1
|
German GJ, DeGiulio JV, Ramsey J, Kropinski AM, Misra R. The TolC and Lipopolysaccharide-Specific Escherichia coli Bacteriophage TLS-the Tlsvirus Archetype Virus. PHAGE (NEW ROCHELLE, N.Y.) 2024; 5:173-183. [PMID: 39372356 PMCID: PMC11447400 DOI: 10.1089/phage.2023.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Introduction TLS is a virulent bacteriophage of Escherichia coli that utilizes TolC and lipopolysaccharide as its cell surface receptors. Methods The genome was reannotated using the latest online resources and compared to other T1-like phages. Results The TLS genome consists of 49,902 base pairs, encoding 86 coding sequences that display considerable sequence similarity with the T1 phage genome. It also contains 18 intergenic 21-base long repeats, each of them upstream of a predicted start codon and in the direction of transcription. Data revealed that DNA packaging occurs through the pac site-mediated headful mechanism. Conclusions Based on sequence analysis of its genome, TLS belongs to the Drexlerviridae family and represents the type member of the Tlsvirus genus.
Collapse
Affiliation(s)
- Gregory J. German
- St. Joseph’s Health Centre, Unity Health Toronto, Toronto, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Canada
| | | | - Jolene Ramsey
- Texas A&M University, Biology Department, College Station, TX USA
| | - Andrew M. Kropinski
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Rajeev Misra
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
2
|
Cronan JE. Two neglected but valuable genetic tools for Escherichia coli and other bacteria: In vivo cosmid packaging and inducible plasmid replication. Mol Microbiol 2023; 120:783-790. [PMID: 37770255 DOI: 10.1111/mmi.15171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 09/30/2023]
Abstract
In physiology and synthetic biology, it can be advantageous to introduce a gene into a naive bacterial host under conditions in which all cells receive the gene and remain fully functional. This cannot be done by the usual chemical transformation and electroporation methods due to low efficiency and cell death, respectively. However, in vivo packaging of plasmids (called cosmids) that contain the 223 bp cos site of phage λ results in phage particles that contain concatemers of the cosmid that can be transduced into all cells of a culture. An historical shortcoming of in vivo packaging of cosmids was inefficient packaging and contamination of the particles containing cosmid DNA with a great excess of infectious λ phage. Manipulation of the packaging phage and the host has eliminated these shortcomings resulting in particles that contain only cosmid DNA. Plasmids have the drawback that they can be difficult to remove from cells. Plasmids with conditional replication provide a means to "cure" plasmids from cells. The prevalent conditional replication plasmids are temperature-sensitive plasmids, which are cured at high growth temperature. However, inducible replication plasmids are in some cases more useful, especially since this approach has been applied to plasmids having diverse replication and compatibility properties.
Collapse
Affiliation(s)
- John E Cronan
- Departments of Microbiology and Biochemistry, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
3
|
Ge F, Guo R, Liang Y, Chen Y, Shao H, Sung YY, Mok WJ, Wong LL, McMinn A, Wang M. Characterization and genomic analysis of Stutzerimonas stutzeri phage vB_PstS_ZQG1, representing a novel viral genus. Virus Res 2023; 336:199226. [PMID: 37739268 PMCID: PMC10520572 DOI: 10.1016/j.virusres.2023.199226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/11/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Stutzerimonas stutzeri is an opportunistic pathogenic bacterium belonging to the Gammaproteobacteria, exhibiting wide distribution in the environment and playing significant ecological roles such as nitrogen fixation or pollutant degradation. Despite its ecological importance, only two S. stutzeri phages have been isolated to date. Here, a novel S. stutzeri phage, vB_PstS_ZQG1, was isolated from the surface seawater of Qingdao, China. Transmission electron microscopy analysis indicates that vB_PstS_ZQG1 has a morphology characterized by a long non-contractile tail. The genomic sequence of vB_PstS_ZQG1 contains a linear, double-strand 61,790-bp with the G+C content of 53.24% and encodes 90 putative open reading frames. Two auxiliary metabolic genes encoding TolA protein and nucleotide pyrophosphohydrolase were identified, which are likely involved in host adaptation and phage reproduction. Phylogenetic and comparative genomic analyses demonstrated that vB_PstS_ZQG1 exhibits low similarity with previously isolated phages or uncultured viruses (average nucleotide identity values range from 21.7 to 29.4), suggesting that it represents a novel viral genus by itself, here named as Fuevirus. Biogeographic analysis showed that vB_PstS_ZQG1 was only detected in epipelagic and mesopelagic zone with low abundance. In summary, our findings of the phage vB_PstS_ZQG1 will provide helpful insights for further research on the interactions between S. stutzeri phages and their hosts, and contribute to discovering unknown viral sequences in the metagenomic database.
Collapse
Affiliation(s)
- Fuyue Ge
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Ruizhe Guo
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Yantao Liang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China; UMT-OUC Joint Centre for Marine Studies, Qingdao, China.
| | - Ying Chen
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Hongbing Shao
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China; UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Yeong Yik Sung
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China; Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Wen Jye Mok
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China; Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Li Lian Wong
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China; Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Andrew McMinn
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China; Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Min Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China; UMT-OUC Joint Centre for Marine Studies, Qingdao, China; Haide College, Ocean University of China, Qingdao, China; The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
4
|
Lokareddy RK, Hou CFD, Li F, Yang R, Cingolani G. Viral Small Terminase: A Divergent Structural Framework for a Conserved Biological Function. Viruses 2022; 14:v14102215. [PMID: 36298770 PMCID: PMC9611059 DOI: 10.3390/v14102215] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022] Open
Abstract
The genome packaging motor of bacteriophages and herpesviruses is built by two terminase subunits, known as large (TerL) and small (TerS), both essential for viral genome packaging. TerL structure, composition, and assembly to an empty capsid, as well as the mechanisms of ATP-dependent DNA packaging, have been studied in depth, shedding light on the chemo-mechanical coupling between ATP hydrolysis and DNA translocation. Instead, significantly less is known about the small terminase subunit, TerS, which is dispensable or even inhibitory in vitro, but essential in vivo. By taking advantage of the recent revolution in cryo-electron microscopy (cryo-EM) and building upon a wealth of crystallographic structures of phage TerSs, in this review, we take an inventory of known TerSs studied to date. Our analysis suggests that TerS evolved and diversified into a flexible molecular framework that can conserve biological function with minimal sequence and quaternary structure conservation to fit different packaging strategies and environmental conditions.
Collapse
|
5
|
A Novel Freshwater Cyanophage Mae-Yong1326-1 Infecting Bloom-Forming Cyanobacterium Microcystis aeruginosa. Viruses 2022; 14:v14092051. [PMID: 36146857 PMCID: PMC9503304 DOI: 10.3390/v14092051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/02/2022] [Accepted: 09/13/2022] [Indexed: 11/25/2022] Open
Abstract
Microcystis aeruginosa is a major harmful cyanobacterium causing water bloom worldwide. Cyanophage has been proposed as a promising tool for cyanobacterial bloom. In this study, M. aeruginosa FACHB-1326 was used as an indicator host to isolate cyanophage from Lake Taihu. The isolated Microcystis cyanophage Mae-Yong1326-1 has an elliptical head of about 47 nm in diameter and a slender flexible tail of about 340 nm in length. Mae-Yong1326-1 could lyse cyanobacterial strains across three orders (Chroococcales, Nostocales, and Oscillatoriales) in the host range experiments. Mae-Yong1326-1 was stable in stability tests, maintaining high titers at 0–40 °C and at a wide pH range of 3–12. Mae-Yong 1326-1 has a burst size of 329 PFU/cell, which is much larger than the reported Microcystis cyanophages so far. The complete genome of Mae-Yong1326-1 is a double-stranded DNA of 48, 822 bp, with a G + C content of 71.80% and long direct terminal repeats (DTR) of 366 bp, containing 57 predicted ORFs. No Mae-Yong1326-1 ORF was found to be associated with virulence factor or antibiotic resistance. PASC scanning illustrated that the highest nucleotide sequence similarity between Mae-Yong1326-1 and all known phages in databases was only 17.75%, less than 70% (the threshold to define a genus), which indicates that Mae-Yong1326-1 belongs to an unknown new genus. In the proteomic tree based on genome-wide sequence similarities, Mae-Yong1326-1 distantly clusters with three unclassified Microcystis cyanophages (MinS1, Mwe-Yong1112-1, and Mwes-Yong2). These four Microcystis cyanophages form a monophyletic clade, which separates at a node from the other clade formed by two independent families (Zierdtviridae and Orlajensenviridae) of Caudoviricetes class. We propose to establish a new family to harbor the Microcystis cyanophages Mae-Yong1326-1, MinS1, Mwe-Yong1112-1, and Mwes-Yong2. This study enriched the understanding of freshwater cyanophages.
Collapse
|
6
|
Fung HKH, Grimes S, Huet A, Duda RL, Chechik M, Gault J, Robinson C, Hendrix R, Jardine P, Conway J, Baumann C, Antson A. Structural basis of DNA packaging by a ring-type ATPase from an archetypal viral system. Nucleic Acids Res 2022; 50:8719-8732. [PMID: 35947691 PMCID: PMC9410871 DOI: 10.1093/nar/gkac647] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/06/2022] [Accepted: 07/24/2022] [Indexed: 12/24/2022] Open
Abstract
Many essential cellular processes rely on substrate rotation or translocation by a multi-subunit, ring-type NTPase. A large number of double-stranded DNA viruses, including tailed bacteriophages and herpes viruses, use a homomeric ring ATPase to processively translocate viral genomic DNA into procapsids during assembly. Our current understanding of viral DNA packaging comes from three archetypal bacteriophage systems: cos, pac and phi29. Detailed mechanistic understanding exists for pac and phi29, but not for cos. Here, we reconstituted in vitro a cos packaging system based on bacteriophage HK97 and provided a detailed biochemical and structural description. We used a photobleaching-based, single-molecule assay to determine the stoichiometry of the DNA-translocating ATPase large terminase. Crystal structures of the large terminase and DNA-recruiting small terminase, a first for a biochemically defined cos system, reveal mechanistic similarities between cos and pac systems. At the same time, mutational and biochemical analyses indicate a new regulatory mechanism for ATPase multimerization and coordination in the HK97 system. This work therefore establishes a framework for studying the evolutionary relationships between ATP-dependent DNA translocation machineries in double-stranded DNA viruses.
