1
|
Draelos MM, Thanapipatsiri A, Sucipto H, Yokoyama K. Cryptic phosphorylation in nucleoside natural product biosynthesis. Nat Chem Biol 2020; 17:213-221. [PMID: 33257873 PMCID: PMC7855722 DOI: 10.1038/s41589-020-00656-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 08/20/2020] [Indexed: 11/11/2022]
Abstract
Kinases are annotated in many nucleoside biosynthetic gene clusters (BGCs) but generally are considered responsible only for self-resistance. Here, we report an unexpected 2’-phosphorylation of nucleoside biosynthetic intermediates in the nikkomycin and polyoxin pathways. This phosphorylation is a unique cryptic modification as it is introduced in the third of seven steps during aminohexuronic acid (AHA) nucleoside biosynthesis, retained throughout the pathway’s duration, and is removed in the last step of the pathway. Bioinformatic analysis of reported nucleoside BGCs suggests the presence of cryptic phosphorylation in other pathways and the importance of functional characterization of kinases in nucleoside biosynthetic pathways in general. This study also functionally characterized all of the enzymes responsible for AHA biosynthesis and revealed that AHA is constructed via a unique oxidative C-C bond cleavage reaction. The results suggest a divergent biosynthetic mechanism for three classes of antifungal nucleoside natural products.
Collapse
Affiliation(s)
| | | | - Hilda Sucipto
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Kenichi Yokoyama
- Department of Chemistry, Duke University, Durham, NC, USA. .,Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
2
|
Musiol-Kroll EM, Tocchetti A, Sosio M, Stegmann E. Challenges and advances in genetic manipulation of filamentous actinomycetes - the remarkable producers of specialized metabolites. Nat Prod Rep 2019; 36:1351-1369. [PMID: 31517370 DOI: 10.1039/c9np00029a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: up to February 2019Actinomycetes are Gram positive bacteria of the phylum Actinobacteria. These organisms are one of the most important sources of structurally diverse, clinically used antibiotics and other valuable bioactive products, as well as biotechnologically relevant enzymes. Most strains were discovered by their ability to produce a given molecule and were often poorly characterized, physiologically and genetically. The development of genetic methods for Streptomyces and related filamentous actinomycetes has led to the successful manipulation of antibiotic biosynthesis to attain structural modification of microbial metabolites that would have been inaccessible by chemical means and improved production yields. Moreover, genome mining reveals that actinomycete genomes contain multiple biosynthetic gene clusters (BGCs), however only a few of them are expressed under standard laboratory conditions, leading to the production of the respective compound(s). Thus, to access and activate the so-called "silent" BGCs, to improve their biosynthetic potential and to discover novel natural products methodologies for genetic manipulation are required. Although different methods have been applied for many actinomycete strains, genetic engineering is still remaining very challenging for some "underexplored" and poorly characterized actinomycetes. This review summarizes the strategies developed to overcome the obstacles to genetic manipulation of actinomycetes and allowing thereby rational genetic engineering of this industrially relevant group of microorganisms. At the end of this review we give some tips to researchers with limited or no previous experience in genetic manipulation of actinomycetes. The article covers the most relevant literature published until February 2019.
Collapse
Affiliation(s)
- Ewa M Musiol-Kroll
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbiology/Biotechnology, Auf der Morgenstelle 28, Tübingen, 72076, Germany.
| | | | | | - Evi Stegmann
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbiology/Biotechnology, Auf der Morgenstelle 28, Tübingen, 72076, Germany.
| |
Collapse
|
3
|
Natural and engineered biosynthesis of nucleoside antibiotics in Actinomycetes. ACTA ACUST UNITED AC 2016; 43:401-17. [DOI: 10.1007/s10295-015-1636-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/15/2015] [Indexed: 12/18/2022]
Abstract
Abstract
Nucleoside antibiotics constitute an important family of microbial natural products bearing diverse bioactivities and unusual structural features. Their biosynthetic logics are unique with involvement of complex multi-enzymatic reactions leading to the intricate molecules from simple building blocks. Understanding how nature builds this family of antibiotics in post-genomic era sets the stage for rational enhancement of their production, and also paves the way for targeted persuasion of the cell factories to make artificial designer nucleoside drugs and leads via synthetic biology approaches. In this review, we discuss the recent progress and perspectives on the natural and engineered biosynthesis of nucleoside antibiotics.
