1
|
Hernansanz-Agustín P, Morales-Vidal C, Calvo E, Natale P, Martí-Mateos Y, Jaroszewicz SN, Cabrera-Alarcón JL, Acín-Pérez R, López-Montero I, Vázquez J, Enríquez JA. A transmitochondrial sodium gradient controls membrane potential in mammalian mitochondria. Cell 2024; 187:6599-6613.e21. [PMID: 39303716 DOI: 10.1016/j.cell.2024.08.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/02/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024]
Abstract
Eukaryotic cell function and survival rely on the use of a mitochondrial H+ electrochemical gradient (Δp), which is composed of an inner mitochondrial membrane (IMM) potential (ΔΨmt) and a pH gradient (ΔpH). So far, ΔΨmt has been assumed to be composed exclusively of H+. Here, using a rainbow of mitochondrial and nuclear genetic models, we have discovered that a Na+ gradient equates with the H+ gradient and controls half of ΔΨmt in coupled-respiring mammalian mitochondria. This parallelism is controlled by the activity of the long-sought Na+-specific Na+/H+ exchanger (mNHE), which we have identified as the P-module of complex I (CI). Deregulation of this mNHE function, without affecting the canonical enzymatic activity or the assembly of CI, occurs in Leber's hereditary optic neuropathy (LHON), which has profound consequences in ΔΨmt and mitochondrial Ca2+ homeostasis and explains the previously unknown molecular pathogenesis of this neurodegenerative disease.
Collapse
Affiliation(s)
- Pablo Hernansanz-Agustín
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Madrid, Spain.
| | - Carmen Morales-Vidal
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| | - Enrique Calvo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| | - Paolo Natale
- Departamento de Química-Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid (UCM), Madrid, Spain; Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12), Madrid, Spain
| | - Yolanda Martí-Mateos
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| | | | | | - Rebeca Acín-Pérez
- Department of Medicine, Endocrinology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Iván López-Montero
- Departamento de Química-Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid (UCM), Madrid, Spain; Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12), Madrid, Spain; Instituto Pluridisciplinar-UCM, Madrid, Spain
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| | - José Antonio Enríquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Madrid, Spain.
| |
Collapse
|
2
|
Ning S, Hou Q, Yang J, Ma C, Chen Y, Liu Y, Zhou H, Ma J, Huang Y, Cao L, Liu X, Pu J, Jin D, Lu S, Xu J. Planococcus shenhongbingii sp. nov., Planococcus shixiaomingii sp. nov. and Planococcus liqunii sp. nov., isolated from soil of the Qinghai-Tibet Plateau. Int J Syst Evol Microbiol 2024; 74. [PMID: 39042107 DOI: 10.1099/ijsem.0.006465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024] Open
Abstract
Six novel bacterial strains, designated N016T, N017, N022T, N028, N056T, and N064, were isolated from soil sampled on the Qinghai-Tibet Plateau. Cells were aerobic, orange or yellow, globular or rod-shaped, non-motile, non-spore-forming, Gram-stain-positive, catalase-positive and oxidase-negative. All the isolates were salt-tolerant and could grow in the range of 4-42 °C. Results of phylogenomic analyses based on 16S rRNA gene sequences and core genomic genes showed that the three pairs of strains (N016T/N017, N022T/N028, and N056T/N064) were closely related to the members of the genus Planococcus, and clustered with Planococcus ruber, Planococcus glaciei, and Planococcus chinensis. The digital DNA-DNA hybridization and average nucleotide identity values of the six novel strains with other members of the genus Planococcus were within the ranges of 18.7-53 % and 70.58-93.49 %, respectively, all below the respective recommended thresholds of 70.0 % and 95-96 %. The genomic DNA G+C content of the six strains ranged from 43.5 to 46.0 mol%. The major fatty acids of the six strains were anteiso-C15 : 0, iso-C14 : 0, and C16 : 1 ω7c alcohol. The predominant polar lipids of strains N016T, N022T, and N056T were diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine. Menaquinones 7 and 8 were the respiratory quinones. The results of the above analyses indicated that the six strains represent three novel species of the genus Planococcus, for which the names Planococcus shenhongbingii sp. nov. (type strain N016T=GDMCC 1.4062T=JCM 36224T), Planococcus shixiaomingii sp. nov. (type strain N022T=GDMCC 1.4063T=JCM 36225T), and Planococcus liqunii sp. nov. (type strain N056T=GDMCC 1.4064T=JCM 36226T) are proposed.
Collapse
Affiliation(s)
- Shuo Ning
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Qiang Hou
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China
| | - Jing Yang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 102206, PR China
| | - Caiyun Ma
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Yulu Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Yue Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Huimin Zhou
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Jiajia Ma
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China
| | - Yuyuan Huang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, School of Public Health, Guangxi Medical University, Nanning 530021, PR China
| | - Linglin Cao
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Xiaorui Liu
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Ji Pu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Dong Jin
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 102206, PR China
| | - Shan Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 102206, PR China
| | - Jianguo Xu
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 102206, PR China
| |
Collapse
|
3
|
Slobodkina G, Merkel A, Novikov A, Slobodkin A. Pseudodesulfovibrio pelocollis sp. nov. a Sulfate-Reducing Bacterium Isolated from a Terrestrial Mud Volcano. Curr Microbiol 2024; 81:120. [PMID: 38528188 DOI: 10.1007/s00284-024-03644-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/17/2024] [Indexed: 03/27/2024]
Abstract
Terrestrial mud volcanoes (TMVs), surface expressions of a deep-subterranean sedimentary volcanism, are widespread throughout the world. The methane and sulfur cycles are recognized as the most important biogeochemical cycles in these environments. Only few anaerobic bacterial strains were recovered from TMVs. We have isolated a novel sulfate-reducing bacterium (strain SB368T) from TMV located at Taman Peninsula, Russia. Optimum growth of strain SB368T was observed at 30 °C, pH 8.0 and 1% NaCl. Strain SB368T utilized lactate, pyruvate and fumarate in the presence of sulfate, sulfite or thiosulfate. Growth with molecular hydrogen was observed only in the presence of acetate. Fermentative growth occurred on pyruvate. Phylogenetic analysis revealed that strain SB368T belongs to the genus Pseudodesulfovibrio but is distinct from all described species. Based on its genomic and phenotypic properties, a new species, Pseudodesulfovibrio pelocollis sp. nov. is proposed with strain SB368T (= DSM 111087 T = VKM B-3585 T) as a type strain.
Collapse
Affiliation(s)
- Galina Slobodkina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Leninskiy Prospect, 33, Bld. 2, 119071, Moscow, Russia.
| | - Alexander Merkel
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Leninskiy Prospect, 33, Bld. 2, 119071, Moscow, Russia
| | - Andrei Novikov
- Gubkin University, Leninsky Prospect, 65/1, 119991, Moscow, Russia
| | - Alexander Slobodkin
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Leninskiy Prospect, 33, Bld. 2, 119071, Moscow, Russia
| |
Collapse
|
4
|
Lee Y, Haapanen O, Altmeyer A, Kühlbrandt W, Sharma V, Zickermann V. Ion transfer mechanisms in Mrp-type antiporters from high resolution cryoEM and molecular dynamics simulations. Nat Commun 2022; 13:6091. [PMID: 36241630 PMCID: PMC9568556 DOI: 10.1038/s41467-022-33640-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 09/23/2022] [Indexed: 12/24/2022] Open
Abstract
Multiple resistance and pH adaptation (Mrp) cation/proton antiporters are essential for growth of a variety of halophilic and alkaliphilic bacteria under stress conditions. Mrp-type antiporters are closely related to the membrane domain of respiratory complex I. We determined the structure of the Mrp antiporter from Bacillus pseudofirmus by electron cryo-microscopy at 2.2 Å resolution. The structure resolves more than 99% of the sidechains of the seven membrane subunits MrpA to MrpG plus 360 water molecules, including ~70 in putative ion translocation pathways. Molecular dynamics simulations based on the high-resolution structure revealed details of the antiport mechanism. We find that switching the position of a histidine residue between three hydrated pathways in the MrpA subunit is critical for proton transfer that drives gated trans-membrane sodium translocation. Several lines of evidence indicate that the same histidine-switch mechanism operates in respiratory complex I.
Collapse
Affiliation(s)
- Yongchan Lee
- grid.419494.50000 0001 1018 9466Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany ,grid.268441.d0000 0001 1033 6139Present Address: Graduate School of Medical Life Science, Yokohama City University, 230-0045 Kanagawa, Japan
| | - Outi Haapanen
- grid.7737.40000 0004 0410 2071Department of Physics, University of Helsinki, 00014 Helsinki, Finland
| | - Anton Altmeyer
- grid.7839.50000 0004 1936 9721Institute of Biochemistry II, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany ,grid.7839.50000 0004 1936 9721Centre for Biomolecular Magnetic Resonance, Institute of Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| | - Werner Kühlbrandt
- grid.419494.50000 0001 1018 9466Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Vivek Sharma
- grid.7737.40000 0004 0410 2071Department of Physics, University of Helsinki, 00014 Helsinki, Finland ,grid.7737.40000 0004 0410 2071HiLIFE Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Volker Zickermann
- grid.7839.50000 0004 1936 9721Institute of Biochemistry II, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany ,grid.7839.50000 0004 1936 9721Centre for Biomolecular Magnetic Resonance, Institute of Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| |
Collapse
|
5
|
Prokaryotic Na+/H+ Exchangers—Transport Mechanism and Essential Residues. Int J Mol Sci 2022; 23:ijms23169156. [PMID: 36012428 PMCID: PMC9408914 DOI: 10.3390/ijms23169156] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/09/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
Na+/H+ exchangers are essential for Na+ and pH homeostasis in all organisms. Human Na+/H+ exchangers are of high medical interest, and insights into their structure and function are aided by the investigation of prokaryotic homologues. Most prokaryotic Na+/H+ exchangers belong to either the Cation/Proton Antiporter (CPA) superfamily, the Ion Transport (IT) superfamily, or the Na+-translocating Mrp transporter superfamily. Several structures have been solved so far for CPA and Mrp members, but none for the IT members. NhaA from E. coli has served as the prototype of Na+/H+ exchangers due to the high amount of structural and functional data available. Recent structures from other CPA exchangers, together with diverse functional information, have allowed elucidation of some common working principles shared by Na+/H+ exchangers from different families, such as the type of residues involved in the substrate binding and even a simple mechanism sufficient to explain the pH regulation in the CPA and IT superfamilies. Here, we review several aspects of prokaryotic Na+/H+ exchanger structure and function, discussing the similarities and differences between different transporters, with a focus on the CPA and IT exchangers. We also discuss the proposed transport mechanisms for Na+/H+ exchangers that explain their highly pH-regulated activity profile.
