1
|
Clifton BE, Alcolombri U, Uechi GI, Jackson CJ, Laurino P. The ultra-high affinity transport proteins of ubiquitous marine bacteria. Nature 2024; 634:721-728. [PMID: 39261732 PMCID: PMC11485210 DOI: 10.1038/s41586-024-07924-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/07/2024] [Indexed: 09/13/2024]
Abstract
SAR11 bacteria are the most abundant microorganisms in the surface ocean1 and have global biogeochemical importance2-4. To thrive in their competitive oligotrophic environment, these bacteria rely heavily on solute-binding proteins that facilitate uptake of specific substrates via membrane transporters5,6. The functions and properties of these transport proteins are key factors in the assimilation of dissolved organic matter and biogeochemical cycling of nutrients in the ocean, but they have remained largely inaccessible to experimental investigation. Here we performed genome-wide experimental characterization of all solute-binding proteins in a prototypical SAR11 bacterium, revealing specific functions and general trends in their properties that contribute to the success of SAR11 bacteria in oligotrophic environments. We found that the solute-binding proteins of SAR11 bacteria have extremely high binding affinity (dissociation constant >20 pM) and high binding specificity, revealing molecular mechanisms of oligotrophic adaptation. Our functional data have uncovered new carbon sources for SAR11 bacteria and enable accurate biogeographical analysis of SAR11 substrate uptake capabilities throughout the ocean. This study provides a comprehensive view of the substrate uptake capabilities of ubiquitous marine bacteria, providing a necessary foundation for understanding their contribution to assimilation of dissolved organic matter in marine ecosystems.
Collapse
Affiliation(s)
- Ben E Clifton
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan.
| | - Uria Alcolombri
- Department of Plant and Environmental Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gen-Ichiro Uechi
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia
- ARC Centre of Excellence in Synthetic Biology, Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Paola Laurino
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan.
- Institute for Protein Research, Osaka University, Suita, Japan.
| |
Collapse
|
2
|
Liyayi IK, Forehand AL, Ray JC, Criss AK. Metal piracy by Neisseria gonorrhoeae to overcome human nutritional immunity. PLoS Pathog 2023; 19:e1011091. [PMID: 36730177 PMCID: PMC9894411 DOI: 10.1371/journal.ppat.1011091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Ian K. Liyayi
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Amy L. Forehand
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jocelyn C. Ray
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
3
|
Structural and functional insights into iron acquisition from lactoferrin and transferrin in Gram-negative bacterial pathogens. Biometals 2022; 36:683-702. [PMID: 36418809 PMCID: PMC10182148 DOI: 10.1007/s10534-022-00466-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 11/05/2022] [Indexed: 11/25/2022]
Abstract
AbstractIron is an essential element for various lifeforms but is largely insoluble due to the oxygenation of Earth’s atmosphere and oceans during the Proterozoic era. Metazoans evolved iron transport glycoproteins, like transferrin (Tf) and lactoferrin (Lf), to keep iron in a non-toxic, usable form, while maintaining a low free iron concentration in the body that is unable to sustain bacterial growth. To survive on the mucosal surfaces of the human respiratory tract where it exclusively resides, the Gram-negative bacterial pathogen Moraxella catarrhalis utilizes surface receptors for acquiring iron directly from human Tf and Lf. The receptors are comprised of a surface lipoprotein to capture iron-loaded Tf or Lf and deliver it to a TonB-dependent transporter (TBDT) for removal of iron and transport across the outer membrane. The subsequent transport of iron into the cell is normally mediated by a periplasmic iron-binding protein and inner membrane transport complex, which has yet to be determined for Moraxella catarrhalis. We identified two potential periplasm to cytoplasm transport systems and performed structural and functional studies with the periplasmic binding proteins (FbpA and AfeA) to evaluate their role. Growth studies with strains deleted in the fbpA or afeA gene demonstrated that FbpA, but not AfeA, was required for growth on human Tf or Lf. The crystal structure of FbpA with bound iron in the open conformation was obtained, identifying three tyrosine ligands that were required for growth on Tf or Lf. Computational modeling of the YfeA homologue, AfeA, revealed conserved residues involved in metal binding.
Collapse
|
4
|
Duran GN, Özbil M. Structural rearrangement of Neisseria meningitidis transferrin binding protein A (TbpA) prior to human transferrin protein (hTf) binding. Turk J Chem 2021; 45:1146-1154. [PMID: 34707440 PMCID: PMC8517614 DOI: 10.3906/kim-2102-25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/02/2021] [Indexed: 12/11/2022] Open
Abstract
Gram-negative bacterium Neisseria meningitidis, responsible for human infectious disease meningitis, acquires the iron (Fe3+) ion needed for its survival from human transferrin protein (hTf). For this transport, transferrin binding proteins TbpA and TbpB are facilitated by the bacterium. The transfer cannot occur without TbpA, while the absence of TbpB only slows down the transfer. Thus, understanding the TbpA-hTf binding at the atomic level is crucial for the fight against bacterial meningitis infections. In this study, atomistic level of mechanism for TbpA-hTf binding is elucidated through 100 ns long all-atom classical MD simulations on free (uncomplexed) TbpA. TbpA protein underwent conformational change from ‘open’ state to ‘closed’ state, where two loop domains, loops 5 and 8, were very close to each other. This state clearly cannot accommodate hTf in the cleft between these two loops. Moreover, the helix finger domain, which might play a critical role in Fe3+ ion uptake, also shifted downwards leading to unfavorable Tbp-hTf binding. Results of this study indicated that TbpA must switch between ‘closed’ state to ‘open’ state, where loops 5 and 8 are far from each other creating a cleft for hTf binding. The atomistic level of understanding to conformational switch is crucial for TbpA-hTf complex inhibition strategies. Drug candidates can be designed to prevent this conformational switch, keeping TbpA locked in ‘closed’ state.
Collapse
Affiliation(s)
- Gizem Nur Duran
- Department of Chemistry, Marmara University, İstanbul Turkey
| | - Mehmet Özbil
- Institute of Biotechnology, Gebze Technical University, Kocaeli Turkey
| |
Collapse
|
5
|
Jia M, Geornaras I, Martin JN, Belk KE, Yang H. Comparative Whole Genome Analysis of Escherichia coli O157:H7 Isolates From Feedlot Cattle to Identify Genotypes Associated With the Presence and Absence of stx Genes. Front Microbiol 2021; 12:647434. [PMID: 33868205 PMCID: PMC8046923 DOI: 10.3389/fmicb.2021.647434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/28/2021] [Indexed: 11/13/2022] Open
Abstract
A comparative whole genome analysis was performed on three newly sequenced Escherichia coli O157:H7 strains with different stx profiles, previously isolated from feedlot cattle [C1-010 (stx1-, stx2c+), C1-057 (stx-), and C1-067 (stx1+, stx2a+)], as well as five foodborne outbreak strains and six stx-negative strains from NCBI. Phylogenomic analysis demonstrated that the stx2c-carrying C1-010 and stx-negative C1-057 strains were grouped with the six NCBI stx-negative E. coli O157:H7 strains in Cluster 1, whereas the stx2a-carrying C1-067 and five foodborne outbreak strains were clustered together in Cluster 2. Based on different clusters, we selected the three newly sequenced strains, one stx2a-carrying strain, and the six NCBI stx-negative strains and identify their prophages at the stx insertion sites. All stx-carrying prophages contained both the three Red recombination genes (exo, bet, gam) and their repressor cI. On the other hand, the majority of the stx-negative prophages carried only the three Red recombination genes, but their repressor cI was absent. In the absence of the repressor cI, the consistent expression of the Red recombination genes in prophages might result in more frequent gene exchanges, potentially increasing the probability of the acquisition of stx genes. We further investigated each of the 10 selected E. coli O157:H7 strains for their respective unique metabolic pathway genes. Seven unique metabolic pathway genes in the two stx2a-carrying strains and one in the single stx2c-carrying and seven stx-negative strains were found to be associated with an upstream insertion sequence 629 within a conserved region among these strains. The presence of more unique metabolic pathway genes in stx2a-carrying E. coli O157:H7 strains may potentially increase their competitiveness in complex environments, such as feedlot cattle. For the stx2c-carrying and stx-negative E. coli O157:H7 strains, the fact that they were grouped into the same phylogenomic cluster and had the same unique metabolic pathway genes suggested that they may also share closely related evolutionary pathways. As a consequence, gene exchange between them is more likely to occur. Results from this study could potentially serve as a basis to help develop strategies to reduce the prevalence of pathogenic E. coli O157:H7 in livestock and downstream food production environments.
Collapse
Affiliation(s)
- Mo Jia
- Center for Meat Safety and Quality, Department of Animal Sciences, Colorado State University, Fort Collins, CO, United States
| | - Ifigenia Geornaras
- Center for Meat Safety and Quality, Department of Animal Sciences, Colorado State University, Fort Collins, CO, United States
| | - Jennifer N Martin
- Center for Meat Safety and Quality, Department of Animal Sciences, Colorado State University, Fort Collins, CO, United States
| | - Keith E Belk
- Center for Meat Safety and Quality, Department of Animal Sciences, Colorado State University, Fort Collins, CO, United States
| | - Hua Yang
- Center for Meat Safety and Quality, Department of Animal Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
6
|
Crumbliss AL, Banerjee S. A perspective essay on the use of Ga 3+ as a proxy for Fe 3+ in bioinorganic model studies and its successful use for therapeutic purposes. J Inorg Biochem 2021; 219:111411. [PMID: 33853006 DOI: 10.1016/j.jinorgbio.2021.111411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/15/2021] [Accepted: 02/23/2021] [Indexed: 11/20/2022]
Abstract
The use of Ga3+ as a structural mimic for Fe3+ in model bioinorganic investigations is usually based on a common assumption that Ga3+ and Fe3+ should form bioligand complexes of similar stabilities due to their similar charge/radius ratio (z/r). However, the literature survey presented here is contrary to this notion, showing that under laboratory conditions often Ga3+ forms weaker bioligand complexes than Fe3+in aqueous medium. We hypothesize that this is because Ga3+ is more aquaphilic than Fe3+ as suggested by their relative heats of hydration (ΔHhyd). The successful use of Ga3+ as a therapeutic agent is also briefly reviewed, showing this success often stems from the redox inertness as well as different pharmacokinetics of Ga3+ than Fe3+, but similar metabolic pathways as Fe3+ in human serum.
