1
|
Light-Triggered Carotenogenesis in Myxococcus xanthus: New Paradigms in Photosensory Signaling, Transduction and Gene Regulation. Microorganisms 2021; 9:microorganisms9051067. [PMID: 34063365 PMCID: PMC8156234 DOI: 10.3390/microorganisms9051067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/17/2022] Open
Abstract
Myxobacteria are Gram-negative δ-proteobacteria found predominantly in terrestrial habitats and often brightly colored due to the biosynthesis of carotenoids. Carotenoids are lipophilic isoprenoid pigments that protect cells from damage and death by quenching highly reactive and toxic oxidative species, like singlet oxygen, generated upon growth under light. The model myxobacterium Myxococcus xanthus turns from yellow in the dark to red upon exposure to light because of the photoinduction of carotenoid biosynthesis. How light is sensed and transduced to bring about regulated carotenogenesis in order to combat photooxidative stress has been extensively investigated in M. xanthus using genetic, biochemical and high-resolution structural methods. These studies have unearthed new paradigms in bacterial light sensing, signal transduction and gene regulation, and have led to the discovery of prototypical members of widely distributed protein families with novel functions. Major advances have been made over the last decade in elucidating the molecular mechanisms underlying the light-dependent signaling and regulation of the transcriptional response leading to carotenogenesis in M. xanthus. This review aims to provide an up-to-date overview of these findings and their significance.
Collapse
|
2
|
Sineva E, Savkina M, Ades SE. Themes and variations in gene regulation by extracytoplasmic function (ECF) sigma factors. Curr Opin Microbiol 2017; 36:128-137. [PMID: 28575802 DOI: 10.1016/j.mib.2017.05.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/15/2017] [Accepted: 05/13/2017] [Indexed: 01/08/2023]
Abstract
The ECF sigma family was identified 23 years ago as a distinct group of σ70-like factors. ECF sigma factors have since emerged as a major form of bacterial signal transduction that can be grouped into over 50 phylogenetically distinct subfamilies. Advances in our understanding of these sigma factors and the signaling pathways governing their activity have elucidated conserved features as well as aspects that have evolved over time. All ECF sigma factors are predicted to share a common streamlined domain structure and mode of promoter interaction. The activity of most ECF sigma factors is controlled by an anti-sigma factor. The nature of the anti-sigma factor and the activating signaling pathways appear to be conserved within ECF families, while considerable diversity exists between different families.
Collapse
Affiliation(s)
- Elena Sineva
- Department of Biochemistry and Molecular Biology, 408 Althouse Laboratory, The Pennsylvania State University, University Park, PA 16802, USA
| | - Maria Savkina
- Department of Biochemistry and Molecular Biology, 408 Althouse Laboratory, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sarah E Ades
- Department of Biochemistry and Molecular Biology, 408 Althouse Laboratory, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
3
|
Abellón-Ruiz J, Bernal-Bernal D, Abellán M, Fontes M, Padmanabhan S, Murillo FJ, Elías-Arnanz M. The CarD/CarG regulatory complex is required for the action of several members of the large set of Myxococcus xanthus extracytoplasmic function σ factors. Environ Microbiol 2014; 16:2475-90. [PMID: 24428729 DOI: 10.1111/1462-2920.12386] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 12/27/2013] [Indexed: 11/25/2022]
Abstract
Extracytoplasmic function (ECF) σ factors are critical players in signal transduction networks involved in bacterial response to environmental changes. The Myxococcus xanthus genome reveals ∼45 putative ECF-σ factors, but for the overwhelming majority, the specific signals or mechanisms for selective activation and regulation remain unknown. One well-studied ECF-σ, CarQ, binds to its anti-σ, CarR, and is inactive in the dark but drives its own expression from promoter P(QRS) on illumination. This requires the CarD/CarG complex, the integration host factor (IHF) and a specific CarD-binding site upstream of P(QRS). Here, we show that DdvS, a previously uncharacterized ECF-σ, activates its own expression in a CarD/CarG-dependent manner but is inhibited when specifically bound to the N-terminal zinc-binding anti-σ domain of its cognate anti-σ, DdvA. Interestingly, we find that the autoregulatory action of 11 other ECF-σ factors studied here depends totally or partially on CarD/CarG but not IHF. In silico analysis revealed possible CarD-binding sites that may be involved in direct regulation by CarD/CarG of target promoter activity. CarD/CarG-linked ECF-σ regulation likely recurs in other myxobacteria with CarD/CarG orthologous pairs and could underlie, at least in part, the global regulatory effect of the complex on M. xanthus gene expression.
Collapse
Affiliation(s)
- Javier Abellón-Ruiz
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | | | | | | | | | | | | |
Collapse
|
4
|
Discovery of a novel class of boron-based antibacterials with activity against gram-negative bacteria. Antimicrob Agents Chemother 2013; 57:1394-403. [PMID: 23295920 DOI: 10.1128/aac.02058-12] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gram-negative bacteria cause approximately 70% of the infections in intensive care units. A growing number of bacterial isolates responsible for these infections are resistant to currently available antibiotics and to many in development. Most agents under development are modifications of existing drug classes, which only partially overcome existing resistance mechanisms. Therefore, new classes of Gram-negative antibacterials with truly novel modes of action are needed to circumvent these existing resistance mechanisms. We have previously identified a new a way to inhibit an aminoacyl-tRNA synthetase, leucyl-tRNA synthetase (LeuRS), in fungi via the oxaborole tRNA trapping (OBORT) mechanism. Herein, we show how we have modified the OBORT mechanism using a structure-guided approach to develop a new boron-based antibiotic class, the aminomethylbenzoxaboroles, which inhibit bacterial leucyl-tRNA synthetase and have activity against Gram-negative bacteria by largely evading the main efflux mechanisms in Escherichia coli and Pseudomonas aeruginosa. The lead analogue, AN3365, is active against Gram-negative bacteria, including Enterobacteriaceae bearing NDM-1 and KPC carbapenemases, as well as P. aeruginosa. This novel boron-based antibacterial, AN3365, has good mouse pharmacokinetics and was efficacious against E. coli and P. aeruginosa in murine thigh infection models, which suggest that this novel class of antibacterials has the potential to address this unmet medical need.
Collapse
|
5
|
|
6
|
Elías-Arnanz M, Padmanabhan S, Murillo FJ. The regulatory action of the myxobacterial CarD/CarG complex: a bacterial enhanceosome? FEMS Microbiol Rev 2010; 34:764-78. [PMID: 20561058 DOI: 10.1111/j.1574-6976.2010.00235.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A global regulatory complex made up of two unconventional transcriptional factors, CarD and CarG, is implicated in the control of various processes in Myxococcus xanthus, a Gram-negative bacterium that serves as a prokaryotic model system for multicellular development and the response to blue light. CarD has a unique two-domain architecture composed of: (1) a C-terminal DNA-binding domain that resembles eukaryotic high mobility group A (HMGA) proteins, which are relatively abundant, nonhistone components of chromatin that remodel DNA and prime it for the assembly of multiprotein-DNA complexes essential for various DNA transactions, and (2) an N-terminal domain involved in interactions with CarG and RNA polymerase, which is also the founding member of the large CarD_TRCF family of bacterial proteins. CarG, which does not bind DNA directly, has a zinc-binding motif of the type found in the archaemetzincin class of metalloproteases that, in CarG, appears to play a purely structural role. This review aims to provide an overview of the known molecular details and insights emerging from the study of the singular CarD-CarG prokaryotic regulatory complex and its parallels with enhanceosomes, the higher order, nucleoprotein transcription complexes in eukaryotes.
Collapse
Affiliation(s)
- Montserrat Elías-Arnanz
- Departamento de Genética y Microbiología, Area de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | | | | |
Collapse
|
7
|
A manganese transporter, BB0219 (BmtA), is required for virulence by the Lyme disease spirochete, Borrelia burgdorferi. Proc Natl Acad Sci U S A 2009; 106:3449-54. [PMID: 19218460 DOI: 10.1073/pnas.0812999106] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Borrelia burgdorferi (Bb), the causative agent of Lyme disease, is transmitted to mammalian hosts through an arthropod (tick) vector. To establish infection, Bb must acquire essential nutrients, including transition metals, from its mammalian and tick hosts. Thus far, no metal transporter has been identified in Bb. Here, we report the identification of the first metal transporter, BmtA (BB0219), in Bb. BmtA-deficient mutants of virulent Bb were readily generated, and the mutants grew slightly slower than wild-type Bb in vitro. However, BmtA mutants were sensitive to the chelating actions of EDTA, suggesting a role for BmtA in metal utilization. Intracellular accumulation of manganese (Mn) was substantially diminished in the bmtA mutant, indicating that BmtA was operative in Mn uptake. Given that BmtA lacks homology to any known Mn transporter, we postulate that BmtA is part of a novel mechanism for Mn acquisition by a bacterial pathogen. BmtA also was essential to the infectious life cycle of Bb in ticks and mammals, thereby qualifying BmtA as a new borrelial virulence factor. In addition, the bmtA mutant was sensitive to treatment with t-butyl hydroperoxide, implying that BmtA, and thus Mn, is important to Bb for detoxifying reactive oxygen species, including those potentially liberated by immune effector cells during the innate immune response. Our discovery of the first molecule involved in metal transport in Bb provides a foundation for further elucidating metal homeostasis in this important human pathogen, which may lead to new strategies for thwarting Lyme disease.