Collapse
|
6
|
Hubloher JJ, van der Sande L, Müller V. Na + homeostasis in Acinetobacter baumannii is facilitated via the activity of the Mrp antiporter. Environ Microbiol 2022; 24:4411-4424. [PMID: 35535800 DOI: 10.1111/1462-2920.16039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/26/2022] [Accepted: 05/04/2022] [Indexed: 11/30/2022]
Abstract
The human opportunistic pathogen Acinetobacter baumannii is a global threat to healthcare institutions worldwide, since it developed very efficient strategies to evade host defense and to adapt to the different environmental conditions of the host. This worked focused on the importance of Na+ homeostasis in A. baumannii with regards to pathobiological aspects. In silico studies revealed a homologue of a multicomponent Na+ /H+ antiporter system. Inactivation of the Mrp antiporter through deletion of the first gene (mrpA') resulted in a mutant that was sensitive to increasing pH values. Furthermore, the strain was highly sensitive to increasing Na+ and Li+ concentrations. Increasing Na+ sensitivity is thought to be responsible for growth impairment in human fluids. Furthermore, deletion of mrpA' is associated with energetic defects, inhibition of motility and survival under anoxic and dry conditions.
Collapse
Affiliation(s)
- Josephine Joy Hubloher
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Germany
| | - Lisa van der Sande
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Germany
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Germany
| |
Collapse
|
7
|
Goto T, Ogami S, Yoshimume K, Yumoto I. Differences in Bioenergetic Metabolism of Obligately Alkaliphilic Bacillaceae Under High pH Depend on the Aeration Conditions. Front Microbiol 2022; 13:842785. [PMID: 35401478 PMCID: PMC8992544 DOI: 10.3389/fmicb.2022.842785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/22/2022] [Indexed: 11/26/2022] Open
Abstract
Alkaliphilic Bacillaceae appear to produce ATP based on the H+-based chemiosmotic theory. However, the bulk-based chemiosmotic theory cannot explain the ATP production in alkaliphilic bacteria because the H+ concentration required for driving ATP synthesis through the ATPase does not occur under the alkaline conditions. Alkaliphilic bacteria produce ATP in an H+-diluted environment by retaining scarce H+ extruded by the respiratory chain on the outer surface of the membrane and increasing the potential of the H+ for ATP production on the outer surface of the membrane using specific mechanisms of ATP production. Under high-aeration conditions, the high ΔΨ (ca. -170 mV) of the obligate alkaliphilic Evansella clarkii retains H+ at the outer surface of the membrane and increases the intensity of the protonmotive force (Δp) per H+ across the membrane. One of the reasons for the production of high ΔΨ is the Donnan potential, which arises owing to the induction of impermeable negative charges in the cytoplasm. The intensity of the potential is further enhanced in the alkaliphiles compared with neutralophiles because of the higher intracellular pH (ca. pH 8.1). However, the high ΔΨ observed under high-aeration conditions decreased (∼ -140 mV) under low-aeration conditions. E. clarkii produced 2.5–6.3-fold higher membrane bound cytochrome c in the content of the cell extract under low-aeration conditions than under high-aeration conditions. The predominant membrane-bound cytochrome c in the outer surface of the membrane possesses an extra Asn-rich segment between the membrane anchor and the main body of protein. This structure may influence the formation of an H+-bond network that accumulates H+ on the outer surface of the membrane. Following accumulation of the H+-bond network producing cytochrome c, E. clarkii constructs an H+ capacitor to overcome the energy limitation of low aeration at high pH conditions. E. clarkii produces more ATP than other neutralophilic bacteria by enhancing the efficacy per H+ in ATP synthesis. In low H+ environments, E. clarkii utilizes H+ efficiently by taking advantage of its high ΔΨ under high-aeration conditions, whereas under low-aeration conditions E. clarkii uses cytochrome c bound on its outer surface of the membrane as an H+ capacitor.
Collapse
Affiliation(s)
- Toshitaka Goto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Shinichi Ogami
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Kazuaki Yoshimume
- College of Industrial Technology, Nihon University, Narashino, Japan
| | - Isao Yumoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
- *Correspondence: Isao Yumoto,
| |
Collapse
|
8
|
Ataeian M, Vadlamani A, Haines M, Mosier D, Dong X, Kleiner M, Strous M, Hawley AK. Proteome and strain analysis of cyanobacterium Candidatus "Phormidium alkaliphilum" reveals traits for success in biotechnology. iScience 2021; 24:103405. [PMID: 34877483 PMCID: PMC8633866 DOI: 10.1016/j.isci.2021.103405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/27/2021] [Accepted: 11/03/2021] [Indexed: 11/18/2022] Open
Abstract
Cyanobacteria encompass a diverse group of photoautotrophic bacteria with important roles in nature and biotechnology. Here we characterized Candidatus “Phormidium alkaliphilum,” an abundant member in alkaline soda lake microbial communities globally. The complete, circular whole-genome sequence of Ca. “P. alkaliphilum” was obtained using combined Nanopore and Illumina sequencing of a Ca. “P. alkaliphilum” consortium. Strain-level diversity of Ca. “P. alkaliphilum” was shown to contribute to photobioreactor robustness under different operational conditions. Comparative genomics of closely related species showed that adaptation to high pH was not attributed to specific genes. Proteomics at high and low pH showed only minimal changes in gene expression, but higher productivity in high pH. Diverse photosystem antennae proteins, and high-affinity terminal oxidase, compared with other soda lake cyanobacteria, appear to contribute to the success of Ca. “P. alkaliphilum” in photobioreactors and biotechnology applications. Closed genome of the cyanobacteria Ca. P. alkaliphilum from high-pH photobioreactor Genetic factors lead this Phormidium to outcompete other cyanobacteria in photobioreactor Adaptation to high pH and alkalinity is not linked to specific genes Strain-level diversity contributes Ca. P. alkaliphilum success in changing conditions
Collapse
Affiliation(s)
- Maryam Ataeian
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | | | - Marianne Haines
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Damon Mosier
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Xiaoli Dong
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Marc Strous
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Alyse K. Hawley
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
- School of Engineering, University of British Columbia Okanagan, Kelowna, BC, Canada
- Corresponding author
| |
Collapse
|
9
|
Haja DK, Adams MWW. pH Homeostasis and Sodium Ion Pumping by Multiple Resistance and pH Antiporters in Pyrococcus furiosus. Front Microbiol 2021; 12:712104. [PMID: 34484150 PMCID: PMC8415708 DOI: 10.3389/fmicb.2021.712104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/23/2021] [Indexed: 11/13/2022] Open
Abstract
Multiple Resistance and pH (Mrp) antiporters are seven-subunit complexes that couple transport of ions across the membrane in response to a proton motive force (PMF) and have various physiological roles, including sodium ion sensing and pH homeostasis. The hyperthermophilic archaeon Pyrococcus furiosus contains three copies of Mrp encoding genes in its genome. Two are found as integral components of two respiratory complexes, membrane bound hydrogenase (MBH) and the membrane bound sulfane sulfur reductase (MBS) that couple redox activity to sodium translocation, while the third copy is a stand-alone Mrp. Sequence alignments show that this Mrp does not contain an energy-input (PMF) module but contains all other predicted functional Mrp domains. The P. furiosus Mrp deletion strain exhibits no significant changes in optimal pH or sodium ion concentration for growth but is more sensitive to medium acidification during growth. Cell suspension hydrogen gas production assays using the deletion strain show that this Mrp uses sodium as the coupling ion. Mrp likely maintains cytoplasmic pH by exchanging protons inside the cell for extracellular sodium ions. Deletion of the MBH sodium-translocating module demonstrates that hydrogen gas production is uncoupled from ion pumping and provides insights into the evolution of this Mrp-containing respiratory complex.
Collapse
Affiliation(s)
- Dominik K Haja
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| |
Collapse
|
10
|
Yin YL, Li FL, Du XY, Zhang YX, Wang L. Paraliobacillus salinarum sp. nov., isolated from saline soil in Yingkou, China. Int J Syst Evol Microbiol 2021; 71. [PMID: 34232854 DOI: 10.1099/ijsem.0.004877] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A novel Gram-stain-positive, facultatively aerobic, slightly halophilic, endospore-forming bacterium, designated G6-18T, was isolated from saline soil collected in Yingkou, Liaoning, PR China. Cells of strain G6-18T grew at 10-37 °C (optimum, 30 °C), at pH 6.0-9.0 (optimum, pH 8.0) and in the presence of 2-15 % (w/v) NaCl (optimum, 5 %). The strain could be clearly distinguished from the related species of the genus Paraliobacillus by its phylogenetic position and biochemical characteristics. It presented MK-7 as the major quinone and the dominant cellular fatty acids were iso-C16 : 0, anteiso-C15 : 0, C16 : 0 and iso-C14 : 0. The polar lipids consisted of diphosphatidylglycerol and phosphatidylglycerol as the major components. The G+C content of strain G6-18T genome was 35.3 mol%. 16S rRNA analysis showed that strain G6-18T had the highest similarity to Paraliobacillus ryukyuensis DSM 15140T, reaching 97.0 %, followed by Paraliobacillus quinghaiensis CGMCC 1.6333T with a value of 96.3 %. The average nucleotide identity values between strain G6-18T and Paraliobacillus ryukyuensis DSM 15140T, Paraliobacillus sedimins KCTC 33762T, Paraliobacillus quinghaiensis CGMCC 1.6333T and Paraliobacillus zengyii DSM 107811T were 74.3, 72.0, 73.2 and 72.8 %, respectively, and the digital DNA-DNA hybridization values between strain G6-18T and the neighbouring strains were 15.6, 13.8, 14.2 and 14.2 %, respectively. Based on phenotypic, chemotaxonomic and phylogenetic inferences, strain G6-18T represents a novel species of the genus Paraliobacillus, for which the name Paraliobacillus salinarum sp. nov. (=CGMCC 1.12058T=DSM 25428T) is proposed.
Collapse
Affiliation(s)
- Ya-Lin Yin
- State Key Laboratory of Agrobiotechnology, Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Fang-Ling Li
- State Key Laboratory of Agrobiotechnology, Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Xian-Yuan Du
- State Key Laboratory of Petroleum Pollution Control, China National Petroleum Corporation Research Institute of Safety and Environment Technology, Beijing 102206, PR China
| | - Ya-Xi Zhang
- State Key Laboratory of Agrobiotechnology, Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Lei Wang
- State Key Laboratory of Agrobiotechnology, Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
11
|
Fones EM, Colman DR, Kraus EA, Stepanauskas R, Templeton AS, Spear JR, Boyd ES. Diversification of methanogens into hyperalkaline serpentinizing environments through adaptations to minimize oxidant limitation. THE ISME JOURNAL 2021; 15:1121-1135. [PMID: 33257813 PMCID: PMC8115248 DOI: 10.1038/s41396-020-00838-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/28/2020] [Accepted: 11/11/2020] [Indexed: 01/29/2023]
Abstract
Metagenome assembled genomes (MAGs) and single amplified genomes (SAGs) affiliated with two distinct Methanobacterium lineages were recovered from subsurface fracture waters of the Samail Ophiolite, Sultanate of Oman. Lineage Type I was abundant in waters with circumneutral pH, whereas lineage Type II was abundant in hydrogen rich, hyperalkaline waters. Type I encoded proteins to couple hydrogen oxidation to CO2 reduction, typical of hydrogenotrophic methanogens. Surprisingly, Type II, which branched from the Type I lineage, lacked homologs of two key oxidative [NiFe]-hydrogenases. These functions were presumably replaced by formate dehydrogenases that oxidize formate to yield reductant and cytoplasmic CO2 via a pathway that was unique among characterized Methanobacteria, allowing cells to overcome CO2/oxidant limitation in high pH waters. This prediction was supported by microcosm-based radiotracer experiments that showed significant biological methane generation from formate, but not bicarbonate, in waters where the Type II lineage was detected in highest relative abundance. Phylogenetic analyses and variability in gene content suggested that recent and ongoing diversification of the Type II lineage was enabled by gene transfer, loss, and transposition. These data indicate that selection imposed by CO2/oxidant availability drove recent methanogen diversification into hyperalkaline waters that are heavily impacted by serpentinization.
