1
|
van Gestel J, Wagner A, Ackermann M. Pleiotropic hubs drive bacterial surface competition through parallel changes in colony composition and expansion. PLoS Biol 2023; 21:e3002338. [PMID: 37844064 PMCID: PMC10578586 DOI: 10.1371/journal.pbio.3002338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/18/2023] [Indexed: 10/18/2023] Open
Abstract
Bacteria commonly adhere to surfaces where they compete for both space and resources. Despite the importance of surface growth, it remains largely elusive how bacteria evolve on surfaces. We previously performed an evolution experiment where we evolved distinct Bacilli populations under a selective regime that favored colony spreading. In just a few weeks, colonies of Bacillus subtilis showed strongly advanced expansion rates, increasing their radius 2.5-fold relative to that of the ancestor. Here, we investigate what drives their rapid evolution by performing a uniquely detailed analysis of the evolutionary changes in colony development. We find mutations in diverse global regulators, RicT, RNAse Y, and LexA, with strikingly similar pleiotropic effects: They lower the rate of sporulation and simultaneously facilitate colony expansion by either reducing extracellular polysaccharide production or by promoting filamentous growth. Combining both high-throughput flow cytometry and gene expression profiling, we show that regulatory mutations lead to highly reproducible and parallel changes in global gene expression, affecting approximately 45% of all genes. This parallelism results from the coordinated manner by which regulators change activity both during colony development-in the transition from vegetative growth to dormancy-and over evolutionary time. This coordinated activity can however also break down, leading to evolutionary divergence. Altogether, we show how global regulators function as major pleiotropic hubs that drive rapid surface adaptation by mediating parallel changes in both colony composition and expansion, thereby massively reshaping gene expression.
Collapse
Affiliation(s)
- Jordi van Gestel
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- The Santa Fe Institute, Santa Fe, New Mexico, United States of America
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa
| | - Martin Ackermann
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
| |
Collapse
|
2
|
Schuurs ZP, McDonald JP, Croft LV, Richard DJ, Woodgate R, Gandhi NS. Integration of molecular modelling and in vitro studies to inhibit LexA proteolysis. Front Cell Infect Microbiol 2023; 13:1051602. [PMID: 36936756 PMCID: PMC10020695 DOI: 10.3389/fcimb.2023.1051602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction As antibiotic resistance has become more prevalent, the social and economic impacts are increasingly pressing. Indeed, bacteria have developed the SOS response which facilitates the evolution of resistance under genotoxic stress. The transcriptional repressor, LexA, plays a key role in this response. Mutation of LexA to a non-cleavable form that prevents the induction of the SOS response sensitizes bacteria to antibiotics. Achieving the same inhibition of proteolysis with small molecules also increases antibiotic susceptibility and reduces drug resistance acquisition. The availability of multiple LexA crystal structures, and the unique Ser-119 and Lys-156 catalytic dyad in the protein enables the rational design of inhibitors. Methods We pursued a binary approach to inhibit proteolysis; we first investigated β-turn mimetics, and in the second approach we tested covalent warheads targeting the Ser-119 residue. We found that the cleavage site region (CSR) of the LexA protein is a classical Type II β-turn, and that published 1,2,3-triazole compounds mimic the β-turn. Generic covalent molecule libraries and a β-turn mimetic library were docked to the LexA C-terminal domain using molecular modelling methods in FlexX and CovDock respectively. The 133 highest-scoring molecules were screened for their ability to inhibit LexA cleavage under alkaline conditions. The top molecules were then tested using a RecA-mediated cleavage assay. Results The β-turn library screen did not produce any hit compounds that inhibited RecA-mediated cleavage. The covalent screen discovered an electrophilic serine warhead that can inhibit LexA proteolysis, reacting with Ser-119 via a nitrile moiety. Discussion This research presents a starting point for hit-to-lead optimisation, which could lead to inhibition of the SOS response and prevent the acquisition of antibiotic resistance.