Collapse
|
8
|
Gorham HC, McGowan SJ, Robson PRH, Hodgson DA. Light-induced carotenogenesis in Myxococcus xanthus: light-dependent membrane sequestration of ECF sigma factor CarQ by anti-sigma factor CarR. Mol Microbiol 2008. [DOI: 10.1111/j.1365-2958.1996.tb02458.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Galbis-Martínez L, Galbis-Martínez M, Murillo FJ, Fontes M. An anti-antisigma factor in the response of the bacterium Myxococcus xanthus to blue light. MICROBIOLOGY-SGM 2008; 154:895-904. [PMID: 18310035 DOI: 10.1099/mic.0.2007/013359-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cells of the Gram-negative bacterium Myxococcus xanthus respond to blue light by producing carotenoids, pigments that play a protective role against the oxidative effects of light. Blue light triggers a network of regulatory actions that lead to the transcriptional activation of the structural genes for carotenoid synthesis. The product of carF, similar to a family of proteins of unknown function called Kua, is an early regulator of this process. Previous genetic data indicate that CarF participates in the light-dependent inactivation of the antisigma factor CarR. In the dark, CarR sequesters the ECF-sigma factor CarQ to the membrane, thereby preventing the activation of the structural genes for carotenoid synthesis. Using a bacterial two-hybrid system, we show here that both CarF and CarQ physically interact with CarR. These results, together with the finding that CarF is located at the membrane, support the hypothesis that CarF acts as an anti-antisigma factor. Comparison of CarF with other Kua proteins shows a remarkable conservation of a number of histidine residues. The effects on CarF function of several histidine to alanine substitutions and of the truncation of specific CarF domains are also reported here.
Collapse
Affiliation(s)
- Lilian Galbis-Martínez
- Departamento de Genética y Microbiología (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - Marisa Galbis-Martínez
- Departamento de Genética y Microbiología (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - Francisco J Murillo
- Departamento de Genética y Microbiología (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - Marta Fontes
- Departamento de Genética y Microbiología (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| |
Collapse
|
10
|
Pérez-Marín MC, Padmanabhan S, Polanco MC, Murillo FJ, Elías-Arnanz M. Vitamin B12 partners the CarH repressor to downregulate a photoinducible promoter in Myxococcus xanthus. Mol Microbiol 2008; 67:804-19. [PMID: 18315685 DOI: 10.1111/j.1365-2958.2007.06086.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A light-inducible promoter, P(B), drives expression of the carB operon in Myxococcus xanthus. Repressed by CarA in the dark, P(B) is activated when CarS, produced in the light, sequesters CarA to prevent operator-CarA binding. The MerR-type, N-terminal domain of CarA, which mediates interactions with both operator and CarS, is linked to a C-terminal oligomerization module with a predicted cobalamin-binding motif. Here, we show that although CarA does bind vitamin B12, mutating the motif involved has no effect on its ability to repress P(B). Intriguingly, P(B) could be repressed in the dark even with no CarA, so long as B12 and an intact CarA operator were present. We have discovered that this effect of B12 depends on the gene immediately downstream of carA. Its product, CarH, also consists of a MerR-type, N-terminal domain that specifically recognizes the CarA operator and CarS, linked to a predicted B12-binding C-terminal oligomerization module. The B12-mediated repression of P(B) in the dark is relieved by deleting carH, by mutating the DNA- or B12-binding residues of CarH, or by illumination. Our findings unveil parallel regulatory circuits that control a light-inducible promoter using a transcriptional factor repertoire that includes a paralogous gene pair and vitamin B12.
Collapse
Affiliation(s)
- Mari Cruz Pérez-Marín
- Departamento de Genética y Microbiología, Area de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia 30100, Spain
| | | | | | | | | |
Collapse
|
11
|
Navarro-Avilés G, Jiménez MA, Pérez-Marín MC, González C, Rico M, Murillo FJ, Elías-Arnanz M, Padmanabhan S. Structural basis for operator and antirepressor recognition by Myxococcus xanthus CarA repressor. Mol Microbiol 2007; 63:980-94. [PMID: 17233828 DOI: 10.1111/j.1365-2958.2006.05567.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Blue light induces carotenogenesis in Myxococcus xanthus. The carB operon encodes all but one of the structural genes involved, and its expression is regulated by the CarA-CarS repressor-antirepressor pair. In the dark, CarA-operator binding represses carB. CarS, produced on illumination, interacts physically with CarA to dismantle the CarA-operator complex and activate carB. Both operator and CarS bind to the autonomously folded N-terminal domain of CarA, CarA(Nter), which in excess represses carB. Here, we report the NMR structure of CarA(Nter), and map residues that interact with operator and CarS by NMR chemical shift perturbations, and in vivo and in vitro analyses of site-directed mutants. We show CarA(Nter) adopts the winged-helix topology of MerR-family DNA-binding domains, and conserves the majority of the helix-turn-helix and wing contacts with DNA. Tellingly, helix alpha2 in CarA, a key element in operator DNA recognition, is also critical for interaction with CarS, implying that the CarA-CarS protein-protein and the CarA-operator protein-DNA interfaces overlap. Thus, binding of CarA to operator and to antirepressor are mutually exclusive, and CarA may discern structural features in the acidic CarS protein that resemble operator DNA. Repressor inactivation by occluding the DNA-binding region may be a recurrent mechanism of action for acidic antirepressors.
Collapse
Affiliation(s)
- Gloria Navarro-Avilés
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Daigle DM, Cao L, Fraud S, Wilke MS, Pacey A, Klinoski R, Strynadka NC, Dean CR, Poole K. Protein modulator of multidrug efflux gene expression in Pseudomonas aeruginosa. J Bacteriol 2007; 189:5441-51. [PMID: 17545281 PMCID: PMC1951821 DOI: 10.1128/jb.00543-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
nalC multidrug-resistant mutants of Pseudomonas aeruginosa show enhanced expression of the mexAB-oprM multidrug efflux system as a direct result of the production of a ca. 6,100-Da protein, PA3719, in these mutants. Using a bacterial two-hybrid system, PA3719 was shown to interact in vivo with MexR, a repressor of mexAB-oprM expression. Isothermal titration calorimetry (ITC) studies confirmed a high-affinity interaction (equilibrium dissociation constant [K(D)], 158.0 +/- 18.1 nM) of PA3719 with MexR in vitro. PA3719 binding to and formation of a complex with MexR obviated repressor binding to its operator, which overlaps the efflux operon promoter, suggesting that mexAB-oprM hyperexpression in nalC mutants results from PA3719 modulation of MexR repressor activity. Consistent with this, MexR repression of mexA transcription in an in vitro transcription assay was alleviated by PA3719. Mutations in MexR compromising its interaction with PA3719 in vivo were isolated and shown to be located internally and distributed throughout the protein, suggesting that they impacted PA3719 binding by altering MexR structure or conformation rather than by having residues interacting specifically with PA3719. Four of six mutant MexR proteins studied retained repressor activity even in a nalC strain producing PA3719. Again, this is consistent with a PA3719 interaction with MexR being necessary to obviate MexR repressor activity. The gene encoding PA3719 has thus been renamed armR (antirepressor for MexR). A representative "noninteracting" mutant MexR protein, MexR(I104F), was purified, and ITC confirmed that it bound PA3719 with reduced affinity (5.4-fold reduced; K(D), 853.2 +/- 151.1 nM). Consistent with this, MexR(I104F) repressor activity, as assessed using the in vitro transcription assay, was only weakly compromised by PA3719. Finally, two mutations (L36P and W45A) in ArmR compromising its interaction with MexR have been isolated and mapped to a putative C-terminal alpha-helix of the protein that alone is sufficient for interaction with MexR.
Collapse
Affiliation(s)
- Denis M Daigle
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario, Canada K7L 3N6.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ueki T, Inouye S. A novel regulation on developmental gene expression of fruiting body formation in Myxobacteria. Appl Microbiol Biotechnol 2006; 72:21-29. [PMID: 16791590 DOI: 10.1007/s00253-006-0455-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 02/06/2006] [Accepted: 04/05/2006] [Indexed: 12/19/2022]
Abstract
Myxobacteria are Gram-negative soil microorganisms that prey on other microorganisms. Myxobacteria have significant potential for applications in biotechnology because of their extraordinary ability to produce natural products such as secondary metabolites. Myxobacteria also stand out as model organisms for the study of cell-cell interactions and multicellular development during their complex life cycle. Cellular morphogenesis during multicellular development in myxobacteria is very similar to that in the eukaryotic soil amoebae. Recent studies have started uncovering molecular mechanisms directing the myxobacterial life cycle. We describe recent studies on signal transduction and gene expression during multicellular development in the myxobacterium Myxococcus xanthus. We provide our current model for signal transduction pathways mediated by a two-component His-Asp phosphorelay system and a Ser/Thr kinase cascade.
Collapse
Affiliation(s)
- Toshiyuki Ueki
- Department of Biochemistry, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ, 08854, USA
| | - Sumiko Inouye
- Department of Biochemistry, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ, 08854, USA.
| |
Collapse
|
14
|
Ueki T, Xu CY, Inouye S. SigF, a new sigma factor required for a motility system of Myxococcus xanthus. J Bacteriol 2006; 187:8537-41. [PMID: 16321963 PMCID: PMC1317018 DOI: 10.1128/jb.187.24.8537-8541.2005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A new sigma factor, SigF, was identified from the social and developmental bacterium Myxococcus xanthus. SigF is required for fruiting body formation during development as well as social motility during vegetative growth. Analysis of gene expression indicates that it is possible that the sigF gene is involved in regulation of an unidentified gene for social motility.