Collapse
Affiliation(s)
- Elizabeth M. Fones
- grid.41891.350000 0001 2156 6108Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717 USA
| | - Daniel R. Colman
- grid.41891.350000 0001 2156 6108Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717 USA
| | - Emily A. Kraus
- grid.254549.b0000 0004 1936 8155Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401 USA
| | - Ramunas Stepanauskas
- grid.296275.d0000 0000 9516 4913Bigelow Laboratory for Ocean Sciences, East Boothbay, ME 04544 USA
| | - Alexis S. Templeton
- grid.266190.a0000000096214564Department of Geological Sciences, University of Colorado, Boulder, CO 80309 USA
| | - John R. Spear
- grid.254549.b0000 0004 1936 8155Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401 USA
| | - Eric S. Boyd
- grid.41891.350000 0001 2156 6108Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717 USA
| |
Collapse
|
12
|
Structure of the Dietzia Mrp complex reveals molecular mechanism of this giant bacterial sodium proton pump. Proc Natl Acad Sci U S A 2020; 117:31166-31176. [PMID: 33229520 PMCID: PMC7733839 DOI: 10.1073/pnas.2006276117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multiple resistance and pH adaptation (Mrp) complexes are the most sophisticated known cation/proton exchangers and are essential for the survival of a vast variety of alkaliphilic and/or halophilic microorganisms. Moreover, this family of antiporters represents the ancestor of cation pumps in nearly all known redox-driven transporter complexes, including the complex I of the respiratory chain. For the Mrp complex, an experimental structure is lacking. We now report the structure of Mrp complex at 3.0-Å resolution solved using the single-particle cryo-EM method. The structure-inspired functional study of Mrp provides detailed information for further biophysical and biochemical investigation of the intriguingly pumping mechanism and physiological functions of this complex, as well as for exploring its potential as a therapeutic drug target. Multiple resistance and pH adaptation (Mrp) complexes are sophisticated cation/proton exchangers found in a vast variety of alkaliphilic and/or halophilic microorganisms, and are critical for their survival in highly challenging environments. This family of antiporters is likely to represent the ancestor of cation pumps found in many redox-driven transporter complexes, including the complex I of the respiratory chain. Here, we present the three-dimensional structure of the Mrp complex from a Dietzia sp. strain solved at 3.0-Å resolution using the single-particle cryoelectron microscopy method. Our structure-based mutagenesis and functional analyses suggest that the substrate translocation pathways for the driving substance protons and the substrate sodium ions are separated in two modules and that symmetry-restrained conformational change underlies the functional cycle of the transporter. Our findings shed light on mechanisms of redox-driven primary active transporters, and explain how driving substances of different electric charges may drive similar transport processes.
Collapse
|
13
|
Steiner J, Sazanov L. Structure and mechanism of the Mrp complex, an ancient cation/proton antiporter. eLife 2020; 9:59407. [PMID: 32735215 PMCID: PMC7419157 DOI: 10.7554/elife.59407] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/30/2020] [Indexed: 11/19/2022] Open
Abstract
Multiple resistance and pH adaptation (Mrp) antiporters are multi-subunit Na+ (or K+)/H+ exchangers representing an ancestor of many essential redox-driven proton pumps, such as respiratory complex I. The mechanism of coupling between ion or electron transfer and proton translocation in this large protein family is unknown. Here, we present the structure of the Mrp complex from Anoxybacillus flavithermus solved by cryo-EM at 3.0 Å resolution. It is a dimer of seven-subunit protomers with 50 trans-membrane helices each. Surface charge distribution within each monomer is remarkably asymmetric, revealing probable proton and sodium translocation pathways. On the basis of the structure we propose a mechanism where the coupling between sodium and proton translocation is facilitated by a series of electrostatic interactions between a cation and key charged residues. This mechanism is likely to be applicable to the entire family of redox proton pumps, where electron transfer to substrates replaces cation movements.
Collapse
Affiliation(s)
- Julia Steiner
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Leonid Sazanov
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
14
|
Ashok N, Bauer CE. Evidence of defined temporal expression patterns that lead a gram-negative cell out of dormancy. PLoS Genet 2020; 16:e1008660. [PMID: 32203501 PMCID: PMC7117780 DOI: 10.1371/journal.pgen.1008660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 04/02/2020] [Accepted: 02/07/2020] [Indexed: 01/02/2023] Open
Abstract
Many bacterial species are capable of forming long-lived dormant cells. The best characterized are heat and desiccation resistant spores produced by many Gram-positive species. Less characterized are dormant cysts produced by several Gram-negative species that are somewhat tolerant to increased temperature and very resistant to desiccation. While there is progress in understanding regulatory circuits that control spore germination, there is scarce information on how Gram-negative organisms emerges from dormancy. In this study, we show that R. centenum cysts germinate by emerging a pair of motile vegetative cells from a thick cyst cell wall coat ~ 6 hrs post induction of germination. Time-lapse transcriptomic analysis reveals that there is a defined temporal pattern of gene expression changes during R. centenum cyst germination. The first observable changes are increases in expression of genes for protein synthesis, an increase in expression of genes involved in the generation of a membrane potential and the use of this potential for ATP synthesis via ATPase expression. These early events are followed by expression changes that affect the cell wall and membrane composition, followed by expression changes that promote chromosome replication. Midway through germination, expression changes occur that promote the flow of carbon through the TCA cycle to generate reducing power and parallel synthesis of electron transfer components involved in oxidative phosphorylation. Finally, late expression changes promote the synthesis of a photosystem as well as flagellar and chemotaxis components for motility.
Collapse
Affiliation(s)
- Nandhini Ashok
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Carl E. Bauer
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
15
|
Respiratory complex I - Mechanistic insights and advances in structure determination. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148153. [PMID: 31935361 DOI: 10.1016/j.bbabio.2020.148153] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/16/2019] [Accepted: 01/08/2020] [Indexed: 12/17/2022]
Abstract
Complex I is the largest and most intricate redox-driven proton pump of the respiratory chain. The structure of bacterial and mitochondrial complex I has been determined by X-ray crystallography and cryo-EM at increasing resolution. The recent cryo-EM structures of the complex I-like NDH complex and membrane bound hydrogenase open a new and more comprehensive perspective on the complex I superfamily. Functional studies and molecular modeling approaches have greatly advanced our understanding of the catalytic cycle of complex I. However, the molecular mechanism by which energy is extracted from the redox reaction and utilized to drive proton translocation is unresolved and a matter of ongoing debate. Here, we review progress in structure determination and functional characterization of complex I and discuss current mechanistic models.
Collapse
|
16
|
Zhang XC, Li B. Towards understanding the mechanisms of proton pumps in Complex-I of the respiratory chain. BIOPHYSICS REPORTS 2019. [DOI: 10.1007/s41048-019-00094-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
17
|
Wang X, Yang J, Lu S, Lai XH, Jin D, Pu J, Niu L, Zhu W, Liang J, Huang Y, Wang B, Wu X, Liang H, Xu J. Paraliobacillus zengyii sp. nov., a slightly halophilic and extremely halotolerant bacterium isolated from Tibetan antelope faeces. Int J Syst Evol Microbiol 2019; 69:1426-1432. [PMID: 30860460 DOI: 10.1099/ijsem.0.003333] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Two rod-shaped, slightly halophilic and extremely halotolerant bacterial strains (X-1125T and X-1174), which were Gram-stain-positive, facultatively anaerobic and motile with peritrichous flagella, were isolated from the faeces of Tibetan antelopes. Their optimal temperature, NaCl concentration and pH for growth were 28 °C, 3 % (w/v) NaCl and pH 7.5, respectively. Based on the results of 16S rRNA gene sequences, and phylogenetic and phylogenomic analyses, their nearest phylogenetic neighbours were Paraliobacillussediminis KCTC 33762T (98.4 % similarity), Paraliobacillusquinghaiensis CGMCC 1.6333T (96.9 %) and Paraliobacillusryukyuensis NBRC 100001T (95.9 %) while the 16S rRNA genes of strains X-1125T and X-1174 were highly similar (99.7 %) to each other. The polar lipids comprised diphosphatidylglycerol, two unidentified phospholipids and four unidentified lipids. MK-7 was the sole menaquinone (100 %). The cell wall contained alanine, glycine, glutamic acid and meso-diaminopimelic acid. The major fatty acids (>9 %) were anteiso-C15 : 0, anteiso-C17 : 0 and C16 : 1ω11c. The in silico DNA-DNA hybridization value between strains X-1125T and X-1174 was 97.8 % (well above the species threshold), but their values were lower than the 70 % threshold with the three closely related type strains. Strains X-1125T and X-1174 had DNA G+C contents (mol%) of 35.2 and 35.1 %, respectively. Based on the presented data, strains X-1125T and X-1174 hereby represent a novel species of the genus Paraliobacillus, for which the name Paraliobacillus zengyii sp. nov. is proposed. The type strain is X-1125T (=DSM 107811T=CGMCC 1.16464T).
Collapse
Affiliation(s)
- Xiaoxia Wang
- 1Guangxi Key Laboratory of AIDS Prevention and Treatment and the Guangxi Collaborative Innovation Center for Biomedicine, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, PR China.,2State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Jing Yang
- 2State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China.,3Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai 201508, PR China
| | - Shan Lu
- 2State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China.,3Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai 201508, PR China
| | - Xin-He Lai
- 4School of Biology and Food Sciences, Shangqiu Normal University, Shangqiu, Henan 476000, PR China
| | - Dong Jin
- 2State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China.,3Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai 201508, PR China
| | - Ji Pu
- 2State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Lina Niu
- 5Department of Pathogen Biology, School of Basic Medicine and Life Science, Hainan Medical University; Key Laboratory of Translation Medicine Tropical Diseases (Hainan Medical University); Hainan Medical University-University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Haikou 571199, PR China
| | - Wentao Zhu
- 3Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai 201508, PR China
| | - Junrong Liang
- 2State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Ying Huang
- 2State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Bin Wang
- 6Guizhou Center for Disease Control and Prevention, Guiyang 550000, PR China
| | - Xiaomin Wu
- 7Shaanxi Institute of Zoology, Xi'an 710032, PR China
| | - Hao Liang
- 1Guangxi Key Laboratory of AIDS Prevention and Treatment and the Guangxi Collaborative Innovation Center for Biomedicine, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, PR China
| | - Jianguo Xu
- 1Guangxi Key Laboratory of AIDS Prevention and Treatment and the Guangxi Collaborative Innovation Center for Biomedicine, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, PR China.,3Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai 201508, PR China.,2State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| |
Collapse
|
18
|
Meng Y, Lv P, Cui Y, Zhang L, Wang Y, Ma C, Xu P, Yang C. Potassium resistance of halotolerant and alkaliphilic Halomonas sp. Y2 by a Na +-induced K + extrusion mechanism. MICROBIOLOGY-SGM 2019; 165:411-418. [PMID: 30777817 DOI: 10.1099/mic.0.000784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In most halophiles, K+ generally acts as a major osmotic solute for osmotic adjustment and pH homeostasis. However, strains also need to extrude excessive intracellular K+ to avoid its toxicity. In the halotolerant and alkaliphilic Halomonas sp. Y2, an Na+-induced K+ extrusion process was observed when the cells were confronted with high extracellular K+ pressure and supplementation by millimolar Na+ ions. Among three mechanosensitive channels (KefA) and two K+/H+ antiporters founded in the genome of the strain, ke1 displayed around 3-5-fold upregulation to ion stress at pH 8.0, while much higher upregulation of Ha-mrp was observed at pH 10.0. Compared to the growth of wild-type Halomonas sp. Y2, deletion of these genes from the strain resulted in different growth phenotypes in response to the osmotic pressure of potassium. In combination with the transcriptional response of these genes, we proposed that the KefA channel of Ke1 is the main contributor to the K+-extrusion process under weak alkalinity, while the Mrp system plays critical roles in alleviating K+ contents at high pH. The combination of these strategies allows Halomonas sp. Y2 to grow over a range of extracellular pH and ion concentrations, and thus protect cells under high osmotic stress conditions.
