1
|
Judd PK, Mahli D, Das A. Molecular characterization of the Agrobacterium tumefaciens DNA transfer protein VirB6. MICROBIOLOGY-SGM 2005; 151:3483-3492. [PMID: 16272372 DOI: 10.1099/mic.0.28337-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The VirB proteins of Agrobacterium tumefaciens assemble a T-pilus and a type IV secretion (T4S) apparatus for the transfer of DNA and proteins to plant cells. VirB6 is essential for DNA transfer and is a polytopic integral membrane protein with at least four membrane-spanning domains. VirB6 is postulated to function in T-pilus biogenesis and to be a component of the T4S apparatus. To identify amino acids required for VirB6 function, random mutations were introduced into virB6, and mutants that failed to complement a deletion in virB6 in tumour formation assays were isolated. Twenty-one non-functional mutants were identified, eleven of which had a point mutation that led to a substitution in a single amino acid. Characterization of the mutants indicated that the N-terminal large periplasmic domain and the transmembrane domain TM3 are required for VirB6 function. TM3 has an unusual sequence feature in that it is rich in bulky hydrophobic amino acids. This feature is found conserved in the VirB6 family of proteins. Studies on the effect of VirB6 on other VirB proteins showed that the octopine Ti-plasmid VirB6, unlike its nopaline Ti-plasmid counterpart, does not affect accumulation of VirB3 and VirB5, but has a strong negative effect on the accumulation of the VirB7-VirB7 dimer. Using indirect immunofluorescence microscopy the authors recently demonstrated that VirB6 localizes to a cell pole in a VirB-dependent manner. Mutations identified in the present study did not affect polar localization of the protein or the formation of the VirB7-VirB7 dimer. A VirB6-GFP fusion that contained the entire VirB6 ORF did not localize to a cell pole in either the presence or the absence of the other VirB proteins. IMF studies using dual labelling demonstrated that VirB6 colocalizes with VirB3 and VirB9, and not with VirB4, VirB5 and VirB11. These results support the conclusion that VirB6 is a structural component of the T4S apparatus.
Collapse
Affiliation(s)
- Paul K Judd
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, USA
| | - David Mahli
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Anath Das
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, USA
| |
Collapse
|
2
|
Peterson AJ, Mallin DR, Francis NJ, Ketel CS, Stamm J, Voeller RK, Kingston RE, Simon JA. Requirement for sex comb on midleg protein interactions in Drosophila polycomb group repression. Genetics 2005; 167:1225-39. [PMID: 15280237 PMCID: PMC1470928 DOI: 10.1534/genetics.104.027474] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Drosophila Sex Comb on Midleg (SCM) protein is a transcriptional repressor of the Polycomb group (PcG). Although genetic studies establish SCM as a crucial PcG member, its molecular role is not known. To investigate how SCM might link to PcG complexes, we analyzed the in vivo role of a conserved protein interaction module, the SPM domain. This domain is found in SCM and in another PcG protein, Polyhomeotic (PH), which is a core component of Polycomb repressive complex 1 (PRC1). SCM-PH interactions in vitro are mediated by their respective SPM domains. Yeast two-hybrid and in vitro binding assays were used to isolate and characterize >30 missense mutations in the SPM domain of SCM. Genetic rescue assays showed that SCM repressor function in vivo is disrupted by mutations that impair SPM domain interactions in vitro. Furthermore, overexpression of an isolated, wild-type SPM domain produced PcG loss-of-function phenotypes in flies. Coassembly of SCM with a reconstituted PRC1 core complex shows that SCM can partner with PRC1. However, gel filtration chromatography showed that the bulk of SCM is biochemically separable from PH in embryo nuclear extracts. These results suggest that SCM, although not a core component of PRC1, interacts and functions with PRC1 in gene silencing.
