1
|
Moreau PL. Regulation of phosphate starvation-specific responses in Escherichia coli. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 36972330 DOI: 10.1099/mic.0.001312] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Toxic agents added into the medium of rapidly growing Escherichia coli induce specific stress responses through the activation of specialized transcription factors. Each transcription factor and downstream regulon (e.g. SoxR) are linked to a unique stress (e.g. superoxide stress). Cells starved of phosphate induce several specific stress regulons during the transition to stationary phase when the growth rate is steadily declining. Whereas the regulatory cascades leading to the expression of specific stress regulons are well known in rapidly growing cells stressed by toxic products, they are poorly understood in cells starved of phosphate. The intent of this review is to both describe the unique mechanisms of activation of specialized transcription factors and discuss signalling cascades leading to the induction of specific stress regulons in phosphate-starved cells. Finally, I discuss unique defence mechanisms that could be induced in cells starved of ammonium and glucose.
Collapse
Affiliation(s)
- Patrice L Moreau
- Laboratoire Chimie Bactérienne, LCB-UMR 7283, Institut Microbiologie Méditerranée, CNRS/Université Aix-Marseille, Marseille, France
| |
Collapse
|
2
|
Lima-Noronha MA, Fonseca DLH, Oliveira RS, Freitas RR, Park JH, Galhardo RS. Sending out an SOS - the bacterial DNA damage response. Genet Mol Biol 2022; 45:e20220107. [PMID: 36288458 PMCID: PMC9578287 DOI: 10.1590/1678-4685-gmb-2022-0107] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/15/2022] [Indexed: 11/04/2022] Open
Abstract
The term “SOS response” was first coined by Radman in 1974, in an intellectual effort to put together the data suggestive of a concerted gene expression program in cells undergoing DNA damage. A large amount of information about this cellular response has been collected over the following decades. In this review, we will focus on a few of the relevant aspects about the SOS response: its mechanism of control and the stressors which activate it, the diversity of regulated genes in different species, its role in mutagenesis and evolution including the development of antimicrobial resistance, and its relationship with mobile genetic elements.
Collapse
Affiliation(s)
- Marco A. Lima-Noronha
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Douglas L. H. Fonseca
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Renatta S. Oliveira
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Rúbia R. Freitas
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Jung H. Park
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Rodrigo S. Galhardo
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| |
Collapse
|
3
|
Real-time kinetic studies of Mycobacterium tuberculosis LexA-DNA interaction. Biosci Rep 2021; 41:230259. [PMID: 34792534 PMCID: PMC8607333 DOI: 10.1042/bsr20211419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 11/18/2022] Open
Abstract
Transcriptional repressor, LexA, regulates the ‘SOS’ response, an indispensable bacterial DNA damage repair machinery. Compared with its Escherichia coli ortholog, LexA from Mycobacterium tuberculosis (Mtb) possesses a unique N-terminal extension of additional 24 amino acids in its DNA-binding domain (DBD) and 18 amino acids insertion at its hinge region that connects the DBD to the C-terminal dimerization/autoproteolysis domain. Despite the importance of LexA in ‘SOS’ regulation, Mtb LexA remains poorly characterized and the functional importance of its additional amino acids remained elusive. In addition, the lack of data on kinetic parameters of Mtb LexA–DNA interaction prompted us to perform kinetic analyses of Mtb LexA and its deletion variants using Bio-layer Interferometry (BLI). Mtb LexA is seen to bind to different ‘SOS’ boxes, DNA sequences present in the operator regions of damage-inducible genes, with comparable nanomolar affinity. Deletion of 18 amino acids from the linker region is found to affect DNA binding unlike the deletion of the N-terminal stretch of extra 24 amino acids. The conserved RKG motif has been found to be critical for DNA binding. Overall, the present study provides insights into the kinetics of the interaction between Mtb LexA and its target ‘SOS’ boxes. The kinetic parameters obtained for DNA binding of Mtb LexA would be instrumental to clearly understand the mechanism of ‘SOS’ regulation and activation in Mtb.
Collapse
|
4
|
Jones EC, Uphoff S. Single-molecule imaging of LexA degradation in Escherichia coli elucidates regulatory mechanisms and heterogeneity of the SOS response. Nat Microbiol 2021; 6:981-990. [PMID: 34183814 PMCID: PMC7611437 DOI: 10.1038/s41564-021-00930-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 05/27/2021] [Indexed: 12/20/2022]
Abstract
The bacterial SOS response stands as a paradigm of gene networks controlled by a master transcriptional regulator. Self-cleavage of the SOS repressor, LexA, induces a wide range of cell functions that are critical for survival and adaptation when bacteria experience stress conditions1, including DNA repair2, mutagenesis3,4, horizontal gene transfer5–7, filamentous growth, and the induction of bacterial toxins8–12, toxin-antitoxin systems13, virulence factors6,14, and prophages15–17. SOS induction is also implicated in biofilm formation and antibiotic persistence11,18–20. Considering the fitness burden of these functions, it is surprising that the expression of LexA-regulated genes is highly variable across cells10,21–23 and that cell subpopulations induce the SOS response spontaneously even in the absence of stress exposure9,11,12,16,24,25. Whether this reflects a population survival strategy or a regulatory inaccuracy is unclear, as are the mechanisms underlying SOS heterogeneity. Here, we developed a single-molecule imaging approach based on a HaloTag fusion to directly monitor LexA inside live Escherichia coli cells, demonstrating the existence of 3 main states of LexA: DNA-bound stationary molecules, free LexA and degraded LexA species. These analyses elucidate the mechanisms by which DNA-binding and degradation of LexA regulate the SOS response in vivo. We show that self-cleavage of LexA occurs frequently throughout the population during unperturbed growth, rather than being restricted to a subpopulation of cells, which causes substantial cell-to-cell variation in LexA abundances. LexA variability underlies SOS gene expression heterogeneity and triggers spontaneous SOS pulses, which enhance bacterial survival in anticipation of stress.