Collapse
Affiliation(s)
- Yiwei Meng
- 1State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Peiwen Lv
- 1State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Yanbing Cui
- 1State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Lina Zhang
- 2College of Bioengineering, Qilu University of Technology, Jinan 250353, PR China
| | - Yan Wang
- 2College of Bioengineering, Qilu University of Technology, Jinan 250353, PR China
| | - Cuiqing Ma
- 1State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Ping Xu
- 1State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Chunyu Yang
- 1State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
19
|
Salah ZB, Charles CJ, Humphreys PN, Laws AP, Rout SP. Genomic Insights Into A Novel, Alkalitolerant Nitrogen Fixing Bacteria, Azonexus sp. Strain ZS02. J Genomics 2019; 7:1-6. [PMID: 30662569 PMCID: PMC6328298 DOI: 10.7150/jgen.28153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/09/2018] [Indexed: 02/03/2023] Open
Abstract
Alkaline environments represent a significant challenge to the growth of micro-organisms. Despite this, there are a number of alkaline environments which contain active microbial communities. Here we describe the genome of a diazotrophic, alkalitolerant strain of Azonexus, which was isolated from a microcosm seeded with hyperalkaline soils resulting from lime depositions. The isolate has a genome size 3.60 Mb with 3431 protein coding genes. The proteome indicated the presence of genes associated with the cycling of nitrogen, in particular the fixation of atmospheric nitrogen. Although closely related to Azonexus hydrophilus strain d8-1 by both 16S (97.9%) and in silico gDNA (84.1%) relatedness, the isolate demonstrates a pH tolerance above that reported for this strain. The proteome contained genes for the complete Na+/H+ antiporter (subunits A to G) for cytoplasmic pH regulation; this may account for the phenotypic characteristics of this strain which exhibited optimal growth conditions of pH 9 and 30°C.
Collapse
Affiliation(s)
- Zohier B Salah
- Department of Biological and Geographical Sciences, University of Huddersfield, Queensgate Campus, Huddersfield, United Kingdom, HD1 3DH
| | - Christopher J Charles
- Department of Biological and Geographical Sciences, University of Huddersfield, Queensgate Campus, Huddersfield, United Kingdom, HD1 3DH
| | - Paul N Humphreys
- Department of Biological and Geographical Sciences, University of Huddersfield, Queensgate Campus, Huddersfield, United Kingdom, HD1 3DH
| | - Andrew P Laws
- Department of Chemical Sciences, University of Huddersfield, Queensgate Campus, Huddersfield, United Kingdom, HD1 3DH
| | - Simon P Rout
- Department of Biological and Geographical Sciences, University of Huddersfield, Queensgate Campus, Huddersfield, United Kingdom, HD1 3DH
| |
Collapse
|
20
|
Challenges and Adaptations of Life in Alkaline Habitats. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 172:85-133. [DOI: 10.1007/10_2019_97] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
The Lysine 299 Residue Endows the Multisubunit Mrp1 Antiporter with Dominant Roles in Na + Resistance and pH Homeostasis in Corynebacterium glutamicum. Appl Environ Microbiol 2018. [PMID: 29523552 DOI: 10.1128/aem.00110-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Corynebacterium glutamicum is generally regarded as a moderately salt- and alkali-tolerant industrial organism. However, relatively little is known about the molecular mechanisms underlying these specific adaptations. Here, we found that the Mrp1 antiporter played crucial roles in conferring both environmental Na+ resistance and alkali tolerance whereas the Mrp2 antiporter was necessary in coping with high-KCl stress at alkaline pH. Furthermore, the Δmrp1 Δmrp2 double mutant showed the most-severe growth retardation and failed to grow under high-salt or alkaline conditions. Consistent with growth properties, the Na+/H+ antiporters of C. glutamicum were differentially expressed in response to specific salt or alkaline stress, and an alkaline stimulus particularly induced transcript levels of the Mrp-type antiporters. When the major Mrp1 antiporter was overwhelmed, C. glutamicum might employ alternative coordinate strategies to regulate antiport activities. Site-directed mutagenesis demonstrated that several conserved residues were required for optimal Na+ resistance, such as Mrp1A K299, Mrp1C I76, Mrp1A H230, and Mrp1D E136 Moreover, the chromosomal replacement of lysine 299 in the Mrp1A subunit resulted in a higher intracellular Na+ level and a more alkaline intracellular pH value, thereby causing a remarkable growth attenuation. Homology modeling of the Mrp1 subcomplex suggested two possible ion translocation pathways, and lysine 299 might exert its effect by affecting the stability and flexibility of the cytoplasm-facing channel in the Mrp1A subunit. Overall, these findings will provide new clues to the understanding of salt-alkali adaptation during C. glutamicum stress acclimatization.IMPORTANCE The capacity to adapt to harsh environments is crucial for bacterial survival and product yields, including industrially useful Corynebacterium glutamicum Although C. glutamicum exhibits a marked resistance to salt-alkaline stress, the possible mechanism for these adaptations is still unclear. Here, we present the physiological functions and expression patterns of C. glutamicum putative Na+/H+ antiporters and conserved residues of Mrp1 subunits, which respond to different salt and alkaline stresses. We found that the Mrp-type antiporters, particularly the Mrp1 antiporter, played a predominant role in maintaining intracellular nontoxic Na+ levels and alkaline pH homeostasis. Loss of the major Mrp1 antiporter had a profound effect on gene expression of other antiporters under salt or alkaline conditions. The lysine 299 residue may play its essential roles in conferring salt and alkaline tolerance by affecting the ion translocation channel of the Mrp1A subunit. These findings will contribute to a better understanding of Na+/H+ antiporters in sodium antiport and pH regulation.
Collapse
|
22
|
Shao L, Abdel-Motaal H, Chen J, Chen H, Xu T, Meng L, Zhang Z, Meng F, Jiang J. Characterization of a Functionally Unknown Arginine-Aspartate-Aspartate Family Protein From Halobacillus andaensis and Functional Analysis of Its Conserved Arginine/Aspartate Residues. Front Microbiol 2018; 9:807. [PMID: 29922240 PMCID: PMC5996927 DOI: 10.3389/fmicb.2018.00807] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/10/2018] [Indexed: 01/15/2023] Open
Abstract
Arginine–aspartate–aspartate (RDD) family, representing a category of transmembrane proteins containing one highly conserved arginine and two highly conserved aspartates, has been functionally uncharacterized as yet. Here we present the characterization of a member of this family designated RDD from the moderate halophile Halobacillus andaensis NEAU-ST10-40T and report for the first time that RDD should function as a novel Na+(Li+, K+)/H+ antiporter. It’s more interesting whether the highly conserved arginine/aspartate residues among the whole family or between RDD and its selected homologs are related to the protein function. Therefore, we analyzed their roles in the cation-transporting activity through site-directed mutagenesis and found that D154, R124, R129, and D158 are indispensable for Na+(Li+, K+)/H+ antiport activity whereas neither R35 nor D42 is involved in Na+(Li+, K+)/H+ antiport activity. As a dual representative of Na+(Li+, K+)/H+ antiporters and RDD family proteins, the characterization of RDD and the analysis of its important residues will positively contribute to the knowledge of the cation-transporting mechanisms of this novel antiporter and the roles of highly conserved arginine/aspartate residues in the functions of RDD family proteins.
Collapse
Affiliation(s)
- Li Shao
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Heba Abdel-Motaal
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Jin Chen
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Huiwen Chen
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Tong Xu
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Lin Meng
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Zhenglai Zhang
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Fankui Meng
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Juquan Jiang
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, China
| |
Collapse
|
23
|
Role of the Group 2 Mrp sodium/proton antiporter in rapid response to high alkaline shock in the alkaline- and salt-tolerant Dietzia sp. DQ12-45-1b. Appl Microbiol Biotechnol 2018; 102:3765-3777. [DOI: 10.1007/s00253-018-8846-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 01/19/2018] [Accepted: 02/06/2018] [Indexed: 01/08/2023]
|
24
|
Roles of Staphylococcus aureus Mnh1 and Mnh2 Antiporters in Salt Tolerance, Alkali Tolerance, and Pathogenesis. J Bacteriol 2018; 200:JB.00611-17. [PMID: 29263099 PMCID: PMC5809693 DOI: 10.1128/jb.00611-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/08/2017] [Indexed: 01/19/2023] Open
Abstract
Staphylococcus aureus has three types of cation/proton antiporters. The type 3 family includes two multisubunit Na+/H+ (Mnh) antiporters, Mnh1 and Mnh2. These antiporters are clusters of seven hydrophobic membrane-bound protein subunits. Mnh antiporters play important roles in maintaining cytoplasmic pH in prokaryotes, enabling their survival under extreme environmental stress. In this study, we investigated the physiological roles and catalytic properties of Mnh1 and Mnh2 in S. aureus. Both Mnh1 and Mnh2 were cloned separately into a pGEM3Z+ vector in the antiporter-deficient KNabc Escherichia coli strain. The catalytic properties of the antiporters were measured in everted (inside out) vesicles. The Mnh1 antiporter exhibited a significant exchange of Na+/H+ cations at pH 7.5. Mnh2 showed a significant exchange of both Na+/H+ and K+/H+ cations, especially at pH 8.5. Under elevated salt conditions, deletion of the mnhA1 gene resulted in a significant reduction in the growth rate of S. aureus in the range of pH 7.5 to 9. Deletion of mnhA2 had similar effects but mainly in the range of pH 8.5 to 9.5. Double deletion of mnhA1 and mnhA2 led to a severe reduction in the S. aureus growth rate mainly at pH values above 8.5. The effects of functional losses of both antiporters in S. aureus were also assessed via their support of virulence in a mouse in vivo infection model. Deletion of the mnhA1 gene led to a major loss of S. aureus virulence in mice, while deletion of mnh2 led to no change in virulence. IMPORTANCE This study focuses on the catalytic properties and physiological roles of Mnh1 and Mnh2 cation/proton antiporters in S. aureus and their contributions under different stress conditions. The Mnh1 antiporter was found to have catalytic activity for Na+/H+ antiport, and it plays a significant role in maintaining halotolerance at pH 7.5 while the Mnh2 antiporter has catalytic antiporter activities for Na+/H+ and K+/H+ that have roles in both osmotolerance and halotolerance in S. aureus. Study of S. aureus with a single deletion of either mnhA1 or mnhA2 was assessed in an infection model of mice. The result shows that mnhA1, but not mnhA2, plays a major role in S. aureus virulence.