Collapse
Affiliation(s)
- Herman K H Fung
- Department of Biology, University of York, York, YO10 5DD, UK
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Shelley Grimes
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alexis Huet
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Robert L Duda
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Maria Chechik
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Joseph Gault
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Carol V Robinson
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Roger W Hendrix
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Paul J Jardine
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - James F Conway
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | - Alfred A Antson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK
| |
Collapse
|
7
|
Enteric Chromosomal Islands: DNA Packaging Specificity and Role of λ-like Helper Phage Terminase. Viruses 2022; 14:v14040818. [PMID: 35458547 PMCID: PMC9026076 DOI: 10.3390/v14040818] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/25/2022] [Accepted: 04/11/2022] [Indexed: 01/29/2023] Open
Abstract
The phage-inducible chromosomal islands (PICIs) of Gram-negative bacteria are analogous to defective prophages that have lost the ability to propagate without the aid of a helper phage. PICIs have acquired genes that alter the genetic repertoire of the bacterial host, including supplying virulence factors. Recent work by the Penadés laboratory elucidates how a helper phage infection or prophage induction induces the island to excise from the bacterial chromosome, replicate, and become packaged into functional virions. PICIs lack a complete set of morphogenetic genes needed to construct mature virus particles. Rather, PICIs hijack virion assembly functions from an induced prophage acting as a helper phage. The hijacking strategy includes preventing the helper phage from packaging its own DNA while enabling PICI DNA packaging. In the case of recently described Gram-negative PICIs, the PICI changes the specificity of DNA packaging. This is achieved by an island-encoded protein (Rpp) that binds to the phage protein (TerS), which normally selects phage DNA for packaging from a DNA pool that includes the helper phage and host DNAs. The Rpp–TerS interaction prevents phage DNA packaging while sponsoring PICI DNA packaging. Our communication reviews published data about the hijacking mechanism and its implications for phage DNA packaging. We propose that the Rpp–TerS complex binds to a site in the island DNA that is positioned analogous to that of the phage DNA but has a completely different sequence. The critical role of TerS in the Rpp–TerS complex is to escort TerL to the PICI cosN, ensuring appropriate DNA cutting and packaging.
Collapse
|
8
|
Wangchuk J, Chatterjee A, Patil S, Madugula SK, Kondabagil K. The coevolution of large and small terminases of bacteriophages is a result of purifying selection leading to phenotypic stabilization. Virology 2021; 564:13-25. [PMID: 34598064 DOI: 10.1016/j.virol.2021.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
Genome packaging in many dsDNA phages requires a series of precisely coordinated actions of two phage-coded proteins, namely, large terminase (TerL) and small terminase (TerS) with DNA and ATP, and with each other. Despite the strict functional conservation, TerL and TerS homologs exhibit large sequence variations. We investigated the sequence variability across eight phage types and observed a coevolutionary framework wherein the genealogy of TerL homologs mirrored that of the corresponding TerS homologs. Furthermore, a high purifying selection observed (dN/dS«1) indicated strong structural constraints on both TerL and TerS, and identify coevolving residues in TerL and TerS of phage T4 and lambda. Using the highly coevolving (correlation coefficient of 0.99) TerL and TerS of phage N4, we show that their biochemical features are similar to the phylogenetically divergent phage λ terminases. We also demonstrate using the Surface Plasma Resonance (SPR) technique that phage N4 TerL transiently interacts with TerS.
Collapse
Affiliation(s)
- Jigme Wangchuk
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Anirvan Chatterjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Supriya Patil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Santhosh Kumar Madugula
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Kiran Kondabagil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India.
| |
Collapse
|
9
|
Bujak K, Decewicz P, Kaminski J, Radlinska M. Identification, Characterization, and Genomic Analysis of Novel Serratia Temperate Phages from a Gold Mine. Int J Mol Sci 2020; 21:ijms21186709. [PMID: 32933193 PMCID: PMC7556043 DOI: 10.3390/ijms21186709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022] Open
Abstract
Bacteria of the genus Serratia inhabit a variety of ecological niches like water, soil, and the bodies of animals, and have a wide range of lifestyles. Currently, the complete genome sequences of 25 Serratia phages are available in the NCBI database. All of them were isolated from nutrient-rich environments like sewage, with the use of clinical Serratia strains as hosts. In this study, we identified a novel Serratia myovirus named vB_SspM_BZS1. Both the phage and its host Serratia sp. OS31 were isolated from the same oligotrophic environment, namely, an abandoned gold mine (Zloty Stok, Poland). The BZS1 phage was thoroughly characterized here in terms of its genomics, morphology, and infection kinetics. We also demonstrated that Serratia sp. OS31 was lysogenized by mitomycin-inducible siphovirus vB_SspS_OS31. Comparative analyses revealed that vB_SspM_BZS1 and vB_SspS_OS31 were remote from the known Serratia phages. Moreover, vB_SspM_BZS1 was only distantly related to other viruses. However, we discovered similar prophage sequences in genomes of various bacteria here. Additionally, a protein-based similarity network showed a high diversity of Serratia phages in general, as they were scattered across nineteen different clusters. In summary, this work broadened our knowledge on the diverse relationships of Serratia phages.
Collapse
|
10
|
Cheng M, Luo M, Xi H, Zhao Y, Le S, Chen LK, Tan D, Guan Y, Wang T, Han W, Wu N, Zhu T, Gu J. The characteristics and genome analysis of vB_ApiP_XC38, a novel phage infecting Acinetobacter pittii. Virus Genes 2020; 56:498-507. [PMID: 32449140 DOI: 10.1007/s11262-020-01766-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 05/11/2020] [Indexed: 12/27/2022]
Abstract
Acinetobacter pittii is an important pathogen causing nosocomial infection worldwide. In this study, a multidrug-resistant A. pittii ABC38 was used as host bacterium to isolate the lytic phage vB_ApiP_XC38. The biological characteristics of vB_ApiP_XC38 were studied and the genome was sequenced and analyzed. vB_ApiP_XC38 belonged to Podoviridae family. The phage had double-stranded genome, which comprised 79,328 bp with 39.58% G+C content displaying very low similarity (< 1% identity) with published genomes of other phages and bacteria. A total of 97 open reading frames (ORFs) were predicted and contained nucleotide metabolism and replication module, structural components module, and lysis module. The ANI, AAI, and phylogenetic analysis indicated that all phages were found distant from vB_ApiP_XC38. Altogether, morphological, genomics, and phylogenetic analysis suggest that vB_ApiP_XC38 is more likely a novel phage of A. pittii.
Collapse
Affiliation(s)
- Mengjun Cheng
- Shanghai Institute of Phage, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Man Luo
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Hengyu Xi
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yunze Zhao
- Shanghai Institute of Phage, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Shuai Le
- Shanghai Institute of Phage, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.,Department of Microbiology, Army Medical University, Chongqing, 400038, China
| | - Li-Kuang Chen
- Shanghai Institute of Phage, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Demeng Tan
- Shanghai Institute of Phage, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Yuan Guan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Tianqi Wang
- College of Clinical Medicine, Jilin University, Changchun, 130021, China
| | - Wenyu Han
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, China
| | - Nannan Wu
- Shanghai Institute of Phage, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.
| | - Tongyu Zhu
- Shanghai Institute of Phage, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.
| | - Jingmin Gu
- Shanghai Institute of Phage, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China. .,Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
11
|
Bores C, Pettitt BM. Structure and the role of filling rate on model dsDNA packed in a phage capsid. Phys Rev E 2020; 101:012406. [PMID: 32069548 DOI: 10.1103/physreve.101.012406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Indexed: 06/10/2023]
Abstract
The conformation of DNA inside bacteriophages is of paramount importance for understanding packaging and ejection mechanisms. Models describing the structure of the confined macromolecule have depicted highly ordered conformations, such as spooled or toroidal arrangements that focus on reproducing experimental results obtained by averaging over thousands of configurations. However, it has been seen that more disordered states, including DNA kinking and the presence of domains with different DNA orientation can also accurately reproduce many of the structural experiments. In this work we have compared the results obtained through different simulated filling rates. We find a rate dependence for the resulting constrained states showing different anisotropic configurations. We present a quantitative analysis of the density distribution and the DNA orientation across the capsid showing excellent agreement with structural experiments. Second, we have analyzed the correlations within the capsid, finding evidence of the presence of domains characterized by aligned segments of DNA characterized by the structure factor. Finally, we have measured the number and distribution of DNA defects such as the emergence of bubbles and kinks as function of the filling rate. We find the slower the rate the fewer kink defects that appear and they would be unlikely at experimental filling rates with our model parameters. DNA domains of various orientation get larger with slower rates.
Collapse
Affiliation(s)
- Cecilia Bores
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston Tx, 77555, USA
| | - B Montgomery Pettitt
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston Tx, 77555, USA
| |
Collapse
|
12
|
Arens JS, Duffy C, Feiss M. Acidic residues and a predicted, highly conserved α-helix are critical for the endonuclease/strand separation functions of bacteriophage λ's TerL. Mol Microbiol 2019; 112:1483-1498. [PMID: 31430408 DOI: 10.1111/mmi.14373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2019] [Indexed: 01/10/2023]
Abstract
Complementation, endonuclease, strand separation, and packaging assays using mutant TerLλ 's, coupled with bioinformatic information and modeling of its endonuclease, identified five residues, D401, E408, D465, E563, and E586, as critical acidic residues of TerLλ 's endonuclease. Studies of phage and viral TerL nucleases indicate acidic residues participate in metal ion-binding, part of a two-ion metal catalysis mechanism, where metal ion A activates a water for DNA backbone hydrolysis. Modeling places D401, D465, and E586 in locations analogous to those of the metal-binding residues of many phage and viral TerLs. Our work leads to a model of TerLλ 's endonuclease domain where at least three acidic residues from a ~185 residue segment (D401 to E586) are near each other in the structure, forming the endonuclease catalytic center at cosN, the nicking site. DNA interactions required to bring the rotationally symmetric cosN precisely to the catalytic center are proposed to rely on an ~60 residue region that includes a conserved α-helix for dimerization. Metal ion A, positioned by TerLλ 's acidic D401 and E586, would be placed at cosN for water activation, ensuring high accuracy for DNA backbone hydrolysis.