Collapse
Affiliation(s)
- Emma C Jones
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Stephan Uphoff
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
5
|
Moreau PL. Rapid evolution of acetic acid-detoxifying Escherichia coli under phosphate starvation conditions requires activation of the cryptic PhnE permease and induction of translesion synthesis DNA polymerases. FEMS Microbiol Lett 2017; 364:2982872. [PMID: 28199639 DOI: 10.1093/femsle/fnx031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 02/05/2017] [Indexed: 02/07/2023] Open
Abstract
Escherichia coli incubated in phosphate-limiting minimal medium dies during prolonged incubation as a result of the production of acetic acid. Variants that consume acetic acid generally sweep through the population after three serial cultures. Evolvability may primarily result from induction of the potentially mutagenic LexA DNA damage response or from growth of preexisting mutants. Cells starved of phosphate induce the LexA regulon through a unique mechanism based on an increase in the internal pH at the approach of the stationary phase. Evolved cells resume growth on phosphorylated products as a result of the activation of the cryptic PhnE permease. Here, it is shown that first PhnE-expressing revertants swept through starved populations independently of the expression of the LexA regulon. Induction of the LexA regulon and especially of the translesion synthesis DNA polymerases Pol IV and Pol V was, however, absolutely required for the ultimate evolution of acetic acid-detoxifying mutant strains. Both growth under selection and induction of translesion synthesis DNA polymerases are therefore required for adaptive evolution under phosphate starvation conditions.
Collapse
|
6
|
Bell JC, Kowalczykowski SC. RecA: Regulation and Mechanism of a Molecular Search Engine. Trends Biochem Sci 2016; 41:491-507. [PMID: 27156117 PMCID: PMC4892382 DOI: 10.1016/j.tibs.2016.04.002] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 11/19/2022]
Abstract
Homologous recombination maintains genomic integrity by repairing broken chromosomes. The broken chromosome is partially resected to produce single-stranded DNA (ssDNA) that is used to search for homologous double-stranded DNA (dsDNA). This homology driven 'search and rescue' is catalyzed by a class of DNA strand exchange proteins that are defined in relation to Escherichia coli RecA, which forms a filament on ssDNA. Here, we review the regulation of RecA filament assembly and the mechanism by which RecA quickly and efficiently searches for and identifies a unique homologous sequence among a vast excess of heterologous DNA. Given that RecA is the prototypic DNA strand exchange protein, its behavior affords insight into the actions of eukaryotic RAD51 orthologs and their regulators, BRCA2 and other tumor suppressors.
Collapse
Affiliation(s)
- Jason C Bell
- Department of Microbiology and Molecular Genetics and Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Stephen C Kowalczykowski
- Department of Microbiology and Molecular Genetics and Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
7
|
Abstract
Early research on the origins and mechanisms of mutation led to the establishment of the dogma that, in the absence of external forces, spontaneous mutation rates are constant. However, recent results from a variety of experimental systems suggest that mutation rates can increase in response to selective pressures. This chapter summarizes data demonstrating that,under stressful conditions, Escherichia coli and Salmonella can increase the likelihood of beneficial mutations by modulating their potential for genetic change.Several experimental systems used to study stress-induced mutagenesis are discussed, with special emphasison the Foster-Cairns system for "adaptive mutation" in E. coli and Salmonella. Examples from other model systems are given to illustrate that stress-induced mutagenesis is a natural and general phenomenon that is not confined to enteric bacteria. Finally, some of the controversy in the field of stress-induced mutagenesis is summarized and discussed, and a perspective on the current state of the field is provided.
Collapse
|
8
|
Jian H, Xiong L, He Y, Xiao X. The regulatory function of LexA is temperature-dependent in the deep-sea bacterium Shewanella piezotolerans WP3. Front Microbiol 2015; 6:627. [PMID: 26150814 PMCID: PMC4471891 DOI: 10.3389/fmicb.2015.00627] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 06/08/2015] [Indexed: 01/01/2023] Open
Abstract
The SOS response addresses DNA lesions and is conserved in the bacterial domain. The response is governed by the DNA binding protein LexA, which has been characterized in model microorganisms such as Escherichia coli. However, our understanding of its roles in deep-sea bacteria is limited. Here, the influence of LexA on the phenotype and gene transcription of Shewanella piezotolerans WP3 (WP3) was investigated by constructing a lexA deletion strain (WP3ΔlexA), which was compared with the wild-type strain. No growth defect was observed for WP3ΔlexA. A total of 481 and 108 genes were differentially expressed at 20 and 4°C, respectively, as demonstrated by comparative whole genome microarray analysis. Furthermore, the swarming motility and dimethylsulfoxide reduction assay demonstrated that the function of LexA was related to temperature. The transcription of the lexA gene was up-regulated during cold acclimatization and after cold shock, indicating that the higher expression level of LexA at low temperatures may be responsible for its temperature-dependent functions. The deep-sea microorganism S. piezotolerans WP3 is the only bacterial species whose SOS regulator has been demonstrated to be significantly influenced by environmental temperatures to date. Our data support the hypothesis that SOS is a formidable strategy used by bacteria against various environmental stresses.