Collapse
Affiliation(s)
- Aidan J Peterson
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Smith MCA, Thomas CD. An accessory protein is required for relaxosome formation by small staphylococcal plasmids. J Bacteriol 2004; 186:3363-73. [PMID: 15150221 PMCID: PMC415746 DOI: 10.1128/jb.186.11.3363-3373.2004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mobilization of the staphylococcal plasmid pC221 requires at least one plasmid-encoded protein, MobA, in order to form a relaxosome. pC221 and closely related plasmids also possess an overlapping reading frame encoding a protein of 15 kDa, termed MobC. By completing the nucleotide sequence of plasmid pC223, we have found a further example of this small protein, and gene knockouts have shown that MobC is essential for relaxosome formation and plasmid mobilization in both pC221 and pC223. Primer extension analysis has been used to identify the nic site in both of these plasmids, located upstream of the mobC gene in the sense strand. Although the sequence surrounding the nic site is highly conserved between pC221 and pC223, exchange of the oriT sequence between plasmids significantly reduces the extent of relaxation complex formation, suggesting that the Mob proteins are selective for their cognate plasmids in vivo.
Collapse
Affiliation(s)
- Matthew C A Smith
- Astbury Centre for Structural Molecular Biology, School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | |
Collapse
|
4
|
Leduc J, Thorsteinsson MV, Gaal T, Roberts GP. Mapping CooA.RNA polymerase interactions. Identification of activating regions 2 and 3 in CooA, the co-sensing transcriptional activator. J Biol Chem 2001; 276:39968-73. [PMID: 11522788 DOI: 10.1074/jbc.m105758200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CooA is a CO-sensing protein that activates the transcription of genes encoding the CO-oxidation (coo) regulon, whose polypeptide products are required for utilizing CO as an energy source in Rhodospirillum rubrum. CooA binds to a position overlapping the -35 element of the P(cooF) promoter, similar to the arrangement of class II CRP (cAMP receptor protein)- and FNR (fumarate and nitrate reductase activator protein)-dependent promoters when expressed in Escherichia coli. Gain-of-function CooA variants were isolated in E. coli following mutagenesis of the portion of cooA encoding the effector-binding domain. Some of the mutations affect regions of CooA that are homologous to the activating regions (AR2 and AR3) previously identified in CRP and FNR, whereas others affect residues that lie in a region of CooA between AR2 and AR3. These CooA variants are comparable to wild-type (WT) CooA in DNA binding affinity in response to CO but differ in transcription activation, presumably because of altered interactions with E. coli RNA polymerase. Based on predictions of similarity to CRP and FNR, loss-of-function CooA variants were obtained in the AR2 and AR3 regions that have minimal transcriptional activity, yet have WT-like DNA binding affinities in response to CO. This study demonstrates that WT CooA contains AR2- and AR3-like surfaces that are required for optimal transcription activation.
Collapse
Affiliation(s)
- J Leduc
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
5
|
Kumar RB, Das A. Functional analysis of the Agrobacterium tumefaciens T-DNA transport pore protein VirB8. J Bacteriol 2001; 183:3636-41. [PMID: 11371528 PMCID: PMC95241 DOI: 10.1128/jb.183.12.3636-3641.2001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The VirB8 protein of Agrobacterium tumefaciens is essential for DNA transfer to plants. VirB8, a 237-residue polypeptide, is an integral membrane protein with a short N-terminal cytoplasmic domain. It interacts with two transport pore proteins, VirB9 and VirB10, in addition to itself. To study the role of these interactions in DNA transfer and to identify essential amino acids of VirB8, we introduced random mutations in virB8 by the mutagenic PCR method. The putative mutants were tested for VirB8 function by the ability to complement a virB8 deletion mutant in tumor formation assays. After multiple rounds of screening 13 mutants that failed to complement the virB8 deletion mutation were identified. Analysis of the mutant strains by DNA sequence analysis, Western blot assays, and reconstruction of new point mutations led to the identification of five amino acid residues that are essential for VirB8 function. The substitution of glycine-78 to serine, serine-87 to leucine, alanine-100 to valine, arginine-107 to proline or alanine, and threonine-192 to methionine led to the loss of VirB8 activity. When introduced into the wild-type strain, virB8(S87L) partially suppressed the tumor forming ability of the wild-type protein. Analysis of protein-protein interaction by the yeast two-hybrid assay indicated that VirB8(R107P) is defective in interactions with both VirB9 and VirB10. A second mutant VirB8(S87L) is defective in interaction with VirB9.