Collapse
Affiliation(s)
- Alvin L Crumbliss
- Duke University Department of Chemistry, Durham, NC 27708-0346, USA.
| | - Sambuddha Banerjee
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
7
|
Poddar N, Badilla C, Maghool S, Osborne TH, Santini JM, Maher MJ. Structural and Functional Investigation of the Periplasmic Arsenate-Binding Protein ArrX from Chrysiogenes arsenatis. Biochemistry 2021; 60:465-476. [PMID: 33538578 DOI: 10.1021/acs.biochem.0c00555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The anaerobic bacterium Chrysiogenes arsenatis respires using the oxyanion arsenate (AsO43-) as the terminal electron acceptor, where it is reduced to arsenite (AsO33-) while concomitantly oxidizing various organic (e.g., acetate) electron donors. This respiratory activity is catalyzed in the periplasm of the bacterium by the enzyme arsenate reductase (Arr), with expression of the enzyme controlled by a sensor histidine kinase (ArrS) and a periplasmic-binding protein (PBP), ArrX. Here, we report for the first time, the molecular structure of ArrX in the absence and presence of bound ligand arsenate. Comparison of the ligand-bound structure of ArrX with other PBPs shows a high level of conservation of critical residues for ligand binding by these proteins; however, this suite of PBPs shows different structural alterations upon ligand binding. For ArrX and its homologue AioX (from Rhizobium sp. str. NT-26), which specifically binds arsenite, the structures of the substrate-binding sites in the vicinity of a conserved and critical cysteine residue contribute to the discrimination of binding for these chemically similar ligands.
Collapse
Affiliation(s)
- Nilakhi Poddar
- School of Chemistry and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville 3052, Australia
| | - Consuelo Badilla
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| | - Shadi Maghool
- School of Chemistry and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville 3052, Australia
| | - Thomas H Osborne
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| | - Joanne M Santini
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| | - Megan J Maher
- School of Chemistry and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville 3052, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3083, Australia
| |
Collapse
|
8
|
Abstract
Neisseria gonorrhoeae infection is a major public health problem worldwide. The increasing incidence of gonorrhea coupled with global spread of multidrug-resistant isolates of gonococci has ushered in an era of potentially untreatable infection. Gonococcal disease elicits limited immunity, and individuals are susceptible to repeated infections. In this chapter, we describe gonococcal disease and epidemiology and the structure and function of major surface components involved in pathogenesis. We also discuss the mechanisms that gonococci use to evade host immune responses and the immune responses following immunization with selected bacterial components that may overcome evasion. Understanding the biology of the gonococcus may aid in preventing the spread of gonorrhea and also facilitate the development of gonococcal vaccines and treatments.
Collapse
Affiliation(s)
- Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Peter A Rice
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
9
|
Cornelissen CN. Subversion of nutritional immunity by the pathogenic Neisseriae. Pathog Dis 2018; 76:4553517. [PMID: 29045638 PMCID: PMC6251569 DOI: 10.1093/femspd/ftx112] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/12/2017] [Indexed: 12/21/2022] Open
Abstract
The pathogenic Neisseria species, including Neisseria meningitidis and Neisseria gonorrhoeae, are obligate human pathogens that cause significant morbidity and mortality. The success of these pathogens, with regard to causing disease in humans, is inextricably linked to their ability to acquire necessary nutrients in the hostile environment of the host. Humans deploy a significant arsenal of weaponry to defend against bacterial pathogens, not least of which are the metal-sequestering proteins that entrap and withhold transition metals, including iron, zinc and manganese, from invaders. This review will discuss the general strategies that bacteria employ to overcome these metal-sequestering attempts by the host, and then will focus on the relatively uncommon 'metal piracy' approaches utilized by the pathogenic Neisseria for this purpose. Because acquiring metals from the environment is critical to microbial survival, interfering with this process could impede growth and therefore disease initiation or progression. This review will also discuss how interfering with metal uptake by the pathogenic Neisseriae could be deployed in the development of novel or improved preventative or therapeutic measures against these important pathogens.
Collapse
Affiliation(s)
- Cynthia Nau Cornelissen
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Box 980678, Richmond, VA 23298-0678, USA
| |
Collapse
|
10
|
Roy EM, Griffith KL. Characterization of a Novel Iron Acquisition Activity That Coordinates the Iron Response with Population Density under Iron-Replete Conditions in Bacillus subtilis. J Bacteriol 2017; 199:e00487-16. [PMID: 27795321 PMCID: PMC5165090 DOI: 10.1128/jb.00487-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/24/2016] [Indexed: 01/10/2023] Open
Abstract
Iron is an essential micronutrient required for the viability of many organisms. Under oxidizing conditions, ferric iron is highly insoluble (∼10-9 to 10-18 M), yet bacteria typically require ∼10-6 M for survival. To overcome this disparity, many bacteria have adopted the use of extracellular iron-chelating siderophores coupled with specific iron-siderophore uptake systems. In the case of Bacillus subtilis, undomesticated strains produce the siderophore bacillibactin. However, many laboratory strains, e.g., JH642, have lost the ability to produce bacillibactin during the process of domestication. In this work, we identified a novel iron acquisition activity from strain JH642 that accumulates in the growth medium and coordinates the iron response with population density. The molecule(s) responsible for this activity was named elemental Fe(II/III) (Efe) acquisition factor because efeUOB (ywbLMN) is required for its activity. Unlike most iron uptake molecules, including siderophores and iron reductases, Efe acquisition factor is present under iron-replete conditions and is regulated independently of Fur repressor. Restoring bacillibactin production in strain JH642 inhibits the activity of Efe acquisition factor, presumably by sequestering available iron. A similar iron acquisition activity is produced from a mutant of Escherichia coli unable to synthesize the siderophore enterobactin. Given the conservation of efeUOB and its regulation by catecholic siderophores in B. subtilis and E. coli, we speculate that Efe acquisition factor is utilized by many bacteria, serves as an alternative to Fur-mediated iron acquisition systems, and provides cells with biologically available iron that would normally be inaccessible during aerobic growth under iron-replete conditions. IMPORTANCE Iron is an essential micronutrient required for a variety of biological processes, yet ferric iron is highly insoluble during aerobic growth. In this work, we identified a novel iron acquisition activity that coordinates the iron response with population density in laboratory strains of Bacillus subtilis We named the molecule(s) responsible for this activity elemental Fe(II/III) (Efe) acquisition factor after the efeUOB (ywbLMN) operon required for its uptake into cells. Unlike most iron uptake systems, Efe acquisition factor is present under iron-replete conditions and is regulated independently of Fur, the master regulator of the iron response. We speculate that Efe acquisition factor is highly conserved among bacteria and serves as a backup to Fur-mediated iron acquisition systems.
Collapse
Affiliation(s)
- Emily M Roy
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Kevin L Griffith
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
11
|
Functional Determinants of Metal Ion Transport and Selectivity in Paralogous Cation Diffusion Facilitator Transporters CzcD and MntE in Streptococcus pneumoniae. J Bacteriol 2016; 198:1066-76. [PMID: 26787764 DOI: 10.1128/jb.00975-15] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/12/2016] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Cation diffusion facilitators (CDFs) are a large family of divalent metal transporters that collectively possess broad metal specificity and contribute to intracellular metal homeostasis and virulence in bacterial pathogens. Streptococcus pneumoniae expresses two homologous CDF efflux transporters, MntE and CzcD. Cells lacking mntE or czcD are sensitive to manganese (Mn) or zinc (Zn) toxicity, respectively, and specifically accumulate Mn or Zn, respectively, thus suggesting that MntE selectively transports Mn, while CzcD transports Zn. Here, we probe the origin of this metal specificity using a phenotypic growth analysis of pneumococcal variants. Structural homology to Escherichia coli YiiP predicts that both MntE and CzcD are dimeric and each protomer harbors four pairs of conserved metal-binding sites, termed the A site, the B site, and the C1/C2 binuclear site. We find that single amino acid mutations within both the transmembrane domain A site and the B site in both CDFs result in a cellular metal sensitivity similar to that of the corresponding null mutants. However, multiple mutations in the predicted cytoplasmic C1/C2 cluster of MntE have no impact on cellular Mn resistance, in contrast to the analogous substitutions in CzcD, which do have on impact on cellular Zn resistance. Deletion of the MntE-specific C-terminal tail, present only in Mn-specific bacterial CDFs, resulted in only a modest growth phenotype. Further analysis of MntE-CzcD functional chimeric transporters showed that Asn and Asp in the ND-DD A-site motif of MntE and the most N-terminal His in the HD-HD site A of CzcD (the specified amino acids are underlined) play key roles in transporter metal selectivity. IMPORTANCE Cation diffusion facilitator (CDF) proteins are divalent metal ion transporters that are conserved in organisms ranging from bacteria to humans and that play important roles in cellular physiology, from metal homeostasis and resistance to type I diabetes in vertebrates. The respiratory pathogen Streptococcus pneumoniae expresses two metal CDF transporters, CzcD and MntE. How CDFs achieve metal selectivity is unclear. We show here that CzcD and MntE are true paralogs, as CzcD transports zinc, while MntE selectively transports manganese. Through the use of an extensive collection of pneumococcal variants, we show that a primary determinant for metal selectivity is the A site within the transmembrane domain. This extends our understanding of how CDFs discriminate among transition metals.
Collapse
|
12
|
Banerjee S, Weerasinghe AJ, Parker Siburt CJ, Kreulen RT, Armstrong SK, Brickman TJ, Lambert LA, Crumbliss AL. Bordetella pertussis FbpA binds both unchelated iron and iron siderophore complexes. Biochemistry 2014; 53:3952-60. [PMID: 24873326 PMCID: PMC4075987 DOI: 10.1021/bi5002823] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
![]()
Bordetella pertussis is the causative
agent of whooping cough. This pathogenic bacterium can obtain the
essential nutrient iron using its native alcaligin siderophore and
by utilizing xeno-siderophores such as desferrioxamine B, ferrichrome,
and enterobactin. Previous genome-wide expression profiling identified
an iron repressible B. pertussis gene
encoding a periplasmic protein (FbpABp). A previously reported
crystal structure shows significant similarity between FbpABp and previously characterized bacterial iron binding proteins, and
established its iron-binding ability. Bordetella growth studies determined that FbpABp was required for
utilization of not only unchelated iron, but also utilization of iron
bound to both native and xeno-siderophores. In this in vitro solution study, we quantified the binding of unchelated ferric iron
to FbpABp in the presence of various anions and importantly,
we demonstrated that FbpABp binds all the ferric siderophores
tested (native and xeno) with μM affinity. In silico modeling augmented solution data. FbpABp was incapable
of iron removal from ferric xeno-siderophores in vitro. However, when FbpABp was reacted with native ferric-alcaligin,
it elicited a pronounced change in the iron coordination environment,
which may signify an early step in FbpABp-mediated iron
removal from the native siderophore. To our knowledge, this is the
first time the periplasmic component of an iron uptake system has
been shown to bind iron directly as Fe3+ and indirectly
as a ferric siderophore complex.