Collapse
Affiliation(s)
- Toshiyuki Ueki
- Department of Biochemistry, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
15
|
McGowan SJ, Barnard AML, Bosgelmez G, Sebaihia M, Simpson NJL, Thomson NR, Todd DE, Welch M, Whitehead NA, Salmond GPC. Carbapenem antibiotic biosynthesis in Erwinia carotovora is regulated by physiological and genetic factors modulating the quorum sensing-dependent control pathway. Mol Microbiol 2005; 55:526-45. [PMID: 15659168 DOI: 10.1111/j.1365-2958.2004.04397.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Erwinia carotovora produces the beta-lactam antibiotic, carbapenem, in response to a quorum sensing signalling molecule, N-(3-oxohexanoyl)-L-homoserine lactone (OHHL). We have mapped the OHHL-dependent promoter upstream of the first of the biosynthetic genes, carA. We have also analysed the effect on this promoter of the known genetic regulators of carbapenem expression, carR, carI (encoding homologues of LuxR and LuxI respectively) and hor (encoding a SlyA/MarR-like transcriptional regulator). We describe a previously unknown promoter located within the carA-H operon. This promoter does not respond to CarR and is required for quorum sensing-independent expression of the carbapenem resistance determinants encoded by the carFG genes. We have mapped the carR, carI and hor transcription start points, shown that CarR is positively autoregulated in the presence of OHHL, and have demonstrated negative feedback affecting transcription of carI. In addition, various environmental and physiological factors were shown to impinge on the transcription of the car biosynthetic genes. The nature of the carbon source and the temperature of growth influence carbapenem production by modulating the level of the OHHL signalling molecule, and thereby physiologically fine-tune the quorum sensing regulatory system.
Collapse
Affiliation(s)
- Simon J McGowan
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Moraleda-Muñoz A, Pérez J, Fontes M, Murillo FJ, Muñoz-Dorado J. Copper induction of carotenoid synthesis in the bacterium Myxococcus xanthus. Mol Microbiol 2005; 56:1159-68. [PMID: 15882411 DOI: 10.1111/j.1365-2958.2005.04613.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Copper induces a red pigmentation in cells of the bacterium Myxococcus xanthus when they are incubated in the dark, at suboptimal growth conditions. The colouration results from the accumulation of carotenoids, as demonstrated by chemical analysis, and by the lack of a copper effect on M. xanthus mutants affected in known structural genes for carotenoid synthesis. None of several other metals or oxidative agents can mimic the copper effect on carotenoid synthesis. Until now, blue light was the only environmental agent known to induce carotenogenesis in M. xanthus. As happens for the blue light, copper activates the transcription of the structural genes for carotenoid synthesis through the transcriptional activation of the carQRS operon. This encodes the ECF sigma factor CarQ, directly or indirectly responsible for the activation of the structural genes, and the anti-sigma factor CarR, which physically interacts with CarQ to blocks its action in the absence of external stimuli. All but one of the other regulatory elements known to participate in the induction of carotenoid synthesis by blue light are required for the response to copper. The exception is CarF, a protein required for the light-mediated dismantling of the CarR-CarQ complex. In addition to carotenogenesis, copper induces other unknown cellular mechanisms that confer tolerance to the metal.
Collapse
Affiliation(s)
- Aurelio Moraleda-Muñoz
- Departamento de Microbiología, Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, Avda, Fuentenueva s/n, E-18071 Granada, Spain
| | | | | | | | | |
Collapse
|
17
|
Galbis-Martínez M, Fontes M, Murillo FJ. The high-mobility group A-type protein CarD of the bacterium Myxococcus xanthus as a transcription factor for several distinct vegetative genes. Genetics 2005; 167:1585-95. [PMID: 15342500 PMCID: PMC1471020 DOI: 10.1534/genetics.104.029207] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CarD is the only reported prokaryotic protein showing structural and functional features typical of eukaryotic high-mobility group A transcription factors. In prokaryotes, proteins similar to CarD appear to be confined primarily to myxobacteria. In Myxococcus xanthus, CarD has been previously shown to act as a positive element in two different regulatory networks: one for light-induced synthesis of carotenoids and the other for starvation-induced fruiting body formation. We have now tested the effect of a loss-of-function mutation in the carD gene (carD1) on the expression of a random collection of lacZ-tagged genes, which are normally expressed in the dark during vegetative growth in rich medium. Our results indicate that CarD plays a significant role in the transcriptional regulation of various indicated genes. The carD1 mutation downregulates some genes and upregulates others. Also reported here is the isolation of several mutations that suppress the strong effect of carD1 on the expression of a particular vegetative gene. One of them (sud-2) also suppresses the effect of carD1 on other vegetative genes and on fruiting-body formation. Thus, CarD and the sud-2 gene product appear to participate in a single mechanism, which underlies various apparently diverse regulatory phenomena ascribed to CarD.
Collapse
Affiliation(s)
- Marisa Galbis-Martínez
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | | | | |
Collapse
|
18
|
Hanikenne M, Krämer U, Demoulin V, Baurain D. A comparative inventory of metal transporters in the green alga Chlamydomonas reinhardtii and the red alga Cyanidioschizon merolae. PLANT PHYSIOLOGY 2005; 137:428-46. [PMID: 15710683 PMCID: PMC1065346 DOI: 10.1104/pp.104.054189] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 11/16/2004] [Accepted: 11/18/2004] [Indexed: 05/20/2023]
Affiliation(s)
- Marc Hanikenne
- Metal Homeostasis Group, Max Planck Institute for Plant Molecular Physiology, 14476 Golm, Germany.
| | | | | | | |
Collapse
|
19
|
Whitworth DE, Bryan SJ, Berry AE, McGowan SJ, Hodgson DA. Genetic dissection of the light-inducible carQRS promoter region of Myxococcus xanthus. J Bacteriol 2004; 186:7836-46. [PMID: 15547254 PMCID: PMC529085 DOI: 10.1128/jb.186.23.7836-7846.2004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Myxococcus xanthus photoprotective carotenoids are produced in response to illumination due to regulated expression of carotenoid biosynthesis genes at two loci. Induction of the carotenogenesis regulon is dependent on expression of the carQRS operon. The first gene product of the operon, CarQ, is a sigma factor belonging to the ECF family and is responsible for light-dependent initiation of transcription at the carQRS promoter. We defined the minimal carQRS promoter as a 145-bp fragment of DNA upstream of the carQRS transcriptional start site, which includes the promoter for a divergent gene, gufA. In order to elucidate regions with the promoter required for activity, point mutations were introduced into the carQRS promoter between positions -151 and 6. While most sequence changes abolished carQRS promoter activity, two changes enhanced promoter activity and two changes caused the mutant promoter to become constitutive and independent of CarQ. The promoter-null point mutations and 6-bp deletion mutations implied that the carQRS promoter requires a functional gufA promoter for transcriptional activity and vice versa. By mapping the extent of the promoter region, identifying sequences important for promoter activity, and highlighting potential topological effects, we provide a foundation for further analysis of the carQRS promoter.
Collapse
Affiliation(s)
- David E Whitworth
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | | | | | | |
Collapse
|
20
|
Pérez-Marín MC, López-Rubio JJ, Murillo FJ, Elías-Arnanz M, Padmanabhan S. The N terminus of Myxococcus xanthus CarA repressor is an autonomously folding domain that mediates physical and functional interactions with both operator DNA and antirepressor protein. J Biol Chem 2004; 279:33093-103. [PMID: 15163666 DOI: 10.1074/jbc.m405225200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of the Myxococcus xanthus carB operon, which encodes the majority of the enzymes involved in light-induced carotenogenesis, is down-regulated in the dark by the CarA repressor binding to its bipartite operator. CarS, produced on illumination, relieves repression of carB by physically interacting with CarA to dis-mantle CarA-DNA complexes. Here, we demonstrate that the N- and C-terminal portions of CarA are organized as distinct structural and functional domains. Specifically, we show that the 78 N-terminal residues of CarA, CarA(Nter), form a monomeric, highly helical, autonomously folding unit with significant structural stability. Significantly, CarA(Nter) houses both the operator and CarS binding specificity determinants of CarA. CarA(Nter) binds operator with a lower affinity than whole CarA, and the CarA(Nter)-CarS complex has a 1:1 stoichiometry. In vitro, sufficiently high concentrations of CarA(Nter) block M. xanthus RNA polymerase-promoter binding, and this is relieved by CarS. In vivo, substitution of the gene carA by that for CarA(Nter) results in constitutive expression of carB just as in a carA-deleted background. However, re-engineering the latter strain to overexpress CarA(Nter) restores repression of carB. Thus, the 78-residue N-terminal portion of CarA is an autonomously folded, dual function domain that orchestrates specific DNA-protein and protein-protein interactions and, when overexpressed, can be functionally competent in vivo.
Collapse
Affiliation(s)
- Mari Cruz Pérez-Marín
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia 30071, Spain
| | | | | | | | | |
Collapse
|
21
|
López-Rubio JJ, Padmanabhan S, Lázaro JM, Salas M, Murillo FJ, Elías-Arnanz M. Operator design and mechanism for CarA repressor-mediated down-regulation of the photoinducible carB operon in Myxococcus xanthus. J Biol Chem 2004; 279:28945-53. [PMID: 15123730 DOI: 10.1074/jbc.m403459200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The carB operon encodes all except one of the enzymes involved in light-induced carotenogenesis in Myxococcus xanthus. Expression of its promoter (P(B)) is repressed in the dark by sequence-specific DNA binding of CarA to a palindrome (pI) located between positions -47 and -64 relative to the transcription start site. This promotes subsequent binding of CarA to additional sites that remain to be defined. CarS, produced in the light, interacts physically with CarA, abrogates CarA-DNA binding, and thereby derepresses P(B). In this study, we delineate the operator design that exists for CarA by precisely mapping out the second operator element. For this, we examined how stepwise deletions and site-directed mutagenesis in the region between the palindrome and the transcription start site affect CarA binding around P(B) in vitro and expression of P(B) in vivo. These revealed the second operator element to be an imperfect interrupted palindrome (pII) spanning positions -26 to -40. In vitro assays using purified M. xanthus RNA polymerase showed that CarA abolishes P(B)-RNA polymerase binding and runoff transcription and that both were restored by CarS, thus rationalizing the observations in vivo. CarA binding to pII (after association with pI) effectively occludes RNA polymerase from P(B) and so provides the operative mechanism for the repression of the carB operon by CarA. The bipartite operator design, whereby transcription is blocked by the low affinity CarA-pII binding and is readily restored by CarS, may have evolved to match the needs for a rapid and an effective response to light.