Collapse
Affiliation(s)
- Zachariah P. Schuurs
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Translational Research Institute (TRI), Brisbane, QLD, Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - John P. McDonald
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Laura V. Croft
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Translational Research Institute (TRI), Brisbane, QLD, Australia
| | - Derek J. Richard
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Translational Research Institute (TRI), Brisbane, QLD, Australia
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Neha S. Gandhi, ; Roger Woodgate,
| | - Neha S. Gandhi
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Translational Research Institute (TRI), Brisbane, QLD, Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- *Correspondence: Neha S. Gandhi, ; Roger Woodgate,
| |
Collapse
|
3
|
Yokoi T, Itaya M, Mori H, Kataoka M. Optimization of RK2-based gene introduction system for Bacillus subtilis. J GEN APPL MICROBIOL 2019; 65:265-272. [DOI: 10.2323/jgam.2018.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Takahiro Yokoi
- Interdisciplinary Graduate School of Science and Technology, Shinshu University
| | | | - Hirotada Mori
- Graduate School of Biological Sciences, Nara Institute of Science and Technology
| | - Masakazu Kataoka
- Interdisciplinary Graduate School of Science and Technology, Shinshu University
| |
Collapse
|
4
|
An enhanced vector-free allele exchange (VFAE) mutagenesis protocol for genome editing in a wide range of bacterial species. AMB Express 2017. [PMID: 28629206 PMCID: PMC5474227 DOI: 10.1186/s13568-017-0425-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Vector-free allele exchange (VFAE) is a newly developed protocol for genome editing in Pseudomonas species. Although several parameters have been determined to optimize the procedures for obtaining a stable and high-frequency mutation, numerous false-positive clones still appear on the plate, which increases the difficulty of finding the desired mutants. It has also not been established whether this protocol can be used for genome editing in other bacterial species. In the current study, the protocol was modified to dramatically decrease the occurrence of false-positive colonies using Pseudomonas stutzeri A1501 as a model strain. This improvement was reached by increasing the occurrence of circular-DNA cassettes of the correct size. Furthermore, the enhanced protocol was used to construct mutants in both the gram-negative Escherichia coli BL21 and gram-positive Bacillus subtilis 168 strains. The protocol works well in both strains, yielding ideal results with a low percentage of false-positive colonies. In summary, the enhanced VFAE mutagenesis protocol is a potential tool for use in bacterial genome editing.
Collapse
|
5
|
Jakobs M, Meinhardt F. What renders Bacilli genetically competent? A gaze beyond the model organism. Appl Microbiol Biotechnol 2014; 99:1557-70. [DOI: 10.1007/s00253-014-6316-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 12/20/2022]
|
6
|
The two putative comS homologs of the biotechnologically important Bacillus licheniformis do not contribute to competence development. Appl Microbiol Biotechnol 2014; 99:2255-66. [PMID: 25520171 DOI: 10.1007/s00253-014-6291-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 11/28/2014] [Accepted: 12/02/2014] [Indexed: 01/17/2023]
Abstract
In Bacillus subtilis, natural genetic competence is subject to complex genetic regulation and quorum sensing dependent. Upon extracellular accumulation of the peptide-pheromone ComX, the membrane-bound sensor histidine kinase ComP initiates diverse signaling pathways by activating-among others-DegQ and ComS. While DegQ favors the expression of extracellular enzymes rather than competence development, ComS is crucial for competence development as it prevents proteolytic degradation of ComK, the key transcriptional activator of all genes required for the uptake and integration of DNA. In Bacillus licheniformis, ComX/ComP sensed cell density negatively influences competence development, suggesting differences from the quorum-sensing-dependent control mechanism in Bacillus subtilis. Here, we show that each of six investigated strains possesses both of two different, recently identified putative comS genes. When expressed from an inducible promoter, none of the comS candidate genes displayed an impact on competence development neither in B. subtilis nor in B. licheniformis. Moreover, disruption of the genes did not reduce transformation efficiency. While the putative comS homologs do not contribute to competence development, we provide evidence that the degQ gene as for B. subtilis negatively influences genetic competency in B. licheniformis.
Collapse
|
7
|
Unravelling the genetic basis for competence development of auxotrophic Bacillus licheniformis 9945A strains. Microbiology (Reading) 2014; 160:2136-2147. [DOI: 10.1099/mic.0.079236-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bacterial natural genetic competence – well studied in Bacillus subtilis – enables cells to take up and integrate extracellularly supplied DNA into their own genome. However, little is known about competence development and its regulation in other members of the genus, although DNA uptake machineries are routinely encoded. Auxotrophic Bacillus licheniformis 9945A derivatives, obtained from repeated rounds of random mutagenesis, were long known to develop natural competence. Inspection of the colony morphology and extracellular enzyme secretion of two of these derivatives, M28 and M18, suggested that regulator genes are collaterally hit. M28 emerged as a 14 bp deletion mutant concomitantly displaying a shift in the reading frame of degS that encodes the sensor histidine kinase, which is part of the molecular switch that directs cells to genetic competence, the synthesis of extracellular enzymes or biofilm formation, while for M18, sequencing of the suspected gene revealed a 375 bp deletion in abrB, encoding the major transition state regulator. With respect to colony morphology, enzyme secretion and competence development, both of the mutations, when newly generated on the wild-type B. licheniformis 9945A genetic background, resulted in phenotypes resembling M28 and M18, respectively. All of the known naturally competent B. licheniformis representatives, hitherto thoroughly investigated in this regard, carry mutations in regulator genes, and hence genetic competence observed in domesticated strains supposedly results from deregulation.