Collapse
|
4
|
Holden WM, Fites JS, Reinert LK, Rollins-Smith LA. Nikkomycin Z is an effective inhibitor of the chytrid fungus linked to global amphibian declines. Fungal Biol 2013; 118:48-60. [PMID: 24433676 DOI: 10.1016/j.funbio.2013.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/31/2013] [Accepted: 11/05/2013] [Indexed: 11/16/2022]
Abstract
Fungal infections in humans, wildlife, and plants are a growing concern because of their devastating effects on human and ecosystem health. In recent years, populations of many amphibian species have declined, and some have become extinct due to chytridiomycosis caused by the fungal pathogen Batrachochytrium dendrobatidis. For some endangered amphibian species, captive colonies are the best intermediate solution towards eventual reintroduction, and effective antifungal treatments are needed to cure chytridiomycosis and limit the spread of this pathogen in such survival assurance colonies. Currently, the best accepted treatment for infected amphibians is itraconazole, but its toxic side effects reduce its usefulness for many species. Safer antifungal treatments are needed for disease control. Here, we show that nikkomycin Z, a chitin synthase inhibitor, dramatically alters the cell wall stability of B. dendrobatidis cells and completely inhibits growth of B. dendrobatidis at 250 μM. Low doses of nikkomycin Z enhanced the effectiveness of natural antimicrobial skin peptide mixtures tested in vitro. These studies suggest that nikkomycin Z would be an effective treatment to significantly reduce the fungal burden in frogs infected by B. dendrobatidis.
Collapse
Affiliation(s)
- Whitney M Holden
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | - J Scott Fites
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA.
| | - Laura K Reinert
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | - Louise A Rollins-Smith
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
5
|
Calugi C, Trabocchi A, Guarna A. Novel small molecules for the treatment of infections caused byCandida albicans: a patent review (2002 – 2010). Expert Opin Ther Pat 2011; 21:381-97. [DOI: 10.1517/13543776.2011.551116] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Cheng L, Chen W, Zhai L, Xu D, Huang T, Lin S, Zhou X, Deng Z. Identification of the genecluster involved in muraymycin biosynthesis from Streptomyces sp. NRRL 30471. ACTA ACUST UNITED AC 2011; 7:920-7. [DOI: 10.1039/c0mb00237b] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Liao G, Li J, Li L, Yang H, Tian Y, Tan H. Selectively improving nikkomycin Z production by blocking the imidazolone biosynthetic pathway of nikkomycin X and uracil feeding in Streptomyces ansochromogenes. Microb Cell Fact 2009; 8:61. [PMID: 19930628 PMCID: PMC2787493 DOI: 10.1186/1475-2859-8-61] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 11/23/2009] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Nikkomycins are a group of peptidyl nucleoside antibiotics and act as potent inhibitors of chitin synthases in fungi and insects. Nikkomycin X and Z are the main components produced by Streptomyces ansochromogenes. Of them, nikkomycin Z is a promising antifungal agent with clinical significance. Since highly structural similarities between nikkomycin Z and X, separation of nikkomycin Z from the culture medium of S. ansochromogenes is difficult. Thus, generating a nikkomycin Z selectively producing strain is vital to scale up the nikkomycin Z yields for clinical trials. RESULTS A nikkomycin Z producing strain (sanPDM) was constructed by blocking the imidazolone biosynthetic pathway of nikkomycin X via genetic manipulation and yielded 300 mg/L nikkomycin Z and abolished the nikkomycin X production. To further increase the yield of nikkomycin Z, the effects of different precursors on its production were investigated. Precursors of nucleoside moiety (uracil or uridine) had a stimulatory effect on nikkomycin Z production while precursors of peptidyl moiety (L-lysine and L-glutamate) had no effect. sanPDM produced the maximum yields of nikkomycin Z (800 mg/L) in the presence of uracil at the concentration of 2 g/L and it was approximately 2.6-fold higher than that of the parent strain. CONCLUSION A high nikkomycin Z selectively producing was obtained by genetic manipulation combined with precursors feeding. The strategy presented here might be applicable in other bacteria to selectively produce targeted antibiotics.
