Rhizobium leguminosarum biovar trifolii (Rl) was subcloned and its sequence is presented. The nucleotide sequence analysis suggests that this gene is not regulated by transcriptional attenuation as seen for the pyrE and pyrB genes of Escherichia coli (Ec) and Salmonella typhimurium. The Rl pyrE gene was subcloned into Ec AT2538 pyrE60 where the Rl pyrE gene product, orotate phosphoribosyltransferase (OPRTase), was overproduced. Using Ec AT2538 pyrE60 overproducing Rl OPRTase, the enzyme was purified to homogeneity utilizing ammonium sulfate fractionation and affinity chromatography with an orotate monophosphate agarose matrix. The electrophoretically pure OPRTase was characterized and found to be a 24.7 +/- 0.3-kDa protein with a K(m) of 27.6 micromol l(-1). The deduced amino acid sequence for OPRTase was compared with OPRTases from other organisms and found to be most similar to that of Bacillus subtilis (Bs). The Rl OPRTase exhibits 37% identity and 46% similarity to the Bs OPRTase.
Collapse
Affiliation(s)
- D O Bayles
- Illinois State University, Department of Biological Sciences, Normal, USA
| | | | | |
Collapse
|
8
|
Vogel U, Jensen KF. NusA is required for ribosomal antitermination and for modulation of the transcription elongation rate of both antiterminated RNA and mRNA. J Biol Chem 1997; 272:12265-71. [PMID: 9139668 DOI: 10.1074/jbc.272.19.12265] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Ribosomal RNA (rRNA) is elongated twice as fast as mRNA in vivo due to the presence of antitermination sequences in the 5' part of the rRNA transcripts. A number of Nus factors bind to RNA polymerase at the antitermination sites and help confer resistance to Rho-dependent termination of transcription. In this paper, the effects of the nusAcs10 allele on the elongation rate of both mRNA and antiterminated RNA were investigated. The results indicate that NusA is required to achieve a high elongation rate of RNA chains carrying the ribosomal antitermination boxA and that antitermination is defective when the rate of transcription elongation is decreased by the nusAcs10 allele. Furthermore, the nusAcs10 allele had no significant effects on the elongation rate of normal lacZ mRNA during steady state growth, but it abolished the inhibition of lacZ mRNA elongation by guanosine 3',5'-bis(diphosphate) (ppGpp). These results suggest that NusA is the component of the transcription elongation complex required for inhibition of mRNA elongation by ppGpp.
Collapse
Affiliation(s)
- U Vogel
- Department of Biological Chemistry, Institute of Molecular Biology, University of Copenhagen, Solvgade 83H, DK-1307 Copenhagen K, Denmark
| | | |
Collapse
|
9
|
Qi F, Liu C, Heath LS, Turnbough CL. In vitro assay for reiterative transcription during transcriptional initiation by Escherichia coli RNA polymerase. Methods Enzymol 1996; 273:71-85. [PMID: 8791600 DOI: 10.1016/s0076-6879(96)73007-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- F Qi
- Department of Oral Biology, University of Alabama at Birmingham 35294, USA
| | | | | | | |
Collapse
|
10
|
Liu C, Heath LS, Turnbough CL. Regulation of pyrBI operon expression in Escherichia coli by UTP-sensitive reiterative RNA synthesis during transcriptional initiation. Genes Dev 1994; 8:2904-12. [PMID: 7527789 DOI: 10.1101/gad.8.23.2904] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Pyrimidine-mediated regulation of pyrBI operon expression in Escherichia coli K-12 occurs through UTP-sensitive transcriptional attenuation and through a second mechanism that functions at the level of transcriptional initiation. In this study we demonstrate that this second control mechanism is based on UTP-sensitive reiterative RNA synthesis within a run of three T-A base pairs in the pyrBI initially transcribed region. Our results show that high UTP levels induce the synthesis in vitro of nascent transcripts with the sequence AAUUUUn (where n = 1 to > 30), which are not extended downstream to include pyrBI sequences. Synthesis of these transcripts, which are initiated at the predominant in vivo transcriptional start site, inhibits the production of full-length pyrBI transcripts. A TTT to GTA mutation in the pyrBI initially transcribed region eliminates reiterative transcription and stimulates productive transcription in vitro. When introduced into the E. coli chromosome, this mutation causes a sevenfold increase in pyrBI expression in cells grown under conditions of pyrimidine excess and nearly abolishes pyrimidine-mediated regulation of pyrBI expression when coupled with a mutation that eliminates attenuation control. Additional experiments indicate that the context of the three T-A base pairs within the pyrBI initially transcribed region is important for reiterative transcription. A possible mechanism for reiterative transcription and the likely involvement of this process in the regulation of other genes are discussed.