Collapse
Affiliation(s)
- Jean Sippy Arens
- Department of Microbiology and Immunology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Carol Duffy
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Michael Feiss
- Department of Microbiology and Immunology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
13
|
Ji Z, Guo P. Channel from bacterial virus T7 DNA packaging motor for the differentiation of peptides composed of a mixture of acidic and basic amino acids. Biomaterials 2019; 214:119222. [PMID: 31158604 DOI: 10.1016/j.biomaterials.2019.119222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/11/2019] [Accepted: 05/21/2019] [Indexed: 12/20/2022]
Abstract
Protein mutations can result in dysfunctional cell signaling pathways; therefore it is of significance to develop a robust platform for the detection of protein mutations. Here, we report that the channel of bacterial virus T7 DNA packaging motor is able to discriminate peptides containing a mixture of acidic (negatively charged) and basic (positively charged) amino acids. Peptides were differentiated based on their current signatures created by their unique charge compositions. In combination with protease digestion, peptides with the locational differences of single amino acid were also identified. The results suggest that the T7 motor channel has the potential for peptide differentiation, mutation verification, and analysis of protein sequence.
Collapse
Affiliation(s)
- Zhouxiang Ji
- Center for RNA Nanobiotechnology and Nanomedicine; Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy; College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center; The Ohio State University, Columbus, OH, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine; Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy; College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center; The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
14
|
Li H, Liu Z, Wang M, Liu X, Wang Q, Liu Q, Jiang Y, Li Z, Shao H, McMinn A. Isolation and genome sequencing of the novel marine phage PHS3 from the Yellow Sea, China. Mar Genomics 2019. [DOI: 10.1016/j.margen.2018.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
15
|
vB_LspM-01: a novel myovirus displaying pseudolysogeny in Lysinibacillus sphaericus C3-41. Appl Microbiol Biotechnol 2018; 102:10691-10702. [PMID: 30362075 DOI: 10.1007/s00253-018-9424-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/22/2018] [Accepted: 09/28/2018] [Indexed: 10/28/2022]
Abstract
Lysinibacillus sphaericus has great application potential not only in the biocontrol of mosquitoes but also in the bioremediation of toxic metals. Phages contribute to the genetic diversity and niche adaptation of bacteria, playing essential roles in their life cycle, but may also cause economic damage for industrially important bacteria through phage contamination during fermentation. In this study, the L. sphaericus phage vB_LspM-01, which belongs to the Myoviridae family, was isolated and characterized. Results showed that vB_LspM-01 could specifically infect most tested L. sphaericus isolates but was not active against isolates belonging to other species. Furthermore, phage-born endolysin exhibited a broader antimicrobial spectrum than the host range of the phage. The vB_LspM-01 genome had no obvious similarity with that of its host, and ca. 22.6% of putative ORFs could not get a match with the public databases. Phylogenic analysis based on the putative terminase large subunit showed high similarity with the phages identified with pac-type headful packaging. The vB_LspM-01 encoding genes were only detected in a tiny percentage of L. sphaericus C3-41 individual cells in the wild population, whereas they showed much higher frequency in the resistant population grown within the plaques; however, the phage genes could not be stably inherited during host cell division. Additionally, the vB_LspM-01 encoding genes were only detected in the host population during the logarithmic growth phase. The mitomycin C induction helped the propagation and lysogeny-lysis switch of vB_LspM-01. The study demonstrated that vB_LspM-01 can be present in a pseudolysogenic state in L. sphaericus C3-41 populations.
Collapse
|
16
|
Ji Z, Kang X, Wang S, Guo P. Nano-channel of viral DNA packaging motor as single pore to differentiate peptides with single amino acid difference. Biomaterials 2018; 182:227-233. [PMID: 30138785 DOI: 10.1016/j.biomaterials.2018.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/17/2018] [Accepted: 08/02/2018] [Indexed: 12/23/2022]
Abstract
Detection, differentiation, mapping, and sequencing of proteins are important in proteomics for the assessment of cell development such as protein methylation or phosphorylation as well as the diagnosis of diseases including metabolic disorder, mental illness, immunological ailments, and malignant cancers. Nanopore technology has demonstrated the potential for the sequencing or sensing of DNA, RNA, chemicals, or other macromolecules. Due to the diversity of protein in shape, structure and charge and the composition versatility of 20 amino acids, the sequencing of proteins remains challenging. Herein, we report the application of the channel of bacteriophage T7 DNA packaging motor for the differentiation of an assortment of peptides of a single amino acid difference. Explicit fingerprints or signatures were obtained based on current blockage and dwell time of individual peptide. Data from the clear mapping of small proteins after protease digestion suggests the potential of using T7 motor channel for proteomics including protein sequencing.
Collapse
Affiliation(s)
- Zhouxiang Ji
- Center for RNA Nanobiotechnology and Nanomedicine, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Xinqi Kang
- Center for RNA Nanobiotechnology and Nanomedicine, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Shaoying Wang
- Center for RNA Nanobiotechnology and Nanomedicine, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
17
|
Ha AD, Denver DR. Comparative Genomic Analysis of 130 Bacteriophages Infecting Bacteria in the Genus Pseudomonas. Front Microbiol 2018; 9:1456. [PMID: 30022972 PMCID: PMC6039544 DOI: 10.3389/fmicb.2018.01456] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 06/12/2018] [Indexed: 11/16/2022] Open
Abstract
Bacteria of the genus Pseudomonas are genetically diverse and ubiquitous in the environment. Like other bacteria, those of the genus Pseudomonas are susceptible to bacteriophages which can significantly affect their host in many ways, ranging from cell lysis to major changes in morphology and virulence. Insights into phage genomes, evolution, and functional relationships with their hosts have the potential to contribute to a broader understanding of Pseudomonas biology, and the development of novel phage therapy strategies. Here we provide a broad-based comparative and evolutionary analysis of 130 complete Pseudomonas phage genome sequences available in online databases. We discovered extensive variation in genome size (ranging from 3 to 316 kb), G + C percentage (ranging from 37 to 66%), and overall gene content (ranging from 81–96% of genome space). Based on overall nucleotide similarity and the numbers of shared gene products, 100 out of 130 genome sequences were grouped into 12 different clusters; 30 were characterized as singletons, which do not have close relationships with other phage genomes. For 5/12 clusters, constituent phage members originated from two or more different Pseudomonas host species, suggesting that phage in these clusters can traverse bacterial species boundaries. An analysis of CRISPR spacers in Pseudomonas bacterial genome sequences supported this finding. Substantial diversity was revealed in analyses of phage gene families; out of 4,462 total families, the largest had only 39 members and there were 2,992 families with only one member. An evolutionary analysis of 72 phage gene families, based on patterns of nucleotide diversity at non-synonymous and synonymous sites, revealed strong and consistent signals for purifying selection. Our study revealed highly diverse and dynamic Pseudomonas phage genomes, and evidence for a dominant role of purifying selection in shaping the evolution of genes encoded in them.
Collapse
Affiliation(s)
- Anh D Ha
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| | - Dee R Denver
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
18
|
Wangchuk J, Prakash P, Bhaumik P, Kondabagil K. Bacteriophage N4 large terminase: expression, purification and X-ray crystallographic analysis. Acta Crystallogr F Struct Biol Commun 2018; 74:198-204. [PMID: 29633967 PMCID: PMC5894105 DOI: 10.1107/s2053230x18003084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/22/2018] [Indexed: 12/25/2022] Open
Abstract
Genome packaging is a critical step in the assembly of dsDNA bacteriophages and is carried out by a powerful molecular motor known as the large terminase. To date, wild-type structures of only two large terminase proteins are available, and more structural information is needed to understand the genome-packaging mechanism. Towards this goal, the large and small terminase proteins from bacteriophage N4, which infects the Escherichia coli K12 strain, have been cloned, expressed and purified. The purified putative large terminase protein hydrolyzes ATP, and this is enhanced in the presence of the small terminase. The large terminase protein was crystallized using the sitting-drop vapour-diffusion method and the crystal diffracted to 2.8 Å resolution using a home X-ray source. Analysis of the X-ray diffraction data showed that the crystal belonged to space group P212121, with unit-cell parameters a = 53.7, b = 93.6, c = 124.9 Å, α = β = γ = 90°. The crystal had a solvent content of 50.2% and contained one molecule in the asymmetric unit.
Collapse
Affiliation(s)
- Jigme Wangchuk
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Prem Prakash
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Prasenjit Bhaumik
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Kiran Kondabagil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| |
Collapse
|
19
|
PhageTerm: a tool for fast and accurate determination of phage termini and packaging mechanism using next-generation sequencing data. Sci Rep 2017; 7:8292. [PMID: 28811656 PMCID: PMC5557969 DOI: 10.1038/s41598-017-07910-5] [Citation(s) in RCA: 399] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/04/2017] [Indexed: 02/04/2023] Open
Abstract
The worrying rise of antibiotic resistance in pathogenic bacteria is leading to a renewed interest in bacteriophages as a treatment option. Novel sequencing technologies enable description of an increasing number of phage genomes, a critical piece of information to understand their life cycle, phage-host interactions, and evolution. In this work, we demonstrate how it is possible to recover more information from sequencing data than just the phage genome. We developed a theoretical and statistical framework to determine DNA termini and phage packaging mechanisms using NGS data. Our method relies on the detection of biases in the number of reads, which are observable at natural DNA termini compared with the rest of the phage genome. We implemented our method with the creation of the software PhageTerm and validated it using a set of phages with well-established packaging mechanisms representative of the termini diversity, i.e. 5′cos (Lambda), 3′cos (HK97), pac (P1), headful without a pac site (T4), DTR (T7) and host fragment (Mu). In addition, we determined the termini of nine Clostridium difficile phages and six phages whose sequences were retrieved from the Sequence Read Archive. PhageTerm is freely available (https://sourceforge.net/projects/phageterm), as a Galaxy ToolShed and on a Galaxy-based server (https://galaxy.pasteur.fr).