Collapse
Affiliation(s)
- R B Kumar
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | |
Collapse
|
6
|
Zhang Y, Kim K, Ludden P, Roberts G. Isolation and characterization of draT mutants that have altered regulatory properties of dinitrogenase reductase ADP-ribosyltransferase in Rhodospirillum rubrum. MICROBIOLOGY (READING, ENGLAND) 2001; 147:193-202. [PMID: 11160813 DOI: 10.1099/00221287-147-1-193] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In Rhodospirillum rubrum, dinitrogenase reductase ADP-ribosyltransferase (DRAT) is responsible for the ADP-ribosylation of dinitrogenase reductase in response to the addition of NH(+)(4) or removal from light, resulting in a decrease in nitrogenase activity. DRAT is itself subject to post-translational regulation; to investigate the mechanism for the regulation of DRAT activity, random PCR mutagenesis of draT (encoding DRAT) was performed and mutants with altered DRAT regulation were screened. Two mutants (with substitutions of K103E and N248D) were obtained in which DRAT showed activity under conditions where wild-type DRAT (DRAT-WT) did not. These mutants showed lower nitrogenase activity and a higher degree of ADP-ribosylation of dinitrogenase reductase under N(2)-fixing conditions than was seen in a wild-type control strain. DRAT-K103E was overexpressed and purified. DRAT-K103E displayed a much weaker affinity for an Affi-gel Blue matrix than did DRAT-WT, suggestive of a fairly striking biochemical change. However, there was no significant difference in kinetic constants, such as K(m) for NAD and V(max), between DRAT-K103E and DRAT-WT. Like DRAT-WT, DRAT-K103E also modified reduced dinitrogenase reductase poorly. The biochemical properties of these variants are rationalized with respect to their behaviour in vivo.
Collapse
Affiliation(s)
- Y Zhang
- Departments of Biochemistry and Bacteriology and the Center for the Study of Nitrogen Fixation, University of Wisconsin-Madison, Madison WI 53706, USA
| | | | | | | |
Collapse
|
7
|
Hamilton CM, Lee H, Li PL, Cook DM, Piper KR, von Bodman SB, Lanka E, Ream W, Farrand SK. TraG from RP4 and TraG and VirD4 from Ti plasmids confer relaxosome specificity to the conjugal transfer system of pTiC58. J Bacteriol 2000; 182:1541-8. [PMID: 10692358 PMCID: PMC94450 DOI: 10.1128/jb.182.6.1541-1548.2000] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmid conjugation systems are composed of two components, the DNA transfer and replication system, or Dtr, and the mating pair formation system, or Mpf. During conjugal transfer an essential factor, called the coupling protein, is thought to interface the Dtr, in the form of the relaxosome, with the Mpf, in the form of the mating bridge. These proteins, such as TraG from the IncP1 plasmid RP4 (TraG(RP4)) and TraG and VirD4 from the conjugal transfer and T-DNA transfer systems of Ti plasmids, are believed to dictate specificity of the interactions that can occur between different Dtr and Mpf components. The Ti plasmids of Agrobacterium tumefaciens do not mobilize vectors containing the oriT of RP4, but these IncP1 plasmid derivatives lack the trans-acting Dtr functions and TraG(RP4). A. tumefaciens donors transferred a chimeric plasmid that contains the oriT and Dtr genes of RP4 and the Mpf genes of pTiC58, indicating that the Ti plasmid mating bridge can interact with the RP4 relaxosome. However, the Ti plasmid did not mobilize transfer from an IncQ relaxosome. The Ti plasmid did mobilize such plasmids if TraG(RP4) was expressed in the donors. Mutations in traG(RP4) with defined effects on the RP4 transfer system exhibited similar phenotypes for Ti plasmid-mediated mobilization of the IncQ vector. When provided with VirD4, the tra system of pTiC58 mobilized plasmids from the IncQ relaxosome. However, neither TraG(RP4) nor VirD4 restored transfer to a traG mutant of the Ti plasmid. VirD4 also failed to complement a traG(RP4) mutant for transfer from the RP4 relaxosome or for RP4-mediated mobilization from the IncQ relaxosome. TraG(RP4)-mediated mobilization of the IncQ plasmid by pTiC58 did not inhibit Ti plasmid transfer, suggesting that the relaxosomes of the two plasmids do not compete for the same mating bridge. We conclude that TraG(RP4) and VirD4 couples the IncQ but not the Ti plasmid relaxosome to the Ti plasmid mating bridge. However, VirD4 cannot couple the IncP1 or the IncQ relaxosome to the RP4 mating bridge. These results support a model in which the coupling proteins specify the interactions between Dtr and Mpf components of mating systems.