Collapse
|
8
|
Buchholz M, Nahrstedt H, Pillukat MH, Deppe V, Meinhardt F. yneA mRNA instability is involved in temporary inhibition of cell division during the SOS response of Bacillus megaterium. MICROBIOLOGY-SGM 2013; 159:1564-1574. [PMID: 23728628 DOI: 10.1099/mic.0.064766-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The SOS response, a mechanism enabling bacteria to cope with DNA damage, is strictly regulated by the two major players, RecA and LexA (Bacillus homologue DinR). Genetic stress provokes formation of ssDNA-RecA nucleoprotein filaments, the coprotease activity of which mediates the autocatalytic cleavage of the transcriptional repressor DinR and ensures the expression of a set of din (damage-inducible) genes, which encode proteins that enhance repair capacity, accelerate mutagenesis rate and cause inhibition of cell division (ICD). In Bacillus subtilis, the transcriptional activation of the yneAB-ynzC operon is part of the SOS response, with YneA being responsible for the ICD. Pointing to its cellular function in Bacillus megaterium, overexpression of homologous YneA led to filamentous growth, while ICD was temporary during the SOS response. Genetic knockouts of the individual open reading frames of the yneAB-ynzC operon increased the mutagenic sensitivity, proving - for the first time in a Bacillus species - that each of the three genes is in fact instrumental in coping with genetic stress. Northern- and quantitative real-time PCR analyses revealed - in contrast to other din genes (exemplified for dinR, uvrBA) - transient mRNA-presence of the yneAB-ynzC operon irrespective of persisting SOS-inducing conditions. Promoter test assays and Northern analyses suggest that the decline of the ICD is at least partly due to yneAB-ynzC mRNA instability.
Collapse
Affiliation(s)
- Meike Buchholz
- Institut für Molekulare Mikrobiologie und Biotechnologie Westfälische Wilhelms-Universität Münster Corrensstraße 3, 48149 Münster, Germany
| | - Hannes Nahrstedt
- Institut für Molekulare Mikrobiologie und Biotechnologie Westfälische Wilhelms-Universität Münster Corrensstraße 3, 48149 Münster, Germany
| | - Mike H Pillukat
- Institut für Molekulare Mikrobiologie und Biotechnologie Westfälische Wilhelms-Universität Münster Corrensstraße 3, 48149 Münster, Germany
| | - Veronika Deppe
- Institut für Molekulare Mikrobiologie und Biotechnologie Westfälische Wilhelms-Universität Münster Corrensstraße 3, 48149 Münster, Germany
| | - Friedhelm Meinhardt
- Institut für Molekulare Mikrobiologie und Biotechnologie Westfälische Wilhelms-Universität Münster Corrensstraße 3, 48149 Münster, Germany
| |
Collapse
|
9
|
Kalia D, Merey G, Nakayama S, Zheng Y, Zhou J, Luo Y, Guo M, Roembke BT, Sintim HO. Nucleotide, c-di-GMP, c-di-AMP, cGMP, cAMP, (p)ppGpp signaling in bacteria and implications in pathogenesis. Chem Soc Rev 2012; 42:305-41. [PMID: 23023210 DOI: 10.1039/c2cs35206k] [Citation(s) in RCA: 261] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
For an organism to survive, it must be able to sense its environment and regulate physiological processes accordingly. Understanding how bacteria integrate signals from various environmental factors and quorum sensing autoinducers to regulate the metabolism of various nucleotide second messengers c-di-GMP, c-di-AMP, cGMP, cAMP and ppGpp, which control several key processes required for adaptation is key for efforts to develop agents to curb bacterial infections. In this review, we provide an update of nucleotide signaling in bacteria and show how these signals intersect or integrate to regulate the bacterial phenotype. The intracellular concentrations of nucleotide second messengers in bacteria are regulated by synthases and phosphodiesterases and a significant number of these metabolism enzymes had been biochemically characterized but it is only in the last few years that the effector proteins and RNA riboswitches, which regulate bacterial physiology upon binding to nucleotides, have been identified and characterized by biochemical and structural methods. C-di-GMP, in particular, has attracted immense interest because it is found in many bacteria and regulate both biofilm formation and virulence factors production. In this review, we discuss how the activities of various c-di-GMP effector proteins and riboswitches are modulated upon c-di-GMP binding. Using V. cholerae, E. coli and B. subtilis as models, we discuss how both environmental factors and quorum sensing autoinducers regulate the metabolism and/or processing of nucleotide second messengers. The chemical syntheses of the various nucleotide second messengers and the use of analogs thereof as antibiofilm or immune modulators are also discussed.