Collapse
Affiliation(s)
- José Juan López-Rubio
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia 30071
| | | | | | | | | | | |
Collapse
|
22
|
Cayuela ML, Elías-Arnanz M, Peñalver-Mellado M, Padmanabhan S, Murillo FJ. The Stigmatella aurantiaca homolog of Myxococcus xanthus high-mobility-group A-type transcription factor CarD: insights into the functional modules of CarD and their distribution in bacteria. J Bacteriol 2003; 185:3527-37. [PMID: 12775690 PMCID: PMC156215 DOI: 10.1128/jb.185.12.3527-3537.2003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2003] [Accepted: 03/25/2003] [Indexed: 11/20/2022] Open
Abstract
Transcriptional factor CarD is the only reported prokaryotic analog of eukaryotic high-mobility-group A (HMGA) proteins, in that it has contiguous acidic and AT hook DNA-binding segments and multifunctional roles in Myxococcus xanthus carotenogenesis and fruiting body formation. HMGA proteins are small, randomly structured, nonhistone, nuclear architectural factors that remodel DNA and chromatin structure. Here we report on a second AT hook protein, CarD(Sa), that is very similar to CarD and that occurs in the bacterium Stigmatella aurantiaca. CarD(Sa) has a C-terminal HMGA-like domain with three AT hooks and a highly acidic adjacent region with one predicted casein kinase II (CKII) phosphorylation site, compared to the four AT hooks and five CKII sites in CarD. Both proteins have a nearly identical 180-residue N-terminal segment that is absent in HMGA proteins. In vitro, CarD(Sa) exhibits the specific minor-groove binding to appropriately spaced AT-rich DNA that is characteristic of CarD or HMGA proteins, and it is also phosphorylated by CKII. In vivo, CarD(Sa) or a variant without the single CKII phosphorylation site can replace CarD in M. xanthus carotenogenesis and fruiting body formation. These two cellular processes absolutely require that the highly conserved N-terminal domain be present. Thus, three AT hooks are sufficient, the N-terminal domain is essential, and phosphorylation in the acidic region by a CKII-type kinase can be dispensed with for CarD function in M. xanthus carotenogenesis and fruiting body development. Whereas a number of hypothetical proteins homologous to the N-terminal region occur in a diverse array of bacterial species, eukaryotic HMGA-type domains appear to be confined primarily to myxobacteria.
Collapse
Affiliation(s)
- María L Cayuela
- Departamento de Genética y Microbiología, Universidad de Murcia, 30100 Murcia, Spain
| | | | | | | | | |
Collapse
|
23
|
Van Doren M, Mathews WR, Samuels M, Moore LA, Broihier HT, Lehmann R. fear of intimacy encodes a novel transmembrane protein required for gonad morphogenesis in Drosophila. Development 2003; 130:2355-64. [PMID: 12702650 DOI: 10.1242/dev.00454] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Gonad formation requires specific interactions between germ cells and specialized somatic cells, along with the elaborate morphogenetic movements of these cells to create an ovary or testis. We have identified mutations in the fear of intimacy (foi) gene that cause defects in the formation of the embryonic gonad in Drosophila. foi is of particular interest because it affects gonad formation without affecting gonad cell identity, and is therefore specifically required for the morphogenesis of this organ. foi is also required for tracheal branch fusion during tracheal development. E-cadherin/shotgun is similarly required for both gonad coalescence and tracheal branch fusion, suggesting that E-cadherin and FOI cooperate to mediate these processes. foi encodes a member of a novel family of transmembrane proteins that includes the closely related human protein LIV1. Our findings that FOI is a cell-surface protein required in the mesoderm for gonad morphogenesis shed light on the function of this new family of proteins and on the molecular mechanisms of organogenesis.
Collapse
Affiliation(s)
- Mark Van Doren
- Department of Biology, 305 Mudd Hall, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Browning DF, Whitworth DE, Hodgson DA. Light-induced carotenogenesis in Myxococcus xanthus: functional characterization of the ECF sigma factor CarQ and antisigma factor CarR. Mol Microbiol 2003; 48:237-51. [PMID: 12657058 DOI: 10.1046/j.1365-2958.2003.03431.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Illumination of dark-grown Myxococcus xanthus with blue light leads to the induction of carotenoid synthesis. Central to this response is the activation of the light-inducible promoter, PcarQRS, and the transcription of three downstream genes, carQ, carR and carS. Sequence analysis predicted that CarQ is a member of the ECF (extracytoplasmic function) subfamily of RNA polymerase sigma factors, and that CarR is an inner membrane protein. Genetic analysis strongly implied that CarR is an antisigma factor that sequesters CarQ in a transcriptionally inactive complex. Using in vitro transcription run-off assays, we present biochemical evidence that CarQ functions as a bacterial sigma factor and is responsible for transcription initiation at PcarQRS. Similar experiments using the crtI promoter failed to implicate CarQ in direct transcription of the crtI gene. Experiments using the yeast two-hybrid system demonstrated a protein-protein interaction between CarQ and CarR, providing evidence of a CarQ-CarR complex. The yeast two-hybrid system data also indicated that CarR is capable of oligomerization. Fractionation of M. xanthus membranes with the detergent sarkosyl showed that CarR was associated with the inner membrane. Furthermore, CarR was found to be unstable in illuminated stationary phase cells, providing a possible mechanism by which the CarR-CarQ complex is disrupted.
Collapse
Affiliation(s)
- Douglas F Browning
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | | |
Collapse
|
25
|
Fontes M, Galbis-Martínez L, Murillo FJ. A novel regulatory gene for light-induced carotenoid synthesis in the bacterium Myxococcus xanthus. Mol Microbiol 2003; 47:561-71. [PMID: 12519205 DOI: 10.1046/j.1365-2958.2003.03319.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Myxococcus xanthus cells respond to blue light by producing carotenoids. Light triggers a network of regulatory actions that lead to the transcriptional activation of the carotenoid genes. By screening the colour phenotype of a collection of Tn5-lac insertion mutants, we have isolated a new mutant devoid of carotenoid synthesis. We map the transposon insertion, which co-segregates with the mutant phenotype, to a previously unknown gene designated here as carF. An in frame deletion within carF causes the same phenotype as the Tn5-lac insertion. The carF deletion prevents the activation of the normally light-inducible genes, without affecting the expression of any of the regulatory genes known to be expressed in a light-independent manner. Until now, the switch that sets off the regulatory cascade had been identified with light-driven inactivation of protein CarR, an antisigma factor. The exact mechanism of this inactivation has remained elusive. We show by epistatic analysis that the carF gene product participates in the light-dependent inactivation of CarR. The predicted CarF amino acid sequence reveals no known prokaryotic homologues. On the other hand, CarF is remarkably similar to Kua, a family of proteins of unknown function that is widely distributed among eukaryotes.
Collapse
Affiliation(s)
- Marta Fontes
- Departamento de Genética y Microbiología, Facultad de Biologie, Universidad de Murcia, Spain
| | | | | |
Collapse
|
26
|
Begum NA, Kobayashi M, Moriwaki Y, Matsumoto M, Toyoshima K, Seya T. Mycobacterium bovis BCG cell wall and lipopolysaccharide induce a novel gene, BIGM103, encoding a 7-TM protein: identification of a new protein family having Zn-transporter and Zn-metalloprotease signatures. Genomics 2002; 80:630-45. [PMID: 12504855 DOI: 10.1006/geno.2002.7000] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
To identify novel genes induced during innate immune activation, we screened a cDNA library prepared from monocytes stimulated with Mycobacterium bovis BCG cell wall. A novel transcript with three-protein coding potential was identified, and the expressed proteins from individual frames showed distinct intracellular localization. Live and heat-killed Mycobacterium, bacterial cell wall, and inflammatory cytokines like TNFalpha were found to be potent inducers of the transcript. Expression of this gene is very low or undetectable in unstimulated monocytes, while a steady expression level was observed during differentiation of monocytes to dendritic cells and macrophages. The entire gene consisted of eight major exons and was localized on chromosome 4q22-q24, spanning approximately 84 kb. The main open reading frame of the transcript encoded a putative seven-transmembrane (TM) protein that showed homology with a number of functionally unknown proteins in the database. Further analysis revealed that all of these proteins have detectable similarity with the ZIP family of metal transporters. In fact, increased accumulation of intracellular Zn(2+) was observed due to the expression of BIGM103 in CHO cells. However, the identified proteins are structurally unique compared to known ZIP members and they also possess the hallmark of Zn-metalloproteases, suggesting a new class of multi-TM protein with dual features. Here we present a collection of these proteins and discuss the functional aspects of BIGM103, based on our results and current findings on two members of the family, Drosophila Catsup and Arabidopsis IAR1.