Collapse
|
20
|
Xu RG, Jenkins HT, Chechik M, Blagova EV, Lopatina A, Klimuk E, Minakhin L, Severinov K, Greive SJ, Antson AA. Viral genome packaging terminase cleaves DNA using the canonical RuvC-like two-metal catalysis mechanism. Nucleic Acids Res 2017; 45:3580-3590. [PMID: 28100693 PMCID: PMC5389553 DOI: 10.1093/nar/gkw1354] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/03/2017] [Indexed: 12/12/2022] Open
Abstract
Bacteriophages and large dsDNA viruses encode sophisticated machinery to translocate their DNA into a preformed empty capsid. An essential part of this machine, the large terminase protein, processes viral DNA into constituent units utilizing its nuclease activity. Crystal structures of the large terminase nuclease from the thermophilic bacteriophage G20c show that it is most similar to the RuvC family of the RNase H-like endonucleases. Like RuvC proteins, the nuclease requires either Mn2+, Mg2+ or Co2+ ions for activity, but is inactive with Zn2+ and Ca2+. High resolution crystal structures of complexes with different metals reveal that in the absence of DNA, only one catalytic metal ion is accommodated in the active site. Binding of the second metal ion may be facilitated by conformational variability, which enables the two catalytic aspartic acids to be brought closer to each other. Structural comparison indicates that in common with the RuvC family, the location of the two catalytic metals differs from other members of the RNase H family. In contrast to a recently proposed mechanism, the available data do not support binding of the two metals at an ultra-short interatomic distance. Thus we postulate that viral terminases cleave DNA by the canonical RuvC-like mechanism.
Collapse
Affiliation(s)
- Rui-Gang Xu
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Huw T Jenkins
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Maria Chechik
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Elena V Blagova
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Anna Lopatina
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Evgeny Klimuk
- Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia
| | - Leonid Minakhin
- Waksman Institute for Microbiology, Rutgers, The State University of New Jersey, NJ 08854, USA
| | - Konstantin Severinov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia.,Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia.,Waksman Institute for Microbiology, Rutgers, The State University of New Jersey, NJ 08854, USA
| | - Sandra J Greive
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Alfred A Antson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| |
Collapse
|
21
|
Vahanian N, Oh CS, Sippy J, Feiss M. Natural history of a viral cohesive end site: cosN of the λ-like phages. Virology 2017. [PMID: 28646648 DOI: 10.1016/j.virol.2017.06.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The base pairs of cosN, the site where the 12 base-long cohesive ends are generated in λ-like phages, show partial-two fold rotational symmetry. In a bioinformatic survey, we found that the cosN changes in 12 natural cosN variants are restricted to bp 6-to-12 of the cohesive end sequence. In contrast, bp 1-5 of the cohesive end sequence are strictly conserved (13/13), as are the two bp flanking the left nicking site (bp -2 and -1). The bp flanking the right nick site (bp 13 and 14) are conserved in 12 of 13 variants. Five cosN variants differing by as many as five bp were used to replace lambda's cosN. No significant effects of the cosN changes on λ's virus yield were found. In sum, bp -2 to 5 are critical cosN function, and bp 6-12 of the cohesive end sequence are not critical for terminase recognition or virus fitness.
Collapse
Affiliation(s)
- Nicole Vahanian
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA 52242, USA
| | - Choon Seok Oh
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA 52242, USA
| | - Jean Sippy
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA 52242, USA
| | - Michael Feiss
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
22
|
Chung CH, Walter MH, Yang L, Chen SCG, Winston V, Thomas MA. Predicting genome terminus sequences of Bacillus cereus-group bacteriophage using next generation sequencing data. BMC Genomics 2017; 18:350. [PMID: 28472946 PMCID: PMC5418689 DOI: 10.1186/s12864-017-3744-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/28/2017] [Indexed: 11/10/2022] Open
Abstract
Background Most tailed bacteriophages (phages) feature linear dsDNA genomes. Characterizing novel phages requires an understanding of complete genome sequences, including the definition of genome physical ends. Result We sequenced 48 Bacillus cereus phage isolates and analyzed Next-generation sequencing (NGS) data to resolve the genome configuration of these novel phages. Most assembled contigs featured reads that mapped to both contig ends and formed circularized contigs. Independent assemblies of 31 nearly identical I48-like Bacillus phage isolates allowed us to observe that the assembly programs tended to produce random cleavage on circularized contigs. However, currently available assemblers were not capable of reporting the underlying phage genome configuration from sequence data. To identify the genome configuration of sequenced phage in silico, a terminus prediction method was developed by means of ‘neighboring coverage ratios’ and ‘read edge frequencies’ from read alignment files. Termini were confirmed by primer walking and supported by phylogenetic inference of large DNA terminase protein sequences. Conclusions The Terminus package using phage NGS data along with the contig circularity could efficiently identify the proximal positions of phage genome terminus. Complete phage genome sequences allow a proposed characterization of the potential packaging mechanisms and more precise genome annotation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3744-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cheng-Han Chung
- Department of Biological Sciences, Idaho State University, 921 South 8th Avenue, Pocatello, ID, 83209-8007, USA.
| | - Michael H Walter
- Department of Biology, University of Northern Iowa, 144 McCollum Science Hall, Cedar Falls, IA, 50614-0421, USA
| | - Luobin Yang
- Department of Biological Sciences, Idaho State University, 921 South 8th Avenue, Pocatello, ID, 83209-8007, USA
| | - Shu-Chuan Grace Chen
- Department of Mathematics and Statistics, Idaho State University, 921 South 8th Avenue, Pocatello, ID, 83209-8085, USA
| | - Vern Winston
- Department of Biological Sciences, Idaho State University, 921 South 8th Avenue, Pocatello, ID, 83209-8007, USA
| | - Michael A Thomas
- Department of Biological Sciences, Idaho State University, 921 South 8th Avenue, Pocatello, ID, 83209-8007, USA
| |
Collapse
|
23
|
The Autographa californica Multiple Nucleopolyhedrovirus ac83 Gene Contains a cis-Acting Element That Is Essential for Nucleocapsid Assembly. J Virol 2017; 91:JVI.02110-16. [PMID: 28031366 DOI: 10.1128/jvi.02110-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 12/21/2016] [Indexed: 01/08/2023] Open
Abstract
Baculoviridae is a family of insect-specific viruses that have a circular double-stranded DNA genome packaged within a rod-shaped capsid. The mechanism of baculovirus nucleocapsid assembly remains unclear. Previous studies have shown that deletion of the ac83 gene of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) blocks viral nucleocapsid assembly. Interestingly, the ac83-encoded protein Ac83 is not a component of the nucleocapsid, implying a particular role for ac83 in nucleocapsid assembly that may be independent of its protein product. To examine this possibility, Ac83 synthesis was disrupted by insertion of a chloramphenicol resistance gene into its coding sequence or by deleting its promoter and translation start codon. Both mutants produced progeny viruses normally, indicating that the Ac83 protein is not required for nucleocapsid assembly. Subsequently, complementation assays showed that the production of progeny viruses required the presence of ac83 in the AcMNPV genome instead of its presence in trans Therefore, we reasoned that ac83 is involved in nucleocapsid assembly via an internal cis-acting element, which we named the nucleocapsid assembly-essential element (NAE). The NAE was identified to lie within nucleotides 1651 to 1850 of ac83 and had 8 conserved A/T-rich regions. Sequences homologous to the NAE were found only in alphabaculoviruses and have a conserved positional relationship with another essential cis-acting element that was recently identified. The identification of the NAE may help to connect the data of viral cis-acting elements and related proteins in the baculovirus nucleocapsid assembly, which is important for elucidating DNA-protein interaction events during this process.IMPORTANCE Virus nucleocapsid assembly usually requires specific cis-acting elements in the viral genome for various processes, such as the selection of the viral genome from the cellular nucleic acids, the cleavage of concatemeric viral genome replication intermediates, and the encapsidation of the viral genome into procapsids. In linear DNA viruses, such elements generally locate at the ends of the viral genome; however, most of these elements remain unidentified in circular DNA viruses (including baculovirus) due to their circular genomic conformation. Here, we identified a nucleocapsid assembly-essential element in the AcMNPV (the archetype of baculovirus) genome. This finding provides an important reference for studies of nucleocapsid assembly-related elements in baculoviruses and other circular DNA viruses. Moreover, as most of the previous studies of baculovirus nucleocapsid assembly have been focused on viral proteins, our study provides a novel entry point to investigate this mechanism via cis-acting elements in the viral genome.
Collapse
|
24
|
Djacem K, Tavares P, Oliveira L. Bacteriophage SPP1 pac Cleavage: A Precise Cut without Sequence Specificity Requirement. J Mol Biol 2017; 429:1381-1395. [PMID: 28082080 DOI: 10.1016/j.jmb.2017.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/23/2016] [Accepted: 01/05/2017] [Indexed: 01/23/2023]
Abstract
In many tailed bacteriophages, DNA packaging is initiated by recognition and cleavage of a specific sequence pac by the small (TerS) and large (TerL) terminase subunits. It was previously shown that the SPP1 pac region has two sequences where TerS binds (pacR and pacL), flanking the segment where TerL cleaves the SPP1 DNA (pacC). However, the pac-specific sequences required to achieve this endonucleolytic cut were not established. Their characterization is essential to understand the underlying mechanism. We show that the pacR sequence localized within 35bp downstream of the pac cut can be extensively degenerated, including its c1 and c2 repeats, and that only a disruption of a 5-bp polyadenine tract impairs the pac cleavage. This result together with deletion analysis of pacL shows that the specific DNA sequences required for targeting the terminase for pac cleavage are considerably shorter than the large region bound by TerS. Furthermore, extensive degeneration of the 6-bp target sequence within pacC where pac cleavage occurs reveals that TerL maintains, remarkably, its precise position of cleavage. Studies with SPP1-related phages show the conservation of the cut position, irrespective of the sequence variation in pacC and in pacR or the changes in pacL-pacC distance. Mechanistically, our data are compatible with a model in which TerS interactions with part of the pacL sequence and a poly-A tract in pacR are sufficient to orient very accurately the TerL nuclease to a defined pacC position. They also demonstrate that the resulting precise cut at pacC is independent of the targeted DNA sequence.