Collapse
Affiliation(s)
- Dimpy Kalia
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Temporal competition between differentiation programs determines cell fate choice. Mol Syst Biol 2011; 7:557. [PMID: 22146301 PMCID: PMC3737729 DOI: 10.1038/msb.2011.88] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 10/19/2011] [Indexed: 01/25/2023] Open
Abstract
Multipotent differentiation, where cells adopt one of several possible fates, occurs in diverse systems ranging from bacteria to mammals. This decision-making process is driven by multiple differentiation programs that operate simultaneously in the cell. How these programs interact to govern cell fate choice is poorly understood. To investigate this issue, we simultaneously measured activities of the competing sporulation and competence programs in single Bacillus subtilis cells. This approach revealed that these competing differentiation programs progress independently without cross-regulation before the decision point. Cells seem to arrive at a fate choice through differences in the relative timing between the two programs. To test this proposed dynamic mechanism, we altered the relative timing by engineering artificial cross-regulation between the sporulation and competence circuits. Results suggest a simple model that does not require a checkpoint or intricate cross-regulation before cellular decision-making. Rather, cell fate choice appears to be the outcome of a 'molecular race' between differentiation programs that compete in time, providing a simple dynamic mechanism for decision-making.
Collapse
|
11
|
Abstract
The Bacillus thuringiensis temperate phage GIL01 does not integrate into the host chromosome but exists stably as an independent linear replicon within the cell. Similar to that of the lambdoid prophages, the lytic cycle of GIL01 is induced as part of the cellular SOS response to DNA damage. However, no CI-like maintenance repressor has been detected in the phage genome, suggesting that GIL01 uses a novel mechanism to maintain lysogeny. To gain insights into the GIL01 regulatory circuit, we isolated and characterized a set of 17 clear plaque (cp) mutants that are unable to lysogenize. Two phage-encoded proteins, gp1 and gp7, are required for stable lysogen formation. Analysis of cp mutants also identified a 14-bp palindromic dinBox1 sequence within the P1-P2 promoter region that resembles the known LexA-binding site of Gram-positive bacteria. Mutations at conserved positions in dinBox1 result in a cp phenotype. Genomic analysis identified a total of three dinBox sites within GIL01 promoter regions. To investigate the possibility that the host LexA regulates GIL01, phage induction was measured in a host carrying a noncleavable lexA (Ind(-)) mutation. GIL01 formed stable lysogens in this host, but lytic growth could not be induced by treatment with mitomycin C. Also, mitomycin C induced β-galactosidase expression from GIL01-lacZ promoter fusions, and induction was similarly blocked in the lexA (Ind(-)) mutant host. These data support a model in which host LexA binds to dinBox sequences in GIL01, repressing phage gene expression during lysogeny and providing the switch necessary to enter lytic development.
Collapse
|
12
|
Cohn MT, Kjelgaard P, Frees D, Penadés JR, Ingmer H. Clp-dependent proteolysis of the LexA N-terminal domain in Staphylococcus aureus. MICROBIOLOGY-SGM 2010; 157:677-684. [PMID: 21183573 DOI: 10.1099/mic.0.043794-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The SOS response is governed by the transcriptional regulator LexA and is elicited in many bacterial species in response to DNA damaging conditions. Induction of the SOS response is mediated by autocleavage of the LexA repressor resulting in a C-terminal dimerization domain (CTD) and an N-terminal DNA-binding domain (NTD) known to retain some DNA-binding activity. The proteases responsible for degrading the LexA domains have been identified in Escherichia coli as ClpXP and Lon. Here, we show that in the human and animal pathogen Staphylococcus aureus, the ClpXP and ClpCP proteases contribute to degradation of the NTD and to a lesser degree the CTD. In the absence of the proteolytic subunit, ClpP, or one or both of the Clp ATPases, ClpX and ClpC, the LexA domains were stabilized after autocleavage. Production of a stabilized variant of the NTD interfered with mitomycin-mediated induction of sosA expression while leaving lexA unaffected, and also significantly reduced SOS-induced mutagenesis. Our results show that sequential proteolysis of LexA is conserved in S. aureus and that the NTD may differentially regulate a subset of genes in the SOS regulon.