Collapse
Affiliation(s)
- Sambuddha Banerjee
- Department of Chemistry, Duke University , Durham, North Carolina 27708, United States
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Bordetella pertussis iron regulated proteins as potential vaccine components. Vaccine 2013; 31:3543-8. [DOI: 10.1016/j.vaccine.2013.05.072] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 03/27/2013] [Accepted: 05/17/2013] [Indexed: 11/23/2022]
|
14
|
Lewis VG, Ween MP, McDevitt CA. The role of ATP-binding cassette transporters in bacterial pathogenicity. PROTOPLASMA 2012; 249:919-942. [PMID: 22246051 DOI: 10.1007/s00709-011-0360-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 11/29/2011] [Indexed: 05/31/2023]
Abstract
The ATP-binding cassette transporter superfamily is present in all three domains of life. This ubiquitous class of integral membrane proteins have diverse biological functions, but their fundamental role involves the unidirectional translocation of compounds across cellular membranes in an ATP coupled process. The importance of this class of proteins in eukaryotic systems is well established as typified by their association with genetic diseases and roles in the multi-drug resistance of cancer. In stark contrast, the ABC transporters of prokaryotes have not been exhaustively investigated due to the sheer number of different roles and organisms in which they function. In this review, we examine the breadth of functions associated with microbial ABC transporters in the context of their contribution to bacterial pathogenicity and virulence.
Collapse
Affiliation(s)
- Victoria G Lewis
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | | | | |
Collapse
|
15
|
Fur-mediated activation of gene transcription in the human pathogen Neisseria gonorrhoeae. J Bacteriol 2012; 194:1730-42. [PMID: 22287521 DOI: 10.1128/jb.06176-11] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
It is well established that the ferric uptake regulatory protein (Fur) functions as a transcriptional repressor in diverse microorganisms. Recent studies demonstrated that Fur also functions as a transcriptional activator. In this study we defined Fur-mediated activation of gene transcription in the sexually transmitted disease pathogen Neisseria gonorrhoeae. Analysis of 37 genes which were previously determined to be iron induced and which contained putative Fur boxes revealed that only 30 of these genes exhibited reduced transcription in a gonococcal fur mutant strain. Fur-mediated activation was established by examining binding of Fur to the putative promoter regions of 16 Fur-activated genes with variable binding affinities observed. Only ∼50% of the newly identified Fur-regulated genes bound Fur in vitro, suggesting that additional regulatory circuits exist which may function through a Fur-mediated indirect mechanism. The gonococcal Fur-activated genes displayed variable transcription patterns in a fur mutant strain, which correlated with the position of the Fur box in each (promoter) region. These results suggest that Fur-mediated direct transcriptional activation is fulfilled by multiple mechanisms involving either competing with a repressor or recruiting RNA polymerase. Collectively, our studies have established that gonococcal Fur functions as an activator of gene transcription through both direct and indirect mechanisms.
Collapse
|
16
|
Alicea I, Marvin JS, Miklos AE, Ellington AD, Looger LL, Schreiter ER. Structure of the Escherichia coli phosphonate binding protein PhnD and rationally optimized phosphonate biosensors. J Mol Biol 2011; 414:356-69. [PMID: 22019591 DOI: 10.1016/j.jmb.2011.09.047] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 09/25/2011] [Accepted: 09/28/2011] [Indexed: 12/17/2022]
Abstract
The phnD gene of Escherichia coli encodes the periplasmic binding protein of the phosphonate (Pn) uptake and utilization pathway. We have crystallized and determined structures of E. coli PhnD (EcPhnD) in the absence of ligand and in complex with the environmentally abundant 2-aminoethylphosphonate (2AEP). Similar to other bacterial periplasmic binding proteins, 2AEP binds near the center of mass of EcPhnD in a cleft formed between two lobes. Comparison of the open, unliganded structure with the closed 2AEP-bound structure shows that the two lobes pivot around a hinge by ~70° between the two states. Extensive hydrogen bonding and electrostatic interactions stabilize 2AEP, which binds to EcPhnD with low nanomolar affinity. These structures provide insight into Pn uptake by bacteria and facilitated the rational design of high signal-to-noise Pn biosensors based on both coupled small-molecule dyes and autocatalytic fluorescent proteins.
Collapse
Affiliation(s)
- Ismael Alicea
- Department of Chemistry, University of Puerto Rico, Río Piedras, San Juan, Puerto Rico 00931
| | | | | | | | | | | |
Collapse
|
17
|
Parker Siburt CJ, Mietzner TA, Crumbliss AL. FbpA--a bacterial transferrin with more to offer. Biochim Biophys Acta Gen Subj 2011; 1820:379-92. [PMID: 21933698 DOI: 10.1016/j.bbagen.2011.09.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 08/25/2011] [Accepted: 09/02/2011] [Indexed: 01/26/2023]
Abstract
BACKGROUND Gram negative bacteria require iron for growth and virulence. It has been shown that certain pathogenic bacteria such as Neisseria gonorrhoeae possess a periplasmic protein called ferric binding protein (FbpA), which is a node in the transport of iron from the cell exterior to the cytosol. SCOPE OF REVIEW The relevant literature is reviewed which establishes the molecular mechanism of FbpA mediated iron transport across the periplasm to the inner membrane. MAJOR CONCLUSIONS Here we establish that FbpA may be considered a bacterial transferrin on structural and functional grounds. Data are presented which suggest a continuum whereby FbpA may be considered as a naked iron carrier, as well as a Fe-chelate carrier, and finally a member of the larger family of periplasmic binding proteins. GENERAL SIGNIFICANCE An investigation of the molecular mechanisms of action of FbpA as a member of the transferrin super family enhances our understanding of bacterial mechanisms for acquisition of the essential nutrient iron, as well as the modes of action of human transferrin, and may provide approaches to the control of pathogenic diseases. This article is part of a Special Issue entitled Transferrins: Molecular mechanisms of iron transport and disorders.
Collapse
|
18
|
Cornelissen CN, Hollander A. TonB-Dependent Transporters Expressed by Neisseria gonorrhoeae. Front Microbiol 2011; 2:117. [PMID: 21747812 PMCID: PMC3128382 DOI: 10.3389/fmicb.2011.00117] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 05/11/2011] [Indexed: 11/13/2022] Open
Abstract
Neisseria gonorrhoeae causes the common sexually transmitted infection, gonorrhea. This microorganism is an obligate human pathogen, existing nowhere in nature except in association with humans. For growth and proliferation, N. gonorrhoeae requires iron and must acquire this nutrient from within its host. The gonococcus is well-adapted for growth in diverse niches within the human body because it expresses efficient transport systems enabling use of a diverse array of iron sources. Iron transport systems facilitating the use of transferrin, lactoferrin, and hemoglobin have two components: one TonB-dependent transporter and one lipoprotein. A single component TonB-dependent transporter also allows N. gonorrhoeae to avail itself of iron bound to heterologous siderophores produced by bacteria within the same ecological niche. Other TonB-dependent transporters are encoded by the gonococcus but have not been ascribed specific functions. The best characterized iron transport system expressed by N. gonorrhoeae enables the use of human transferrin as a sole iron source. This review summarizes the molecular mechanisms involved in gonococcal iron acquisition from human transferrin and also reviews what is currently known about the other TonB-dependent transport systems. No vaccine is available to prevent gonococcal infections and our options for treating this disease are compromised by the emergence of antibiotic resistance. Because iron transport systems are critical for the survival of the gonococcus in vivo, the surface-exposed components of these systems are attractive candidates for vaccine development or therapeutic intervention.
Collapse
Affiliation(s)
- Cynthia Nau Cornelissen
- Department of Microbiology, Virginia Commonwealth University Medical CenterRichmond, VA, USA
| | - Aimee Hollander
- Department of Microbiology, Virginia Commonwealth University Medical CenterRichmond, VA, USA
| |
Collapse
|
19
|
The fbpABC operon is required for Ton-independent utilization of xenosiderophores by Neisseria gonorrhoeae strain FA19. Infect Immun 2010; 79:267-78. [PMID: 21041493 DOI: 10.1128/iai.00807-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria gonorrhoeae produces no known siderophores but can employ host-derived, iron-binding proteins, including transferrin and lactoferrin, as iron sources. Given the propensity of this pathogen to hijack rather than synthesize iron-sequestering molecules, we hypothesized that the ability to use siderophores produced by other bacteria, or xenosiderophores, may also play a role in the survival of the gonococcus. Among a panel of diverse siderophores, only the catecholate xenosiderophores enterobactin and salmochelin promoted growth of gonococcal strain FA19. Surprisingly, the internalization pathway was independent of TonB or any of the TonB-dependent transporters. Xenosiderophore-mediated growth was similarly independent of the pilin-extruding secretin formed by PilQ and of the hydrophobic-agent efflux system composed of MtrCDE. The fbpABC operon encodes a periplasmic-binding-protein-dependent ABC transport system that enables the gonococcus to transport iron into the cell subsequent to outer membrane translocation. We hypothesized that the FbpABC proteins, required for ferric iron transport from transferrin and lactoferrin, might also contribute to the utilization of xenosiderophores as iron sources. We created mutants that conditionally expressed FbpABC from an IPTG-inducible promoter. We determined that expression of FbpABC was required for growth of gonococcal strain FA19 in the presence of enterobactin and salmochelin. The monomeric component of enterobactin, dihydroxybenzoylserine (DHBS), and the S2 form of salmochelin specifically promoted FbpABC-dependent growth of FA19. This study demonstrated that the gonococcal FbpABC transport system is required for utilization of some xenosiderophores as iron sources and that growth promotion by these ferric siderophores can occur in the absence of TonB or individual TonB-dependent transporters.
Collapse
|
20
|
The role of vicinal tyrosine residues in the function of Haemophilus influenzae ferric-binding protein A. Biochem J 2010; 432:57-64. [DOI: 10.1042/bj20101043] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The periplasmic FbpA (ferric-binding protein A) from Haemophilus influenzae plays a critical role in acquiring iron from host transferrin, shuttling iron from the outer-membrane receptor complex to the inner-membrane transport complex responsible for transporting iron into the cytoplasm. In the present study, we report on the properties of a series of site-directed mutants of two adjacent tyrosine residues involved in iron co-ordination, and demonstrate that, in contrast with mutation of equivalent residues in the N-lobe of human transferrin, the mutant FbpAs retain significant iron-binding affinity regardless of the nature of the replacement amino acid. The Y195A and Y196A FbpAs are not only capable of binding iron, but are proficient in mediating periplasm-to-cytoplasm iron transport in a reconstituted FbpABC pathway in a specialized Escherichia coli reporter strain. This indicates that their inability to mediate iron acquisition from transferrin is due to their inability to compete for iron with receptor-bound transferrin. Wild-type iron-loaded FbpA could be crystalized in a closed or open state depending upon the crystallization conditions. The synergistic phosphate anion was not present in the iron-loaded open form, suggesting that initial anchoring of iron was mediated by the adjacent tyrosine residues and that alternate pathways for iron and anion binding and release may be considered. Collectively, these results demonstrate that the presence of a twin-tyrosine motif common to many periplasmic iron-binding proteins is critical for initially capturing the ferric ion released by the outer-membrane receptor complex.