Collapse
|
25
|
Dibrov P, Dibrov E, Pierce GN. Na+-NQR (Na+-translocating NADH:ubiquinone oxidoreductase) as a novel target for antibiotics. FEMS Microbiol Rev 2017; 41:653-671. [PMID: 28961953 DOI: 10.1093/femsre/fux032] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/17/2017] [Indexed: 01/08/2023] Open
Abstract
The recent breakthrough in structural studies on Na+-translocating NADH:ubiquinone oxidoreductase (Na+-NQR) from the human pathogen Vibrio cholerae creates a perspective for the systematic design of inhibitors for this unique enzyme, which is the major Na+ pump in aerobic pathogens. Widespread distribution of Na+-NQR among pathogenic species, its key role in energy metabolism, its relation to virulence in different species as well as its absence in eukaryotic cells makes this enzyme especially attractive as a target for prospective antibiotics. In this review, the major biochemical, physiological and, especially, the pharmacological aspects of Na+-NQR are discussed to assess its 'target potential' for drug development. A comparison to other primary bacterial Na+ pumps supports the contention that NQR is a first rate prospective target for a new generation of antimicrobials. A new, narrowly targeted furanone inhibitor of NQR designed in our group is presented as a molecular platform for the development of anti-NQR remedies.
Collapse
Affiliation(s)
- Pavel Dibrov
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Elena Dibrov
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, Canada.,Department of Physiology and Pathophysiology, Colleges of Medicine and Pharmacy, Faculty of Health Sciences, Winnipeg, Canada
| | - Grant N Pierce
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, Canada.,Department of Physiology and Pathophysiology, Colleges of Medicine and Pharmacy, Faculty of Health Sciences, Winnipeg, Canada
| |
Collapse
|
26
|
Ito M, Morino M, Krulwich TA. Mrp Antiporters Have Important Roles in Diverse Bacteria and Archaea. Front Microbiol 2017; 8:2325. [PMID: 29218041 PMCID: PMC5703873 DOI: 10.3389/fmicb.2017.02325] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 11/10/2017] [Indexed: 11/13/2022] Open
Abstract
Mrp (Multiple resistance and pH) antiporter was identified as a gene complementing an alkaline-sensitive mutant strain of alkaliphilic Bacillus halodurans C-125 in 1990. At that time, there was no example of a multi-subunit type Na+/H+ antiporter comprising six or seven hydrophobic proteins, and it was newly designated as the monovalent cation: proton antiporter-3 (CPA3) family in the classification of transporters. The Mrp antiporter is broadly distributed among bacteria and archaea, not only in alkaliphiles. Generally, all Mrp subunits, mrpA–G, are required for enzymatic activity. Two exceptions are Mrp from the archaea Methanosarcina acetivorans and the eubacteria Natranaerobius thermophilus, which are reported to sustain Na+/H+ antiport activity with the MrpA subunit alone. Two large subunits of the Mrp antiporter, MrpA and MrpD, are homologous to membrane-embedded subunits of the respiratory chain complex I, NuoL, NuoM, and NuoN, and the small subunit MrpC has homology with NuoK. The functions of the Mrp antiporter include sodium tolerance and pH homeostasis in an alkaline environment, nitrogen fixation in Schizolobium meliloti, bile salt tolerance in Bacillus subtilis and Vibrio cholerae, arsenic oxidation in Agrobacterium tumefaciens, pathogenesis in Pseudomonas aeruginosa and Staphylococcus aureus, and the conversion of energy involved in metabolism and hydrogen production in archaea. In addition, some Mrp antiporters transport K+ and Ca2+ instead of Na+, depending on the environmental conditions. Recently, the molecular structure of the respiratory chain complex I has been elucidated by others, and details of the mechanism by which it transports protons are being clarified. Based on this, several hypotheses concerning the substrate transport mechanism in the Mrp antiporter have been proposed. The MrpA and MrpD subunits, which are homologous to the proton transport subunit of complex I, are involved in the transport of protons and their coupling cations. Herein, we outline other recent findings on the Mrp antiporter.
Collapse
Affiliation(s)
- Masahiro Ito
- Graduate School of Life Sciences, Toyo University, Gunma, Japan.,Bio-Nano Electronics Research Center, Toyo University, Kawagoe, Japan
| | - Masato Morino
- Graduate School of Life Sciences, Toyo University, Gunma, Japan.,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Terry A Krulwich
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
27
|
Wang Y, Song N, Yang L, Abdel-motaal H, Zhang R, Zhang Z, Meng F, Jiang J. A novel NhaD-type Na+/H+ antiporter from the moderate halophile and alkaliphile Halomonas alkaliphila. Can J Microbiol 2017; 63:596-607. [DOI: 10.1139/cjm-2017-0104] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this study, a NhaD-type Na+/H+ antiporter gene designated Ha-nhaD was obtained by selection of genomic DNA from the moderate halophile and alkaliphile Halomonas alkaliphila in Escherichia coli KNabc lacking 3 major Na+/H+ antiporters. The presence of Ha-NhaD conferred tolerance of E. coli KNabc to NaCl up to 0.6 mol·L–1 and to LiCl up to 0.2 mol·L–1 and to an alkaline pH. pH-dependent Na+(Li+)/H+ antiport activity was detected from everted membrane vesicles prepared from E. coli KNabc/pUC-nhaD but not those of KNabc/pUC18. Ha-NhaD exhibited Na+(Li+)/H+ antiport activity over a wide pH range from 7.0 to 9.5, with the highest activity at pH 9.0. Protein sequence alignment and phylogenetic analysis revealed that Ha-NhaD is significantly different from the 7 known NhaD-type Na+/H+ antiporters, including Dw-NhaD, Dl-NhaD, Vp-NhaD, Vc-NhaD, Aa-NhaD, He-NhaD, and Ha-NhaD1. Although Ha-NhaD showed a closer phylogenetic relationship with Ha-NhaD2, a significant difference in pH-dependent activity profile exists between Ha-NhaD and Ha-NhaD2. Taken together, Ha-nhaD encodes a novel pH-dependent NhaD-type Na+/H+ antiporter.
Collapse
Affiliation(s)
- Yanhong Wang
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, People’s Republic of China
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, People’s Republic of China
| | - Na Song
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, People’s Republic of China
| | - Lina Yang
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, People’s Republic of China
| | - Heba Abdel-motaal
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, People’s Republic of China
- Department of Microbiology, Soils, Water & Environment Research Institute, Agriculture Research Center, Egypt
| | - Rui Zhang
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, People’s Republic of China
| | - Zhenglai Zhang
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, People’s Republic of China
| | - Fankui Meng
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, People’s Republic of China
| | - Juquan Jiang
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, People’s Republic of China
| |
Collapse
|
28
|
Characterization of a novel two-component Na +(Li +, K +)/H + antiporter from Halomonas zhaodongensis. Sci Rep 2017; 7:4221. [PMID: 28652569 PMCID: PMC5484666 DOI: 10.1038/s41598-017-04236-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/30/2017] [Indexed: 02/01/2023] Open
Abstract
In this study, genomic DNA was screened for novel Na+/H+ antiporter genes from Halomonas zhaodongensis by selection in Escherichia coli KNabc lacking three major Na+/H+ antiporters. Co-expression of two genes designated umpAB, encoding paired homologous unknown membrane proteins belonging to DUF1538 (domain of unknown function with No. 1538) family, were found to confer E. coli KNabc the tolerance to 0.4 M NaCl and 30 mM LiCl, and an alkaline pH resistance at 8.0. Western blot and co-immunoprecipitation establish that UmpAB localize as a hetero-dimer in the cytoplasmic membranes. Functional analysis reveals that UmpAB exhibit pH-dependent Na+(Li+, K+)/H+ antiport activity at a wide pH range of 6.5 to 9.5 with an optimal pH at 9.0. Neither UmpA nor UmpB showed homology with known single-gene or multi-gene Na+/H+ antiporters, or such proteins as ChaA, MdfA, TetA(L), Nap and PsmrAB with Na+/H+ antiport activity. Phylogenetic analysis confirms that UmpAB should belong to DUF1538 family, which are significantly distant with the above-mentioned proteins with Na+/H+ antiport activity. Taken together, we propose that UmpAB represent a novel two-component Na+(Li+, K+)/H+ antiporter. To the best of our knowledge, this is the first report on the functional analysis of unknown membrane proteins belonging to DUF1538 family.
Collapse
|
29
|
Dong P, Wang L, Song N, Yang L, Chen J, Yan M, Chen H, Zhang R, Li J, Abdel-Motaal H, Jiang J. A UPF0118 family protein with uncharacterized function from the moderate halophile Halobacillus andaensis represents a novel class of Na +(Li +)/H + antiporter. Sci Rep 2017; 7:45936. [PMID: 28374790 PMCID: PMC5379678 DOI: 10.1038/srep45936] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/07/2017] [Indexed: 02/06/2023] Open
Abstract
In this study, genomic DNA was screened from Halobacillus andaensis NEAU-ST10-40T by selection in Escherichia coli KNabc lacking three major Na+/H+ antiporters. One gene designated upf0118 exhibiting Na+(Li+)/H+ antiport activity was finally cloned. Protein alignment showed that UPF0118 shares the highest identity of 81.5% with an unannotated gene encoding a protein with uncharacterized protein function belonging to UPF0118 family from H. kuroshimensis, but shares no identity with all known specific Na+(Li+)/H+ antiporter genes or genes with Na+(Li+)/H+ antiport activity. Growth test, western blot and Na+(Li+)/H+ antiport assay revealed that UPF0118 as a transmembrane protein exhibits pH-dependent Na+(Li+)/H+ antiport activity. Phylogenetic analysis indicated that UPF0118 clustered with all its homologs belonging to UPF0118 family at a wide range of 22–82% identities with the bootstrap value of 92%, which was significantly distant with all known specific single-gene Na+(Li+)/H+ antiporters and single-gene proteins with the Na+(Li+)/H+ antiport activity. Taken together, we propose that UPF0118 should represent a novel class of Na+(Li+)/H+ antiporter. To the best of our knowledge, this is the first report on the functional analysis of a protein with uncharacterized protein function as a representative of UPF0118 family containing the domain of unknown function, DUF20.