Collapse
Affiliation(s)
- Huahua Jian
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Lei Xiong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Ying He
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China ; State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University Shanghai, China
| |
Collapse
|
9
|
Impact of spontaneous prophage induction on the fitness of bacterial populations and host-microbe interactions. J Bacteriol 2014; 197:410-9. [PMID: 25404701 DOI: 10.1128/jb.02230-14] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Bacteriophages and genetic elements, such as prophage-like elements, pathogenicity islands, and phage morons, make up a considerable amount of bacterial genomes. Their transfer and subsequent activity within the host's genetic circuitry have had a significant impact on bacterial evolution. In this review, we consider what underlying mechanisms might cause the spontaneous activity of lysogenic phages in single bacterial cells and how the spontaneous induction of prophages can lead to competitive advantages for and influence the lifestyle of bacterial populations or the virulence of pathogenic strains.
Collapse
|
10
|
Guazzaroni ME, Morgante V, Mirete S, González-Pastor JE. Novel acid resistance genes from the metagenome of the Tinto River, an extremely acidic environment. Environ Microbiol 2012; 15:1088-102. [PMID: 23145860 DOI: 10.1111/1462-2920.12021] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 10/03/2012] [Accepted: 10/06/2012] [Indexed: 11/28/2022]
Abstract
Microorganisms that thrive in acidic environments are endowed with specialized molecular mechanisms to survive under this extremely harsh condition. In this work, we performed functional screening of six metagenomic libraries from planktonic and rhizosphere microbial communities of the Tinto River, an extremely acidic environment, to identify genes involved in acid resistance. This approach has revealed 15 different genes conferring acid resistance to Escherichia coli, most of which encoding putative proteins of unknown function or previously described proteins not known to be related to acid resistance. Moreover, we were able to assign function to one unknown and three hypothetical proteins. Among the recovered genes were the ClpXP protease, the transcriptional repressor LexA and nucleic acid-binding proteins such as an RNA-binding protein, HU and Dps. Furthermore, nine of the retrieved genes were cloned and expressed in Pseudomonas putida and Bacillus subtilis and, remarkably, most of them were able to expand the capability of these bacteria to survive under severe acid stress. From this set of genes, four presented a broad-host range as they enhance the acid resistance of the three different organisms tested. These results expand our knowledge about the different strategies used by microorganisms to survive under extremely acid conditions.
Collapse
Affiliation(s)
- María-Eugenia Guazzaroni
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Madrid, Spain
| | | | | | | |
Collapse
|
11
|
Sheinman M, Kafri Y. How does the DNA sequence affect the Hill curve of transcriptional response? Phys Biol 2012; 9:056006. [DOI: 10.1088/1478-3975/9/5/056006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
Abstract
Plants, animals, bacteria, and Archaea all have evolved mechanisms to cope with environmental or cellular stress. Bacterial cells respond to the stress of DNA damage by activation of the SOS response, the canonical RecA/LexA-dependent signal transduction pathway that transcriptionally derepresses a multiplicity of genes-leading to transient arrest of cell division and initiation of DNA repair. Here we report the previously unsuspected role of E. coli endoribonuclease RNase E in regulation of the SOS response. We show that RNase E deletion or inactivation of temperature-sensitive RNase E protein precludes normal initiation of SOS. The ability of RNase E to regulate SOS is dynamic, as down regulation of RNase E following DNA damage by mitomycin C resulted in SOS termination and restoration of RNase E function leads to resumption of a previously aborted response. Overexpression of the RraA protein, which binds to the C-terminal region of RNase E and modulates the actions of degradosomes, recapitulated the effects of RNase E deficiency. Possible mechanisms for RNase E effects on SOS are discussed.
Collapse
|
13
|
Guillemet ML, Moreau PL. Activation of the cryptic PhnE permease promotes rapid adaptive evolution in a population of Escherichia coli K-12 starved for phosphate. J Bacteriol 2012; 194:253-60. [PMID: 22056928 PMCID: PMC3256660 DOI: 10.1128/jb.06094-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 10/25/2011] [Indexed: 01/26/2023] Open
Abstract
Escherichia coli K-12 suffers acetic acid stress during prolonged incubation in glucose minimal medium containing a limiting concentration of inorganic phosphate (0.1 mM P(i)), which decreases the number of viable cells from 6 × 10(8) to ≤10 CFU/ml between days 6 and 14 of incubation. Here we show that following two serial transfers into P(i)-limiting medium, evolved mutants survived prolonged incubation (≈10(7) CFU/ml on day 14 of incubation). The evolved strains that overtook the populations were generally PhnE(+), whereas the ancestral K-12 strain carries an inactive phnE allele, which prevents the transport of phosphonates. The switching in phnE occurred with a high frequency as a result of the deletion of an 8-bp repeated sequence. In a mixed culture starved for P(i) that contained the K-12 ancestral strain in majority, evolved strains grew through PhnE-dependent scavenging of probably organic phosphate esters (not phosphonates or P(i)) released by E. coli K-12 between days 1 and 3, before acetic acid excreted by E. coli K-12 reached toxic levels. The growth yield of phnE(+) strains in mixed culture was dramatically enhanced by mutations that affect glucose metabolism, such as an rpoS mutation inactivating the alternative sigma factor RpoS. The long-term viability of evolved populations was generally higher when the ancestral strain carried an inactive rather than an active phnE allele, which indicates that cross-feeding of phosphorylated products as a result of the phnE polymorphism may be essential for the spread of mutants which eventually help populations to survive under P(i) starvation conditions.