Collapse
|
21
|
Ling JML, Shima CH, Schriemer DC, Schryvers AB. Delineating the regions of human transferrin involved in interactions with transferrin binding protein B from Neisseria meningitidis. Mol Microbiol 2010; 77:1301-14. [DOI: 10.1111/j.1365-2958.2010.07289.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Atilgan C, Atilgan AR. Perturbation-response scanning reveals ligand entry-exit mechanisms of ferric binding protein. PLoS Comput Biol 2009; 5:e1000544. [PMID: 19851447 PMCID: PMC2758672 DOI: 10.1371/journal.pcbi.1000544] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 09/22/2009] [Indexed: 11/18/2022] Open
Abstract
We study apo and holo forms of the bacterial ferric binding protein (FBP) which exhibits the so-called ferric transport dilemma: it uptakes iron from the host with remarkable affinity, yet releases it with ease in the cytoplasm for subsequent use. The observations fit the “conformational selection” model whereby the existence of a weakly populated, higher energy conformation that is stabilized in the presence of the ligand is proposed. We introduce a new tool that we term perturbation-response scanning (PRS) for the analysis of remote control strategies utilized. The approach relies on the systematic use of computational perturbation/response techniques based on linear response theory, by sequentially applying directed forces on single-residues along the chain and recording the resulting relative changes in the residue coordinates. We further obtain closed-form expressions for the magnitude and the directionality of the response. Using PRS, we study the ligand release mechanisms of FBP and support the findings by molecular dynamics simulations. We find that the residue-by-residue displacements between the apo and the holo forms, as determined from the X-ray structures, are faithfully reproduced by perturbations applied on the majority of the residues of the apo form. However, once the stabilizing ligand (Fe) is integrated to the system in holo FBP, perturbing only a few select residues successfully reproduces the experimental displacements. Thus, iron uptake by FBP is a favored process in the fluctuating environment of the protein, whereas iron release is controlled by mechanisms including chelation and allostery. The directional analysis that we implement in the PRS methodology implicates the latter mechanism by leading to a few distant, charged, and exposed loop residues. Upon perturbing these, irrespective of the direction of the operating forces, we find that the cap residues involved in iron release are made to operate coherently, facilitating release of the ion. Upon binding ligands, many proteins undergo structural changes compared to the unbound form. We introduce a methodology to monitor these changes and to study which mechanisms arrange conformational shifts between the liganded and free forms. Our method is simple, yet it efficiently characterizes the response of proteins to a given perturbation on systematically selected residues. The coherent responses predicted are validated by molecular dynamics simulations. The results indicate that the iron uptake by the ferric binding protein is favorable in a thermally fluctuating environment, while release of iron is allosterically moderated. Since ferric binding protein exhibits a high sequence identity with human transferrin whose allosteric anion binding sites generate large conformational changes around the binding region, we suggest mutational studies on remotely controlling sites identified in this work.
Collapse
Affiliation(s)
- Canan Atilgan
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey.
| | | |
Collapse
|
23
|
Miller JD, Sal MS, Schell M, Whittimore JD, Raulston JE. Chlamydia trachomatis YtgA is an iron-binding periplasmic protein induced by iron restriction. MICROBIOLOGY-SGM 2009; 155:2884-2894. [PMID: 19556290 DOI: 10.1099/mic.0.030247-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Chlamydia trachomatis is a Gram-negative obligate intracellular bacterium that is the causative agent of common sexually transmitted diseases and the leading cause of preventable blindness worldwide. It has been observed that YtgA (CT067) is very immunogenic in patients with chlamydial genital infections. Homology analyses suggested that YtgA is a soluble periplasmic protein and a component of an ATP-binding cassette (ABC) transport system for metals such as iron. Since little is known about iron transport in C. trachomatis, biochemical assays were used to determine the potential role of YtgA in iron acquisition. (59)Fe binding and competition studies revealed that YtgA preferentially binds iron over nickel, zinc or manganese. Western blot and densitometry techniques showed that YtgA concentrations specifically increased 3-5-fold in C. trachomatis, when cultured under iron-starvation conditions rather than under general stress conditions, such as exposure to penicillin. Finally, immuno-transmission electron microscopy provided evidence that YtgA is more concentrated in C. trachomatis during iron restriction, supporting a possible role for YtgA as a component of an ABC transporter.
Collapse
Affiliation(s)
- J D Miller
- Dept of Molecular Biomedical Sciences, School of Veterinary Medicine, N.C. State University, Raleigh, NC 27606, USA
| | - M S Sal
- Dept of Microbiology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 3761, USA
| | - M Schell
- Dept of Microbiology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 3761, USA
| | - J D Whittimore
- Dept of Microbiology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 3761, USA
| | - J E Raulston
- Dept of Pathology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 3761, USA.,Dept of Microbiology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 3761, USA
| |
Collapse
|
24
|
Jordan PW, Saunders NJ. Host iron binding proteins acting as niche indicators for Neisseria meningitidis. PLoS One 2009; 4:e5198. [PMID: 19352437 PMCID: PMC2662411 DOI: 10.1371/journal.pone.0005198] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 03/09/2009] [Indexed: 12/13/2022] Open
Abstract
Neisseria meningitidis requires iron, and in the absence of iron alters its gene expression to increase iron acquisition and to make the best use of the iron it has. During different stages of colonization and infection available iron sources differ, particularly the host iron-binding proteins haemoglobin, transferrin, and lactoferrin. This study compared the transcriptional responses of N. meningitidis, when grown in the presence of these iron donors and ferric iron, using microarrays. Specific transcriptional responses to the different iron sources were observed, including genes that are not part of the response to iron restriction. Comparisons between growth on haemoglobin and either transferrin or lactoferrin identified changes in 124 and 114 genes, respectively, and 33 genes differed between growth on transferrin or lactoferrin. Comparison of gene expression from growth on haemoglobin or ferric iron showed that transcription is also affected by the entry of either haem or ferric iron into the cytoplasm. This is consistent with a model in which N. meningitidis uses the relative availability of host iron donor proteins as niche indicators. Growth in the presence of haemoglobin is associated with a response likely to be adaptive to survival within the bloodstream, which is supported by serum killing assays that indicate growth on haemoglobin significantly increases survival, and the response to lactoferrin is associated with increased expression of epithelial cell adhesins and oxidative stress response molecules. The transferrin receptor is the most highly transcribed receptor and has the fewest genes specifically induced in its presence, suggesting this is the favoured iron source for the bacterium. Most strikingly, the responses to haemoglobin, which is associated with unrestricted growth, indicates a low iron transcriptional profile, associated with an aggressive phenotype that may be adaptive to access host iron sources but which may also underlie the lethal features of meningococcal septicaemia, when haemoglobin may become a major source of iron.
Collapse
Affiliation(s)
- Philip W. Jordan
- The Bacterial Pathogenesis and Functional Genomics Group, The Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Nigel J. Saunders
- The Bacterial Pathogenesis and Functional Genomics Group, The Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
25
|
Parker Siburt CJ, Roulhac PL, Weaver KD, Noto JM, Mietzner TA, Cornelissen CN, Fitzgerald MC, Crumbliss AL. Hijacking transferrin bound iron: protein-receptor interactions involved in iron transport in N. gonorrhoeae. Metallomics 2009; 1:249-55. [PMID: 20161024 PMCID: PMC2749328 DOI: 10.1039/b902860a] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Neisseria gonorrhoeae has the capacity to acquire iron from its human host by removing this essential nutrient from serum transferrin. The transferrin binding proteins, TbpA and TbpB constitute the outer membrane receptor complex responsible for binding transferrin, extracting the tightly bound iron from the host-derived molecule, and transporting iron into the periplasmic space of this Gram-negative bacterium. Once iron is transported across the outer membrane, ferric binding protein A (FbpA) moves the iron across the periplasmic space and initiates the process of transport into the bacterial cytosol. The results of the studies reported here define the multiple steps in the iron transport process in which TbpA and TbpB participate. Using the SUPREX technique for assessing the thermodynamic stability of protein-ligand complexes, we report herein the first direct measurement of periplasmic FbpA binding to the outer membrane protein TbpA. We also show that TbpA discriminates between apo- and holo-FbpA; i.e. the TbpA interaction with apo-FbpA is higher affinity than the TbpA interaction with holo-FbpA. Further, we demonstrate that both TbpA and TbpB individually can deferrate transferrin and ferrate FbpA without energy supplied from TonB resulting in sequestration by apo-FbpA.
Collapse
Affiliation(s)
| | - Petra L. Roulhac
- Department of Chemistry, Duke University, Durham, NC 27708-0346, USA
| | | | - Jennifer M. Noto
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298-0678, USA
| | - Timothy A. Mietzner
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Cynthia N. Cornelissen
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298-0678, USA
| | | | | |
Collapse
|
26
|
Nodop A, Pietsch D, Höcker R, Becker A, Pistorius EK, Forchhammer K, Michel KP. Transcript profiling reveals new insights into the acclimation of the mesophilic fresh-water cyanobacterium Synechococcus elongatus PCC 7942 to iron starvation. PLANT PHYSIOLOGY 2008; 147:747-63. [PMID: 18424627 PMCID: PMC2409038 DOI: 10.1104/pp.107.114058] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Accepted: 04/17/2008] [Indexed: 05/05/2023]
Abstract
The regulatory network for acclimation of the obligate photoautotrophic fresh water cyanobacterium Synechococcus elongatus PCC 7942 to iron (Fe) limitation was studied by transcript profiling with an oligonucleotide whole genome DNA microarray. Six regions on the chromosome with several Fe-regulated genes each were identified. The irpAB and fut region encode putative Fe uptake systems, the suf region participates in [Fe-sulfur] cluster assembly under oxidative stress and Fe limitation, the isiAB region encodes CP43' and flavodoxin, the idiCB region encodes the NuoE-like electron transport associated protein IdiC and the transcriptional activator IdiB, and the ackA/pgam region encodes an acetate kinase and a phosphoglycerate mutase. We also investigated the response of two S. elongatus PCC 7942 mutants to Fe starvation. These were mutant K10, lacking IdiB but containing IdiC, and mutant MuD, representing a idiC-merodiploid mutant with a strongly reduced amount of IdiC as well as IdiB. The absence of IdiB in mutant K10 or the strongly reduced amount of IdiB in mutant MuD allowed for the identification of additional members of the Fe-responsive IdiB regulon. Besides idiA and the irpAB operon somB(1), somA(2), ftr1, ackA, pgam, and nat also seem to be regulated by IdiB. In addition to the reduced amount of IdiB in MuD, the low concentration of IdiC may be responsible for a number of additional changes in the abundance of mainly photosynthesis-related transcripts as compared to the wild type and mutant K10. This fact may explain why it has been impossible to obtain a fully segregated IdiC-free mutant, whereas it was possible to obtain a fully segregated IdiB-free mutant.