Collapse
Affiliation(s)
- Marianne T Cohn
- Department of Veterinary Disease Biology, Faculty of Life Sciences, University of Copenhagen, Stigbøjlen 4, DK-1870 Frederiksberg C, Denmark
| | - Peter Kjelgaard
- Department of Veterinary Disease Biology, Faculty of Life Sciences, University of Copenhagen, Stigbøjlen 4, DK-1870 Frederiksberg C, Denmark
| | - Dorte Frees
- Department of Veterinary Disease Biology, Faculty of Life Sciences, University of Copenhagen, Stigbøjlen 4, DK-1870 Frederiksberg C, Denmark
| | - José R Penadés
- Departamento de Quimica, Bioquimica y Biologia Molecular, Universidad Cardenal Herrera-CEU, Moncada, Valencia 46113, Spain.,Centro Investigación y Tecnologia Animal, Instituto Valenciano de Investigaciones Agrarias (CITA-IVIA), Apdo 187, Segorbe, Castellón, Spain
| | - Hanne Ingmer
- Department of Veterinary Disease Biology, Faculty of Life Sciences, University of Copenhagen, Stigbøjlen 4, DK-1870 Frederiksberg C, Denmark
| |
Collapse
|
13
|
Facilitation of direct conditional knockout of essential genes in Bacillus licheniformis DSM13 by comparative genetic analysis and manipulation of genetic competence. Appl Environ Microbiol 2010; 76:5046-57. [PMID: 20543043 DOI: 10.1128/aem.00660-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The genetic manageability of the biotechnologically important Bacillus licheniformis is hampered due to its poor transformability, whereas Bacillus subtilis efficiently takes up DNA during genetic competence, a quorum-sensing-dependent process. Since the sensor histidine kinase ComP, encoded by a gene of the quorum-sensing module comQXPA of B. licheniformis DSM13, was found to be inactive due to an insertion element within comP, the coding region was exchanged with a functional copy. Quorum sensing was restored, but the already-poor genetic competence dropped further. The inducible expression of the key regulator for the transcription of competence genes, ComK, in trans resulted in highly competent strains and facilitated the direct disruption of genes, as well as the conditional knockout of an essential operon. As ComK is inhibited at low cell densities by a proteolytic complex in which MecA binds ComK and such inhibition is antagonized by the interaction of MecA with ComS (the expression of the latter is controlled by cell density in B. subtilis), we performed an in silico analysis of MecA and the hitherto unidentified ComS, which revealed differences for competent and noncompetent strains, indicating that the reduced competence possibly is due to a nonfunctional coupling of the comQXPA-encoded quorum module and ComK. The obtained increased genetic tractability of this industrial workhorse should improve a wide array of scientific investigations.
Collapse
|
14
|
Erill I, Campoy S, Barbé J. Aeons of distress: an evolutionary perspective on the bacterial SOS response. FEMS Microbiol Rev 2007; 31:637-56. [PMID: 17883408 DOI: 10.1111/j.1574-6976.2007.00082.x] [Citation(s) in RCA: 249] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The SOS response of bacteria is a global regulatory network targeted at addressing DNA damage. Governed by the products of the lexA and recA genes, it co-ordinates a comprehensive response against DNA lesions and its description in Escherichia coli has stood for years as a textbook paradigm of stress-response systems in bacteria. In this paper we review the current state of research on the SOS response outside E. coli. By retracing research on the identification of multiple diverging LexA-binding motifs across the Bacteria Domain, we show how this work has led to the description of a minimum regulon core, but also of a heterogeneous collection of SOS regulatory networks that challenges many tenets of the E. coli model. We also review recent attempts at reconstructing the evolutionary history of the SOS network that have cast new light on the SOS response. Exploiting the newly gained knowledge on LexA-binding motifs and the tight association of LexA with a recently described mutagenesis cassette, these works put forward likely evolutionary scenarios for the SOS response, and we discuss their relevance on the ultimate nature of this stress-response system and the evolutionary pressures driving its evolution.