Collapse
Affiliation(s)
- Mélanie L Guillemet
- Laboratoire de Chimie Bactérienne, Centre National de la Recherche Scientifique, Aix-Marseille University, Marseille, France
| | | |
Collapse
|
14
|
Li Y, Zamble DB. pH-Responsive DNA-Binding Activity of Helicobacter pylori NikR. Biochemistry 2009; 48:2486-96. [DOI: 10.1021/bi801742r] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yanjie Li
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6
| | - Deborah B. Zamble
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6
| |
Collapse
|
15
|
Weel-Sneve R, Bjørås M, Kristiansen KI. Overexpression of the LexA-regulated tisAB RNA in E. coli inhibits SOS functions; implications for regulation of the SOS response. Nucleic Acids Res 2008; 36:6249-59. [PMID: 18832374 PMCID: PMC2577331 DOI: 10.1093/nar/gkn633] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The DNA damage induced SOS response in Escherichia coli is initiated by cleavage of the LexA repressor through activation of RecA. Here we demonstrate that overexpression of the SOS-inducible tisAB gene inhibits several SOS functions in vivo. Wild-type E. coli overexpressing tisAB showed the same UV sensitivity as a lexA mutant carrying a noncleavable version of the LexA protein unable to induce the SOS response. Immunoblotting confirmed that tisAB overexpression leads to higher levels of LexA repressor and northern experiments demonstrated delayed and reduced induction of recA mRNA. In addition, induction of prophage λ and UV-induced filamentation was inhibited by tisAB overexpression. The tisAB gene contains antisense sequences to the SOS-inducible dinD gene (16 nt) and the uxaA gene (20 nt), the latter encoding a dehydratase essential for galacturonate catabolism. Cleavage of uxaA mRNA at the antisense sequence was dependent on tisAB RNA expression. We showed that overexpression of tisAB is less able to confer UV sensitivity to the uxaA dinD double mutant as compared to wild-type, indicating that the dinD and uxaA transcripts modulate the anti-SOS response of tisAB. These data shed new light on the complexity of SOS regulation in which the uxaA gene could link sugar metabolism to the SOS response via antisense regulation of the tisAB gene.
Collapse
Affiliation(s)
- Ragnhild Weel-Sneve
- Centre for Molecular Biology and Neuroscience, Institute of Medical Microbiology, Rikshospitalet University Hospital, NO-0027 Oslo, Norway
| | | | | |
Collapse
|
16
|
Guillemet ML, Moreau PL. Fur-dependent detoxification of organic acids by rpoS mutants during prolonged incubation under aerobic, phosphate starvation conditions. J Bacteriol 2008; 190:5567-75. [PMID: 18556786 PMCID: PMC2519383 DOI: 10.1128/jb.00577-08] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Accepted: 06/09/2008] [Indexed: 11/20/2022] Open
Abstract
The activity of amino acid-dependent acid resistance systems allows Escherichia coli to survive during prolonged incubation under phosphate (P(i)) starvation conditions. We show in this work that rpoS-null mutants incubated in the absence of any amino acid survived during prolonged incubation under aerobic, P(i) starvation conditions. Whereas rpoS(+) cells incubated with glutamate excreted high levels of acetate, rpoS mutants grew on acetic acid. The characteristic metabolism of rpoS mutants required the activity of Fur (ferric uptake regulator) in order to decrease the synthesis of the small RNA RyhB that might otherwise inhibit the synthesis of iron-rich proteins. We propose that RpoS (sigma(S)) and the small RNA RyhB contribute to decrease the synthesis of iron-rich proteins required for the activity of the tricarboxylic acid (TCA) cycle, which redirects the metabolic flux toward the production of acetic acid at the onset of stationary phase in rpoS(+) cells. In contrast, Fur activity, which represses ryhB, and the lack of RpoS activity allow a substantial activity of the TCA cycle to continue in stationary phase in rpoS mutants, which decreases the production of acetic acid and, eventually, allows growth on acetic acid and P(i) excreted into the medium. These data may help explain the fact that a high frequency of E. coli rpoS mutants is found in nature.
Collapse
Affiliation(s)
- Mélanie L Guillemet
- Laboratoire de Chimie Bactérienne, Centre National de la Recherche Scientifique, 13009 Marseille, France
| | | |
Collapse
|
17
|
Abstract
All organisms possess a diverse set of genetic programs that are used to alter cellular physiology in response to environmental cues. The gram-negative bacterium, Escherichia coli, mounts what is known as the "SOS response" following DNA damage, replication fork arrest, and a myriad of other environmental stresses. For over 50 years, E. coli has served as the paradigm for our understanding of the transcriptional, and physiological changes that occur following DNA damage (400). In this chapter, we summarize the current view of the SOS response and discuss how this genetic circuit is regulated. In addition to examining the E. coli SOS response, we also include a discussion of the SOS regulatory networks in other bacteria to provide a broader perspective on how prokaryotes respond to DNA damage.
Collapse
|
18
|
Abstract
Bacteria spend their lives buffeted by changing environmental conditions. To adapt to and survive these stresses, bacteria have global response systems that result in sweeping changes in gene expression and cellular metabolism. These responses are controlled by master regulators, which include: alternative sigma factors, such as RpoS and RpoH; small molecule effectors, such as ppGpp; gene repressors such as LexA; and, inorganic molecules, such as polyphosphate. The response pathways extensively overlap and are induced to various extents by the same environmental stresses. These stresses include nutritional deprivation, DNA damage, temperature shift, and exposure to antibiotics. All of these global stress responses include functions that can increase genetic variability. In particular, up-regulation and activation of error-prone DNA polymerases, down-regulation of error-correcting enzymes, and movement of mobile genetic elements are common features of several stress responses. The result is that under a variety of stressful conditions, bacteria are induced for genetic change. This transient mutator state may be important for adaptive evolution.