Collapse
Affiliation(s)
- Anke Nodop
- Lehrstuhl für Molekulare Zellphysiologie , Universität Bielefeld, D-33615 Bielefeld, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Badarau A, Firbank SJ, Waldron KJ, Yanagisawa S, Robinson NJ, Banfield MJ, Dennison C. FutA2 is a ferric binding protein from Synechocystis PCC 6803. J Biol Chem 2008; 283:12520-7. [PMID: 18252722 DOI: 10.1074/jbc.m709907200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synechocystis PCC 6803 has a high demand for iron (10 times greater than Escherichia coli) to sustain photosynthesis and is unusual in possessing at least two putative iron-binding proteins of a type normally associated with ATP-binding cassette-type importers. It has been suggested that one of these, FutA2, binds ferrous iron, but herein we clearly demonstrate that this protein avidly binds Fe(III), the oxidation state preference of periplasmic iron-binding proteins. Structures of apo-FutA2 and Fe-FutA2 have been determined at 1.7 and 2.7A, respectively. The metal ion is bound in a distorted trigonal bipyramidal arrangement with no exogenous anions as ligands. The metal-binding environment, including the second coordination sphere and charge properties, is consistent with a preference for Fe(III). Atypically, FutA2 has a Tat signal peptide, and its inability to coordinate divalent cations may be crucial to prevent metals from binding to the folded protein prior to export from the cytosol. A loop containing the His(43) ligand undergoes considerable movement in apo-versus Fe-FutA2 and may control metal release to the importer. Although these data are consistent with FutA2 being the periplasmic component involved in iron uptake, deletion of another putative ferric binding protein, FutA1, has a greater effect on the accumulation of iron and is more analogous to a DeltafutA1DeltafutA2 double mutant than DeltafutA2. Here, we also discover that there is a reduced level of ferric FutA2 in the periplasm of the DeltafutA1 mutant providing an explanation for its severe iron-uptake phenotype.
Collapse
Affiliation(s)
- Adriana Badarau
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
28
|
Utilization of lactoferrin-bound and transferrin-bound iron by Campylobacter jejuni. J Bacteriol 2008; 190:1900-11. [PMID: 18203832 DOI: 10.1128/jb.01761-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Campylobacter jejuni NCTC 11168 was capable of growth to levels comparable with FeSO4 in defined iron-limited medium (minimal essential medium alpha [MEMalpha]) containing ferrilactoferrin, ferritransferrin, or ferri-ovotransferrin. Iron was internalized in a contact-dependent manner, with 94% of cell-associated radioactivity from either 55Fe-loaded transferrin or lactoferrin associated with the soluble cell fraction. Partitioning the iron source away from bacteria significantly decreased cellular growth. Excess cold transferrin or lactoferrin in cultures containing 55Fe-loaded transferrin or lactoferrin resulted in reduced levels of 55Fe uptake. Growth of C. jejuni in the presence of ferri- and an excess of apoprotein reduced overall levels of growth. Following incubation of cells in the presence of ferrilactoferrin, lactoferrin became associated with the cell surface; binding levels were higher after growth under iron limitation. A strain carrying a mutation in the cj0178 gene from the iron uptake system Cj0173c-Cj0178 demonstrated significantly reduced growth promotion in the presence of ferrilactoferrin in MEMalpha compared to wild type but was not affected in the presence of heme. Moreover, this mutant acquired less 55Fe than wild type when incubated with 55Fe-loaded protein and bound less lactoferrin. Complementation restored the wild-type phenotype when cells were grown with ferrilactoferrin. A mutant in the ABC transporter system permease gene (cj0174c) showed a small but significant growth reduction. The cj0176c-cj0177 intergenic region contains two separate Fur-regulated iron-repressible promoters. This is the first demonstration that C. jejuni is capable of acquiring iron from members of the transferrin protein family, and our data indicate a role for Cj0178 in this process.
Collapse
|
29
|
Koropatkin N, Randich AM, Bhattacharyya-Pakrasi M, Pakrasi HB, Smith TJ. The Structure of the Iron-binding Protein, FutA1, from Synechocystis 6803. J Biol Chem 2007; 282:27468-27477. [PMID: 17626019 DOI: 10.1074/jbc.m704136200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyanobacteria account for a significant percentage of aquatic primary productivity even in areas where the concentrations of essential micronutrients are extremely low. To better understand the mechanism of iron selectivity and transport, the structure of the solute binding domain of an ATP binding cassette iron transporter, FutA1, was determined in the presence and absence of iron. The iron ion is bound within the "C-clamp" structure via four tyrosine and one histidine residues. There are extensive interactions between these ligating residues and the rest of the protein such that the conformations of the side chains remain relatively unchanged as the iron is released by the opening of the metal binding cleft. This is in stark contrast to the zinc-binding protein, ZnuA, where the domains of the metal-binding protein remain relatively fixed, whereas the ligating residues rotate out of the binding pocket upon metal release. The rotation of the domains in FutA1 is facilitated by two flexible beta-strands running along the back of the protein that act like a hinge during domain motion. This motion may require relatively little energy since total contact area between the domains is the same whether the protein is in the open or closed conformation. Consistent with the pH dependence of iron binding, the main trigger for iron release is likely the histidine in the iron-binding site. Finally, neither FutA1 nor FutA2 binds iron as a siderophore complex or in the presence of anions, and both preferentially bind ferrous over ferric ions.
Collapse
Affiliation(s)
- Nicole Koropatkin
- Donald Danforth Plant Science Center, Saint Louis, Missouri 63132 and
| | - Amelia M Randich
- Donald Danforth Plant Science Center, Saint Louis, Missouri 63132 and
| | | | - Himadri B Pakrasi
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | - Thomas J Smith
- Donald Danforth Plant Science Center, Saint Louis, Missouri 63132 and.
| |
Collapse
|
30
|
Khan A, Shouldice S, Kirby S, Yu RH, Tari L, Schryvers A. High-affinity binding by the periplasmic iron-binding protein from Haemophilus influenzae is required for acquiring iron from transferrin. Biochem J 2007; 404:217-25. [PMID: 17313366 PMCID: PMC1868806 DOI: 10.1042/bj20070110] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The periplasmic iron-binding protein, FbpA (ferric-ion-binding protein A), performs an essential role in iron acquisition from transferrin in Haemophilus influenzae. A series of site-directed mutants in the metal-binding amino acids of FbpA were prepared to determine their relative contribution to iron binding and transport. Structural studies demonstrated that the mutant proteins crystallized in an open conformation with the iron atom associated with the C-terminal domain. The iron-binding properties of the mutant proteins were assessed by several assays, including a novel competitive iron-binding assay. The relative ability of the proteins to compete for iron was pH dependent, with a rank order at pH 6.5 of wild-type, Q58L, H9Q>H9A, E57A>Y195A, Y196A. The genes encoding the mutant FbpA were introduced into H. influenzae and the resulting strains varied in the level of ferric citrate required to support growth on iron-limited medium, suggesting a rank order for metal-binding affinities under physiological conditions comparable with the competitive binding assay at pH 6.5 (wild-type=Q58L>H9Q>H9A, E57A>Y195A, Y196A). Growth dependence on human transferrin was only obtained with cells expressing wild-type, Q58L or H9Q FbpAs, proteins with stability constants derived from the competition assay >2.0x10(18) M(-1). These results suggest that a relatively high affinity of iron binding by FbpA is required for removal of iron from transferrin and its transport across the outer membrane.
Collapse
Affiliation(s)
- Ali G. Khan
- *Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Stephen R. Shouldice
- *Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Shane D. Kirby
- *Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Rong-hua Yu
- *Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, AB, Canada T2N 4N1
| | | | - Anthony B. Schryvers
- *Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, AB, Canada T2N 4N1
- To whom correspondence should be addressed (email )
| |
Collapse
|
31
|
Khan A, Shouldice S, Tari L, Schryvers A. The role of the synergistic phosphate anion in iron transport by the periplasmic iron-binding protein from Haemophilus influenzae. Biochem J 2007; 403:43-8. [PMID: 17147516 PMCID: PMC1828884 DOI: 10.1042/bj20061589] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The acquisition of iron from transferrin by Gram-negative bacterial pathogens is dependent on a periplasmic ferric-ion-binding protein, FbpA. FbpA shuttles iron from the outer membrane to an inner membrane transport complex. A bound phosphate anion completes the iron co-ordination shell of FbpA and kinetic studies demonstrate that the anion plays a critical role in iron binding and release in vitro. The present study was initiated to directly address the hypothesis that the synergistic anion is required for transport of iron in intact cells. A series of site-directed mutants in the anion-binding amino acids of the Haemophilus influenzae FbpA (Gln-58, Asn-175 and Asn-193) were prepared to provide proteins defective in binding of the phosphate anion. Crystal structures of various mutants have revealed that alteration of the C-terminal domain ligands (Asn-175 or Asn-193) but not the N-terminal domain ligand (Gln-58) abrogated binding of the phosphate anion. The mutant proteins were introduced into H. influenzae to evaluate their ability to mediate iron transport. All of the single site-directed mutants (Q58L, N175L and N193L) were capable of mediating iron acquisition from transferrin and from limiting concentrations of ferric citrate. The results suggest that the transport of iron by FbpA is not dependent on binding of phosphate in the synergistic anion-binding site.