Collapse
Affiliation(s)
- Ping Dong
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, PR China
| | - Lidan Wang
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, PR China
| | - Na Song
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, PR China
| | - Lina Yang
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jin Chen
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, PR China
| | - Mingxue Yan
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, PR China
| | - Huiwen Chen
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, PR China
| | - Rui Zhang
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jincheng Li
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, PR China
| | - Heba Abdel-Motaal
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, PR China
| | - Juquan Jiang
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, PR China
| |
Collapse
|
30
|
Aagesen AM, Schubiger CB, Hobson EC, Dibrov P, Häse CC. Effects of chromosomal deletion of the operon encoding the multiple resistance and pH-related antiporter in Vibrio cholerae. MICROBIOLOGY-SGM 2016; 162:2147-2158. [PMID: 27902431 DOI: 10.1099/mic.0.000384] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To examine the possible physiological significance of Mrp, a multi-subunit cation/proton antiporter from Vibrio cholerae, a chromosomal deletion Δmrp of V. cholerae was constructed and characterized. The resulting mutant showed a consistent early growth defect in LB broth that became more evident at elevated pH of the growth medium and increasing Na+ or K+ loads. After 24 h incubation, these differences disappeared likely due to the concerted effort of other cation pumps in the mrp mutant. Phenotype MicroArray analyses revealed an unexpected systematic defect in nitrogen utilization in the Δmrp mutant that was complemented by using the mrpA'-F operon on an arabinose-inducible expression vector. Deletion of the mrp operon also led to hypermotility, observable on LB and M9 semi-solid agar. Surprisingly, Δmrp mutation resulted in wild-type biofilm formation in M9 despite a growth defect but the reverse was true in LB. Furthermore, the Δmrp strain exhibited higher susceptibility to amphiphilic anions. These pleiotropic phenotypes of the Δmrp mutant demonstrate how the chemiosmotic activity of Mrp contributes to the survival potential of V. cholerae despite the presence of an extended battery of cation/proton antiporters of varying ion selectivity and pH profile operating in the same membrane.
Collapse
Affiliation(s)
- Alisha M Aagesen
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Carla B Schubiger
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Eric C Hobson
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Pavel Dibrov
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Claudia C Häse
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
31
|
Cheng B, Meng Y, Cui Y, Li C, Tao F, Yin H, Yang C, Xu P. Alkaline Response of a Halotolerant Alkaliphilic Halomonas Strain and Functional Diversity of Its Na+(K+)/H+ Antiporters. J Biol Chem 2016; 291:26056-26065. [PMID: 27777302 DOI: 10.1074/jbc.m116.751016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 10/13/2016] [Indexed: 11/06/2022] Open
Abstract
Halomonas sp. Y2 is a halotolerant alkaliphilic strain from Na+-rich pulp mill wastewater with high alkalinity (pH >11.0). Transcriptome analysis of this isolate revealed this strain may use various transport systems for pH homeostasis. In particular, the genes encoding four putative Na+/H+ antiporters were differentially expressed upon acidic or alkaline conditions. Further evidence, from heterologous expression and mutant studies, suggested that Halomonas sp. Y2 employs its Na+/H+ antiporters in a labor division way to deal with saline and alkaline environments. Ha-NhaD2 displayed robust Na+(Li+) resistance and high transport activities in Escherichia coli; a ΔHa-nhaD2 mutant exhibited growth inhibition at high Na+(Li+) concentrations at pH values of 6.2, 8.0, and 10.0, suggesting its physiological role in osmotic homeostasis. In contrast, Ha-NhaD1 showed much weaker activities in ion exporting and pH homeostasis. Ha-Mrp displayed a combination of properties similar to those of Mrp transporters from some Bacillus alkaliphiles and neutrophiles. This conferred obvious Na+(Li+, K+) resistance in E. coli-deficient strains, as those ion transport spectra of some neutrophil Mrp antiporters. Conversely, similar to the Bacillus alkaliphiles, Ha-Mrp showed central roles in the pH homeostasis of Halomonas sp. Y2. An Ha-mrp-disrupted mutant was seriously inhibited by high concentrations of Na+(Li+, K+) but only under alkaline conditions. Ha-NhaP was determined to be a K+/H+ antiporter and shown to confer strong K+ resistance both at acidic and alkaline stresses.
Collapse
Affiliation(s)
- Bin Cheng
- From the State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100 and
| | - Yiwei Meng
- From the State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100 and
| | - Yanbing Cui
- From the State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100 and
| | - Chunfang Li
- From the State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100 and
| | - Fei Tao
- the State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huijia Yin
- From the State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100 and
| | - Chunyu Yang
- From the State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100 and
| | - Ping Xu
- From the State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100 and.,the State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
32
|
Morino M, Ogoda S, Krulwich TA, Ito M. Differences in the phenotypic effects of mutations in homologous MrpA and MrpD subunits of the multi-subunit Mrp-type Na +/H + antiporter. Extremophiles 2016; 21:51-64. [PMID: 27709304 DOI: 10.1007/s00792-016-0877-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/24/2016] [Indexed: 10/20/2022]
Abstract
Mrp antiporters are the sole antiporters in the Cation/Proton Antiporter 3 family of transporter databases because of their unusual structural complexity, 6-7 hydrophobic proteins that function as a hetero-oligomeric complex. The two largest and homologous subunits, MrpA and MrpD, are essential for antiport activity and have direct roles in ion transport. They also show striking homology with proton-conducting, membrane-embedded Nuo subunits of respiratory chain complex I of bacteria, e.g., Escherichia coli. MrpA has the closest homology to the complex I NuoL subunit and MrpD has the closest homology to the complex I NuoM and N subunits. Here, introduction of mutations in MrpD, in residues that are also present in MrpA, led to defects in antiport function and/or complex formation. No significant phenotypes were detected in strains with mutations in corresponding residues of MrpA, but site-directed changes in the C-terminal region of MrpA had profound effects, showing that the MrpA C-terminal region has indispensable roles in antiport function. The results are consistent with a divergence in adaptations that support the roles of MrpA and MrpD in secondary antiport, as compared to later adaptations supporting homologs in primary proton pumping by the respiratory chain complex I.
Collapse
Affiliation(s)
- Masato Morino
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,, 573-13 Kamitanui, Tarnaki-cho, Watarai-gun, Mie, 519-0417, Japan
| | - Shinichiro Ogoda
- Faculty of Life Sciences, Graduate School of Life Sciences, Toyo University, Oura-gun, Gunma, 374-0193, Japan
| | - Terry Ann Krulwich
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Masahiro Ito
- Faculty of Life Sciences, Graduate School of Life Sciences, Toyo University, Oura-gun, Gunma, 374-0193, Japan. .,Bio-Nano Electronics Research Center, Toyo University, Kawagoe, Saitama, 350-0815, Japan.
| |
Collapse
|
33
|
Sperling E, Górecki K, Drakenberg T, Hägerhäll C. Functional Differentiation of Antiporter-Like Polypeptides in Complex I; a Site-Directed Mutagenesis Study of Residues Conserved in MrpA and NuoL but Not in MrpD, NuoM, and NuoN. PLoS One 2016; 11:e0158972. [PMID: 27391676 PMCID: PMC4938563 DOI: 10.1371/journal.pone.0158972] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/26/2016] [Indexed: 01/29/2023] Open
Abstract
It has long been known that the three largest subunits in the membrane domain (NuoL, NuoM and NuoN) of complex I are homologous to each other, as well as to two subunits (MrpA and MrpD) from a Na+/H+ antiporter, Mrp. MrpA and NuoL are more similar to each other and the same is true for MrpD and NuoN. This suggests a functional differentiation which was proven experimentally in a deletion strain model system, where NuoL could restore the loss of MrpA, but not that of MrpD and vice versa. The simplest explanation for these observations was that the MrpA and MrpD proteins are not antiporters, but rather single subunit ion channels that together form an antiporter. In this work our focus was on a set of amino acid residues in helix VIII, which are only conserved in NuoL and MrpA (but not in any of the other antiporter-like subunits.) and to compare their effect on the function of these two proteins. By combining complementation studies in B. subtilis and 23Na-NMR, response of mutants to high sodium levels were tested. All of the mutants were able to cope with high salt levels; however, all but one mutation (M258I/M225I) showed differences in the efficiency of cell growth and sodium efflux. Our findings showed that, although very similar in sequence, NuoL and MrpA seem to differ on the functional level. Nonetheless the studied mutations gave rise to interesting phenotypes which are of interest in complex I research.
Collapse
Affiliation(s)
- Eva Sperling
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, Lund, Sweden
- * E-mail:
| | - Kamil Górecki
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, Lund, Sweden
| | - Torbjörn Drakenberg
- Department of Biophysical Chemistry, Center for Molecular Protein Science, Lund University, Lund, Sweden
| | - Cecilia Hägerhäll
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, Lund, Sweden
| |
Collapse
|
34
|
The Aerobic and Anaerobic Respiratory Chain of Escherichia coli and Salmonella enterica: Enzymes and Energetics. EcoSal Plus 2015; 6. [PMID: 26442941 DOI: 10.1128/ecosalplus.esp-0005-2013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Escherichia coli contains a versatile respiratory chain that oxidizes 10 different electron donor substrates and transfers the electrons to terminal reductases or oxidases for the reduction of six different electron acceptors. Salmonella is able to use two more electron acceptors. The variation is further increased by the presence of isoenzymes for some substrates. A large number of respiratory pathways can be established by combining different electron donors and acceptors. The respiratory dehydrogenases use quinones as the electron acceptors that are oxidized by the terminal reductase and oxidases. The enzymes vary largely with respect to their composition, architecture, membrane topology, and the mode of energy conservation. Most of the energy-conserving dehydrogenases (FdnGHI, HyaABC, HybCOAB, and others) and the terminal reductases (CydAB, NarGHI, and others) form a proton potential (Δp) by a redox-loop mechanism. Two enzymes (NuoA-N and CyoABCD) couple the redox energy to proton translocation by proton pumping. A large number of dehydrogenases and terminal reductases do not conserve the redox energy in a proton potential. For most of the respiratory enzymes, the mechanism of proton potential generation is known or can be predicted. The H+/2e- ratios for most respiratory chains are in the range from 2 to 6 H+/2e-. The energetics of the individual redox reactions and the respiratory chains is described and related to the H+/2e- ratios.
Collapse
|
35
|
Castro PJ, Silva AF, Marreiros BC, Batista AP, Pereira MM. Respiratory complex I: A dual relation with H(+) and Na(+)? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:928-37. [PMID: 26711319 DOI: 10.1016/j.bbabio.2015.12.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/10/2015] [Accepted: 12/17/2015] [Indexed: 10/22/2022]
Abstract
Respiratory complex I couples NADH:quinone oxidoreduction to ion translocation across the membrane, contributing to the buildup of the transmembrane difference of electrochemical potential. H(+) is well recognized to be the coupling ion of this system but some studies suggested that this role could be also performed by Na(+). We have previously observed NADH-driven Na(+) transport opposite to H(+) translocation by menaquinone-reducing complexes I, which indicated a Na(+)/H(+) antiporter activity in these systems. Such activity was also observed for the ubiquinone-reducing mitochondrial complex I in its deactive form. The relation of Na(+) with complex I may not be surprising since the enzyme has three subunits structurally homologous to bona fide Na(+)/H(+) antiporters and translocation of H(+) and Na(+) ions has been described for members of most types of ion pumps and transporters. Moreover, no clearly distinguishable motifs for the binding of H(+) or Na(+) have been recognized yet. We noticed that in menaquinone-reducing complexes I, less energy is available for ion translocation, compared to ubiquinone-reducing complexes I. Therefore, we hypothesized that menaquinone-reducing complexes I perform Na(+)/H(+) antiporter activity in order to achieve the stoichiometry of 4H(+)/2e(-). In agreement, the organisms that use ubiquinone, a high potential quinone, would have kept such Na(+)/H(+) antiporter activity, only operative under determined conditions. This would imply a physiological role(s) of complex I besides a simple "coupling" of a redox reaction and ion transport, which could account for the sophistication of this enzyme. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt.