Collapse
Affiliation(s)
- Ivan Erill
- Biomedical Applications Group, Centro Nacional de Microelectrónica, Barcelona, Spain
| | | | | |
Collapse
|
15
|
Au N, Kuester-Schoeck E, Mandava V, Bothwell LE, Canny SP, Chachu K, Colavito SA, Fuller SN, Groban ES, Hensley LA, O'Brien TC, Shah A, Tierney JT, Tomm LL, O'Gara TM, Goranov AI, Grossman AD, Lovett CM. Genetic composition of the Bacillus subtilis SOS system. J Bacteriol 2005; 187:7655-66. [PMID: 16267290 PMCID: PMC1280312 DOI: 10.1128/jb.187.22.7655-7666.2005] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The SOS response in bacteria includes a global transcriptional response to DNA damage. DNA damage is sensed by the highly conserved recombination protein RecA, which facilitates inactivation of the transcriptional repressor LexA. Inactivation of LexA causes induction (derepression) of genes of the LexA regulon, many of which are involved in DNA repair and survival after DNA damage. To identify potential RecA-LexA-regulated genes in Bacillus subtilis, we searched the genome for putative LexA binding sites within 300 bp upstream of the start codons of all annotated open reading frames. We found 62 genes that could be regulated by putative LexA binding sites. Using mobility shift assays, we found that LexA binds specifically to DNA in the regulatory regions of 54 of these genes, which are organized in 34 putative operons. Using DNA microarray analyses, we found that 33 of the genes with LexA binding sites exhibit RecA-dependent induction by both mitomycin C and UV radiation. Among these 33 SOS genes, there are 22 distinct LexA binding sites preceding 18 putative operons. Alignment of the distinct LexA binding sites reveals an expanded consensus sequence for the B. subtilis operator: 5'-CGAACATATGTTCG-3'. Although the number of genes controlled by RecA and LexA in B. subtilis is similar to that of Escherichia coli, only eight B. subtilis RecA-dependent SOS genes have homologous counterparts in E. coli.
Collapse
Affiliation(s)
- Nora Au
- Department of Chemistry, Williams College, Williamstown, MA 01267, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Duigou S, Ehrlich SD, Noirot P, Noirot-Gros MF. Distinctive genetic features exhibited by the Y-family DNA polymerases in Bacillus subtilis. Mol Microbiol 2005; 54:439-51. [PMID: 15469515 DOI: 10.1111/j.1365-2958.2004.04259.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Translesional DNA polymerases form a large family of structurally related proteins, known as the Y-polymerases. Bacillus subtilis encodes two Y-polymerases, referred herewith as Pol Y1 and Pol Y2. Pol Y1 was expressed constitutively and did not mediate UV mutagenesis. Pol Y1 overexpression increased spontaneous mutagenesis. This effect depended on Pol Y1 polymerase activity, Pol Y1 interaction with the beta-clamp, and did not require the presence of the RecA protein. In addition, Pol Y1 overexpression delayed cell growth at low temperature. The growth delay was mediated by Pol Y1 interaction with the beta-clamp but not by its polymerase activity, suggesting that an excess of Pol Y1 in the cell could sequester the beta-clamp. In contrast, Pol Y2 was expressed during the SOS response, and, in its absence, UV-induced mutagenesis was abolished. Upon Pol Y2 overproduction, both UV-induced and spontaneous mutagenesis were stimulated, and both depended on the Pol Y2 polymerase activity. However, UV mutagenesis did not appear to require the interaction of Pol Y2 with the beta-clamp whereas spontaneous mutagenesis did. In addition, Pol Y2-mediated spontaneous mutagenesis required the presence of RecA. Together, these results show that the regulation and the genetic requirements of the two B. subtilis Y-polymerases are different, indicating that they fulfil distinct biological roles. Remarkably, Pol Y1 appears to exhibit a mutator activity similar to that of Escherichia coli Pol IV, as well as an E. coli UmuD-related function in growth delay. Pol Y2 exhibits an E. coli Pol V-like mutator activity, but probably acts as a single polypeptide to bypass UV lesions. Thus, B. subtilis Pol Y1 and Pol Y2 exhibit distinctive features from the E. coli Y-polymerases, indicating that different bacteria have adapted different solutions to deal with the lesions in their genetic material.
Collapse
Affiliation(s)
- Stéphane Duigou
- Laboratoire de Génétique Microbienne, Domaine de Vilvert, INRA, 78352 Jouy en Josas Cedex, France
| | | | | | | |
Collapse
|
17
|
Nahrstedt H, Schröder C, Meinhardt F. Evidence for two recA genes mediating DNA repair in Bacillus megaterium. Microbiology (Reading) 2005; 151:775-787. [PMID: 15758224 DOI: 10.1099/mic.0.27626-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Isolation and subsequent knockout of arecA-homologous gene inBacillus megateriumDSM 319 resulted in a mutant displaying increased sensitivity to mitomycin C. However, this mutant did not exhibit UV hypersensitivity, a finding which eventually led to identification of a second functionalrecAgene. Evidence forrecAduplicates was also obtained for two otherB. megateriumstrains. In agreement with potential DinR boxes located within their promoter regions, expression of both genes (recA1andrecA2) was found to be damage-inducible. Transcription from therecA2promoter was significantly higher than that ofrecA1. Since arecA2knockout could not be achieved, functional complementation studies were performed inEscherichia coli. Heterologous expression in a RecA null mutant resulted in increased survival after UV irradiation and mitomycin C treatment, proving bothrecAgene products to be functional in DNA repair. Thus, there is evidence for an SOS-like pathway inB. megateriumthat differs from that ofBacillus subtilis.