Collapse
Affiliation(s)
- Patricia L Foster
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA.
| |
Collapse
|
19
|
Moreau PL. The lysine decarboxylase CadA protects Escherichia coli starved of phosphate against fermentation acids. J Bacteriol 2007; 189:2249-61. [PMID: 17209032 PMCID: PMC1899392 DOI: 10.1128/jb.01306-06] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Conflicting results have been reported for the rate and extent of cell death during a prolonged stationary phase. It is shown here that the viability of wild-type cells (MG1655) could decrease >or=10(8)-fold between days 1 and 14 and between days 1 and 6 of incubation under aerobic and anaerobic phosphate (P(i)) starvation conditions, respectively, whereas the cell viability decreased moderately under ammonium and glucose starvation conditions. Several lines of evidence indicated that the loss of viability of P(i)-starved cells resulted primarily from the catabolism of glucose into organic acids through pyruvate oxidase (PoxB) and pyruvate-formate lyase (PflB) under aerobic and anaerobic conditions, respectively. Weak organic acids that are excreted into the medium can reenter the cell and dissociate into protons and anions, thereby triggering cell death. However, P(i)-starved cells were efficiently protected by the activity of the inducible GadABC glutamate-dependent acid resistance system. Glutamate decarboxylation consumes one proton, which contributes to the internal pH homeostasis, and removes one intracellular negative charge, which might compensate for the accumulated weak acid anions. Unexpectedly, the tolerance of P(i)-starved cells to fermentation acids was markedly increased as a result of the activity of the inducible CadBA lysine-dependent acid resistance system that consumes one proton and produces the diamine cadaverine. CadA plays a key role in the defense of Salmonella at pH 3 but was thought to be ineffective in Escherichia coli since the protection of E. coli challenged at pH 2.5 by lysine is much weaker than the protection by glutamate. CadA activity was favored in P(i)-starved cells probably because weak organic acids slowly reenter cells fermenting glucose. Since the environmental conditions that trigger the death of P(i)-starved cells are strikingly similar to the conditions that are thought to prevail in the human colon (i.e., a combination of low levels of P(i) and oxygen and high levels of carbohydrates, inducing the microbiota to excrete high levels of organic acids), it is tempting to speculate that E. coli can survive in the gut because of the activity of the GadABC and CadBA glutamate- and lysine-dependent acid resistance systems.
Collapse
|
20
|
Sousa FJR, Lima LMTR, Pacheco ABF, Oliveira CLP, Torriani I, Almeida DF, Foguel D, Silva JL, Mohana-Borges R. Tetramerization of the LexA repressor in solution: implications for gene regulation of the E.coli SOS system at acidic pH. J Mol Biol 2006; 359:1059-74. [PMID: 16701697 DOI: 10.1016/j.jmb.2006.03.069] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2006] [Revised: 03/30/2006] [Accepted: 03/31/2006] [Indexed: 11/25/2022]
Abstract
Structural changes on LexA repressor promoted by acidic pH have been investigated. Intense protein aggregation occurred around pH 4.0 but was not detected at pH values lower than pH 3.5. The center of spectral mass of the Trp increased 400 cm(-1) at pH 2.5 relatively to pH 7.2, an indication that LexA has undergone structural reorganization but not denaturation. The Trp fluorescence polarization of LexA at pH 2.5 indicated that its hydrodynamic volume was larger than its dimer at pH 7.2. 4,4'-Dianilino-1,1'-binaphthyl-5,5'- disulfonic acid (bis-ANS) experiments suggested that the residues in the hydrophobic clefts already present at the LexA structure at neutral pH had higher affinity to it at pH 2.5. A 100 kDa band corresponding to a tetramer was obtained when LexA was subject to pore-limiting native polyacrylamide gel electrophoresis at this pH. The existence of this tetrameric state was also confirmed by small angle X-ray scattering (SAXS) analysis at pH 2.5. 1D 1H NMR experiments suggested that it was composed of a mixture of folded and unfolded regions. Although 14,000-fold less stable than the dimeric LexA, it showed a tetramer-monomer dissociation at pH 2.5 from the hydrostatic pressure and urea curves. Albeit with half of the affinity obtained at pH 7.2 (Kaff of 170 nM), tetrameric LexA remained capable of binding recA operator sequence at pH 2.5. Moreover, different from the absence of binding to the negative control polyGC at neutral pH, LexA bound to this sequence with a Kaff value of 1415 nM at pH 2.5. A binding stoichiometry experiment at both pH 7.2 and pH 2.5 showed a [monomeric LexA]/[recA operator] ratio of 2:1. These results are discussed in relation to the activation of the Escherichia coli SOS regulon in response to environmental conditions resulting in acidic intracellular pH. Furthermore, oligomerization of LexA is proposed to be a possible regulation mechanism of this regulon.
Collapse
Affiliation(s)
- Francisco J R Sousa
- Laboratório de Genômica Estrutural, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-590, Rio de Janerio, RJ, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Norman A, Hansen LH, Sørensen SJ. A flow cytometry-optimized assay using an SOS–green fluorescent protein (SOS–GFP) whole-cell biosensor for the detection of genotoxins in complex environments. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2006; 603:164-72. [PMID: 16413819 DOI: 10.1016/j.mrgentox.2005.11.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 11/22/2005] [Accepted: 11/26/2005] [Indexed: 11/29/2022]
Abstract
Whole-cell biosensors have become popular tools for detection of ecotoxic compounds in environmental samples. We have developed an assay optimized for flow cytometry with detection of genotoxic compounds in mind. The assay features extended pre-incubation and a cell density of only 10(6)-10(7) cells/mL, and proved far more sensitive than a previously published assay using the same biosensor strain. By applying the SOS-green fluorescent protein (GFP) whole-cell biosensor directly to soil microcosms we were also able to evaluate both the applicability and sensitivity of a biosensor based on SOS-induction in whole soil samples. Soil microcosms were spiked with a dilution-series of crude broth extract from the mitomycin C-producing streptomycete Streptomyces caespitosus. Biosensors extracted from these microcosms after 1 day of incubation at 30 degrees C were easily distinguished from extracts of non-contaminated soil particles when using flow cytometry, and induction of the biosensor by mitomycin C was detectable at concentrations as low as 2.5 ng/g of soil.