Collapse
Affiliation(s)
- Ali G. Khan
- *Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Stephen R. Shouldice
- *Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, AB, Canada T2N 4N1
| | | | - Anthony B. Schryvers
- *Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, AB, Canada T2N 4N1
- To whom correspondence should be addressed (email )
| |
Collapse
|
32
|
Rhodes ER, Menke S, Shoemaker C, Tomaras AP, McGillivary G, Actis LA. Iron acquisition in the dental pathogen Actinobacillus actinomycetemcomitans: what does it use as a source and how does it get this essential metal? Biometals 2007; 20:365-77. [PMID: 17206384 DOI: 10.1007/s10534-006-9058-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Accepted: 11/28/2006] [Indexed: 11/28/2022]
Abstract
Actinobacillus actinomycetemcomitans requires iron to grow under limiting conditions imposed by synthetic and natural chelators. Although none of the strains tested used hemoglobin, lactoferrin or transferrin, all of them used FeCl3 and hemin as iron sources under chelated conditions. Dot-blot binding assays showed that all strains bind lactoferrin, hemoglobin, and hemin but not transferrin. When compared with smooth strains, the rough isolates showed higher hemin binding activity, which was sensitive to proteinase K treatment. A. actinomycetemcomitans harbors the Fur-regulated afeABCD locus coding for iron acquisition in isogenic and non-isogenic cell backgrounds. The genome of this oral pathogen also harbors several other predicted iron uptake genes including the hitABC locus, which restored iron acquisition in the E. coli 1017 ent mutant. However, the disruption of this locus in the parental strain did not affect iron acquisition as drastically as the inactivation of AfeABCD, suggesting that the latter system could be more involved in iron transport than the HitABC system. The genome of this oral pathogen also harbors an active copy of the exbBexbDtonB operon, which could provide the energy needed for hemin acquisition. However, inactivation of each coding region of this operon did not affect the hemin and iron acquisition phenotypes of isogenic derivatives. This observation suggests that the function of these proteins could be replaced by those coded for by tolQ, tolR and tolA as it was described for other bacterial transport systems. Interruption of a hasR homolog, an actively transcribed gene that is predicted to code for an outer membrane hemophore receptor protein, did not affect the ability of an isogenic derivative to bind and use hemin under chelated conditions. This result also indicates that A. actinomycetemcomitans could produce more than one outer membrane hemin receptor as it was described in other human pathogens. All strains tested formed biofilms on plastic under iron-rich and iron-chelated conditions. However, smooth strains attached poorly and formed weaker biofilms when compared with rough isolates. The incubation of rough cells in the presence of FeCl3 or hemin resulted in an increased number of smaller aggregates and microcolonies as compared to the fewer but larger aggregates formed when cells were grown in the presence of dipyridyl.
Collapse
Affiliation(s)
- Eric R Rhodes
- Department of Microbiology, Miami University, 40 Pearson Hall, Oxford, OH 45056, USA
| | | | | | | | | | | |
Collapse
|
33
|
Waldron KJ, Tottey S, Yanagisawa S, Dennison C, Robinson NJ. A periplasmic iron-binding protein contributes toward inward copper supply. J Biol Chem 2006; 282:3837-46. [PMID: 17148438 DOI: 10.1074/jbc.m609916200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Periplasmic substrate binding proteins are known for iron, zinc, manganese, nickel, and molybdenum but not copper. Synechocystis PCC 6803 requires copper for thylakoid-localized plastocyanin and cytochrome oxidase. Here we show that mutants deficient in a periplasmic substrate binding protein FutA2 have low cytochrome oxidase activity and produce cytochrome c6 when grown under copper conditions (150 nm) in which wild-type cells use plastocyanin rather than cytochrome c6. Anaerobic separation of extracts by two-dimensional native liquid chromatography followed by metal analysis and peptide mass-fingerprinting establish that accumulation of copper-plastocyanin is impaired, but iron-ferredoxin is unaffected in DeltafutA2 grown in 150 nm copper. However, recombinant FutA2 binds iron in preference to copper in vitro with an apparent Fe(III) affinity similar to that of its paralog FutA1, the principal substrate binding protein for iron import. FutA2 is also associated with iron and not copper in periplasm extracts, and this Fe(III)-protein complex is absent in DeltafutA2. There are differences in the soluble protein and small-molecule complexes of copper and iron, and the total amount of both elements increases in periplasm extracts of DeltafutA2 relative to wild type. Changes in periplasm protein and small-molecule complexes for other metals are also observed in DeltafutA2. It is proposed that FutA2 contributes to metal partitioning in the periplasm by sequestering Fe(III), which limits aberrant Fe(III) associations with vital binding sites for other metals, including copper.
Collapse
Affiliation(s)
- Kevin J Waldron
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle NE4 2HH, United Kingdom
| | | | | | | | | |
Collapse
|
34
|
Agarwal S, King CA, Klein EK, Soper DE, Rice PA, Wetzler LM, Genco CA. The gonococcal Fur-regulated tbpA and tbpB genes are expressed during natural mucosal gonococcal infection. Infect Immun 2005; 73:4281-7. [PMID: 15972520 PMCID: PMC1168583 DOI: 10.1128/iai.73.7.4281-4287.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Revised: 01/04/2005] [Accepted: 03/02/2005] [Indexed: 11/20/2022] Open
Abstract
Iron is limiting in the human host, and bacterial pathogens respond to this environment by regulating gene expression through the ferric uptake regulator protein (Fur). In vitro studies have demonstrated that Neisseria gonorrhoeae controls the expression of several critical genes through an iron- and Fur-mediated mechanism. While most in vitro experiments are designed to determine the response of N. gonorrhoeae to an exogenous iron concentration of zero, these organisms are unlikely to be exposed to such severe limitations of iron in vivo. To determine if N. gonorrhoeae expresses iron- and Fur-regulated genes in vivo during uncomplicated gonococcal infection, we examined gene expression profiles of specimens obtained from male subjects with urethral infections. RNA was isolated from urethral swab specimens and used as a template to amplify, by reverse transcriptase PCR (RT-PCR), gonococcal genes known to be regulated by iron and Fur (tbpA, tbpB, and fur). The constitutively expressed gonococcal rmp gene was used as a positive control. RT-PCR analysis indicated that gonorrhea-positive specimens where rmp expression was seen were also 93% (51/55) fbpA positive, 87% (48/55) tbpA positive, and 86% (14 of 16 tested) tbpB positive. In addition, we detected a fur transcript in 79% (37 of 47 tested) of positive specimens. We also measured increases in levels of immunoglobulin G antibody against TbpA (91%) and TbpB (73%) antigens in sera from infected male subjects compared to those in uninfected controls. A positive trend between tbpA gene expression and TbpA antibody levels in sera indicated a relationship between levels of gene expression and immune response in male subjects infected with gonorrhea for the first time. These results indicate that gonococcal iron- and Fur-regulated tbpA and tbpB genes are expressed in gonococcal infection and that male subjects with mucosal gonococcal infections exhibit antibodies to these proteins.
Collapse
Affiliation(s)
- Sarika Agarwal
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, 650 Albany Street, Room 637, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Olczak T, Simpson W, Liu X, Genco CA. Iron and heme utilization in Porphyromonas gingivalis. FEMS Microbiol Rev 2005; 29:119-44. [PMID: 15652979 DOI: 10.1016/j.femsre.2004.09.001] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Revised: 06/18/2004] [Accepted: 09/02/2004] [Indexed: 11/26/2022] Open
Abstract
Porphyromonas gingivalis is a Gram-negative anaerobic bacterium associated with the initiation and progression of adult periodontal disease. Iron is utilized by this pathogen in the form of heme and has been shown to play an essential role in its growth and virulence. Recently, considerable attention has been given to the characterization of various secreted and surface-associated proteins of P. gingivalis and their contribution to virulence. In particular, the properties of proteins involved in the uptake of iron and heme have been extensively studied. Unlike other Gram-negative bacteria, P. gingivalis does not produce siderophores. Instead it employs specific outer membrane receptors, proteases (particularly gingipains), and lipoproteins to acquire iron/heme. In this review, we will focus on the diverse mechanisms of iron and heme acquisition in P. gingivalis. Specific proteins involved in iron and heme capture will be described. In addition, we will discuss new genes for iron/heme utilization identified by nucleotide sequencing of the P. gingivalis W83 genome. Putative iron- and heme-responsive gene regulation in P. gingivalis will be discussed. We will also examine the significance of heme/hemoglobin acquisition for the virulence of this pathogen.
Collapse
Affiliation(s)
- Teresa Olczak
- Institute of Biochemistry and Molecular Biology, Laboratory of Biochemistry, Wroclaw University, Tamka 2, 50-137 Wroclaw, Poland.
| | | | | | | |
Collapse
|
36
|
Stokes RH, Oakhill JS, Joannou CL, Gorringe AR, Evans RW. Meningococcal transferrin-binding proteins A and B show cooperation in their binding kinetics for human transferrin. Infect Immun 2005; 73:944-52. [PMID: 15664936 PMCID: PMC546982 DOI: 10.1128/iai.73.2.944-952.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria meningitidis, a causative agent of bacterial meningitis and septicemia, obtains transferrin-bound iron by expressing two outer membrane-located transferrin-binding proteins, TbpA and TbpB. A novel system was developed to investigate the interaction between Tbps and human transferrin. Copurified TbpA-TbpB, recombined TbpA-TbpB, and individual TbpA and TbpB were reconstituted into liposomes and fused onto an HPA chip (BIAcore). All preparations formed stable monolayers, which, with the exception of TbpB, could be regenerated by removing bound transferrin. The ligand binding properties of these monolayers were characterized with surface plasmon resonance and shown to be specific for human transferrin. Kinetic data for diferric human transferrin binding showed that recombined TbpA-TbpB had K(a) and K(d) values similar to those of copurified TbpA-TbpB. Individual TbpA and TbpB also displayed K(a) values similar to those of copurified TbpA-TbpB, but their K(d) values were one order of magnitude higher. Chemical cross-linking studies revealed that TbpA and TbpB, in the absence of human transferrin, formed large complexes with TbpA as the predominant species. Upon human transferrin binding, a complex was formed with a molecular mass corresponding to that of a TbpB-human transferrin heterodimer as well as a higher-molecular-mass complex of this heterodimer cross-linked to TbpA. This indicates that TbpA and TbpB form a functional meningococcal receptor complex in which there is cooperativity in the human transferrin binding kinetics. However, iron loss from the diferric human transferrin-TbpA-TbpB complex was not greater than that from human transferrin alone, suggesting that additional meningococcal transport components are involved in the process of iron removal.
Collapse
Affiliation(s)
- Russell H Stokes
- Metalloprotein Research Group, Randall Division of Cell and Molecular Biophysics, GKT School of Biomedical Sciences, King's College London, Guy's Campus, New Hunt's House, London SE1 1UL, United Kingdom
| | | | | | | | | |
Collapse
|
37
|
Alexander HL, Rasmussen AW, Stojiljkovic I. Identification of Neisseria meningitidis genetic loci involved in the modulation of phase variation frequencies. Infect Immun 2004; 72:6743-7. [PMID: 15501815 PMCID: PMC522996 DOI: 10.1128/iai.72.11.6743-6747.2004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has been proposed that increased phase variation frequencies in Neisseria meningitidis augment transmissibility and invasiveness. A Himar1 mariner transposon mutant library was constructed in serogroup A N. meningitidis and screened for clones with increased phase variation frequencies. Insertions increasing the frequency of slippage events within mononucleotide repeat tracts were identified in three known phase variation-modulating genes (mutS, mutL, and uvrD), as well as six additional loci (pilP, fbpA, fbpB, NMA1233, and two intergenic regions). The implications of these insertion mutations are discussed.