Collapse
Affiliation(s)
- Karima Djacem
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Paulo Tavares
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France.
| | - Leonor Oliveira
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France.
| |
Collapse
|
25
|
Freeman KG, Behrens MA, Streletzky KA, Olsson U, Evilevitch A. Portal Stability Controls Dynamics of DNA Ejection from Phage. J Phys Chem B 2016; 120:6421-9. [PMID: 27176921 DOI: 10.1021/acs.jpcb.6b04172] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Through a unique combination of time-resolved single-molecule (cryo-TEM) and bulk measurements (light scattering and small-angle X-ray scattering), we provide a detailed study of the dynamics of stochastic DNA ejection events from phage λ. We reveal that both binding with the specific phage receptor, LamB, and thermo-mechanical destabilization of the portal vertex on the capsid are required for initiation of ejection of the pressurized λ-DNA from the phage. Specifically, we found that a measurable activation energy barrier for initiation of DNA ejection with LamB present, Ea = (1.2 ± 0.1) × 10(-19) J/phage (corresponding to ∼28 kTbody/phage at Tbody = 37 °C), results in 15 times increased rate of ejection event dynamics when the temperature is raised from 15 to 45 °C (7.5 min versus 30 s average lag time for initiation of ejection). This suggests that phages have a double fail-safe mechanism for ejection-in addition to receptor binding, phage must also overcome (through thermal energy and internal DNA pressure) an energy barrier for DNA ejection. This energy barrier ensures that viral genome ejection into cells occurs with high efficiency only when the temperature conditions are favorable for genome replication. At lower suboptimal temperatures, the infectious phage titer is preserved over much longer times, since DNA ejection dynamics is strongly inhibited even in the presence of solubilized receptor or susceptible cells. This work also establishes a light scattering based approach to investigate the influence of external solution conditions, mimicking those of the bacterial cytoplasm, on the stability of the viral capsid portal, which is directly linked to dynamics of virion deactivation.
Collapse
Affiliation(s)
- Krista G Freeman
- Carnegie Mellon University , Department of Physics, Pittsburgh, Pennsylvania, United States
| | - Manja A Behrens
- Lund University , Division of Physical Chemistry, Lund, Sweden
| | - Kiril A Streletzky
- Cleveland State University , Department of Physics, Cleveland, Ohio, United States
| | - Ulf Olsson
- Lund University , Division of Physical Chemistry, Lund, Sweden
| | - Alex Evilevitch
- Carnegie Mellon University , Department of Physics, Pittsburgh, Pennsylvania, United States.,Lund University , Division of Biochemistry and Structural Biology, Lund, Sweden
| |
Collapse
|
26
|
Gao S, Zhang L, Rao VB. Exclusion of small terminase mediated DNA threading models for genome packaging in bacteriophage T4. Nucleic Acids Res 2016; 44:4425-39. [PMID: 26984529 PMCID: PMC4872099 DOI: 10.1093/nar/gkw184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/04/2016] [Indexed: 11/17/2022] Open
Abstract
Tailed bacteriophages and herpes viruses use powerful molecular machines to package their genomes. The packaging machine consists of three components: portal, motor (large terminase; TerL) and regulator (small terminase; TerS). Portal, a dodecamer, and motor, a pentamer, form two concentric rings at the special five-fold vertex of the icosahedral capsid. Powered by ATPase, the motor ratchets DNA into the capsid through the portal channel. TerS is essential for packaging, particularly for genome recognition, but its mechanism is unknown and controversial. Structures of gear-shaped TerS rings inspired models that invoke DNA threading through the central channel. Here, we report that mutations of basic residues that line phage T4 TerS (gp16) channel do not disrupt DNA binding. Even deletion of the entire channel helix retained DNA binding and produced progeny phage in vivo. On the other hand, large oligomers of TerS (11-mers/12-mers), but not small oligomers (trimers to hexamers), bind DNA. These results suggest that TerS oligomerization creates a large outer surface, which, but not the interior of the channel, is critical for function, probably to wrap viral genome around the ring during packaging initiation. Hence, models involving TerS-mediated DNA threading may be excluded as an essential mechanism for viral genome packaging.
Collapse
Affiliation(s)
- Song Gao
- Department of Biology, The Catholic University of America, 620 Michigan Avenue Northeast, Washington, DC 20064, USA Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Huaihai Institute of Technology, Lianyungang 222005, China
| | - Liang Zhang
- Department of Biology, The Catholic University of America, 620 Michigan Avenue Northeast, Washington, DC 20064, USA
| | - Venigalla B Rao
- Department of Biology, The Catholic University of America, 620 Michigan Avenue Northeast, Washington, DC 20064, USA
| |
Collapse
|
27
|
Abstract
During progeny assembly, viruses selectively package virion genomes from a nucleic acid pool that includes host nucleic acids. For large dsDNA viruses, including tailed bacteriophages and herpesviruses, immature viral DNA is recognized and translocated into a preformed icosahedral shell, the prohead. Recognition involves specific interactions between the viral packaging enzyme, terminase, and viral DNA recognition sites. Generally, viral DNA is recognized by terminase’s small subunit (TerS). The large terminase subunit (TerL) contains translocation ATPase and endonuclease domains. In phage lambda, TerS binds a sequence repeated three times in cosB, the recognition site. TerS binding to cosB positions TerL to cut the concatemeric DNA at the adjacent nicking site, cosN. TerL introduces staggered nicks in cosN, generating twelve bp cohesive ends. Terminase separates the cohesive ends and remains bound to the cosB-containing end, in a nucleoprotein structure called Complex I. Complex I docks on the prohead’s portal vertex and translocation ensues. DNA topology plays a role in the TerSλ-cosBλ interaction. Here we show that a site, I2, located between cosN and cosB, is critically important for an early DNA packaging step. I2 contains a complex static bend. I2 mutations block DNA packaging. I2 mutant DNA is cut by terminase at cosN in vitro, but in vivo, no cos cleavage is detected, nor is there evidence for Complex I. Models for what packaging step might be blocked by I2 mutations are presented.
Collapse
|
28
|
Feiss M, Young Min J, Sultana S, Patel P, Sippy J. DNA Packaging Specificity of Bacteriophage N15 with an Excursion into the Genetics of a Cohesive End Mismatch. PLoS One 2015; 10:e0141934. [PMID: 26633301 PMCID: PMC4669245 DOI: 10.1371/journal.pone.0141934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 10/14/2015] [Indexed: 11/17/2022] Open
Abstract
During DNA replication by the λ-like bacteriophages, immature concatemeric DNA is produced by rolling circle replication. The concatemers are processed into mature chromosomes with cohesive ends, and packaged into prohead shells, during virion assembly. Cohesive ends are generated by the viral enzyme terminase, which introduces staggered nicks at cos, an approx. 200 bp-long sequence containing subsites cosQ, cosN and cosB. Interactions of cos subsites of immature concatemeric DNA with terminase orchestrate DNA processing and packaging. To initiate DNA packaging, terminase interacts with cosB and nicks cosN. The cohesive ends of N15 DNA differ from those of λ at 2/12 positions. Genetic experiments show that phages with chromosomes containing mismatched cohesive ends are functional. In at least some infections, the cohesive end mismatch persists through cyclization and replication, so that progeny phages of both allelic types are produced in the infected cell. N15 possesses an asymmetric packaging specificity: N15 DNA is not packaged by phages λ or 21, but surprisingly, N15-specific terminase packages λ DNA. Implications for genetic interactions among λ-like bacteriophages are discussed.
Collapse
Affiliation(s)
- Michael Feiss
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, 52242, United States of America
| | - Jea Young Min
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, 52242, United States of America
| | - Sawsan Sultana
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, 52242, United States of America
| | - Priyal Patel
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, 52242, United States of America
| | - Jean Sippy
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, 52242, United States of America
| |
Collapse
|
29
|
Feiss M, Geyer H, Klingberg F, Moreno N, Forystek A, Maluf NK, Sippy J. Novel DNA packaging recognition in the unusual bacteriophage N15. Virology 2015; 482:260-8. [PMID: 25956737 PMCID: PMC4461450 DOI: 10.1016/j.virol.2015.03.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 02/16/2015] [Accepted: 03/09/2015] [Indexed: 10/23/2022]
Abstract
Phage lambda's cosB packaging recognition site is tripartite, consisting of 3 TerS binding sites, called R sequences. TerS binding to the critical R3 site positions the TerL endonuclease for nicking cosN to generate cohesive ends. The N15 cos (cos(N15)) is closely related to cos(λ), but whereas the cosB(N15) subsite has R3, it lacks the R2 and R1 sites and the IHF binding site of cosB(λ). A bioinformatic study of N15-like phages indicates that cosB(N15) also has an accessory, remote rR2 site, which is proposed to increase packaging efficiency, like R2 and R1 of lambda. N15 plus five prophages all have the rR2 sequence, which is located in the TerS-encoding 1 gene, approximately 200 bp distal to R3. An additional set of four highly related prophages, exemplified by Monarch, has R3 sequence, but also has R2 and R1 sequences characteristic of cosB-λ. The DNA binding domain of TerS-N15 is a dimer.