Collapse
Affiliation(s)
- Hannes Nahrstedt
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstraße 3, 48149 Münster, Germany
| | - Christine Schröder
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstraße 3, 48149 Münster, Germany
| | - Friedhelm Meinhardt
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstraße 3, 48149 Münster, Germany
| |
Collapse
|
18
|
Susanna KA, van der Werff AF, den Hengst CD, Calles B, Salas M, Venema G, Hamoen LW, Kuipers OP. Mechanism of transcription activation at the comG promoter by the competence transcription factor ComK of Bacillus subtilis. J Bacteriol 2004; 186:1120-8. [PMID: 14762007 PMCID: PMC344208 DOI: 10.1128/jb.186.4.1120-1128.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The development of genetic competence in Bacillus subtilis is regulated by a complex signal transduction cascade, which results in the synthesis of the competence transcription factor, encoded by comK. ComK is required for the transcription of the late competence genes that encode the DNA binding and uptake machinery and of genes required for homologous recombination. In vivo and in vitro experiments have shown that ComK is responsible for transcription activation at the comG promoter. In this study, we investigated the mechanism of this transcription activation. The intrinsic binding characteristics of RNA polymerase with and without ComK at the comG promoter were determined, demonstrating that ComK stabilizes the binding of RNA polymerase to the comG promoter. This stabilization probably occurs through interactions with the upstream DNA, since a deletion of the upstream DNA resulted in an almost complete abolishment of stabilization of RNA polymerase binding. Furthermore, a strong requirement for the presence of an extra AT box in addition to the common ComK-binding site was shown. In vitro transcription with B. subtilis RNA polymerase reconstituted with wild-type alpha-subunits and with C-terminal deletion mutants of the alpha-subunits was performed, demonstrating that these deletions do not abolish transcription activation by ComK. This indicates that ComK is not a type I activator. We also show that ComK is not required for open complex formation. A possible mechanism for transcription activation is proposed, implying that the major stimulatory effect of ComK is on binding of RNA polymerase.
Collapse
Affiliation(s)
- K A Susanna
- Department of Genetics, University of Groningen, NL-9751 NN Haren, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Rand L, Hinds J, Springer B, Sander P, Buxton RS, Davis EO. The majority of inducible DNA repair genes in Mycobacterium tuberculosis are induced independently of RecA. Mol Microbiol 2004; 50:1031-42. [PMID: 14617159 DOI: 10.1046/j.1365-2958.2003.03765.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In many species of bacteria most inducible DNA repair genes are regulated by LexA homologues and are dependent on RecA for induction. We have shown previously by analysing the induction of recA that two mechanisms for the induction of gene expression following DNA damage exist in Mycobacterium tuberculosis. Whereas one of these depends on RecA and LexA in the classical way, the other mechanism is independent of both of these proteins and induction occurs in the absence of RecA. Here we investigate the generality of each of these mechanisms by analysing the global response to DNA damage in both wild-type M. tuberculosis and a recA deletion strain of M. tuberculosis using microarrays. This revealed that the majority of the genes that were induced remained inducible in the recA mutant stain. Of particular note most of the inducible genes with known or predicted functions in DNA repair did not depend on recA for induction. Amongst these are genes involved in nucleotide excision repair, base excision repair, damage reversal and recombination. Thus, it appears that this novel mechanism of gene regulation is important for DNA repair in M. tuberculosis.