Collapse
Affiliation(s)
- Paulo J Castro
- Instituto de Tecnologia Química e Biológica, António Xavier, Universidade Nova de Lisboa, Av. da Republica EAN, 2780-157 Oeiras, Portugal
| | - Andreia F Silva
- Instituto de Tecnologia Química e Biológica, António Xavier, Universidade Nova de Lisboa, Av. da Republica EAN, 2780-157 Oeiras, Portugal
| | - Bruno C Marreiros
- Instituto de Tecnologia Química e Biológica, António Xavier, Universidade Nova de Lisboa, Av. da Republica EAN, 2780-157 Oeiras, Portugal
| | - Ana P Batista
- Instituto de Tecnologia Química e Biológica, António Xavier, Universidade Nova de Lisboa, Av. da Republica EAN, 2780-157 Oeiras, Portugal
| | - Manuela M Pereira
- Instituto de Tecnologia Química e Biológica, António Xavier, Universidade Nova de Lisboa, Av. da Republica EAN, 2780-157 Oeiras, Portugal.
| |
Collapse
|
36
|
Xu N, Wang L, Cheng H, Liu Q, Liu J, Ma Y. In vitro functional characterization of the Na+/H+ antiporters in Corynebacterium glutamicum. FEMS Microbiol Lett 2015; 363:fnv237. [PMID: 26667218 DOI: 10.1093/femsle/fnv237] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2015] [Indexed: 12/23/2022] Open
Abstract
Corynebacterium glutamicum, typically used as industrial workhorse for amino acid production, is a moderately salt-alkali-tolerant microorganism with optimal growth at pH 7-9. However, little is known about the mechanisms of salt-alkali tolerance in C. glutamicum. Here, the catalytic capacity of three putative Na(+)/H(+) antiporters from C. glutamicum (designated as Cg-Mrp1, Cg-Mrp2 and Cg-NhaP) were characterized in an antiporter-deficient Escherichia coli KNabc strain. Only Cg-Mrp1 was able to effectively complement the Na(+)-sensitive of E. coli KNabc. Cg-Mrp1 exhibited obvious Na(+)(Li(+))/H(+) antiport activities with low apparent Km values of 1.08 mM and 1.41 mM for Na(+) and Li(+), respectively. The Na(+)/H(+) antiport activity of Cg-Mrp1 was optimal in the alkaline pH range. All three antiporters showed detectable K(+)/H(+) antiport activitiy. Cg-NhaP also exhibited Na(+)(Li(+),Rb(+))/H(+) antiport activities but at lower levels of activity. Interestingly, overexpression of Cg-Mrp2 exhibited clear Na(+)(K(+))/H(+) antiport activities. These results suggest that C. glutamicum Na(+)(K(+))/H(+) antiporters may have overlapping roles in coping with salt-alkali and perhaps high-osmolarity stress.
Collapse
Affiliation(s)
- Ning Xu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Lei Wang
- Department of Microbiology and immunology, College of Biological Sciences, China Agricultural University, Beijing 10094, PR China
| | - Haijiao Cheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Qingdai Liu
- School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jun Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Yanhe Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| |
Collapse
|
37
|
Preiss L, Hicks DB, Suzuki S, Meier T, Krulwich TA. Alkaliphilic Bacteria with Impact on Industrial Applications, Concepts of Early Life Forms, and Bioenergetics of ATP Synthesis. Front Bioeng Biotechnol 2015; 3:75. [PMID: 26090360 PMCID: PMC4453477 DOI: 10.3389/fbioe.2015.00075] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/10/2015] [Indexed: 12/28/2022] Open
Abstract
Alkaliphilic bacteria typically grow well at pH 9, with the most extremophilic strains growing up to pH values as high as pH 12–13. Interest in extreme alkaliphiles arises because they are sources of useful, stable enzymes, and the cells themselves can be used for biotechnological and other applications at high pH. In addition, alkaline hydrothermal vents represent an early evolutionary niche for alkaliphiles and novel extreme alkaliphiles have also recently been found in alkaline serpentinizing sites. A third focus of interest in alkaliphiles is the challenge raised by the use of proton-coupled ATP synthases for oxidative phosphorylation by non-fermentative alkaliphiles. This creates a problem with respect to tenets of the chemiosmotic model that remains the core model for the bioenergetics of oxidative phosphorylation. Each of these facets of alkaliphilic bacteria will be discussed with a focus on extremely alkaliphilic Bacillus strains. These alkaliphilic bacteria have provided a cogent experimental system to probe adaptations that enable their growth and oxidative phosphorylation at high pH. Adaptations are clearly needed to enable secreted or partially exposed enzymes or protein complexes to function at the high external pH. Also, alkaliphiles must maintain a cytoplasmic pH that is significantly lower than the pH of the outside medium. This protects cytoplasmic components from an external pH that is alkaline enough to impair their stability or function. However, the pH gradient across the cytoplasmic membrane, with its orientation of more acidic inside than outside, is in the reverse of the productive orientation for bioenergetic work. The reversed gradient reduces the trans-membrane proton-motive force available to energize ATP synthesis. Multiple strategies are hypothesized to be involved in enabling alkaliphiles to circumvent the challenge of a low bulk proton-motive force energizing proton-coupled ATP synthesis at high pH.
Collapse
Affiliation(s)
- Laura Preiss
- Department of Structural Biology, Max Planck Institute of Biophysics , Frankfurt , Germany
| | - David B Hicks
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | - Shino Suzuki
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology , Nankoku , Japan ; Microbial and Environmental Genomics, J. Craig Venter Institutes , La Jolla, CA , USA
| | - Thomas Meier
- Department of Structural Biology, Max Planck Institute of Biophysics , Frankfurt , Germany
| | - Terry Ann Krulwich
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| |
Collapse
|
38
|
Banciu HL, Muntyan MS. Adaptive strategies in the double-extremophilic prokaryotes inhabiting soda lakes. Curr Opin Microbiol 2015; 25:73-9. [PMID: 26025020 DOI: 10.1016/j.mib.2015.05.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/27/2015] [Accepted: 05/01/2015] [Indexed: 10/23/2022]
Abstract
Haloalkaliphiles are double extremophilic organisms thriving both at high salinity and alkaline pH. Although numerous haloalkaliphilic representatives have been identified among Archaea and Bacteria over the past 15 years, the adaptations underlying their prosperity at haloalkaline conditions are scarcely known. A multi-level adaptive strategy was proposed to occur in haloalkaliphilic organisms isolated from saline alkaline and soda environments including adjustments in the cell wall structure, plasma membrane lipid composition, membrane transport systems, bioenergetics, and osmoregulation. Isolation of chemolithoautotrophic sulfur-oxidizing γ-Proteobacteria from soda lakes allowed the elucidation of the structural and physiological differences between haloalkaliphilic (prefer NaCl) and natronophilic (prefer NaHCO3/Na2CO3, i.e. soda) microbes.
Collapse
Affiliation(s)
- Horia Leonard Banciu
- Institute for Interdisciplinary Research in Bio-Nano-Sciences, Molecular Biology Center, Babeş-Bolyai University, 400271 Cluj-Napoca, Romania; Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, 400006 Cluj-Napoca, Romania.
| | - Maria S Muntyan
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow 119991, Russia
| |
Collapse
|
39
|
Stepanova A, Valls A, Galkin A. Effect of monovalent cations on the kinetics of hypoxic conformational change of mitochondrial complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1085-92. [PMID: 26009015 PMCID: PMC4607728 DOI: 10.1016/j.bbabio.2015.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 05/14/2015] [Accepted: 05/15/2015] [Indexed: 12/13/2022]
Abstract
Mitochondrial complex I is a large, membrane-bound enzyme central to energy metabolism, and its dysfunction is implicated in cardiovascular and neurodegenerative diseases. An interesting feature of mammalian complex I is the so-called A/D transition, when the idle enzyme spontaneously converts from the active (A) to the de-active, dormant (D) form. The A/D transition plays an important role in tissue response to ischemia and rate of the conversion can be a crucial factor determining outcome of ischemia/reperfusion. Here, we describe the effects of alkali cations on the rate of the D-to-A transition to define whether A/D conversion may be regulated by sodium. At neutral pH (7–7.5) sodium resulted in a clear increase of rates of activation (D-to-A conversion) while other cations had minor effects. The stimulating effect of sodium in this pH range was not caused by an increase in ionic strength. EIPA, an inhibitor of Na+/H+ antiporters, decreased the rate of D-to-A conversion and sodium partially eliminated this effect of EIPA. At higher pH (> 8.0), acceleration of the D-to-A conversion by sodium was abolished, and all tested cations decreased the rate of activation, probably due to the effect of ionic strength. The implications of this finding for the mechanism of complex I energy transduction and possible physiological importance of sodium stimulation of the D-to-A conversion at pathophysiological conditions in vivo are discussed. The active/dormant (A/D) transition of complex I is affected by monovalent cations. Na+ increases the rate of the D/A conversion at neutral pH. Lithium and caesium decrease D/A transition at all tested pH Matrix ion balance may influence the rate of the activation of the enzyme in situ.
Collapse
Affiliation(s)
- Anna Stepanova
- Queen's University Belfast, School of Biological Sciences, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilova Str., Moscow 119334, Russia
| | - Alba Valls
- University of Barcelona, Faculty of Biology, Diagonal, 643, 08028 Barcelona, Spain
| | - Alexander Galkin
- Queen's University Belfast, School of Biological Sciences, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
40
|
Rittmann SKM, Lee HS, Lim JK, Kim TW, Lee JH, Kang SG. One-carbon substrate-based biohydrogen production: Microbes, mechanism, and productivity. Biotechnol Adv 2015; 33:165-177. [DOI: 10.1016/j.biotechadv.2014.11.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 10/10/2014] [Accepted: 11/11/2014] [Indexed: 11/28/2022]
|
41
|
Draft Genome Sequence of Bacillus alcalophilus AV1934, a Classic Alkaliphile Isolated from Human Feces in 1934. GENOME ANNOUNCEMENTS 2014; 2:2/6/e01175-14. [PMID: 25395643 PMCID: PMC4241669 DOI: 10.1128/genomea.01175-14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bacillus alcalophilus AV1934, isolated from human feces, was described in 1934 before microbiome studies and recent indications of novel potassium ion coupling to motility in this extremophile. Here, we report draft sequences that will facilitate an examination of whether that coupling is part of a larger cycle of potassium ion-coupled transporters.