Collapse
Affiliation(s)
- Heather L Alexander
- Department of Microbiology and Immunology, Emory University School of Medicine, 1510 Clifton Rd., Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
38
|
Anderson DS, Adhikari P, Nowalk AJ, Chen CY, Mietzner TA. The hFbpABC transporter from Haemophilus influenzae functions as a binding-protein-dependent ABC transporter with high specificity and affinity for ferric iron. J Bacteriol 2004; 186:6220-9. [PMID: 15342592 PMCID: PMC515168 DOI: 10.1128/jb.186.18.6220-6229.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Accepted: 06/09/2004] [Indexed: 11/20/2022] Open
Abstract
Pathogenic Haemophilus influenzae, Neisseria spp. (Neisseria gonorrhoeae and N. meningitidis), Serratia marcescens, and other gram-negative bacteria utilize a periplasm-to-cytosol FbpABC iron transporter. In this study, we investigated the H. influenzae FbpABC transporter in a siderophore-deficient Escherichia coli background to assess biochemical aspects of FbpABC transporter function. Using a radiolabeled Fe3+ transport assay, we established an apparent Km=0.9 microM and Vmax=1.8 pmol/10(7)cells/min for FbpABC-mediated transport. Complementation experiments showed that hFbpABC is dependent on the FbpA binding protein for transport. The ATPase inhibitor sodium orthovanadate demonstrated dose-dependent inhibition of FbpABC transport, while the protonmotive-force-inhibitor carbonyl cyanide m-chlorophenyl hydrazone had no effect. Metal competition experiments demonstrated that the transporter has high specificity for Fe3+ and selectivity for trivalent metals, including Ga3+ and Al3+, over divalent metals. Metal sensitivity experiments showed that several divalent metals, including copper, nickel, and zinc, exhibited general toxicity towards E. coli. Significantly, gallium-induced toxicity was specific only to E. coli expressing FbpABC. A single-amino-acid mutation in the gene encoding the periplasmic binding protein, FbpA(Y196I), resulted in a greatly diminished iron binding affinity Kd=5.2 x 10(-4) M(-1), approximately 14 orders of magnitude weaker than that of the wild-type protein. Surprisingly, the mutant transporter [FbpA(Y196I)BC] exhibited substantial transport activity, approximately 35% of wild-type transport, with Km=1.2 microM and Vmax=0.5 pmol/10(7)cells/min. We conclude that the FbpABC complexes possess basic characteristics representative of the family of bacterial binding protein-dependent ABC transporters. However, the specificity and high-affinity binding characteristics suggest that the FbpABC transporters function as specialized transporters satisfying the strict chemical requirements of ferric iron (Fe3+) binding and membrane transport.
Collapse
Affiliation(s)
- Damon S Anderson
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Room E1240 Biomedical Science Tower, Lothrop St., Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
39
|
Actis LA, Rhodes ER, Tomaras AP. Genetic and molecular characterization of a dental pathogen using genome-wide approaches. Adv Dent Res 2004; 17:95-9. [PMID: 15126217 PMCID: PMC1262653 DOI: 10.1177/154407370301700122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Actinobacillus actinomycetemcomitans causes periodontitis, a costly chronic infection that affects a large number of patients. The pathogenesis of this dental infection is a multifactorial process that results in a serious degenerative disease of the periodontium. Although significant progress has been achieved after the identification of this Gram-negative bacterium as the etiological agent of this infection, much remains to be done to understand in detail the bacterial factors and host-pathogen interactions involved in the pathogenesis of this disease. Classic research approaches have resulted in the identification of important virulence factors and cellular processes, although they have provided a rather narrow picture of some of the steps of this complex process. In contrast, a much wider picture could be obtained with the application of tools such as bioinformatics and genomics. These tools will provide global information regarding the differential expression of genes encoding factors and processes that lead to the pathogenesis of this disease. Furthermore, comparative genomics has the potential of helping us to understand the emergence and evolution of this human pathogen. This genome-wide approach should provide a more complete picture of the pathogenesis process of this disease, and will facilitate the development of efficient diagnostic, preventive, and therapeutic measures for this disease.
Collapse
Affiliation(s)
- L A Actis
- Department of Microbiology, Miami University, 40 Pearson Hall, Oxford, OH 45056, USA.
| | | | | |
Collapse
|
40
|
Nemish U, Yu RH, Tari LW, Krewulak K, Schryvers AB. The bacterial receptor protein, transferrin-binding protein B, does not independently facilitate the release of metal ion from human transferrin. Biochem Cell Biol 2004; 81:275-83. [PMID: 14569300 DOI: 10.1139/o03-057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pathogenic Gram-negative bacteria of the Pasteurellaceae and Neisseriaceae acquire iron for growth from host transferrin through the action of specific surface receptors. Iron is removed from transferrin by the receptor at the cell surface and is transported across the outer membrane to the periplasm. A periplasmic binding protein-dependent pathway subsequently transports iron into the cell. The transferrin receptor is composed of a largely surface-exposed lipoprotein, transferrin binding protein B, and a TonB-dependent integral outer membrane protein, transferrin binding protein A. To examine the role of transferrin binding protein B in the iron removal process, complexes of recombinant transferrin binding protein B and transferrin were prepared and compared with transferrin in metal-binding and -removal experiments. A polyhistidine-tagged form of recombinant transferrin binding protein B was able to purify a complex with transferrin that was largely monodisperse by dynamic light scattering analysis. Gallium was used instead of iron in the metal-binding studies, since it resulted in increased stability of recombinant transferrin binding protein B in the complex. Difference absorption spectra were used to monitor removal of gallium by nitrilotriacetic acid. Kinetic and equilibrium binding studies indicated that transferrin binds gallium more tightly in the presence of transferrin binding protein B. Thus, transferrin binding protein B does not facilitate metal ion removal and additional components are required for this process.
Collapse
Affiliation(s)
- Ulyana Nemish
- Department of Biological Sciences, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | | | | | | | | |
Collapse
|
41
|
Shouldice SR, Skene RJ, Dougan DR, Snell G, McRee DE, Schryvers AB, Tari LW. Structural basis for iron binding and release by a novel class of periplasmic iron-binding proteins found in gram-negative pathogens. J Bacteriol 2004; 186:3903-10. [PMID: 15175304 PMCID: PMC419930 DOI: 10.1128/jb.186.12.3903-3910.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2004] [Accepted: 03/02/2004] [Indexed: 11/20/2022] Open
Abstract
We have determined the 1.35- and 1.45-A structures, respectively, of closed and open iron-loaded forms of Mannheimia haemolytica ferric ion-binding protein A. M. haemolytica is the causative agent in the economically important and fatal disease of cattle termed shipping fever. The periplasmic iron-binding protein of this gram-negative bacterium, which has homologous counterparts in many other pathogenic species, performs a key role in iron acquisition from mammalian host serum iron transport proteins and is essential for the survival of the pathogen within the host. The ferric (Fe(3+)) ion in the closed structure is bound by a novel asymmetric constellation of four ligands, including a synergistic carbonate anion. The open structure is ligated by three tyrosyl residues and a dynamically disordered solvent-exposed anion. Our results clearly implicate the synergistic anion as the primary mediator of global protein conformation and provide detailed insights into the molecular mechanisms of iron binding and release in the periplasm.
Collapse
Affiliation(s)
- Stephen R Shouldice
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | | | | | | | | | | | | |
Collapse
|
42
|
Perkins-Balding D, Ratliff-Griffin M, Stojiljkovic I. Iron transport systems in Neisseria meningitidis. Microbiol Mol Biol Rev 2004; 68:154-71. [PMID: 15007100 PMCID: PMC362107 DOI: 10.1128/mmbr.68.1.154-171.2004] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acquisition of iron and iron complexes has long been recognized as a major determinant in the pathogenesis of Neisseria meningitidis. In this review, high-affinity iron uptake systems, which allow meningococci to utilize the human host proteins transferrin, lactoferrin, hemoglobin, and haptoglobin-hemoglobin as sources of essential iron, are described. Classic features of bacterial iron transport systems, such as regulation by the iron-responsive repressor Fur and TonB-dependent transport activity, are discussed, as well as more specific features of meningococcal iron transport. Our current understanding of how N. meningitidis acquires iron from the human host and the vaccine potentials of various components of these iron transport systems are also reviewed.
Collapse
Affiliation(s)
- Donna Perkins-Balding
- Rollins Research Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | |
Collapse
|
43
|
Michel KP, Pistorius EK. Adaptation of the photosynthetic electron transport chain in cyanobacteria to iron deficiency: The function of IdiA and IsiA. PHYSIOLOGIA PLANTARUM 2004; 120:36-50. [PMID: 15032875 DOI: 10.1111/j.0031-9317.2004.0229.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In this review we give an overview on the adaptational responses of photosystem (PS) II and PSI in cyanobacteria to iron starvation, mainly summarizing our results with the mesophilic Synechococcus elongatus PCC 7942. We also discuss this process with respect to the strong interrelationship between iron limitation and oxidative stress that exists in cyanobacteria as oxygenic photosynthetic organisms. The adaptation of the multiprotein complexes PSII and PSI to iron starvation is a sequential process, which is characterized by the enhanced expression of two major iron-regulated proteins, IdiA (iron deficiency induced protein A) and IsiA (iron stress induced protein A). Our results suggest that IdiA protects the acceptor side of PSII against oxidative stress under conditions of mild iron limitation in a currently unclear way, whereas prolonged iron deficiency leads to the synthesis of a chlorophyll a antenna around PSI-trimers consisting of IsiA molecules. The physiological consequences of these alterations under prolonged iron starvation, as shown by acridine yellow fluorescence measurements, are a reduction of linear electron transport activity through PSII and an increase of cyclic electron flow around PSI as well as an increase in respiratory activity. IdiA and IsiA expression are mediated by two distinct helix-turn-helix transcriptional regulators of the Crp/Fnr family. IdiB positively regulates expression of idiA under iron starvation, and Fur represses transcription of isiA under iron-sufficient conditions. Although both transcriptional regulators seem to operate independently of each other, our results indicate that a cross-talk between the signal transduction pathways exists. Moreover, IdiA as well as IsiA expression are affected by hydrogen peroxide. We suggest that due to the interdependence of iron limitation and the formation of reactive oxygen species, peroxide stress might be the superior trigger that leads to expression of these proteins under iron starvation. The modifications of PSII and PSI under iron starvation influence the redox state of redox-sensitive components of the electron transport chain, and thus the activity of metabolic pathways being regulated in dependence of the redox state of these components.