Collapse
Affiliation(s)
- Guojian Liao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- Graduate School of Chinese Academy of Sciences, Beijing 100039, PR China
| | - Jine Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- Graduate School of Chinese Academy of Sciences, Beijing 100039, PR China
| | - Lei Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Haihua Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yuqing Tian
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Huarong Tan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| |
Collapse
|
8
|
Lauzier A, Simao-Beaunoir AM, Bourassa S, Poirier GG, Talbot B, Beaulieu C. Effect of potato suberin on Streptomyces scabies proteome. MOLECULAR PLANT PATHOLOGY 2008; 9:753-62. [PMID: 19019004 PMCID: PMC6640534 DOI: 10.1111/j.1364-3703.2008.00493.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Two-dimensional (2D) PAGE was used to detect proteins induced in Streptomyces scabies by potato suberin, a lipidic plant polymer. Nineteen up-regulated proteins were excised from 2D gels and analysed by N-terminal sequencing or tandem mass spectrometry (MS/MS). Four of the up-regulated proteins could be linked to the bacterial response to stress (AldH, GroES, TerD and LexA). Specific metabolic pathways seemed to be activated in the presence of suberin, as shown by the increased expression of specific transporters and of enzymes related not only to glycolysis, but also to nucleotide and amino acid metabolism. Suberin also appeared to influence secondary metabolism as it also caused the overproduction of the BldK proteins that are known to be involved in differentiation and secondary metabolism.
Collapse
Affiliation(s)
- Annie Lauzier
- Centre SEVE, Département de biologie, Université de Sherbrooke, Sherbrooke (Qc), Canada J1K2R1
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
The radical S-adenosylmethionine (SAM) superfamily currently comprises more than 2800 proteins with the amino acid sequence motif CxxxCxxC unaccompanied by a fourth conserved cysteine. The charcteristic three-cysteine motif nucleates a [4Fe-4S] cluster, which binds SAM as a ligand to the unique Fe not ligated to a cysteine residue. The members participate in more than 40 distinct biochemical transformations, and most members have not been biochemically characterized. A handful of the members of this superfamily have been purified and at least partially characterized. Significant mechanistic and structural information is available for lysine 2,3-aminomutase, pyruvate formate-lyase, coproporphyrinogen III oxidase, and MoaA required for molybdopterin biosynthesis. Biochemical information is available for spore photoproduct lyase, anaerobic ribonucleotide reductase activation subunit, lipoyl synthase, and MiaB involved in methylthiolation of isopentenyladenine-37 in tRNA. The radical SAM enzymes biochemically characterized to date have in common the cleavage of the [4Fe-4S](1 +) -SAM complex to [4Fe-4S](2 +)-Met and the 5' -deoxyadenosyl radical, which abstracts a hydrogen atom from the substrate to initiate a radical mechanism.
Collapse
Affiliation(s)
- Perry A Frey
- Department of Biochemistry, University of Madison, Wisconin-Madison, Wisconsin 53726, USA.
| | | | | |
Collapse
|
10
|
Deng Z, Bai L. Antibiotic biosynthetic pathways and pathway engineering--a growing research field in China. Nat Prod Rep 2006; 23:811-27. [PMID: 17003911 DOI: 10.1039/b611140h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review describes the recent research activities in China in relation to studies on antibiotic biosynthetic pathways and pathway engineering in actinomycetes. 75 references are cited.
Collapse
Affiliation(s)
- Zixin Deng
- Laboratory of Microbial Metabolism and School of Life Science & Biotechnology, Shanghai Jiaotong University, Shanghai, 200030, China.
| | | |
Collapse
|
11
|
Paradkar A, Trefzer A, Chakraburtty R, Stassi D. Streptomyces genetics: a genomic perspective. Crit Rev Biotechnol 2003; 23:1-27. [PMID: 12693442 DOI: 10.1080/713609296] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Streptomycetes are gram-positive, soil-inhabiting bacteria of the order Actinomycetales. These organisms exhibit an unusual, developmentally complex life cycle and produce many economically important secondary metabolites, such as antibiotics, immunosuppressants, insecticides, and anti-tumor agents. Streptomyces species have been the subject of genetic investigation for over 50 years, with many studies focusing on the developmental cycle and the production of secondary metabolites. This information provides a solid foundation for the application of structural and functional genomics to the actinomycetes. The complete DNA sequence of the model organism, Streptomyces coelicolor M145, has been published recently, with others expected to follow soon. As more genomic sequences become available, the rational genetic manipulation of these organisms to elucidate metabolic and regulatory networks, to increase the production of commercially important compounds, and to create novel secondary metabolites will be greatly facilitated. This review presents the current state of the field of genomics as it is being applied to the actinomycetes.