Collapse
Affiliation(s)
- Nasim A Begum
- Department of Immunology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Higashinari-ku, Osaka, 537-8511, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Cervantes M, Murillo FJ. Role for vitamin B(12) in light induction of gene expression in the bacterium Myxococcus xanthus. J Bacteriol 2002; 184:2215-24. [PMID: 11914353 PMCID: PMC134944 DOI: 10.1128/jb.184.8.2215-2224.2002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A light-inducible promoter (P(B)) drives the carB operon (carotenoid genes) of the bacterium Myxococcus xanthus. A gene encoding a regulator of carotenoid biosynthesis was identified by studying mutant strains carrying a transcriptional fusion to P(B) and deletions in three candidate genes. Our results prove that the identified gene, named carA, codes for a repressor of the P(B) promoter in the dark. They also show that the carA gene product does not participate in the light activation of two other promoters connected with carotenoid synthesis or its regulation in M. xanthus. CarA is a novel protein consisting of a DNA-binding domain of the family of MerR helix-turn-helix transcriptional regulators, directly joined to a cobalamin-binding domain. In support of this, we report here that the presence of vitamin B(12) or some other cobalamin derivatives is absolutely required for activation of the P(B) promoter by light.
Collapse
Affiliation(s)
- María Cervantes
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | | |
Collapse
|
28
|
López-Rubio JJ, Elías-Arnanz M, Padmanabhan S, Murillo FJ. A repressor-antirepressor pair links two loci controlling light-induced carotenogenesis in Myxococcus xanthus. J Biol Chem 2002; 277:7262-70. [PMID: 11748235 DOI: 10.1074/jbc.m110351200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The light-inducible carB operon encodes all but one of the structural genes for carotenogenesis in Myxococcus xanthus. It is transcriptionally controlled by two proteins expressed from two unlinked genetic loci: CarS from the light-inducible carQRS operon, and CarA from the light-independent carA operon. CarA represses transcription from the carB promoter (P(B)) in the dark, and CarS counteracts this on illumination. The CarA sequence revealed a helix-turn-helix DNA-binding motif of the type found in bacterial MerR transcriptional factors, whereas CarS contains no known DNA-binding motif. Here, we examine the molecular interplay between CarA and CarS. We demonstrate the following. (i) Whereas CarS exhibits no DNA binding in vitro, CarA binds specifically to a region encompassing P(B) to form at least two distinct complexes. (ii) A palindrome located between positions -46 and -63 relative to the transcription start point is essential but not sufficient for the formation of the two CarA-DNA complexes observed. (iii) CarS abrogates the specific DNA binding of CarA. CarA is therefore a repressor and CarS an antirepressor. (iv) CarS physically interacts with CarA; thus, the functional interaction between them is mediated by protein-protein interactions.
Collapse
Affiliation(s)
- José Juan López-Rubio
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia 30071, Spain
| | | | | | | |
Collapse
|
29
|
Ueki T, Inouye S. Transcriptional activation of a heat-shock gene, lonD, of Myxococcus xanthus by a two component histidine-aspartate phosphorelay system. J Biol Chem 2002; 277:6170-7. [PMID: 11748231 DOI: 10.1074/jbc.m110155200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In vitro transcription of lonD, a heat-shock gene from Myxococcus xanthus, was stimulated in the presence of extract from heat-shocked cells. For this stimulation the upstream promoter region of lonD was found to be essential. Activation of lonD transcription was also observed when extract from non-heat-shocked cells was heat treated in vitro at 42 degrees C for 10 min. A DNA binding assay and footprinting analysis revealed that a factor(s) binds to the upstream region from -122 to -107 with respect to the transcription initiation site. This region was required for heat-shock induction of lonD expression both in vitro and in vivo. The lonD promoter-binding protein named HsfA was purified, and its gene was cloned. Analysis of the DNA sequence reveals that HsfA is a response regulator of the two-component system and shows high sequence similarity to the NtrC family or the enhancer-binding proteins. Upstream of hsfA, a gene encoding a histidine kinase was identified and named hsfB. HsfB was found to be autophosphorylated and able to phosphorylate HsfA. HsfA with HsfB activated in vitro transcription of lonD in a manner dependent on RNA polymerase containing SigA, the housekeeping sigma factor of M. xanthus.
Collapse
Affiliation(s)
- Toshiyuki Ueki
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
30
|
Abstract
Envelope stress responses play important physiological roles in a variety of processes, including protein folding, cell wall biosynthesis, and pathogenesis. Many of these responses are controlled by extracytoplasmic function (ECF) sigma factors that respond to external signals by means of a membrane-localized anti-sigma factor. One of the best-characterized, ECF-regulated responses is the sigma(E) envelope stress response of Escherichia coli. The sigma(E) pathway ensures proper assembly of outer-membrane proteins (OMP) by controlling expression of genes involved in OMP folding and degradation in response to envelope stresses that disrupt these processes. Prevailing evidence suggests that, in E. coli, a second envelope stress response controlled by the Cpx two-component system ensures proper pilus assembly. The sensor kinase CpxA recognizes misfolded periplasmic proteins, such as those generated during pilus assembly, and transduces this signal to the response regulator CpxR through conserved phosphotransfer reactions. Phosphorylated CpxR activates transcription of periplasmic factors necessary for pilus assembly.
Collapse
Affiliation(s)
- T L Raivio
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9; Canada.
| | | |
Collapse
|
31
|
Padmanabhan S, Elías-Arnanz M, Carpio E, Aparicio P, Murillo FJ. Domain architecture of a high mobility group A-type bacterial transcriptional factor. J Biol Chem 2001; 276:41566-75. [PMID: 11533063 DOI: 10.1074/jbc.m106352200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Myxococcus xanthus transcriptional factor CarD participates in carotenogenesis and fruiting body formation. It is the only reported prokaryotic protein having adjacent "AT-hook" DNA-binding and acidic regions characteristic of eukaryotic high mobility group A (HMGA) proteins. The latter are small, unstructured, nonhistone nuclear proteins that function as architectural factors to remodel DNA and chromatin structure and modulate various DNA binding activities. We find CarD to be predominantly dimeric with two stable domains: (a) an N-terminal domain of defined secondary and tertiary structure which is absent in eukaryotic HMGA proteins; (b) a C-terminal domain formed by the acidic and AT-hook segments and lacking defined structure. CarD, like HMGA proteins, binds specifically to the minor-groove of AT-rich DNA present in two appropriately spaced tracts. As in HMGA proteins, casein kinase II can phosphorylate the CarD acidic region, and this dramatically decreases the DNA binding affinity of CarD. The acidic region, in addition to modulating DNA binding, confers structural stability to CarD. We discuss how the structural and functional plasticity arising from domain organization in CarD could be linked to its role as a general transcriptional factor in M. xanthus.
Collapse
Affiliation(s)
- S Padmanabhan
- Departamento de Genética y Microbiologia and Area de Inmunologia, Universidad de Murcia, 30071 Murcia, Spain.
| | | | | | | | | |
Collapse
|
32
|
Whitworth DE, Hodgson DA. Light-induced carotenogenesis in Myxococcus xanthus: evidence that CarS acts as an anti-repressor of CarA. Mol Microbiol 2001; 42:809-19. [PMID: 11722744 DOI: 10.1046/j.1365-2958.2001.02679.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the bacterium Myxococcus xanthus, carotenoids are produced in response to illumination, as a result of expression of the crt carotenoid biosynthesis genes. The majority of crt genes are clustered in the crtEBDC operon, which is repressed in the dark by CarA. Genetic data suggest that, in the light, CarS is synthesized and achieves activation of the crtEBDC operon by removing the repressive action of CarA. As CarS contains no known DNA-binding motif, the relief of CarA-mediated repression was postulated to result from a direct interaction between these two proteins. Use of the yeast two-hybrid system demonstrated direct interaction between CarA and CarS. The two-hybrid system also implied that CarA and, possibly, CarS are capable of homodimerization. Direct evidence for CarS anti-repressor action was provided in vitro. A glutathione S-transferase (GST)-CarA protein fusion was shown to bind specifically to a palindromic operator sequence within the crtEBDC promoter. CarA was prevented from binding to its operator, and prebound CarA was removed by the addition of purified CarS. CarS is therefore an anti-repressor.
Collapse
Affiliation(s)
- D E Whitworth
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | |
Collapse
|
33
|
Bagheri-Fam S, Ferraz C, Demaille J, Scherer G, Pfeifer D. Comparative genomics of the SOX9 region in human and Fugu rubripes: conservation of short regulatory sequence elements within large intergenic regions. Genomics 2001; 78:73-82. [PMID: 11707075 DOI: 10.1006/geno.2001.6648] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Campomelic dysplasia (CD), a human skeletal malformation syndrome with XY sex reversal, is caused by heterozygous mutations in and around the gene SOX9. SOX9 has an extended 5' control region, as indicated by CD translocation breakpoints scattered over 1 Mb proximal to SOX9 and by expression data from mice transgenic for human SOX9-spanning yeast artificial chromosomes. To identify long-range regulatory elements within the SOX9 5' control region, we compared approximately 3.7 Mb and 195 kb of sequence around human and Fugu rubripes SOX9, respectively. We identified only seven and five protein-coding genes in the human and F. rubripes sequences, respectively. Four of the F. rubripes genes have been mapped in humans; all reside on chromosome 17 but show extensive intrachromosomal gene shuffling compared with the gene order in F. rubripes. In both species, very large intergenic distances separate SOX9 from its directly flanking genes: 2 Mb and 500 kb on either side of SOX9 in humans, and 68 and 97 kb on either side of SOX9 in F. rubripes. Comparative sequence analysis of the intergenic regions revealed five conserved elements, E1-E5, up to 290 kb 5' to human SOX9 and up to 18 kb 5' to F. rubripes SOX9, and three such elements, E6-E8, 3' to SOX9. Where available, mouse sequences confirm conservation of the elements. From the yeast artificial chromosome transgenic data, elements E3-E5 are candidate enhancers for SOX9 expression in limb and vertebral column, and 8 of 10 CD translocation breakpoints separate these elements from SOX9.