Collapse
Affiliation(s)
- Klaus-Peter Michel
- Biologie VIII: Molekulare Zellphysiologie, Universität Bielefeld, D-33501 Bielefeld, Germany
| | | |
Collapse
|
44
|
Shouldice SR, Dougan DR, Williams PA, Skene RJ, Snell G, Scheibe D, Kirby S, Hosfield DJ, McRee DE, Schryvers AB, Tari LW. Crystal structure of Pasteurella haemolytica ferric ion-binding protein A reveals a novel class of bacterial iron-binding proteins. J Biol Chem 2003; 278:41093-8. [PMID: 12882966 DOI: 10.1074/jbc.m306821200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pasteurellosis caused by the Gram-negative pathogen Pasteurella haemolytica is a serious disease leading to death in cattle. To scavenge growth-limiting iron from the host, the pathogen utilizes the periplasmic ferric ion-binding protein A (PhFbpA) as a component of an ATP-binding cassette transport pathway. We report the 1.2-A structure of the iron-free (apo) form of PhFbpA, which is a member of the transferrin structural superfamily. The protein structure adopts a closed conformation, allowing us to reliably assign putative iron-coordinating residues. Based on our analysis, PhFbpA utilizes a unique constellation of binding site residues and anions to octahedrally coordinate an iron atom. A surprising finding in the structure is the presence of two formate anions on opposite sides of the iron-binding pocket. The formate ions tether the N- and C-terminal domains of the protein and stabilize the closed structure, also providing clues as to probable candidates for synergistic anions in the iron-loaded state. PhFbpA represents a new class of bacterial iron-binding proteins.
Collapse
Affiliation(s)
- Stephen R Shouldice
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Rohde KH, Gillaspy AF, Hatfield MD, Lewis LA, Dyer DW. Interactions of haemoglobin with the Neisseria meningitidis receptor HpuAB: the role of TonB and an intact proton motive force. Mol Microbiol 2002; 43:335-54. [PMID: 11985713 DOI: 10.1046/j.1365-2958.2002.02745.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have characterized the interaction of the Neisseria meningitidis TonB-dependent receptor HpuAB with haemoglobin (Hb). Protease accessibility assays indicated that HpuA and HpuB are surface exposed, HpuB interacts physically with HpuA, and TonB energization affects the conformation of HpuAB. Binding assays using [125I]-Hb revealed that the bipartite receptor has a single binding site for Hb (Kd 150 nM). Competitive binding assays using heterologous Hbs revealed that HpuAB Hb recognition was not species specific. The binding kinetics of Hb to HpuAB were dramatically altered in a TonB- mutant and in wild-type meningococci treated with the protonophore carbonylcyanide m-chlorophenylhydrazone (CCCP), indicating that TonB and an intact proton motive force are required for normal Hb binding and release from HpuAB. Our results support a model in which both HpuA and HpuB are required to form a receptor complex in the outer membrane with a single binding site, whose structure and ligand interactions are significantly affected by the TonB-mediated energy state of the receptor.
Collapse
Affiliation(s)
- K H Rohde
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA.
| | | | | | | | | |
Collapse
|
46
|
Chen CJ, Mclean D, Thomas CE, Anderson JE, Sparling PF. Point mutations in HpuB enable gonococcal HpuA deletion mutants to grow on hemoglobin. J Bacteriol 2002; 184:420-6. [PMID: 11751818 PMCID: PMC139576 DOI: 10.1128/jb.184.2.420-426.2002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria gonorrhoeae ordinarily requires both HpuA and HpuB to use hemoglobin (Hb) as a source of iron for growth. Deletion of HpuA resulted in reduced Hb binding and failure of growth on Hb. We identified rare Hb-utilizing colonies (Hb(+)) from an hpuA deletion mutant of FA1090, which fell into two phenotypic classes. One class of the Hb(+) revertants required expression of both TonB and HpuB for growth on Hb, while the other class required neither TonB nor HpuB. All TonB/HpuB-dependent mutants had single amino acid alterations in HpuB, which occurred in clusters, particularly near the C terminus. The point mutations in HpuB did not restore normal Hb binding. Human serum albumin inhibited Hb-dependent growth of HpuB point mutants lacking HpuA but did not inhibit growth when expression of HpuA was restored. Thus, HpuB point mutants internalized heme in the absence of HpuA despite reduced binding of Hb. HpuA facilitated Hb binding and was important in allowing use of heme from Hb for growth.
Collapse
Affiliation(s)
- Ching-Ju Chen
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
47
|
Chen CY, Morse SA. Identification and characterization of a high-affinity zinc uptake system in Neisseria gonorrhoeae. FEMS Microbiol Lett 2001; 202:67-71. [PMID: 11506909 DOI: 10.1111/j.1574-6968.2001.tb10781.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
A search of the gonococcal genome database using the known zinc-binding protein (znuA) sequences from Escherichia coli and Haemophilus influenzae identified an open reading frame encoding a putative gonococcal ZnuA. The consensus amino acid sequence of this open reading frame possessed a characteristic 30-amino acid histidine-rich metal-binding motif (repetitive HDH sequence) containing 43% histidine and 37% aspartic acid and glutamic acid. Subsequently, two adjacent open reading frames with homology to E. coli and H. influenzae znuB and znuC were located upstream of znuA. When partially purified from sonicated cell-free supernatants by CM-Sepharose chromatography, the mature gonococcal ZnuA had an estimated molecular mass of 38 kDa by SDS-PAGE. The presence of a DNA sequence encoding a 19-amino acid signal peptide and the solubility of the mature ZnuA suggested that this protein was located in the periplasm. Inactivation of the Neisseria gonorrhoeae F62 znuA by insertional mutagenesis resulted in a mutant that had a growth rate lower than that of the wild-type parent strain and that required high concentrations of ZnCl2 (> or = 200 microM) for optimal growth. Using a chemically defined agar medium, the gonococcal ZnuA mutant grew only in the presence of Zn(2+), whereas Mg(2+), Ca(2+), Ni(2+), Fe(2+), Cu(2+), Mn(2+) and Cd(2+) had either no effect or were growth inhibitory.
Collapse
Affiliation(s)
- C Y Chen
- Division of AIDS, STD, and TB Laboratory Research, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Mail stop: G-39, 1600 Clifton Rd., Atlanta, GA 30333, USA.
| | | |
Collapse
|
48
|
Katoh H, Hagino N, Ogawa T. Iron-binding activity of FutA1 subunit of an ABC-type iron transporter in the cyanobacterium Synechocystis sp. Strain PCC 6803. PLANT & CELL PHYSIOLOGY 2001; 42:823-827. [PMID: 11522907 DOI: 10.1093/pcp/pce106] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The futA1 (slr1295) and futA2 (slr0513) genes encode periplasmic binding proteins of an ATP-binding cassette (ABC)-type iron transporter in Synechocystis sp. PCC 6803. FutA1 was expressed in Escherichia coli as a GST-tagged recombinant protein (rFutA1). Solution containing purified rFutA1 and ferric chloride showed an absorption spectrum with a peak at 453 nm. The absorbance at this wavelength rose linearly as the amount of iron bound to rFutA1 increased to reach a plateau when the molar ratio of iron to rFutA1 became unity. The association constant of rFutA1 for iron in vitro was about 1 x 10(19). These results demonstrate that the FutA1 binds the ferric ion with high affinity. The activity of iron uptake in the Delta futA1 and Delta futA2 mutants was 37 and 84%, respectively, of that in the wild-type and the activity was less than 5% in the Delta futA1/Delta futA2 double mutant, suggesting their redundant role for binding iron. High concentrations of citrate inhibited ferric iron uptake. These results suggest that the natural iron source transported by the Fut system is not ferric citrate.
Collapse
Affiliation(s)
- H Katoh
- Bioscience Center, Nagoya University, Chikusa, Nagoya, 464-8601 Japan.
| | | | | |
Collapse
|
49
|
Abstract
The ability of pathogens to obtain iron from transferrins, ferritin, hemoglobin, and other iron-containing proteins of their host is central to whether they live or die. To combat invading bacteria, animals go into an iron-withholding mode and also use a protein (Nramp1) to generate reactive oxygen species in an attempt to kill the pathogens. Some invading bacteria respond by producing specific iron chelators-siderophores-that remove the iron from the host sources. Other bacteria rely on direct contact with host iron proteins, either abstracting the iron at their surface or, as with heme, taking it up into the cytoplasm. The expression of a large number of genes (>40 in some cases) is directly controlled by the prevailing intracellular concentration of Fe(II) via its complexing to a regulatory protein (the Fur protein or equivalent). In this way, the biochemistry of the bacterial cell can accommodate the challenges from the host. Agents that interfere with bacterial iron metabolism may prove extremely valuable for chemotherapy of diseases.
Collapse
Affiliation(s)
- C Ratledge
- Department of Biological Sciences, University of Hull, Hull HU6 7RX.
| | | |
Collapse
|
50
|
Taboy CH, Vaughan KG, Mietzner TA, Aisen P, Crumbliss AL. Fe3+ coordination and redox properties of a bacterial transferrin. J Biol Chem 2001; 276:2719-24. [PMID: 11029460 DOI: 10.1074/jbc.m004763200] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Fe(3+) binding site of recombinant nFbp, a ferric-binding protein found in the periplasmic space of pathogenic Neisseria, has been characterized by physicochemical techniques. An effective Fe(3+) binding constant in the presence of 350 microm phosphate at pH 6.5 and 25 degrees C was determined as 2.4 x 10(18) m(-1). EPR spectra for the recombinant Fe(3+)nFbp gave g' = 4.3 and 9 signals characteristic of high spin Fe(3+) in a strong ligand field of low (orthorhombic) symmetry. (31)P NMR experiments demonstrated the presence of bound phosphate in the holo form of nFbp and showed that phosphate can be dialyzed away in the absence of Fe(3+) in apo-nFbp. Finally, an uncorrected Fe(3+/2+) redox potential for Fe-nFbp was determined to be -290 mV (NHE) at pH 6.5, 20 degrees C. Whereas our findings show that nFbp and mammalian transferrin have similar Fe(3+) binding constants and EPR spectra, they differ greatly in their redox potentials. This has implications for the mechanism of Fe transport across the periplasmic space of Gram-negative bacteria.
Collapse
Affiliation(s)
- C H Taboy
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | | | | | | | | |
Collapse
|