Collapse
Affiliation(s)
- Michael Feiss
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Henriette Geyer
- Division of Viral Infections, Robert Koch Institute, Berlin, Germany; Division of Viral Infections, Robert Koch Institute, Berlin, Germany.
| | - Franco Klingberg
- Flow Cytometry, Imaging & Microscopy, Thermo Fisher Scientific, Frankfurter Strasse 129B 64293 Darmstadt, Germany; Flow Cytometry, Imaging & Microscopy, Thermo Fisher Scientific, Frankfurter Strasse 129B 64293 Darmstadt, Germany.
| | - Norma Moreno
- Texas A&M University - Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, United States.; Texas A&M University - Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, United States..
| | - Amanda Forystek
- Flow Cytometry, Imaging & Microscopy, Thermo Fisher Scientific, Frankfurter Strasse 129B 64293 Darmstadt, Germany; Room # 2911 JPP, Dept. of Psychiatry, The University of Iowa, 200 Hawkins Drive, Iowa City, Iowa, 52242.
| | - Nasib Karl Maluf
- Flow Cytometry, Imaging & Microscopy, Thermo Fisher Scientific, Frankfurter Strasse 129B 64293 Darmstadt, Germany; Alliance Protein Laboratories, Inc. 6042 Cornerstone Court West, Suite ASan Diego, CA 92121, USA..
| | - Jean Sippy
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
30
|
Sippy J, Patel P, Vahanian N, Sippy R, Feiss M. Genetics of critical contacts and clashes in the DNA packaging specificities of bacteriophages λ and 21. Virology 2015; 476:115-123. [PMID: 25543962 PMCID: PMC5006951 DOI: 10.1016/j.virol.2014.11.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 09/28/2014] [Accepted: 11/24/2014] [Indexed: 10/24/2022]
Abstract
The cos sites in λ and 21 chromosomes contain binding sites that recruit terminase to initiate DNA packaging. The small subunits of terminase, gpNu1 (λ) and gp1 (21), have winged helix-turn-helix DNA binding domains, where the recognition helixes differ in four of nine residues. To initiate packaging, the small subunit binds three R sequences in the cosB subsite. λ and 21 cannot package each other׳s DNA, due to recognition helix and R sequence differences. In λ and 21 cosBs, two bp, tri1 and tri2, are conserved in the R sequences yet differ between the phages; they are proposed to play a role in phage-specific packaging by λ and 21. Genetic experiments done with mixed and matched terminase and cosB alleles show packaging specificity depends on favorable contacts and clashes. These interactions indicate that the recognition helixes orient with residues 20 and 24 proximal to tri2 and tri1, respectively.
Collapse
Affiliation(s)
- Jean Sippy
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Road, Iowa City, IA 52242, United States.
| | - Priyal Patel
- University Hospitals and Clinics (UIHC), Department of Pathology, 200 Hawkins Dr. 6240 RCP, Iowa City, IA 52242, United States.
| | - Nicole Vahanian
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Road, Iowa City, IA 52242, United States.
| | - Rachel Sippy
- Department of Population Health Sciences, University of Wisconsin-Madison, 610 North Walnut Street, Madison, WI 53726, United States.
| | - Michael Feiss
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Road, Iowa City, IA 52242, United States.
| |
Collapse
|
31
|
Lara E, Holmfeldt K, Solonenko N, Sà EL, Ignacio-Espinoza JC, Cornejo-Castillo FM, Verberkmoes NC, Vaqué D, Sullivan MB, Acinas SG. Life-style and genome structure of marine Pseudoalteromonas siphovirus B8b isolated from the northwestern Mediterranean Sea. PLoS One 2015; 10:e0114829. [PMID: 25587991 PMCID: PMC4294664 DOI: 10.1371/journal.pone.0114829] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 11/14/2014] [Indexed: 11/18/2022] Open
Abstract
Marine viruses (phages) alter bacterial diversity and evolution with impacts on marine biogeochemical cycles, and yet few well-developed model systems limit opportunities for hypothesis testing. Here we isolate phage B8b from the Mediterranean Sea using Pseudoalteromonas sp. QC-44 as a host and characterize it using myriad techniques. Morphologically, phage B8b was classified as a member of the Siphoviridae family. One-step growth analyses showed that this siphovirus had a latent period of 70 min and released 172 new viral particles per cell. Host range analysis against 89 bacterial host strains revealed that phage B8b infected 3 Pseudoalteromonas strains (52 tested, >99.9% 16S rRNA gene nucleotide identity) and 1 non-Pseudoaltermonas strain belonging to Alteromonas sp. (37 strains from 6 genera tested), which helps bound the phylogenetic distance possible in a phage-mediated horizontal gene transfer event. The Pseudoalteromonas phage B8b genome size was 42.7 kb, with clear structural and replication modules where the former were delineated leveraging identification of 16 structural genes by virion structural proteomics, only 4 of which had any similarity to known structural proteins. In nature, this phage was common in coastal marine environments in both photic and aphotic layers (found in 26.5% of available viral metagenomes), but not abundant in any sample (average per sample abundance was 0.65% of the reads). Together these data improve our understanding of siphoviruses in nature, and provide foundational information for a new ‘rare virosphere’ phage–host model system.
Collapse
Affiliation(s)
- Elena Lara
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37–49, 08003 Barcelona, Spain
| | - Karin Holmfeldt
- University of Arizona, Department of Ecology and Evolutionary Biology, 1007 E. Lowell St., Tucson, AZ, United States of America
| | - Natalie Solonenko
- University of Arizona, Department of Ecology and Evolutionary Biology, 1007 E. Lowell St., Tucson, AZ, United States of America
| | - Elisabet Laia Sà
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37–49, 08003 Barcelona, Spain
| | - J. Cesar Ignacio-Espinoza
- University of Arizona, Department of Molecular and Cellular Biology, 1007 E. Lowell St., Tucson, AZ, United States of America
| | - Francisco M. Cornejo-Castillo
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37–49, 08003 Barcelona, Spain
| | - Nathan C. Verberkmoes
- Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America
| | - Dolors Vaqué
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37–49, 08003 Barcelona, Spain
| | - Matthew B. Sullivan
- University of Arizona, Department of Ecology and Evolutionary Biology, 1007 E. Lowell St., Tucson, AZ, United States of America
- University of Arizona, Department of Molecular and Cellular Biology, 1007 E. Lowell St., Tucson, AZ, United States of America
| | - Silvia G. Acinas
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37–49, 08003 Barcelona, Spain
- * E-mail:
| |
Collapse
|
32
|
Shang A, Liu Y, Wang J, Mo Z, Li G, Mou H. Complete nucleotide sequence of Klebsiella phage P13 and prediction of an EPS depolymerase gene. Virus Genes 2014; 50:118-28. [PMID: 25392088 DOI: 10.1007/s11262-014-1138-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 10/25/2014] [Indexed: 10/24/2022]
Abstract
The complete genome of Klebsiella phage P13 was sequenced and analyzed. Bacteriophage P13 has a double-stranded linear DNA with a length of 45,976 bp and a G+C content of 51.7 %, which is slightly lower than that of Klebsiella pneumoniae KCTC 2242. The codon biases of phage P13 are very similar to those of SP6-like phages and K. pneumoniae KCTC 2242. Bioinformatics analysis shows that the phage P13 genome has 282 open reading frames (ORFs) that are greater than 100 bp in length, and 50 of these ORFs were identified as predicted genes with an average length of 833 bp. Among these genes, 41 show homology to known proteins in the GenBank database. The functions of the 24 putative proteins were investigated, and 13 of these were found to be highly conserved. According to the homology analysis of the 50 predicted genes and the whole genome, phage P13 is homologous to SP6-like phages. Furthermore, the morphological characteristics of phage P13 suggest that it belongs to the SP6-like viral genus of the Podoviridae subfamily Autographivirinae. Two hypothetical genes encoding an extracellular polysaccharide depolymerase were predicted using PSI-BLAST. This analysis serves as groundwork for further research and application of the enzyme.
Collapse
Affiliation(s)
- Anqi Shang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, China
| | | | | | | | | | | |
Collapse
|
33
|
Single-molecule packaging initiation in real time by a viral DNA packaging machine from bacteriophage T4. Proc Natl Acad Sci U S A 2014; 111:15096-101. [PMID: 25288726 DOI: 10.1073/pnas.1407235111] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Viral DNA packaging motors are among the most powerful molecular motors known. A variety of structural, biochemical, and single-molecule biophysical approaches have been used to understand their mechanochemistry. However, packaging initiation has been difficult to analyze because of its transient and highly dynamic nature. Here, we developed a single-molecule fluorescence assay that allowed visualization of packaging initiation and reinitiation in real time and quantification of motor assembly and initiation kinetics. We observed that a single bacteriophage T4 packaging machine can package multiple DNA molecules in bursts of activity separated by long pauses, suggesting that it switches between active and quiescent states. Multiple initiation pathways were discovered including, unexpectedly, direct DNA binding to the capsid portal followed by recruitment of motor subunits. Rapid succession of ATP hydrolysis was essential for efficient initiation. These observations have implications for the evolution of icosahedral viruses and regulation of virus assembly.
Collapse
|
34
|
Li S, Fan H, An X, Fan H, Jiang H, Chen Y, Tong Y. Scrutinizing virus genome termini by high-throughput sequencing. PLoS One 2014; 9:e85806. [PMID: 24465717 PMCID: PMC3896407 DOI: 10.1371/journal.pone.0085806] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 12/02/2013] [Indexed: 12/01/2022] Open
Abstract
Analysis of genomic terminal sequences has been a major step in studies on viral DNA replication and packaging mechanisms. However, traditional methods to study genome termini are challenging due to the time-consuming protocols and their inefficiency where critical details are lost easily. Recent advances in next generation sequencing (NGS) have enabled it to be a powerful tool to study genome termini. In this study, using NGS we sequenced one iridovirus genome and twenty phage genomes and confirmed for the first time that the high frequency sequences (HFSs) found in the NGS reads are indeed the terminal sequences of viral genomes. Further, we established a criterion to distinguish the type of termini and the viral packaging mode. We also obtained additional terminal details such as terminal repeats, multi-termini, asymmetric termini. With this approach, we were able to simultaneously detect details of the genome termini as well as obtain the complete sequence of bacteriophage genomes. Theoretically, this application can be further extended to analyze larger and more complicated genomes of plant and animal viruses. This study proposed a novel and efficient method for research on viral replication, packaging, terminase activity, transcription regulation, and metabolism of the host cell.