Collapse
Affiliation(s)
- S Bagheri-Fam
- Institute of Human Genetics and Anthropology, University of Freiburg, Breisacherstr. 33, Freiburg, D-79106, Germany
| | | | | | | | | |
Collapse
|
34
|
Jensen-Cain DM, Quinn FD. Differential expression of sigE by Mycobacterium tuberculosis during intracellular growth. Microb Pathog 2001; 30:271-8. [PMID: 11373121 DOI: 10.1006/mpat.2001.0431] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Mycobacterium tuberculosis sigE gene encodes a sigma factor that is a member of the extracytoplasmic function subfamily of sigma factors. Using RT-PCR we demonstrated that sigE is expressed in M. tuberculosis bacilli during growth in human macrophages beginning after 30 min but before 6 h after infection through at least 5 days after infection, but that sigE is not expressed by M. tuberculosis bacteria during growth in Middlebrook 7H9 broth medium. However, sigE expression can be induced by treatment of broth cultures with hydrogen peroxide. Further, sigE is not expressed by M. tuberculosis bacilli during attachment or growth in type II pneumocytes. Using a green fluorescent protein (GFP) reporter gene fused to the sigE promoter, we observed induction of GFP expression following macrophage infection. Western blotting confirmed that sigE protein expression correlated with mRNA expression in induced systems. Analysis of the region of the M. tuberculosis genome encoding sigE suggested it is part of an operon consisting of sigE-orf1-htrA-orf2. The data presented in this report showed that sigE is differentially expressed by M. tuberculosis bacilli in macrophages and might play a role in the pathogenesis of this organism.
Collapse
Affiliation(s)
- D M Jensen-Cain
- Tuberculosis/Mycobacteriology Branch, Division of AIDS, STD and TB Laboratory Research, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | | |
Collapse
|
35
|
Moreno AJ, Fontes M, Murillo FJ. ihfA gene of the bacterium Myxococcus xanthus and its role in activation of carotenoid genes by blue light. J Bacteriol 2001; 183:557-69. [PMID: 11133949 PMCID: PMC94911 DOI: 10.1128/jb.183.2.557-569.2001] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myxococcus xanthus responds to blue light by producing carotenoids. Several regulatory genes are known that participate in the light action mechanism, which leads to the transcriptional activation of the carotenoid genes. We had already reported the isolation of a carotenoid-less, Tn5-induced strain (MR508), whose mutant site was unlinked to the indicated regulatory genes. Here, we show that OmegaMR508::Tn5 affects all known light-inducible promoters in different ways. It blocks the activation of two of them by light but makes the activity of a third one light independent. The OmegaMR508 locus has been cloned and sequenced. The mutation had occurred at the promoter of a gene we propose is the M. xanthus ortholog of ihfA. This encodes the alpha subunit of the histone-like integration host factor protein. An in-frame deletion within ihfA causes the same effects as the OmegaMR508::Tn5 insertion. Like other IhfA proteins, the deduced amino acid sequence of M. xanthus IhfA shows much similarity to HU, another histone-like protein. Sequence comparison data, however, and the finding that the M. xanthus gene is preceded by gene pheT, as happens in other gram-negative bacteria, strongly argue for the proposed orthology relationship. The M. xanthus ihfA gene shows some unusual features, both from structural and physiological points of view. In particular, the protein is predicted to have a unique, long acidic extension at the carboxyl terminus, and it appears to be necessary for normal cell growth and even vital for a certain wild-type strain of M. xanthus.
Collapse
Affiliation(s)
- A J Moreno
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | | | | |
Collapse
|
36
|
Bibb MJ, Molle V, Buttner MJ. sigma(BldN), an extracytoplasmic function RNA polymerase sigma factor required for aerial mycelium formation in Streptomyces coelicolor A3(2). J Bacteriol 2000; 182:4606-16. [PMID: 10913095 PMCID: PMC94633 DOI: 10.1128/jb.182.16.4606-4616.2000] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2000] [Accepted: 05/15/2000] [Indexed: 11/20/2022] Open
Abstract
Sporulation mutants of Streptomyces coelicolor appear white because they are defective in the synthesis of the gray polyketide spore pigment, and such white (whi) mutants have been used to define 13 sporulation loci. whiN, one of five new whi loci identified in a recent screen of NTG (N-methyl-N'-nitro-N-nitrosoguanidine)-induced whi strains (N. J. Ryding et al., J. Bacteriol. 181:5419-5425, 1999), was defined by two mutants, R112 and R650. R650 produced frequent spores that were longer than those of the wild type. In contrast, R112 produced long, straight, undifferentiated hyphae, although rare spore chains were observed, sometimes showing highly irregular septum placement. Subcloning and sequencing showed that whiN encodes a member of the extracytoplasmic function subfamily of RNA polymerase sigma factors and that the sigma factor has an unusual N-terminal extension of approximately 86 residues that is not present in other sigma factors. A constructed whiN null mutant failed to form aerial mycelium (the "bald" phenotype) and, as a consequence, whiN was renamed bldN. This observation was not totally unexpected because, on some media, the R112 point mutant produced substantially less aerial mycelium than its parent, M145. The bldN null mutant did not fit simply into the extracellular signaling cascade proposed for S. coelicolor bld mutants. Expression of bldN was analyzed during colony development in wild-type and aerial mycelium-deficient bld strains. bldN was transcribed from a single promoter, bldNp. bldN transcription was developmentally regulated, commencing approximately at the time of aerial mycelium formation, and depended on bldG and bldH, but not on bldA, bldB, bldC, bldF, bldK, or bldJ or on bldN itself. Transcription from the p1 promoter of the response-regulator gene bldM depended on bldN in vivo, and the bldMp1 promoter was shown to be a direct biochemical target for sigma(BldN) holoenzyme in vitro.
Collapse
Affiliation(s)
- M J Bibb
- Department of Molecular Microbiology, John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom.
| | | | | |
Collapse
|
37
|
Yamazaki H, Ohnishi Y, Horinouchi S. An A-factor-dependent extracytoplasmic function sigma factor (sigma(AdsA)) that is essential for morphological development in Streptomyces griseus. J Bacteriol 2000; 182:4596-605. [PMID: 10913094 PMCID: PMC94632 DOI: 10.1128/jb.182.16.4596-4605.2000] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2000] [Accepted: 05/17/2000] [Indexed: 11/20/2022] Open
Abstract
A-factor (2-isocapryloyl-3R-hydroxymethyl-gamma-butyrolactone) at an extremely low concentration triggers streptomycin production and aerial mycelium formation in Streptomyces griseus. A-factor induces the expression of an A-factor-dependent transcriptional activator, AdpA, essential for both morphological and physiological differentiation by binding to the A-factor receptor protein ArpA, which has bound and repressed the adpA promoter, and dissociating it from the promoter. Nine DNA fragments that were specifically recognized and bound by histidine-tagged AdpA were isolated by cycles of a gel mobility shift-PCR method. One of them was located in front of a gene encoding an extracytoplasmic function sigma factor belonging to a subgroup of the primary sigma(70) family. The cloned gene was named AdpA-dependent sigma factor gene (adsA), and the gene product was named sigma(AdsA). Transcription of adsA depended on A-factor and AdpA, since adsA was transcribed at a very low and constant level in an A-factor-deficient mutant strain or in an adpA-disrupted strain. Consistent with this, transcription of adsA was greatly enhanced at or near the timing of aerial hyphae formation, as determined by low-resolution S1 nuclease mapping. High-resolution S1 mapping determined the transcriptional start point 82 nucleotides upstream of the translational start codon. DNase I footprinting showed that AdpA bound both strands symmetrically between the transcriptional start point and the translational start codon; AdpA protected the antisense strand from positions +7 to +41 with respect to the transcriptional start point and the sense strand from positions +12 to +46. A weak palindrome was found in the AdpA-binding site. The unusual position bound by AdpA as a transcriptional activator, in relation to the promoter, suggested the presence of a mechanism by which AdpA activates transcription of adsA in some unknown way. Disruption of the chromosomal adsA gene resulted in loss of aerial hyphae formation but not streptomycin or yellow pigment production, indicating that sigma(AdsA) is involved only in morphological development and not in secondary metabolic function. The presence of a single copy in each of the Streptomyces species examined by Southern hybridization suggests a common role in morphogenesis in this genus.
Collapse
Affiliation(s)
- H Yamazaki
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | |
Collapse
|
38
|
Yamanaka K, Inouye M, Inouye S. Identification and characterization of five cspA homologous genes from Myxococcus xanthus. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1447:357-65. [PMID: 10542339 DOI: 10.1016/s0167-4781(99)00164-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Escherichia coli contains a large CspA family consisting of nine homologues, in which four are cold-shock inducible and one is stationary-phase inducible. Here, we demonstrate that Myxococcus xanthus possesses at least five CspA homologues, CspA to CspE. Hydrophobic residues forming a hydrophobic core, and aromatic residues, which are included in functional motifs RNP-1 and RNP-2 involved in binding to RNA and ssDNA, are well conserved. These facts suggest that M. xanthus CspA homologues have a similar structure and function as E. coli CspA. However, in contrast to the E. coli CspA family, the expression of M. xanthus csp genes as judged by primer extension analysis is not significantly regulated by temperature changes, except for cspB of which expression was reduced to less than 10% upon heat shock at 42 degrees C. Such constitutive expression of the csp genes may be important for M. xanthus, a soil-dwelling bacterium, to survive under conditions of exposure to various environmental changes in nature.