Collapse
Affiliation(s)
- Ashish Paradkar
- Small Molecule Discovery, Diversa Corporation, 4955 Directors Place, San Diego, CA 92121, USA
| | | | | | | |
Collapse
|
12
|
Sofia HJ, Chen G, Hetzler BG, Reyes-Spindola JF, Miller NE. Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods. Nucleic Acids Res 2001; 29:1097-106. [PMID: 11222759 PMCID: PMC29726 DOI: 10.1093/nar/29.5.1097] [Citation(s) in RCA: 771] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A novel protein superfamily with over 600 members was discovered by iterative profile searches and analyzed with powerful bioinformatics and information visualization methods. Evidence exists that these proteins generate a radical species by reductive cleavage of S:-adenosylmethionine (SAM) through an unusual Fe-S center. The superfamily (named here Radical SAM) provides evidence that radical-based catalysis is important in a number of previously well- studied but unresolved biochemical pathways and reflects an ancient conserved mechanistic approach to difficult chemistries. Radical SAM proteins catalyze diverse reactions, including unusual methylations, isomerization, sulfur insertion, ring formation, anaerobic oxidation and protein radical formation. They function in DNA precursor, vitamin, cofactor, antibiotic and herbicide biosynthesis and in biodegradation pathways. One eukaryotic member is interferon-inducible and is considered a candidate drug target for osteoporosis; another is observed to bind the neuronal Cdk5 activator protein. Five defining members not previously recognized as homologs are lysine 2,3-aminomutase, biotin synthase, lipoic acid synthase and the activating enzymes for pyruvate formate-lyase and anaerobic ribonucleotide reductase. Two functional predictions for unknown proteins are made based on integrating other data types such as motif, domain, operon and biochemical pathway into an organized view of similarity relationships.
Collapse
Affiliation(s)
- H J Sofia
- Applied Mathematics, Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| | | | | | | | | |
Collapse
|
13
|
Lauer B, Russwurm R, Bormann C. Molecular characterization of two genes from Streptomyces tendae Tü901 required for the formation of the 4-formyl-4-imidazolin-2-one-containing nucleoside moiety of the peptidyl nucleoside antibiotic nikkomycin. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:1698-706. [PMID: 10712601 DOI: 10.1046/j.1432-1327.2000.01162.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The genes nikQ and nikR were identified by sequencing DNA of the nikkomycin biosynthetic gene cluster from Streptomyces tendae Tü901/8c. The nikQ gene encodes a P450 cytochrome, and the predicted NikR gene product shows 48-56% sequence identity with uracil phosphoribosyltransferases from eukaryotic organisms. The nikQ and nikR genes were inactivated separately by insertion of a kanamycin-resistance cassette. Inactivation of the nikQ gene abolished synthesis of nikkomycins containing 4-formyl-4-imidazolin-2-one as the base (nikkomycins X and I), whereas production of nikkomycins containing uracil (nikkomycins Z and J) was not affected. Nikkomycin X and I production could be restored by feeding 4-formyl-4-imidazolin-2-one to the nikQ mutants, indicating that NikQ is responsible for its formation from L-histidine. Disruption of the nikR gene resulted in formation of decreased amounts of nikkomycins X and I, whereas nikkomycins Z and J were synthesized at wild-type levels. A fluorouracil-resistant nikR mutant lacking uracil phosphoribosyltransferase (UPRTase) activity did not synthesize nikkomycins X and I and accumulated 4-formyl-4-imidazolin-2-one in its culture filtrate, whereas formation of nikkomycins Z and J was unimpaired. The mutant was complemented to nikkomycin X and I production by nikR expressed from the mel promoter of plasmid pIJ702. The nikR gene expressed in Escherichia coli led to the production of UPRTase activity. Our results indicate that NikR converts 4-formyl-4-imidazolin-2-one to yield 5'-phosphoribosyl-4-formyl-4-imidazolin-2-one, the precursor of nikkomycins containing this base.