Collapse
Affiliation(s)
- C M Hamilton
- Departments of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Leclerc D, Burri L, Kajava AV, Mougeot JL, Hess D, Lustig A, Kleemann G, Hohn T. The open reading frame III product of cauliflower mosaic virus forms a tetramer through a N-terminal coiled-coil. J Biol Chem 1998; 273:29015-21. [PMID: 9786907 DOI: 10.1074/jbc.273.44.29015] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The open reading frame III product of cauliflower mosaic virus is a protein of 15 kDa (p15) that is essential for the virus life cycle. It was shown that the 34 N-terminal amino acids are sufficient to support protein-protein interaction with the full-length p15 in the yeast two-hybrid system. A corresponding peptide was synthesized and a recombinant p15 was expressed in Escherichia coli and purified. Circular dichroism spectroscopy showed that the peptide and the full-length protein can assume an alpha-helical conformation. Analytical centrifugation allowed to determine that p15 assembles as a rod-shaped tetramer. Oxidative cross-linking of N-terminal cysteines of the peptide generated specific covalent oligomers, indicating that the N terminus of p15 is a coiled-coil that assembles as a parallel tetramer. Mutation of Lys22 into Asp destabilized the tetramer and put forward the presence of a salt bridge between Lys22 and Asp24 in a model building of the stalk. These results suggest a model in which the stalk segment of p15 is located at its N terminus, followed by a hinge that provides the space for presenting the C terminus for interactions with nucleic acids and/or proteins.
Collapse
Affiliation(s)
- D Leclerc
- Friedrich Miescher Institut, P. O. Box 2543, CH-4002 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Affiliation(s)
- C I Kado
- Department of Plant Pathology, University of California, Davis 95616, USA
| |
Collapse
|
10
|
Affiliation(s)
- A Das
- Department of Biochemistry, University of Minnesota, St. Paul 55108, USA
| |
Collapse
|
11
|
Vogel AM, Yoon J, Das A. Mutational analysis of a conserved motif of Agrobacterium tumefaciens VirD2. Nucleic Acids Res 1995; 23:4087-91. [PMID: 7479069 PMCID: PMC307347 DOI: 10.1093/nar/23.20.4087] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The VirD2 polypeptide from Agrobacterium tumefaciens, in the presence of VirD1, introduces a site- and strand-specific nick at the T-DNA borders. A similar reaction at the origin of transfer (oriT) of plasmids is essential for plasmid transfer by bacterial conjugation. A comparison of protein sequences of VirD2 and its functional homologs in bacterial conjugation and in rolling circle replication revealed that they share a conserved 14 residue segment, HxDxxx(P/u)HuHuuux [residues 126-139 of VirD2; Ilyina, T.V. and Koonin, E.V. (1992) Nucleic Acids Res. 20, 3279-3285]. A mutational approach was used to test the role of these residues in the endonuclease activity of VirD2. The results demonstrated that the two invariant histidine residues (H133 and H135) are essential for activity. Mutations at three sites, histidine 126, aspartic acid 128 and aspartic acid 130, that are conserved in a subfamily of the plasmid mobilization proteins, led to the loss of VirD2 activity. Aspartic acid at position 130, could be substituted with glutamic acid and to a much lesser extent, with tyrosine. In contrast, another conserved residue, asparagine 139, tolerated many different amino acid substitutions. The non-conserved residues, arginine 129, proline 132 and leucine 134, were also found to be important for function. Isolation of null mutations that map throughout this conserved domain confirm the hypothesis that this region is essential for function.
Collapse
Affiliation(s)
- A M Vogel
- Department of Biochemistry, University of Minnesota, St Paul 55108, USA
| | | | | |
Collapse
|