Collapse
Affiliation(s)
- K Yamanaka
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
39
|
Fisseha M, Biran D, Kroos L. Identification of the Omega4499 regulatory region controlling developmental expression of a Myxococcus xanthus cytochrome P-450 system. J Bacteriol 1999; 181:5467-75. [PMID: 10464222 PMCID: PMC94057 DOI: 10.1128/jb.181.17.5467-5475.1999] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Omega4499 is the site of a Tn5 lac insertion in the Myxococcus xanthus chromosome that fuses lacZ expression to a developmentally regulated promoter. Cell-cell interactions that occur during development, including C signaling, are required for normal expression of Tn5 lac Omega4499. The DNA upstream of the Omega4499 insertion has been cloned, and the promoter has been localized. Analysis of the DNA sequence downstream of the promoter revealed one complete open reading frame and a second partial open reading frame that is interrupted by Tn5 lac Omega4499. The predicted products of these open reading frames are highly similar to reductase and oxidase components of bacterial cytochrome P-450 systems, which allow catabolism or anabolism of unusual compounds. However, the function of the gene products of the Omega4499 locus remains unclear because M. xanthus containing Tn5 lac Omega4499 exhibits no apparent defect in growth, developmental aggregation, fruiting body formation, or sporulation. Deletion analysis of the Omega4499 regulatory region showed that multiple DNA elements spanning more than 500 bp upstream of the transcriptional start site contribute to developmental promoter activity. At least two DNA elements, one downstream of -49 bp and one between -49 and -218 bp, boosted activity of the promoter in response to intercellular C signaling. Three sequences in the Omega4499 promoter region, centered at -55, -33, and -1 bp, nearly match a 7-bp sequence found in other C signal-dependent promoters. We propose that these sequences, matching the consensus sequence 5'-CAYYCCY-3', be called C box sequences, and we speculate that these sequences are cis-acting regulatory elements important for the expression of M. xanthus genes that depend upon intercellular C signaling during development.
Collapse
Affiliation(s)
- M Fisseha
- Department of Biochemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | |
Collapse
|
40
|
Abstract
A mechanism for regulating gene expression at the level of transcription utilizes an antagonist of the sigma transcription factor known as the anti-sigma (anti-sigma) factor. The cytoplasmic class of anti-sigma factors has been well characterized. The class includes AsiA form bacteriophage T4, which inhibits Escherichia coli sigma 70; FlgM, present in both gram-positive and gram-negative bacteria, which inhibits the flagella sigma factor sigma 28; SpoIIAB, which inhibits the sporulation-specific sigma factor, sigma F and sigma G, of Bacillus subtilis; RbsW of B. subtilis, which inhibits stress response sigma factor sigma B; and DnaK, a general regulator of the heat shock response, which in bacteria inhibits the heat shock sigma factor sigma 32. In addition to this class of well-characterized cytoplasmic anti-sigma factors, a new class of homologous, inner-membrane-bound anti-sigma factors has recently been discovered in a variety of eubacteria. This new class of anti-sigma factors regulates the expression of so-called extracytoplasmic functions, and hence is known as the ECF subfamily of anti-sigma factors. The range of cell processes regulated by anti-sigma factors is highly varied and includes bacteriophage phage growth, sporulation, stress response, flagellar biosynthesis, pigment production, ion transport, and virulence.
Collapse
Affiliation(s)
- K T Hughes
- Department of Microbiology, University of Washington, Seattle 98195, USA.
| | | |
Collapse
|
41
|
Ward MJ, Lew H, Treuner-Lange A, Zusman DR. Regulation of motility behavior in Myxococcus xanthus may require an extracytoplasmic-function sigma factor. J Bacteriol 1998; 180:5668-75. [PMID: 9791117 PMCID: PMC107626 DOI: 10.1128/jb.180.21.5668-5675.1998] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/1998] [Accepted: 08/28/1998] [Indexed: 11/20/2022] Open
Abstract
Using interaction trap technology, we identified a putative extracytoplasmic-function (ECF) sigma factor (RpoE1) in Myxococcus xanthus, a bacterium which has a complex life cycle that includes fruiting body formation. The first domain of the response regulator protein FrzZ, a component of the Frz signal transduction system, was used as bait. Although the RpoE1 protein displayed no interactions with control proteins presented as bait, a weak interaction with a second M. xanthus response regulator (AsgA) was observed. While the specificity of the FrzZ-RpoE1 interaction therefore remains speculative, cloning and sequencing of the region surrounding rpoE1 localized it to a position downstream of the frzZ gene. A potential promoter site for binding of an ECF sigma factor was identified upstream of rpoE1, suggesting the gene may be autoregulated. However, primer extension studies suggested that transcription of rpoE1 occurs under both vegetative and developmental conditions from a sigma70-like promoter. Dot blot analysis of RNA preparations confirmed the low-level, constitutive expression of rpoE1 during both stages of the life cycle. Analysis of an insertion mutant also indicated a role for RpoE1 under both vegetative and developmental conditions, since swarming was reduced on nutrient-rich agar and developmental aggregation was effected under starvation conditions, especially at high cell densities. An insertion mutation introduced into the gene directly downstream of rpoE1 (orf5) did not result in either swarming or developmental aggregation defects, even though the gene is transcribed as part of the same operon. Therefore, we propose that this new ECF sigma factor could play a role in the transcriptional regulation of genes involved in motility behavior during both stages of the complex M. xanthus life cycle.
Collapse
Affiliation(s)
- M J Ward
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3204, USA
| | | | | | | |
Collapse
|
42
|
Martínez-Argudo I, Ruiz-Vázquez RM, Murillo FJ. The structure of an ECF-sigma-dependent, light-inducible promoter from the bacterium Myxococcus xanthus. Mol Microbiol 1998; 30:883-93. [PMID: 10094635 DOI: 10.1046/j.1365-2958.1998.01129.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Expression of the Myxococcus xanthus gene crtl is controlled by a light-inducible promoter. The activity of this promoter depends on CarQ, a sigma factor of the extracytoplasmic function (ECF) subfamily. Here, we show thatthe minimum DNA stretch reproducing normal expression of crtl extends from a few bases upstream of the -35 position to a site well downstream of the transcriptional start. The downstream DNA contains an enhancer-like element that remains active when displaced upstream of the promoter. Experimental evidence is provided for the activity of the crtl promoter being critically dependent on a pentanucleotide sequence centred at the -31 position. The similarity of this sequence with the consensus for ECF-sigma-dependent promoters from other bacteria is discussed. The activity of the crtl promoter also depends on certain basepairs at the -10 region. Hence, the operation of ECF-sigma-factors seems to require binding to two different DNA sites, although the -10 sequences of different ECF-sigma-dependent promoters are unrelated to one another, and the ECF-sigma-factors themselves lack the conserved domain known to mediate binding of other sigma-factors to the -10 DNA site.
Collapse
Affiliation(s)
- I Martínez-Argudo
- Departamento de Genética y Microbiología, Facultad de Biologia, Universidad de Murcia, Spain
| | | | | |
Collapse
|
43
|
Ueki T, Inouye S. A new sigma factor, SigD, essential for stationary phase is also required for multicellular differentiation in Myxococcus xanthus. Genes Cells 1998; 3:371-85. [PMID: 9734783 DOI: 10.1046/j.1365-2443.1998.00197.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Myxococcus xanthus is a gram-negative bacterium that undergoes spectacular development to form multicellular fruiting bodies under nutrient deprivation. Inside a fruiting body, vegetative cells differentiate into spores. A number of sigma factors have been shown to play roles in the regulation of gene expression in the M. xanthus life cycle. Additional sigma factors were searched to further explore the M. xanthus life cycle. RESULTS A new sigma factor was identified, SigD, which consists of 297 amino acid residues. Two transcription initiation sites for the sigD gene were detected by primer extension analysis using total RNA from the vegetative and developmental cells, one of which was specific for development. The characterization of sigD-lacZ fusion strains demonstrated that sigD expression increased during entry into stationary phase of vegetative growth and during early development. A deletion mutant of sigD exhibited growth defects during the late-log phase and stationary phase, with dramatically reduced cell viability. The patterns of protein synthesis at late log phase of vegetative growth and at early development on CF agar plates were significantly different between the deletion mutant and the wild-type strain. The deletion mutant was more sensitive to various stresses when compared with the wild-type strain and did not accumulate trehalose in response to osmotic stress. The deletion mutant also showed a significant delay in fruiting body formation and sporulation and yielded fewer spores than the wild-type strain. CONCLUSIONS SigD shows characteristic features of the stationary phase sigma factors and also plays important roles in multicellular differentiation of M. xanthus.
Collapse
Affiliation(s)
- T Ueki
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | |
Collapse
|
44
|
Brandner JP, Kroos L. Identification of the omega4400 regulatory region, a developmental promoter of Myxococcus xanthus. J Bacteriol 1998; 180:1995-2004. [PMID: 9555878 PMCID: PMC107122 DOI: 10.1128/jb.180.8.1995-2004.1998] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Omega4400 is the site of a Tn5 lac insertion in the Myxococcus xanthus genome that fuses lacZ expression to a developmentally regulated promoter. Cell-cell interactions that occur during development, including C signaling, are required for normal expression of Tn5 lac omega4400. The DNA upstream of the omega4400 insertion has been cloned, the promoter has been localized, and a partial open reading frame has been identified. From the deduced amino acid sequence of the partial open reading frame, the gene disrupted by Tn5 lac omega4400 may encode a protein with an ATP- or GTP-binding site. Expression of the gene begins 6 to 12 h after starvation initiates development, as measured by beta-galactosidase production in cells containing Tn5 lac omega4400. The putative transcriptional start site was mapped, and deletion analysis has shown that DNA downstream of -101 bp is sufficient for C-signal-dependent, developmental activation of this promoter. A deletion to -76 bp eliminated promoter activity, suggesting the involvement of an upstream activator protein. The promoter may be transcribed by RNA polymerase containing a novel sigma factor, since a mutation in the M. xanthus sigB or sigC gene did not affect Tn5 lac omega4400 expression and the DNA sequence upstream of the transcriptional start site did not match the sequence of any M. xanthus promoter transcribed by a known form of RNA polymerase. However, the omega4400 promoter does contain the sequence 5'-CATCCCT-3' centered at -49 and the C-signal-dependent omega4403 promoter also contains this sequence at the same position. Moreover, the two promoters match at five of six positions in the -10 regions, suggesting that these promoters may share one or more transcription factors. These results begin to define the cis-acting regulatory elements important for cell-cell interaction-dependent gene expression during the development of a multicellular prokaryote.