Collapse
Affiliation(s)
- B Lauer
- Mikrobiologie/Biotechnologie, Universität Tübingen, Tübingen, Germany
| | | | | |
Collapse
|
14
|
Bormann C, Baier D, Hörr I, Raps C, Berger J, Jung G, Schwarz H. Characterization of a novel, antifungal, chitin-binding protein from Streptomyces tendae Tü901 that interferes with growth polarity. J Bacteriol 1999; 181:7421-9. [PMID: 10601197 PMCID: PMC94197 DOI: 10.1128/jb.181.24.7421-7429.1999] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The afp1 gene, which encodes the antifungal protein AFP1, was cloned from nikkomycin-producing Streptomyces tendae Tü901, using a nikkomycin-negative mutant as a host and screening transformants for antifungal activity against Paecilomyces variotii in agar diffusion assays. The 384-bp afp1 gene has a low G+C content (63%) and a transcription termination structure with a poly(T) region, unusual attributes for Streptomyces genes. AFP1 was purified from culture filtrate of S. tendae carrying the afp1 gene on the multicopy plasmid pIJ699. The purified protein had a molecular mass of 9,862 Da and lacked a 42-residue N-terminal peptide deduced from the nucleotide sequence. AFP1 was stable at extreme pH values and high temperatures and toward commercial proteinases. AFP1 had limited similarity to cellulose-binding domains of microbial plant cell wall hydrolases and bound to crab shell chitin, chitosan, and cell walls of P. variotii but showed no enzyme activity. The biological activity of AFP1, which represents the first chitin-binding protein from bacteria exhibiting antifungal activity, was directed against specific ascomycetes, and synergistic interaction with the chitin synthetase inhibitor nikkomycin inhibited growth of Aspergillus species. Microscopy studies revealed that fluorescein-labeled AFP1 strongly bound to the surface of germinated conidia and to tips of growing hyphae, causing severe alterations in cell morphogenesis that gave rise to large spherical conidia and/or swollen hyphae and to atypical branching.
Collapse
Affiliation(s)
- C Bormann
- Mikrobiologie/Biotechnologie, Universität Tübingen, D-72076 Tübingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
15
|
Hayes A, Hobbs G, Smith CP, Oliver SG, Butler PR. Environmental signals triggering methylenomycin production by Streptomyces coelicolor A3(2). J Bacteriol 1997; 179:5511-5. [PMID: 9287007 PMCID: PMC179423 DOI: 10.1128/jb.179.17.5511-5515.1997] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Methylenomycin production by Streptomyces coelicolor A3(2) may be triggered by either of two environmental signals: alanine growth-rate-limiting conditions and/or an acidic pH shock. The production of this SCP1-encoded antibiotic was studied by using batch and chemostat cultures. Batch cultures indicated a role for both nutritional status and culture pH in its regulation. Steady-state methylenomycin production and transcription of an mmy gene under alanine but not glucose growth-rate-limiting conditions was demonstrated in chemostat culture. Transient mmy expression and methylenomycin production occurred following an acidic pH shock. This stimulation of methylenomycin production occurred independently of the nutritional status of the growth environment. Antibiotic production was partially suppressed under alanine compared with glucose growth-rate-limiting conditions following the acidic pH shock. A low specific growth rate was a prerequisite for both steady-state and transient production of methylenomycin.
Collapse
Affiliation(s)
- A Hayes
- Department of Biomolecular Sciences, UMIST, Manchester, United Kingdom
| | | | | | | | | |
Collapse
|
16
|
Bormann C, Möhrle V, Bruntner C. Cloning and heterologous expression of the entire set of structural genes for nikkomycin synthesis from Streptomyces tendae Tü901 in Streptomyces lividans. J Bacteriol 1996; 178:1216-8. [PMID: 8576062 PMCID: PMC177789 DOI: 10.1128/jb.178.4.1216-1218.1996] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A genomic library from Streptomyces tendae raised in shuttle cosmid vector pKC505 was screened with a previously isolated 8-kb DNA fragment containing the orfP1 gene, which is involved in nikkomycin biosynthesis. The entire set of structural genes for nikkomycin synthesis was heterologously expressed in S. lividans TK23 by introducing recombinant cosmids p24/32 and p9/43-2, carrying inserts of about 31 and 27 kb, respectively, overlapping by 15 kb. S. lividans transformants synthesized nikkomycins X, Z, I, and J, which were identified by high-pressure liquid chromatography analyses of culture filtrates.
Collapse
Affiliation(s)
- C Bormann
- Mikrobielle Genetik, Medizinisch-Naturwissenschaftliches Forschungszentrum, Universität Tübingen, Germany
| | | | | |
Collapse
|