Collapse
Affiliation(s)
- Anders Norman
- Department of Microbiology, University of Copenhagen, 1307 Copenhagen K, Denmark
| | | | | |
Collapse
|
22
|
Norman A, Hestbjerg Hansen L, Sørensen SJ. Construction of a ColD cda promoter-based SOS-green fluorescent protein whole-cell biosensor with higher sensitivity toward genotoxic compounds than constructs based on recA, umuDC, or sulA promoters. Appl Environ Microbiol 2005; 71:2338-46. [PMID: 15870320 PMCID: PMC1087587 DOI: 10.1128/aem.71.5.2338-2346.2005] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Four different green fluorescent protein (GFP)-based whole-cell biosensors were created based on the DNA damage inducible SOS response of Escherichia coli in order to evaluate the sensitivity of individual SOS promoters toward genotoxic substances. Treatment with the known carcinogen N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) revealed that the promoter for the ColD plasmid-borne cda gene had responses 12, 5, and 3 times greater than the recA, sulA, and umuDC promoters, respectively, and also considerably higher sensitivity. Furthermore, we showed that when the SOS-GFP construct was introduced into an E. coli host deficient in the tolC gene, the minimal detection limits toward mitomycin C, MNNG, nalidixic acid, and formaldehyde were lowered to 9.1 nM, 0.16 microM, 1.1 microM, and 141 microM, respectively, which were two to six times lower than those in the wild-type strain. This study thus presents a new SOS-GFP whole-cell biosensor which is not only able to detect minute levels of genotoxins but, due to its use of the green fluorescent protein, also a reporter system which should be applicable in high-throughput screening assays as well as a wide variety of in situ detection studies.
Collapse
Affiliation(s)
- Anders Norman
- Department of Microbiology, University of Copenhagen, Sølvgade 83H, 1307 Copenhagen K, Denmark.
| | | | | |
Collapse
|
23
|
Foster PL. Stress responses and genetic variation in bacteria. Mutat Res 2005; 569:3-11. [PMID: 15603749 PMCID: PMC2729700 DOI: 10.1016/j.mrfmmm.2004.07.017] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Revised: 06/30/2004] [Accepted: 07/20/2004] [Indexed: 11/28/2022]
Abstract
Under stressful conditions mechanisms that increase genetic variation can bestow a selective advantage. Bacteria have several stress responses that provide ways in which mutation rates can be increased. These include the SOS response, the general stress response, the heat-shock response, and the stringent response, all of which impact the regulation of error-prone polymerases. Adaptive mutation appears to be process by which cells can respond to selective pressure specifically by producing mutations. In Escherichia coli strain FC40 adaptive mutation involves the following inducible components: (i) a recombination pathway that generates mutations; (ii) a DNA polymerase that synthesizes error-containing DNA; and (iii) stress responses that regulate cellular processes. In addition, a subpopulation of cells enters into a state of hypermutation, giving rise to about 10% of the single mutants and virtually all of the mutants with multiple mutations. These bacterial responses have implications for the development of cancer and other genetic disorders in higher organisms.
Collapse
Affiliation(s)
- Patricia L Foster
- Department of Biology, Indiana University, Jordan Hall, 1001 East Third Street, Bloomington, IN 47405, USA.
| |
Collapse
|
24
|
Layton JC, Foster PL. Error-prone DNA polymerase IV is regulated by the heat shock chaperone GroE in Escherichia coli. J Bacteriol 2005; 187:449-57. [PMID: 15629916 PMCID: PMC543561 DOI: 10.1128/jb.187.2.449-457.2005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An insertion in the promoter of the operon that encodes the molecular chaperone GroE was isolated as an antimutator for stationary-phase or adaptive mutation. The groE operon consists of two genes, groES and groEL; point mutations in either gene conferred the same phenotype, reducing Lac+ adaptive mutation 10- to 20-fold. groE mutant strains had 1/10 the amount of error-prone DNA polymerase IV (Pol IV). In recG+ strains, the reduction in Pol IV was sufficient to account for their low rate of adaptive mutation, but in recG mutant strains, a deficiency of GroE had some additional effect on adaptive mutation. Pol IV is induced as part of the SOS response, but the effect of GroE on Pol IV was independent of LexA. We were unable to show that GroE interacts directly with Pol IV, suggesting that GroE may act indirectly. Together with previous results, these findings indicate that Pol IV is a component of several cellular stress responses.
Collapse
Affiliation(s)
- Jill C Layton
- Department of Biology, Indiana University, Jordan Hall, 1001 East Third St., Bloomington, IN 47405, USA
| | | |
Collapse
|
25
|
Affiliation(s)
- Patricia L Foster
- Department of Biology, Indiana University, Jordan Hall, 1001 East Third St., Bloomington, IN 47405, USA.
| |
Collapse
|
26
|
Velkov VV. Stress-induced evolution and the biosafety of genetically modified microorganisms released into the environment. J Biosci 2001; 26:667-83. [PMID: 11807296 DOI: 10.1007/bf02704764] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This article is focused on the problems of reduction of the risk associated with the deliberate release of genetically modified microorganisms (GMMs) into the environment. Special attention is given to overview the most probable physiological and genetic processes which could be induced in the released GMMs by adverse environmental conditions, namely: (i) activation of quorum sensing and the functions associated with it, (ii) entering into a state of general resistance, (iii) activation of adaptive mutagenesis, adaptive amplifications and transpositions and (iv) stimulation of inter-species gene transfer. To reduce the risks associated with GMMs, the inactivation of their key genes responsible for stress-stimulated increase of viability and evolvability is proposed.