Collapse
Affiliation(s)
- Shasha Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hang Fan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaoping An
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Huahao Fan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Huanhuan Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yubao Chen
- Beijing Computing Center, Beijing, China
- * E-mail: (YC); (YT)
| | - Yigang Tong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- * E-mail: (YC); (YT)
| |
Collapse
|
35
|
Abstract
Bacteriophage T4 is the most well-studied member of Myoviridae, the most complex family of tailed phages. T4 assembly is divided into three independent pathways: the head, the tail and the long tail fibers. The prolate head encapsidates a 172 kbp concatemeric dsDNA genome. The 925 Å-long tail is surrounded by the contractile sheath and ends with a hexagonal baseplate. Six long tail fibers are attached to the baseplate's periphery and are the host cell's recognition sensors. The sheath and the baseplate undergo large conformational changes during infection. X-ray crystallography and cryo-electron microscopy have provided structural information on protein-protein and protein-nucleic acid interactions that regulate conformational changes during assembly and infection of Escherichia coli cells.
Collapse
Affiliation(s)
- Moh Lan Yap
- Department of Biological Sciences, Purdue University, 240 S. Martin Jischke Drive, West Lafayette, IN 47907-2032, USA
| | - Michael G Rossmann
- Department of Biological Sciences, Purdue University, 240 S. Martin Jischke Drive, West Lafayette, IN 47907-2032, USA
| |
Collapse
|
36
|
Sequence determinants for DNA packaging specificity in the S. aureus pathogenicity island SaPI1. Plasmid 2013; 71:8-15. [PMID: 24365721 DOI: 10.1016/j.plasmid.2013.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/10/2013] [Accepted: 12/13/2013] [Indexed: 11/21/2022]
Abstract
The SaPIs and their relatives are a family of genomic islands that exploit helper phages for high frequency horizontal transfer. One of the mechanisms used by SaPIs to accomplish this molecular piracy is the redirection of the helper phage DNA packaging machinery. SaPIs encode a small terminase subunit that can be substituted for that of the phage. In this study we have determined the initial packaging cleavage sites for helper phage 80α, which uses the phage-encoded small terminase subunit, and for SaPI1, which uses the SaPI-encoded small terminase subunit. We have identified a 19nt SaPI1 sequence that is necessary and sufficient to allow high frequency 80α transduction of a plasmid by a terminase carrying the SaPI1-encoded small subunit. We also show that the hybrid enzyme with the SaPI1 small terminase subunit is capable of generalized transduction.
Collapse
|
37
|
The first structure of a mycobacteriophage, the Mycobacterium abscessus subsp. bolletii phage Araucaria. J Virol 2013; 87:8099-109. [PMID: 23678183 DOI: 10.1128/jvi.01209-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The unique characteristics of the waxy mycobacterial cell wall raise questions about specific structural features of their bacteriophages. No structure of any mycobacteriophage is available, although ∼3,500 have been described to date. To fill this gap, we embarked in a genomic and structural study of a bacteriophage from Mycobacterium abscessus subsp. bolletii, a member of the Mycobacterium abscessus group. This opportunistic pathogen is responsible for respiratory tract infections in patients with lung disorders, particularly cystic fibrosis. M. abscessus subsp. bolletii was isolated from respiratory tract specimens, and bacteriophages were observed in the cultures. We report here the genome annotation and characterization of the M. abscessus subsp. bolletii prophage Araucaria, as well as the first single-particle electron microscopy reconstruction of the whole virion. Araucaria belongs to Siphoviridae and possesses a 64-kb genome containing 89 open reading frames (ORFs), among which 27 could be annotated with certainty. Although its capsid and connector share close similarity with those of several phages from Gram-negative (Gram(-)) or Gram(+) bacteria, its most distinctive characteristic is the helical tail decorated by radial spikes, possibly host adhesion devices, according to which the phage name was chosen. Its host adsorption device, at the tail tip, assembles features observed in phages binding to protein receptors, such as phage SPP1. All together, these results suggest that Araucaria may infect its mycobacterial host using a mechanism involving adhesion to cell wall saccharides and protein, a feature that remains to be further explored.
Collapse
|
38
|
Oliveira L, Tavares P, Alonso JC. Headful DNA packaging: Bacteriophage SPP1 as a model system. Virus Res 2013; 173:247-59. [DOI: 10.1016/j.virusres.2013.01.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 01/28/2013] [Accepted: 01/30/2013] [Indexed: 01/15/2023]
|
39
|
Benini S, Chechik M, Ortiz Lombardía M, Polier S, Leech A, Shevtsov MB, Alonso JC. The 1.58 Å resolution structure of the DNA-binding domain of bacteriophage SF6 small terminase provides new hints on DNA binding. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:376-81. [PMID: 23545641 DOI: 10.1107/s1744309113004399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 02/14/2013] [Indexed: 02/05/2023]
Abstract
DNA packaging in tailed bacteriophages and in evolutionarily related herpesviruses is controlled by a viral-encoded terminase. As in a number of other phages, in the Bacillus subtilis bacteriophages SF6 and SPP1 the terminase complex consists of two proteins: G1P and G2P. The crystal structure of the N-terminal DNA-binding domain of the bacteriophage SF6 small terminase subunit G1P is reported. Structural comparison with other DNA-binding proteins allows a general model for the interaction of G1P with the packaging-initiation site to be proposed.
Collapse
Affiliation(s)
- Stefano Benini
- Laboratory of Bioorganic Chemistry and Crystallography, Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100 Bolzano, Italy.
| | | | | | | | | | | | | |
Collapse
|
40
|
Andrews BT, Catalano CE. The enzymology of a viral genome packaging motor is influenced by the assembly state of the motor subunits. Biochemistry 2012; 51:9342-53. [PMID: 23134123 DOI: 10.1021/bi300890y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Terminase enzymes are responsible for the excision of a single genome from a concatemeric precursor (genome maturation) and concomitant packaging of DNA into the capsid shell. Here, we demonstrate that lambda terminase can be purified as a homogeneous "protomer" species, and we present a kinetic analysis of the genome maturation and packaging activities of the protomeric enzyme. The protomer assembles into a distinct maturation complex at the cos sequence of a concatemer. This complex rapidly nicks the duplex to form the mature left end of the viral genome, which is followed by procapsid binding, activation of the packaging ATPase, and translocation of the duplex into the capsid interior by the terminase motor complex. Genome packaging by the protomer shows high fidelity with only the mature left end of the duplex inserted into the capsid shell. In sum, the data show that the terminase protomer exhibits catalytic activity commensurate with that expected of a bone fide genome maturation and packaging complex in vivo and that both catalytically competent complexes are composed of four terminase protomers assembled into a ringlike structure that encircles duplex DNA. This work provides mechanistic insight into the coordinated catalytic activities of terminase enzymes in virus assembly that can be generalized to all of the double-stranded DNA viruses.
Collapse
Affiliation(s)
- Benjamin T Andrews
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, Washington 98195-7610, United States
| | | |
Collapse
|
41
|
Abstract
The homologous recombination systems of linear double-stranded (ds)DNA bacteriophages are required for the generation of genetic diversity, the repair of dsDNA breaks, and the formation of concatemeric chromosomes, the immediate precursor to packaging. These systems have been studied for decades as a means to understand the basic principles of homologous recombination. From the beginning, it was recognized that these recombinases are linked intimately to the mechanisms of phage DNA replication. In the last decade, however, investigators have exploited these recombination systems as tools for genetic engineering of bacterial chromosomes, bacterial artificial chromosomes, and plasmids. This recombinational engineering technology has been termed "recombineering" and offers a new paradigm for the genetic manipulation of bacterial chromosomes, which is far more efficient than the classical use of nonreplicating integration vectors for gene replacement. The phage λ Red recombination system, in particular, has been used to construct gene replacements, deletions, insertions, inversions, duplications, and single base pair changes in the Escherichia coli chromosome. This chapter discusses the components of the recombination systems of λ, rac prophage, and phage P22 and properties of single-stranded DNA annealing proteins from these and other phage that have been instrumental for the development of this technology. The types of genetic manipulations that can be made are described, along with proposed mechanisms for both double-stranded DNA- and oligonucleotide-mediated recombineering events. Finally, the impact of this technology to such diverse fields as bacterial pathogenesis, metabolic engineering, and mouse genomics is discussed.
Collapse
Affiliation(s)
- Kenan C Murphy
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
42
|
Haque F, Lunn J, Fang H, Smithrud D, Guo P. Real-time sensing and discrimination of single chemicals using the channel of phi29 DNA packaging nanomotor. ACS NANO 2012; 6:3251-3261. [PMID: 22458779 PMCID: PMC3337346 DOI: 10.1021/nn3001615] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A highly sensitive and reliable method to sense and identify a single chemical at extremely low concentrations and high contamination is important for environmental surveillance, homeland security, athlete drug monitoring, toxin/drug screening, and earlier disease diagnosis. This article reports a method for precise detection of single chemicals. The hub of the bacteriophage phi29 DNA packaging motor is a connector consisting of 12 protein subunits encircled into a 3.6 nm channel as a path for dsDNA to enter during packaging and to exit during infection. The connector has previously been inserted into a lipid bilayer to serve as a membrane-embedded channel. Herein we report the modification of the phi29 channel to develop a class of sensors to detect single chemicals. The lysine-234 of each protein subunit was mutated to cysteine, generating 12-SH ring lining the channel wall. Chemicals passing through this robust channel and interactions with the SH group generated extremely reliable, precise, and sensitive current signatures as revealed by single channel conductance assays. Ethane (57 Da), thymine (167 Da), and benzene (105 Da) with reactive thioester moieties were clearly discriminated upon interaction with the available set of cysteine residues. The covalent attachment of each analyte induced discrete stepwise blockage in current signature with a corresponding decrease in conductance due to the physical blocking of the channel. Transient binding of the chemicals also produced characteristic fingerprints that were deduced from the unique blockage amplitude and pattern of the signals. This study shows that the phi29 connector can be used to sense chemicals with reactive thioesters or maleimide using single channel conduction assays based on their distinct fingerprints. The results demonstrated that this channel system could be further developed into very sensitive sensing devices.