Collapse
|
42
|
Energy conservation by oxidation of formate to carbon dioxide and hydrogen via a sodium ion current in a hyperthermophilic archaeon. Proc Natl Acad Sci U S A 2014; 111:11497-502. [PMID: 25049407 DOI: 10.1073/pnas.1407056111] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Thermococcus onnurineus NA1 is known to grow by the anaerobic oxidation of formate to CO2 and H2, a reaction that operates near thermodynamic equilibrium. Here we demonstrate that this reaction is coupled to ATP synthesis by a transmembrane ion current. Formate oxidation leads to H(+) translocation across the cytoplasmic membrane that then drives Na(+) translocation. The ion-translocating electron transfer system is rather simple, consisting of only a formate dehydrogenase module, a membrane-bound hydrogenase module, and a multisubunit Na(+)/H(+) antiporter module. The electrochemical Na(+) gradient established then drives ATP synthesis. These data give a mechanistic explanation for chemiosmotic energy conservation coupled to formate oxidation to CO2 and H2. Because it is discussed that the membrane-bound hydrogenase with the Na(+)/H(+) antiporter module are ancestors of complex I of mitochondrial and bacterial electron transport these data also shed light on the evolution of ion transport in complex I-like electron transport chains.
Collapse
|
43
|
Meng L, Hong S, Liu H, Huang H, Sun H, Xu T, Jiang J. Cloning and identification of Group 1 mrp operon encoding a novel monovalent cation/proton antiporter system from the moderate halophile Halomonas zhaodongensis. Extremophiles 2014; 18:963-72. [PMID: 24996797 DOI: 10.1007/s00792-014-0666-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/05/2014] [Indexed: 11/26/2022]
Abstract
The novel species Halomonas zhaodongensis NEAU-ST10-25(T) recently identified by our group is a moderate halophile which can grow at the range of 0-2.5 M NaCl (optimum 0.5 M) and pH 6-12 (optimum pH 9). To explore its halo-alkaline tolerant mechanism, genomic DNA was screened from NEAU-ST10-25(T) in this study for Na(+)(Li(+))/H(+) antiporter genes by selection in Escherichia coli KNabc lacking three major Na(+)(Li(+))/H(+) antiporters. One mrp operon could confer tolerance of E. coli KNabc to 0.8 M NaCl and 100 mM LiCl, and an alkaline pH. This operon was previously mainly designated mrp (also mnh, pha or sha) due to its multiple resistance and pH-related activity. Here, we will also use mrp to designate the homolog from H. zhaodongensis (Hz_mrp). Sequence analysis and protein alignment showed that Hz_mrp should belong to Group 1 mrp operons. Further phylogenetic analysis reveals that Hz_Mrp system should represent a novel sub-class of Group 1 Mrp systems. This was confirmed by a significant difference in pH-dependent activity profile or the specificity and affinity for the transported monovalent cations between Hz_Mrp system and all the known Mrp systems. Therefore, we propose that Hz_Mrp should be categorized as a novel Group 1 Mrp system.
Collapse
Affiliation(s)
- Lin Meng
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
44
|
Physiological Properties of a Neutralo-sensitive Mutant Derived from Facultative AlkaliphilicBacillussp. C-125. Biosci Biotechnol Biochem 2014; 62:788-91. [DOI: 10.1271/bbb.62.788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Noor YM, Samsulrizal NH, Jema'on NA, Low KO, Ramli ANM, Alias NI, Damis SIR, Fuzi SFZM, Isa MNM, Murad AMA, Raih MFM, Bakar FDA, Najimudin N, Mahadi NM, Illias RM. A comparative genomic analysis of the alkalitolerant soil bacterium Bacillus lehensis G1. Gene 2014; 545:253-61. [PMID: 24811681 DOI: 10.1016/j.gene.2014.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 04/27/2014] [Accepted: 05/03/2014] [Indexed: 10/25/2022]
Abstract
Bacillus lehensis G1 is a Gram-positive, moderately alkalitolerant bacterium isolated from soil samples. B. lehensis produces cyclodextrin glucanotransferase (CGTase), an enzyme that has enabled the extensive use of cyclodextrin in foodstuffs, chemicals, and pharmaceuticals. The genome sequence of B. lehensis G1 consists of a single circular 3.99 Mb chromosome containing 4017 protein-coding sequences (CDSs), of which 2818 (70.15%) have assigned biological roles, 936 (23.30%) have conserved domains with unknown functions, and 263 (6.55%) have no match with any protein database. Bacillus clausii KSM-K16 was established as the closest relative to B. lehensis G1 based on gene content similarity and 16S rRNA phylogenetic analysis. A total of 2820 proteins from B. lehensis G1 were found to have orthologues in B. clausii, including sodium-proton antiporters, transport proteins, and proteins involved in ATP synthesis. A comparative analysis of these proteins and those in B. clausii and other alkaliphilic Bacillus species was carried out to investigate their contributions towards the alkalitolerance of the microorganism. The similarities and differences in alkalitolerance-related genes among alkalitolerant/alkaliphilic Bacillus species highlight the complex mechanism of pH homeostasis. The B. lehensis G1 genome was also mined for proteins and enzymes with potential viability for industrial and commercial purposes.
Collapse
Affiliation(s)
- Yusuf Muhammad Noor
- Malaysia Genome Institute, Ministry of Science, Technology and Innovation, Jalan Bangi, 43000 Kajang, Selangor, Malaysia
| | - Nurul Hidayah Samsulrizal
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Noor Azah Jema'on
- Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Kheng Oon Low
- Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Aizi Nor Mazila Ramli
- Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Noor Izawati Alias
- Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Siti Intan Rosdianah Damis
- Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Siti Fatimah Zaharah Mohd Fuzi
- Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Mohd Noor Mat Isa
- Malaysia Genome Institute, Ministry of Science, Technology and Innovation, Jalan Bangi, 43000 Kajang, Selangor, Malaysia
| | - Abdul Munir Abdul Murad
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Mohd Firdaus Mohd Raih
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Farah Diba Abu Bakar
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Nazalan Najimudin
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Nor Muhammad Mahadi
- Malaysia Genome Institute, Ministry of Science, Technology and Innovation, Jalan Bangi, 43000 Kajang, Selangor, Malaysia
| | - Rosli Md Illias
- Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.
| |
Collapse
|
46
|
Mayer F, Müller V. Adaptations of anaerobic archaea to life under extreme energy limitation. FEMS Microbiol Rev 2014; 38:449-72. [DOI: 10.1111/1574-6976.12043] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 08/30/2013] [Accepted: 09/03/2013] [Indexed: 11/28/2022] Open
|
47
|
Purification and functional reconstitution of a seven-subunit mrp-type na+/h+ antiporter. J Bacteriol 2013; 196:28-35. [PMID: 24142251 DOI: 10.1128/jb.01029-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Mrp antiporters and their homologues in the cation/proton antiporter 3 family of the Membrane Transporter Database are widely distributed in bacteria. They have major roles in supporting cation and cytoplasmic pH homeostasis in many environmental, extremophilic, and pathogenic bacteria. These antiporters require six or seven hydrophobic proteins that form hetero-oligomeric complexes, while most other cation/proton antiporters require only one membrane protein for their activity. The resemblance of three Mrp subunits to membrane-embedded subunits of the NADH:quinone oxidoreductase of respiratory chains and to subunits of several hydrogenases has raised interest in the evolutionary path and commonalities of their proton-translocating domains. In order to move toward a greater mechanistic understanding of these unusual antiporters and to rigorously demonstrate that they function as secondary antiporters, powered by an imposed proton motive force, we established a method for purification and functional reconstitution of the seven-subunit Mrp antiporter from alkaliphilic Bacillus pseudofirmus OF4. Na(+)/H(+) antiporter activity was demonstrated by a fluorescence-based assay with proteoliposomes in which the Mrp complex was coreconstituted with a bacterial FoF1-ATPase. Proton pumping by the ATPase upon addition of ATP generated a proton motive force across the membranes that powered antiporter activity upon subsequent addition of Na(+).
Collapse
|
48
|
The Na+ transport in gram-positive bacteria defect in the Mrp antiporter complex measured with 23Na nuclear magnetic resonance. Anal Biochem 2013; 445:80-6. [PMID: 24139955 DOI: 10.1016/j.ab.2013.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 10/02/2013] [Accepted: 10/04/2013] [Indexed: 11/20/2022]
Abstract
(23)Na nuclear magnetic resonance (NMR) has previously been used to monitor Na(+) translocation across membranes in gram-negative bacteria and in various other organelles and liposomes using a membrane-impermeable shift reagent to resolve the signals resulting from internal and external Na(+). In this work, the (23)Na NMR method was adapted for measurements of internal Na(+) concentration in the gram-positive bacterium Bacillus subtilis, with the aim of assessing the Na(+) translocation activity of the Mrp (multiple resistance and pH) antiporter complex, a member of the cation proton antiporter-3 (CPA-3) family. The sodium-sensitive growth phenotype observed in a B. subtilis strain with the gene encoding MrpA deleted could indeed be correlated to the inability of this strain to maintain a lower internal Na(+) concentration than an external one.
Collapse
|
49
|
Virzintiene E, Moparthi VK, Al-Eryani Y, Shumbe L, Górecki K, Hägerhäll C. Structure and function of the C-terminal domain of MrpA in theBacillus subtilisMrp-antiporter complex - The evolutionary progenitor of the long horizontal helix in complex I. FEBS Lett 2013; 587:3341-7. [DOI: 10.1016/j.febslet.2013.08.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/22/2013] [Accepted: 08/23/2013] [Indexed: 01/15/2023]
|
50
|
Metagenomic cloning and characterization of Na⁺ transporters from Huamachi Salt Lake in China. Microbiol Res 2013; 168:119-24. [PMID: 23218230 DOI: 10.1016/j.micres.2012.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 05/25/2012] [Accepted: 06/05/2012] [Indexed: 11/23/2022]
Abstract
Moderately halophilic bacteria are a kind of extreme environment microorganism that can tolerate moderate salt concentrations ranging from 0.5M to 2.5M. Here, via a metagenomic library screen, we identified four putative Na(+) transporters, designated H7-Nha, H16-Mppe, H19-Cap and H35-Mrp, from moderately halophilic community in the hypersaline soil of Huamachi Salt Lake, China. Functional complementation observed in a Na(+)(Ca(2+))/H(+) antiporter-defective Escherichia coli mutant (KNabc) suggests that the four putative Na(+) transporters could confer cells a capacity of Na(+) resistance probably by enhancing Na(+) or Ca(2+) efflux, but not Li(+) or K(+) exchange. Blastp analysis of the deduced amino-acid sequences indicates that H7-Nha has 71% identity to the NhaG Na(+)/H(+) antiporter of Bacillus subtilis, while H19-Cap shows 99% identity to Enterobacter cloacae Ca(2+) antiporter. Interestingly, H16-Mppe shares 59% identity to the metallophosphoesterase of Bacillus cellulosilyticus and H35-Mrp shows 68% identity to multidrug resistance protein of Lysinibacillus sphaericus. This is the first report that predicts a potential role of metallophosphoesterase in Na(+) resistance in halophilic bacteria. Furthermore, everted membrane vesicles prepared from E. coli cells harboring H7-Nha exhibit Na(+)/H(+) antiporter activity, but not Li(+) (K(+))/H(+) antiporter activity, confirming that H7-Nha supports Na(+) resistance mainly via Na(+)/H(+) antiport. Our report also demonstrates that metagenomic library screen is a convenient and effective way to explore more novel types of Na(+) transporters.
Collapse
|