Collapse
Affiliation(s)
- J P Brandner
- Department of Biochemistry, Michigan State University, East Lansing 48824, USA
| | | |
Collapse
|
45
|
Abstract
Carotenoids represent one of the most widely distributed and structurally diverse classes of natural pigments, with important functions in photosynthesis, nutrition, and protection against photooxidative damage. In the eubacterial community, yellow, orange, and red carotenoids are produced by anoxygenic photosynthetic bacteria, cyanobacteria, and certain species of nonphotosynthetic bacteria. Many eukaryotes, including all algae and plants, as well as some fungi, also synthesize these pigments. In noncarotenogenic organisms, such as mammals, birds, amphibians, fish, crustaceans, and insects, dietary carotenoids and their metabolites also serve important biological roles. Within the last decade, major advances have been made in the elucidation of the molecular genetics, the biochemistry, and the regulation of eubacterial carotenoid biosynthesis. These developments have important implications for eukaryotes, and they make increasingly attractive the genetic manipulation of carotenoid content for biotechnological purposes.
Collapse
Affiliation(s)
- G A Armstrong
- Institute for Plant Sciences, Plant Genetics, Swiss Federal Institute of Technology (ETH), Zürich.
| |
Collapse
|
46
|
Ramakrishnan L, Tran HT, Federspiel NA, Falkow S. A crtB homolog essential for photochromogenicity in Mycobacterium marinum: isolation, characterization, and gene disruption via homologous recombination. J Bacteriol 1997; 179:5862-8. [PMID: 9294446 PMCID: PMC179478 DOI: 10.1128/jb.179.18.5862-5868.1997] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A gene essential for light-induced pigment production was isolated from the photochromogen Mycobacterium marinum by heterologous complementation of an M. marinum cosmid library in the nonchromogen Mycobacterium smegmatis. This gene is part of an operon and homologous to the Streptomyces griseus and Myxococcus xanthus crtB genes encoding phytoene synthase. Gene replacement at this locus was achieved via homologous recombination, demonstrating that its expression is essential for photochromogenicity. The ease of targeted gene disruption in this pathogenic Mycobacterium allows for the dissection of the molecular basis of mycobacterial pathogenesis.
Collapse
Affiliation(s)
- L Ramakrishnan
- Department of Microbiology and Immunology, Stanford University School of Medicine, California 94305-5402, USA.
| | | | | | | |
Collapse
|
47
|
Wu QL, Kong D, Lam K, Husson RN. A mycobacterial extracytoplasmic function sigma factor involved in survival following stress. J Bacteriol 1997; 179:2922-9. [PMID: 9139909 PMCID: PMC179055 DOI: 10.1128/jb.179.9.2922-2929.1997] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The extracytoplasmic function (ECF) sigma factors constitute a diverse group of alternative sigma factors that have been demonstrated to regulate gene expression in response to environmental conditions in several bacterial species. Genes encoding an ECF sigma factor of Mycobacterium tuberculosis, Mycobacterium avium, and Mycobacterium smegmatis, designated sigE, were cloned and analyzed. Southern blot analysis demonstrated the presence of a single copy of this gene in these species and in Mycobacterium bovis BCG, Mycobacterium leprae, and Mycobacterium fortuitum. Sequence analysis showed the sigE gene to be highly conserved among M. tuberculosis, M. avium, M. smegmatis, and M. leprae. Recombinant M. tuberculosis SigE, when combined with core RNA polymerase from M. smegmatis, reconstituted specific RNA polymerase activity on sigE in vitro, demonstrating that this gene encodes a functional sigma factor. Two in vivo transcription start sites for sigE were also identified in M. smegmatis and M. bovis BCG. Comparison of wild-type M. smegmatis with a sigE mutant strain demonstrated decreased survival of the mutant under conditions of high-temperature heat shock, acidic pH, exposure to detergent, and oxidative stress. An inducible protective response to oxidative stress present in the wild type was absent in the mutant. The mycobacterial SigE protein, although nonessential for viability in vitro, appears to play a role in the ability of these organisms to withstand a variety of stresses.
Collapse
Affiliation(s)
- Q L Wu
- Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
48
|
Schumann G, Nürnberger H, Sandmann G, Krügel H. Activation and analysis of cryptic crt genes for carotenoid biosynthesis from Streptomyces griseus. MOLECULAR & GENERAL GENETICS : MGG 1996; 252:658-66. [PMID: 8917308 DOI: 10.1007/bf02173971] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Genes encoding enzymes with sequence similarity to carotenoid biosynthetic enzymes of other organisms were cloned from Streptomyces griseus JA3933 and transformed into the colourless (non-daunorubicin producing) mutant Streptomyces griseus IMET JA3933/956/2. Cells harbouring these genes showed an orange-red pigmentation, caused by the strongly hydrophobic, membrane-bound lycopene. The cloned fragment (9 kb) contained seven genes, four transcribed in one direction (crtEIBV) and three (crtYTU) transcribed convergently to them. Three of these genes encode polypeptides that resemble geranylgeranyl-pyrophosphate (GGPP) synthases (CrtE), phytoene synthases (PS) (CrtB) and phytoene dehydrogenases (PDH) (CrtI), respectively, of various bacteria. These enzymes are sufficient for the formation of lycopene. crtE alone was sufficient to induce zeaxanthin formation in an Escherichia coli clone containing the crt gene cluster from Erwinia herbicola deleted for crtE. The combination of crtE and crtB led to formation of phytoene in S. griseus. The putative crtEp promoter region was cloned and mapped by primer extension analysis. In a gel retardation experiment, this fragment was specifically shifted by an unknown protein. CrtY shows similarity to lycopene cyclases that convert lycopene into beta-carotene, CrtT resembles various methyltransferases and CrtU a dehydrogenase. We conclude that these genes are functionally intact, but not expressed (cryptic) in the wild-type S. griseus strain.
Collapse
Affiliation(s)
- G Schumann
- Department of Cell and Molecular Biology, Hans Knöll Institute for Natural Product Research, Germany
| | | | | | | |
Collapse
|
49
|
Govan JR, Deretic V. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 1996; 60:539-74. [PMID: 8840786 PMCID: PMC239456 DOI: 10.1128/mr.60.3.539-574.1996] [Citation(s) in RCA: 848] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Respiratory infections with Pseudomonas aeruginosa and Burkholderia cepacia play a major role in the pathogenesis of cystic fibrosis (CF). This review summarizes the latest advances in understanding host-pathogen interactions in CF with an emphasis on the role and control of conversion to mucoidy in P. aeruginosa, a phenomenon epitomizing the adaptation of this opportunistic pathogen to the chronic chourse of infection in CF, and on the innate resistance to antibiotics of B. cepacia, person-to-person spread, and sometimes rapidly fatal disease caused by this organism. While understanding the mechanism of conversion to mucoidy in P. aeruginosa has progressed to the point where this phenomenon has evolved into a model system for studying bacterial stress response in microbial pathogenesis, the more recent challenge with B. cepacia, which has emerged as a potent bona fide CF pathogen, is discussed in the context of clinical issues, taxonomy, transmission, and potential modes of pathogenicity.
Collapse
Affiliation(s)
- J R Govan
- Department of Medical Microbiology, University of Edinburgh Medical School, Scotland
| | | |
Collapse
|
50
|
Schurr MJ, Yu H, Martinez-Salazar JM, Boucher JC, Deretic V. Control of AlgU, a member of the sigma E-like family of stress sigma factors, by the negative regulators MucA and MucB and Pseudomonas aeruginosa conversion to mucoidy in cystic fibrosis. J Bacteriol 1996; 178:4997-5004. [PMID: 8759866 PMCID: PMC178285 DOI: 10.1128/jb.178.16.4997-5004.1996] [Citation(s) in RCA: 188] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The alternative sigma factor AlgU (Pseudomonas aeruginosa sigma E) is required for full resistance of P. aeruginosa to oxidative stress and extreme temperatures. AlgU also controls conversion of P. aeruginosa to the mucoid, alginate-overproducing phenotype associated with lethal infections in cystic fibrosis patients. Mutations that cause conversion to mucoidy in cystic fibrosis isolates occur frequently in mucA, the second gene within the algU mucABCD gene cluster. Here we analyze the biochemical basis of conversion to mucoidy. MucA was shown to act as an anti-sigma factor by binding to AlgU and inhibiting its activity. MucB, another negative regulator of AlgU, was localized in the periplasm. MucB exerts its function from this compartment, since deletion of the leader peptide and the cytoplasmic location of MucB abrogated its ability to inhibit mucoidy. These data support a model in which a multicomponent system, encompassing an anti-delta factor and elements in the periplasmic compartment, modulates activity of AlgU. Since factors controlling AlgU are conserved in other gram-negative bacteria, the processes controlling conversion to mucoidy in P. aeruginosa may be applicable to the regulation of AlgU (sigma E) equivalents in other organisms.
Collapse
Affiliation(s)
- M J Schurr
- Department of Microbiology, University of Texas Health Science Center at San Antonio 78284-7758, USA
| | | | | | | | | |
Collapse
|