Collapse
Affiliation(s)
- Farzin Haque
- Nanobiotechnology Center, Department of Pharmaceutical Sciences, and Markey Cancer Center, University of Kentucky, Lexington, KY 40536
| | - Jennifer Lunn
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45267
| | - Huaming Fang
- Nanobiotechnology Center, Department of Pharmaceutical Sciences, and Markey Cancer Center, University of Kentucky, Lexington, KY 40536
| | - David Smithrud
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45267
| | - Peixuan Guo
- Nanobiotechnology Center, Department of Pharmaceutical Sciences, and Markey Cancer Center, University of Kentucky, Lexington, KY 40536
| |
Collapse
|
43
|
Feiss M, Rao VB. The Bacteriophage DNA Packaging Machine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 726:489-509. [DOI: 10.1007/978-1-4614-0980-9_22] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
44
|
Structure and function of the small terminase component of the DNA packaging machine in T4-like bacteriophages. Proc Natl Acad Sci U S A 2011; 109:817-22. [PMID: 22207623 DOI: 10.1073/pnas.1110224109] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Tailed DNA bacteriophages assemble empty procapsids that are subsequently filled with the viral genome by means of a DNA packaging machine situated at a special fivefold vertex. The packaging machine consists of a "small terminase" and a "large terminase" component. One of the functions of the small terminase is to initiate packaging of the viral genome, whereas the large terminase is responsible for the ATP-powered translocation of DNA. The small terminase subunit has three domains, an N-terminal DNA-binding domain, a central oligomerization domain, and a C-terminal domain for interacting with the large terminase. Here we report structures of the central domain in two different oligomerization states for a small terminase from the T4 family of phages. In addition, we report biochemical studies that establish the function for each of the small terminase domains. On the basis of the structural and biochemical information, we propose a model for DNA packaging initiation.
Collapse
|
45
|
Nurmemmedov E, Castelnovo M, Medina E, Catalano CE, Evilevitch A. Challenging packaging limits and infectivity of phage λ. J Mol Biol 2011; 415:263-73. [PMID: 22108169 DOI: 10.1016/j.jmb.2011.11.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/01/2011] [Accepted: 11/07/2011] [Indexed: 11/29/2022]
Abstract
The terminase motors of bacteriophages have been shown to be among the strongest active machines in the biomolecular world, being able to package several tens of kilobase pairs of viral genome into a capsid within minutes. Yet, these motors are hindered at the end of the packaging process by the progressive buildup of a force-resisting packaging associated with already packaged DNA. In this experimental work, we raise the issue of what sets the upper limit on the length of the genome that can be packaged by the terminase motor of phage λ and still yield infectious virions and the conditions under which this can be efficiently performed. Using a packaging strategy developed in our laboratory of building phage λ from scratch, together with plaque assay monitoring, we have been able to show that the terminase motor of phage λ is able to produce infectious particles with up to 110% of the wild-type λ-DNA length. However, the phage production rate, and thus the infectivity, decreased exponentially with increasing DNA length and was a factor of 10(3) lower for the 110% λ-DNA phage. Interestingly, our in vitro strategy was still efficient in fully packaging phages with DNA lengths as high as 114% of the wild-type length, but these viruses were unable to infect bacterial cells efficiently. Further, we demonstrated that the phage production rate is modulated by the presence of multivalent ionic species. The biological consequences of these findings are discussed.
Collapse
Affiliation(s)
- Elmar Nurmemmedov
- Department of Biochemistry, Center for Chemistry and Chemical Engineering, Lund University, Box 124, SE-221 00, Lund, Sweden
| | | | | | | | | |
Collapse
|
46
|
Kondabagil K, Draper B, Rao VB. Adenine recognition is a key checkpoint in the energy release mechanism of phage T4 DNA packaging motor. J Mol Biol 2011; 415:329-42. [PMID: 22100308 DOI: 10.1016/j.jmb.2011.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 11/03/2011] [Accepted: 11/07/2011] [Indexed: 11/25/2022]
Abstract
ATP is the source of energy for numerous biochemical reactions in all organisms. Tailed bacteriophages use ATP to drive powerful packaging machines that translocate viral DNA into a procapsid and compact it to near-crystalline density. Here we report that a complex network of interactions dictates adenine recognition and ATP hydrolysis in the pentameric phage T4 large "terminase" (gp17) motor. The network includes residues that form hydrogen bonds at the edges of the adenine ring (Q138 and Q143), base-stacking interactions at the plane of the ring (I127 and R140), and cross-talking bonds between adenine, triphosphate, and Walker A P-loop (Y142, Q143, and R140). These interactions are conserved in other translocases such as type I/type III restriction enzymes and SF1/SF2 helicases. Perturbation of any of these interactions, even the loss of a single hydrogen bond, leads to multiple defects in motor functions. Adenine recognition is therefore a key checkpoint that ensures efficient ATP firing only when the fuel molecule is precisely engaged with the motor. This may be a common feature in the energy release mechanism of ATP-driven molecular machines that carry out numerous biomolecular reactions in biological systems.
Collapse
Affiliation(s)
- Kiran Kondabagil
- Department of Biology, The Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064, USA
| | | | | |
Collapse
|
47
|
Small but sufficient: the Rhodococcus phage RRH1 has the smallest known Siphoviridae genome at 14.2 kilobases. J Virol 2011; 86:358-63. [PMID: 22013058 DOI: 10.1128/jvi.05460-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteriophages are considered to be the most abundant biological entities on the planet. The Siphoviridae are the most commonly encountered tailed phages and contain double-stranded DNA with an average genome size of ∼50 kb. This paper describes the isolation from four different activated sludge plants of the phage RRH1, which is polyvalent, lysing five Rhodococcus species. It has a capsid diameter of only ∼43 nm. Whole-genome sequencing of RRH1 revealed a novel circularly permuted DNA sequence (14,270 bp) carrying 20 putative open reading frames. The genome has a modular arrangement, as reported for those of most Siphoviridae phages, but appears to encode only structural proteins and carry a single lysis gene. All genes are transcribed in the same direction. RRH1 has the smallest genome yet of any described functional Siphoviridae phage. We demonstrate that lytic phage can be recovered from transforming naked DNA into its host bacterium, thus making it a potentially useful model for studying gene function in phages.
Collapse
|
48
|
Jiang X, Jiang H, Li C, Wang S, Mi Z, An X, Chen J, Tong Y. Sequence characteristics of T4-like bacteriophage IME08 benome termini revealed by high throughput sequencing. Virol J 2011; 8:194. [PMID: 21524290 PMCID: PMC3105952 DOI: 10.1186/1743-422x-8-194] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 04/27/2011] [Indexed: 11/15/2022] Open
Abstract
Background T4 phage is a model species that has contributed broadly to our understanding of molecular biology. T4 DNA replication and packaging share various mechanisms with human double-stranded DNA viruses such as herpes virus. The literature indicates that T4-like phage genomes have permuted terminal sequences, and are generated by a DNA terminase in a sequence-independent manner; Methods genomic DNA of T4-like bacteriophage IME08 was subjected to high throughput sequencing, and the read sequences with extraordinarily high occurrences were analyzed; Results we demonstrate that both the 5' and 3' termini of the IME08 genome starts with base G or A. The presence of a consensus sequence TTGGA|G around the breakpoint of the high frequency read sequences suggests that the terminase cuts the branched pre-genome in a sequence-preferred manner. Our analysis also shows that terminal cleavage is asymmetric, with one end cut at a consensus sequence, and the other end generated randomly. The sequence-preferred cleavage may produce sticky-ends, but with each end being packaged with different efficiencies; Conclusions this study illustrates how high throughput sequencing can be used to probe replication and packaging mechanisms in bacteriophages and/or viruses.
Collapse
Affiliation(s)
- Xiaofang Jiang
- Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Wu D, Van Valen D, Hu Q, Phillips R. Ion-dependent dynamics of DNA ejections for bacteriophage lambda. Biophys J 2010; 99:1101-9. [PMID: 20712993 DOI: 10.1016/j.bpj.2010.06.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 06/08/2010] [Accepted: 06/09/2010] [Indexed: 10/19/2022] Open
Abstract
We studied the control parameters that govern the dynamics of in vitro DNA ejection in bacteriophage lambda. Previous work demonstrated that bacteriophage DNA is highly pressurized, and this pressure has been hypothesized to help drive DNA ejection. Ions influence this process by screening charges on DNA; however, a systematic variation of salt concentrations to explore these effects has not been undertaken. To study the nature of the forces driving DNA ejection, we performed in vitro measurements of DNA ejection in bulk and at the single-phage level. We present measurements on the dynamics of ejection and on the self-repulsion force driving ejection. We examine the role of ion concentration and identity in both measurements, and show that the charge of counterions is an important control parameter. These measurements show that the mobility of ejecting DNA is independent of ionic concentrations for a given amount of DNA in the capsid. We also present evidence that phage DNA forms loops during ejection, and confirm that this effect occurs using optical tweezers.
Collapse
Affiliation(s)
- David Wu
- Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, California, USA
| | | | | | | |
Collapse
|
50
|
Ghosh-Kumar M, Alam TI, Draper B, Stack JD, Rao VB. Regulation by interdomain communication of a headful packaging nuclease from bacteriophage T4. Nucleic Acids Res 2010; 39:2742-55. [PMID: 21109524 PMCID: PMC3074133 DOI: 10.1093/nar/gkq1191] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In genome packaging by tailed bacteriophages and herpesviruses, a concatemeric DNA is cut and inserted into an empty procapsid. A series of cuts follow the encapsidation of each unit-length 'headful' genome, but the mechanisms by which cutting is coupled to packaging are not understood. Here we report the first biochemical characterization of a headful nuclease from bacteriophage T4. Our results show that the T4 nuclease, which resides in the C-terminal domain of large 'terminase' gp17, is a weak endonuclease and regulated by a variety of factors; Mg, NaCl, ATP, small terminase gp16 and N-terminal ATPase domain. The small terminase, which stimulates gp17-ATPase, also stimulates nuclease in the presence of ATP but inhibits in the absence of ATP suggesting interdomain crosstalk. Comparison of the 'relaxed' and 'tensed' states of the motor show that a number of basic residues lining the nuclease groove are positioned to interact with DNA in the tensed state but change their positions in the relaxed state. These results suggest that conformational changes in the ATPase center remodel the nuclease center via an interdomain 'communication track'. This might be a common regulatory mechanism for coupling DNA cutting to DNA packaging among the headful packaging nucleases from dsDNA viruses.
Collapse
Affiliation(s)
- Manjira Ghosh-Kumar
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | | | | | | | | |
Collapse
|