Collapse
Affiliation(s)
- V V Velkov
- Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow region, 142290, Russia.
| |
Collapse
|
27
|
Bhamre S, Gadea BB, Koyama CA, White SJ, Fowler RG. An aerobic recA-, umuC-dependent pathway of spontaneous base-pair substitution mutagenesis in Escherichia coli. Mutat Res 2001; 473:229-47. [PMID: 11166040 DOI: 10.1016/s0027-5107(00)00155-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Antimutator alleles indentify genes whose normal products are involved in spontaneous mutagenesis pathways. Mutant alleles of the recA and umuC genes of Escherichia coli, whose wild-type alleles are components of the inducible SOS response, were shown to cause a decrease in the level of spontaneous mutagenesis. Using a series of chromosomal mutant trp alleles, which detect point mutations, as a reversion assay, it was shown that the reduction in mutagenesis is limited to base-pair substitutions. Within the limited number of sites than could be examined, transversions at AT sites were the favored substitutions. Frameshift mutagenesis was slightly enhanced by a mutant recA allele and unchanged by a mutant umuC allele. The wild-type recA and umuC genes are involved in the same mutagenic base-pair substitution pathway, designated "SOS-dependent spontaneous mutagenesis" (SDSM), since a recAumuC strain showed the same degree and specificity of antimutator activity as either single mutant strain. The SDSM pathway is active only in the presence of oxygen, since wild-type, recA, and umuC strains all show the same levels of reduced spontaneous mutagenesis anaerobically. The SDSM pathway can function in starving/stationary cells and may, or may not, be operative in actively dividing cultures. We suggest that, in wild-type cells, SDSM results from basal levels of SOS activity during DNA synthesis. Mutations may result from synthesis past cryptic DNA lesions (targeted mutagenesis) and/or from mispairings during synthesis with a normal DNA template (untargeted mutagenesis). Since it occurs in chromosomal genes of wild-type cells, SDSM may be biologically significant for isolates of natural enteric bacterial populations where extended starvation is often a common mode of existence.
Collapse
Affiliation(s)
- S Bhamre
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192, USA
| | | | | | | | | |
Collapse
|
28
|
Abstract
Adaptive mutation is defined as a process that, during nonlethal selections, produces mutations that relieve the selective pressure whether or not other, nonselected mutations are also produced. Examples of adaptive mutation or related phenomena have been reported in bacteria and yeast but not yet outside of microorganisms. A decade of research on adaptive mutation has revealed mechanisms that may increase mutation rates under adverse conditions. This article focuses on mechanisms that produce adaptive mutations in one strain of Escherichia coli, FC40. These mechanisms include recombination-induced DNA replication, the placement of genes on a conjugal plasmid, and a transient mutator state. The implications of these various phenomena for adaptive evolution in microorganisms are discussed.
Collapse
Affiliation(s)
- P L Foster
- Department of Biology, Jordan Hall, 1001 E. Third Street, Indiana University, Bloomington, IN 47405-3700, USA.
| |
Collapse
|
29
|
Dorazi R, Dewar SJ. The SOS promoter dinH is essential for ftsK transcription during cell division. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 11):2891-2899. [PMID: 11065367 DOI: 10.1099/00221287-146-11-2891] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The formation of the Escherichia coli division septum has been well characterized and the majority of the genes involved have been shown to map to the dcw cluster. One exception is ftsK, which lies at 20 minutes, immediately downstream of the global response regulatory gene, lrp. The promoter for ftsK has not yet been assigned. Here, it is reported that ftsK is transcribed from two promoters; the first is located within the lrp reading frame and is dispensable whilst the second is essential and corresponds to dinH, previously characterized as an SOS promoter regulated by LexA. ftsK is the first essential gene to be described that is controlled by an SOS-inducible promoter. A possible mechanism by which dinH may be activated in recA minus strains, or in strains with uncleavable LexA, is discussed.
Collapse
Affiliation(s)
- Robert Dorazi
- Department of Biological Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK1
| | - Susan J Dewar
- Department of Biological Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK1
| |
Collapse
|
30
|
Zaitsev EN, Kowalczykowski SC. Enhanced monomer-monomer interactions can suppress the recombination deficiency of the recA142 allele. Mol Microbiol 1999; 34:1-9. [PMID: 10540281 DOI: 10.1046/j.1365-2958.1999.01552.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The RecA142 protein, in which valine is substituted for isoleucine-225, is defective for genetic recombination in vivo and for DNA strand exchange activity in vitro under conventional growth and reaction conditions respectively. However, we show that mildly acidic conditions restore both the in vitro DNA strand exchange activity and the in vivo function of RecA142 protein, suggesting that recombination function can be restored by a slight change in protein structure elicited by protonation. Indeed, we identified an intragenic suppressor of the recombination deficiency of the recA142 allele. This suppressor mutation is a substitution of leucine for glutamine at position 124. Based on the three-dimensional structure, the Q-124L substitution is predicted to make a new monomer-monomer contact with residue phenylalanine-21 of the adjacent RecA monomer. The Q-124L mutation is not allele specific, because it also suppresses the recombination deficiency of a recA deletion (Delta9), lacking nine amino acids at the amino-terminus, presumably by reinforcing the monomer-monomer interactions that are attenuated by the Delta9 deletion. Expression of RecA(Q-124L) protein is toxic to Escherichia coli, presumably because of enhanced affinity for DNA. We speculate as to how enhanced monomer-monomer interactions and acidic pH conditions can restore the recombination activity of some defective recA alleles.