Collapse
Affiliation(s)
- C Liu
- Department of Microbiology, University of Alabama at Birmingham 35294
| | | | | |
Collapse
|
11
|
Nucleotide-specific transcriptional pausing in the pyrBI leader region of Escherichia coli K-12. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32433-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
12
|
Effects of guanosine 3‘,5‘-bisdiphosphate (ppGpp) on rate of transcription elongation in isoleucine-starved Escherichia coli. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)33998-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
13
|
Holmberg C, Rutberg L. An inverted repeat preceding the Bacillus subtilis glpD gene is a conditional terminator of transcription. Mol Microbiol 1992; 6:2931-8. [PMID: 1479885 DOI: 10.1111/j.1365-2958.1992.tb01752.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Bacillus subtilis glpD gene, encoding glycerol-3-phosphate (G3P) dehydrogenase, is preceded by a promoter and an inverted repeat which is located between the promoter and the glpD coding region. The inverted repeat acts as a transcriptional terminator in vitro. Expression of glpD is induced by G3P in the presence of the glpP gene product. Full-length glpD transcripts can be detected only in glycerol-induced cells. The major glpD transcript is initiated from the glpD promoter but minor amounts of larger transcripts, possibly initiated at upstream glp promoters, can also be found. In uninduced cells short transcripts are present, corresponding to initiation at the glpD promoter and termination at the inverted repeat. Upon induction, these short transcripts disappear and are replaced by full-length glpD transcripts. The 3'-ends of full-length glpD transcripts were mapped to an inverted repeat located immediately downstream of glpD. These results show that glpD of B. subtilis is regulated by termination/antitermination of transcription.
Collapse
Affiliation(s)
- C Holmberg
- Department of Microbiology, University of Lund, Sweden
| | | |
Collapse
|
14
|
Craven MG, Henner DJ, Alessi D, Schauer AT, Ost KA, Deutscher MP, Friedman DI. Identification of the rph (RNase PH) gene of Bacillus subtilis: evidence for suppression of cold-sensitive mutations in Escherichia coli. J Bacteriol 1992; 174:4727-35. [PMID: 1624460 PMCID: PMC206269 DOI: 10.1128/jb.174.14.4727-4735.1992] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A shotgun cloning of Bacillus subtilis DNA into pBR322 yielded a 2-kb fragment that suppresses the cold-sensitive defect of the nusA10(Cs) Escherichia coli mutant. The responsible gene encodes an open reading frame that is greater than 50% identical at the amino acid level to the E. coli rph gene, which was formerly called orfE. This B. subtilis gene is located at 251 degrees adjacent to the gerM gene on the B. subtilis genetic map. It has been named rph because, like its E. coli analog, it encodes a phosphate-dependent exoribonuclease activity, RNase PH, that removes the 3' nucleotides from precursor tRNAs. The cloned B. subtilis rph gene also suppresses the cold-sensitive phenotype of other unrelated cold-sensitive mutants of E. coli, but not the temperature-sensitive phenotype of three temperature-sensitive mutants, including the nusA11(Ts) mutant, that were tested.
Collapse
Affiliation(s)
- M G Craven
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor 48109-0620
| | | | | | | | | | | | | |
Collapse
|
15
|
Andersen JT, Poulsen P, Jensen KF. Attenuation in the rph-pyrE operon of Escherichia coli and processing of the dicistronic mRNA. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 206:381-90. [PMID: 1375912 DOI: 10.1111/j.1432-1033.1992.tb16938.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have substituted on a plasmid the native promoter of the Escherichia coli rph-pyrE operon with an inducible transcription-initiation signal. The plasmid was used to study the mRNA chains derived from the operon at different intracellular concentrations of UTP and as a function of time following induction of transcription. The results showed that dicistronic rph-pyrE mRNA was formed when the UTP pool was low, and that a monocistronic rph mRNa was the major transcription product in high-UTP pools, thus supporting an UTP-controlled attenuation mechanism for regulation of pyrE gene expression. However, the dicistronic rph-pyrE transcript was rapidly processed into two monocistronic mRNA units, and a cleavage site was mapped near the attenuator in the intercistronic region, close to the site where transcription was terminated in high-UTP pools. Furthermore, the major 3' end of the pyrE mRNA was mapped near a palindromic structure of similarity to the family of repetitive extragenic palindromic sequences, 35 nucleotide residues after stop codon of the pryE gene.
Collapse
MESH Headings
- Base Sequence
- Blotting, Northern
- Escherichia coli/enzymology
- Escherichia coli/genetics
- Gene Expression Regulation, Bacterial
- Gene Expression Regulation, Enzymologic
- Genes, Bacterial
- Molecular Sequence Data
- Operon
- Orotate Phosphoribosyltransferase/biosynthesis
- Orotate Phosphoribosyltransferase/genetics
- Plasmids
- Promoter Regions, Genetic
- RNA Processing, Post-Transcriptional
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Terminator Regions, Genetic
- Transcription, Genetic
Collapse
Affiliation(s)
- J T Andersen
- Institute of Biological Chemistry B, University of Copenhagen, Denmark
| | | | | |
Collapse
|