Collapse
Affiliation(s)
- E N Zaitsev
- Division of Biological Sciences, Sections of Microbiology and of Molecular and Cell Biology, University of California, Davis, CA 95616-8665, USA
| | | |
Collapse
|
31
|
Slonczewski JL, Blankenhorn D. Acid and base regulation in the proteome of Escherichia coli. NOVARTIS FOUNDATION SYMPOSIUM 1999; 221:75-83; discussions 83-92. [PMID: 10207914 DOI: 10.1002/9780470515631.ch6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Acid and base conditions have many significant effects on the growth of Escherichia coli. External and internal pH perturbations induce different classes of genes. pH-dependent regulation of genes intersects with other regulatory responses, e.g. oxygen level or osmolarity. 2D electrophoretic gels were used to compare global patterns of protein induction in Escherichia coli grown in complex media buffered at the acid or alkaline ends of the pH range for growth (pH 4.4 vs. pH 9.1). Preliminary results indicate new classes of acid- and base-dependent regulation, in some cases highly dependent on oxygen level. Other proteins are induced strongly at both extremes of pH, compared to pH 7. Current work continues to dissect the relationship between effects of pH, oxygen level and osmolarity.
Collapse
Affiliation(s)
- J L Slonczewski
- Department of Biology, Kenyon College, Gambier, OH 43022, USA
| | | |
Collapse
|
32
|
Robison K, McGuire AM, Church GM. A comprehensive library of DNA-binding site matrices for 55 proteins applied to the complete Escherichia coli K-12 genome. J Mol Biol 1998; 284:241-54. [PMID: 9813115 DOI: 10.1006/jmbi.1998.2160] [Citation(s) in RCA: 263] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A major mode of gene regulation occurs via the binding of specific proteins to specific DNA sequences. The availability of complete bacterial genome sequences offers an unprecedented opportunity to describe networks of such interactions by correlating existing experimental data with computational predictions. Of the 240 candidate Escherichia coli DNA-binding proteins, about 55 have DNA-binding sites identified by DNA footprinting. We used these sites to construct recognition matrices, which we used to search for additional binding sites in the E. coli genomic sequence. Many of these matrices show a strong preference for non-coding DNA. Discrepancies are identified between matrices derived from natural sites and those derived from SELEX (Systematic Evolution of Ligands by Exponential enrichment) experiments. We have constructed a database of these proteins and binding sites, called DPInteract (available at http://arep.med.harvard.edu/dpinteract).
Collapse
Affiliation(s)
- K Robison
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
33
|
Vollmer AC, Belkin S, Smulski DR, Van Dyk TK, LaRossa RA. Detection of DNA damage by use of Escherichia coli carrying recA'::lux, uvrA'::lux, or alkA'::lux reporter plasmids. Appl Environ Microbiol 1997; 63:2566-71. [PMID: 9212407 PMCID: PMC168554 DOI: 10.1128/aem.63.7.2566-2571.1997] [Citation(s) in RCA: 217] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Plasmids were constructed in which DNA damage-inducible promoters recA, uvrA, and alkA from Escherichia coli were fused to the Vibrio fischeri luxCDABE operon. Introduction of these plasmids into E. coli allowed the detection of a dose-dependent response to DNA-damaging agents, such as mitomycin and UV irradiation. Bioluminescence was measured in real time over extended periods. The fusion of the recA promoter to luxCDABE showed the most dramatic and sensitive responses. lexA dependence of the bioluminescent SOS response was demonstrated, confirming that this biosensor's reports were transmitted by the expected regulatory circuitry. Comparisons were made between luxCDABE and lacZ fusions to each promoter. It is suggested that the lux biosensors may have use in monitoring chemical, physical, and genotoxic agents as well as in further characterizing the mechanisms of DNA repair.
Collapse
Affiliation(s)
- A C Vollmer
- Swarthmore College, Pennsylvania 19081-1397, USA.
| | | | | | | | | |
Collapse
|
34
|
Relan NK, Jenuwine ES, Gumbs OH, Shaner SL. Preferential interactions of the Escherichia coli LexA repressor with anions and protons are coupled to binding the recA operator. Biochemistry 1997; 36:1077-84. [PMID: 9033397 DOI: 10.1021/bi9618427] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The binding of Escherichia coli LexA repressor to the recA operator was examined as a function of the concentration of NaCl, KCl, NaF, and MgCl2 at pH 7.5, 21 degrees C. The effects of pH at 100 mM NaCl were also examined. Changes both in the qualitative appearance of the binding isotherms and in the magnitude of the apparent binding affinity with changes in solution conditions suggest that binding of anions and protons by LexA repressor is linked to oligomerization and/or operator binding. Binding of LexA repressor to the recA operator in the presence of NaCl ranging from 25 to 400 mM at picomolar DNA concentration showed a broad, apparently noncooperative, binding isotherm. Binding of LexA repressor in NaF at the same [DNA] yielded binding isotherms with a narrow transition, reflecting an apparently cooperative binding process. Also, the apparent binding affinity was weaker in NaF than in NaCl. Furthermore, the binding affinity and also the apparent binding mode, cooperative vs noncooperative, were pH dependent. The binding affinity of LexA repressor for operator was greatest near neutral pH. The apparent binding mode was noncooperative at pH 7-9 but was cooperative at pH 6 or 9.3. These observations suggest that the specific cation and anion composition and concentrations must be considered in understanding the details of regulation of the SOS system.
Collapse
Affiliation(s)
- N K Relan
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | | | | | | |
Collapse
|
35
|
Affiliation(s)
- H K Hall
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile 36688, USA
| | | | | |
Collapse
|