Collapse
Affiliation(s)
- Lucinda Rand
- National Institute for Biomedical Research, London, UK
| | | | | | | | | | | |
Collapse
|
20
|
Savijoki K, Ingmer H, Frees D, Vogensen FK, Palva A, Varmanen P. Heat and DNA damage induction of the LexA-like regulator HdiR from Lactococcus lactis is mediated by RecA and ClpP. Mol Microbiol 2003; 50:609-21. [PMID: 14617183 DOI: 10.1046/j.1365-2958.2003.03713.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The SOS response is a paradigm for bacterial cells response to DNA damage. Yet some bacteria lack a homologue of the SOS regulator, LexA, including the Gram-positive, Lactococcus lactis. In this organism we have identified a negative transcriptional regulator, HdiR that induces target gene expression both upon DNA damage and heat shock. Gel mobility shift assays revealed that the binding site for HdiR is located within an inverted repeat structure. HdiR is able to carry out a self-cleavage reaction in vitro at high pHs, while in vivo it undergoes RecA-dependent self-cleavage in the presence of a DNA-damaging agent. Intriguingly, the N-terminal cleavage product of HdiR retains DNA binding activity, and only when degraded by the Clp protease, is gene expression induced. Thus, the activity of HdiR in response to DNA damage is controlled by sequential proteolysis, involving self-cleavage and Clp-dependent degradation of HdiR. During heat-stress, limited self-cleavage occurs; however, recA and clpP are still required for full induction of target gene expression. Thus, our data show that common elements are involved in both the DNA damage and the heat-mediated induction of the HdiR regulon.
Collapse
Affiliation(s)
- Kirsi Savijoki
- University of Helsinki, Faculty of Veterinary Medicine, Department of Basic Veterinary Sciences, Division of Microbiology and Epidemiology, PO Box 57, 00014 Helsinki University, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
21
|
Hamoen LW, Smits WK, de Jong A, Holsappel S, Kuipers OP. Improving the predictive value of the competence transcription factor (ComK) binding site in Bacillus subtilis using a genomic approach. Nucleic Acids Res 2002; 30:5517-28. [PMID: 12490720 PMCID: PMC140081 DOI: 10.1093/nar/gkf698] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Generally, the presence of a consensus sequence in the promoter of a gene is taken as indication for regulation by the transcription factor that binds to this sequence. In light of the recent developments in genome research, we were interested to what extent this supposition is valid. We examined the relationship between the presence of a binding site for ComK, the competence transcription factor of Bacillus subtilis, and actual transcriptional activation by ComK. Bacillus subtilis contains 1062 putative ComK-binding sites (K-boxes) in its genome. We employed DNA macroarrays to identify ComK-activated genes, and found that the presence of a K-box is an unreliable predictor for regulation. Only approximately 8% of the genes containing a K-box in the putative promoter region are regulated by ComK. The predictive value of a K-box could be improved by taking into consideration the degree of deviation from the K-box consensus sequence, the presence of extra ComK-binding motifs and the positions of RNA polymerase-binding sites. Finally, many of the ComK-activated genes show no apparent function related to the competence process. Based on our findings, we propose that the ComK-dependent activation of several genes might serve no biological purpose and can be considered 'evolutionary noise'.
Collapse
Affiliation(s)
- Leendert W Hamoen
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | | | | | |
Collapse
|
22
|
Dullaghan EM, Brooks PC, Davis EO. The role of multiple SOS boxes upstream of the Mycobacterium tuberculosis lexA gene--identification of a novel DNA-damage-inducible gene. MICROBIOLOGY (READING, ENGLAND) 2002; 148:3609-3615. [PMID: 12427951 DOI: 10.1099/00221287-148-11-3609] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Four potential binding sites for LexA were identified upstream of the Mycobacterium tuberculosis lexA gene. A mutational analysis of these sites in a lexA-lacZ reporter construct revealed that only one of these SOS boxes was required for DNA-damage-mediated regulation of lexA expression. A novel DNA-damage-inducible gene, Rv2719c, was identified that was divergently transcribed relative to lexA; the other three SOS boxes were found to be involved in regulating expression of this novel mycobacterial-specific gene. The SOS boxes lay in the respective promoter regions of the genes that they regulated.
Collapse
Affiliation(s)
- Edith M Dullaghan
- Division of Mycobacterial Research, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK1
| | - Patricia C Brooks
- Division of Mycobacterial Research, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK1
| | - Elaine O Davis
- Division of Mycobacterial Research, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK1
| |
Collapse
|
23
|
Davis EO, Springer B, Gopaul KK, Papavinasasundaram KG, Sander P, Böttger EC. DNA damage induction of recA in Mycobacterium tuberculosis independently of RecA and LexA. Mol Microbiol 2002; 46:791-800. [PMID: 12410836 DOI: 10.1046/j.1365-2958.2002.03199.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ubiquitous and highly conserved RecA protein is generally expressed from a single promoter, which is regulated by LexA in conjunction with RecA. We show here using transcriptional fusions to a reporter gene that the Mycobacterium tuberculosis recA gene is expressed from two promoters. Although one promoter is clearly regulated in the classical way, the other remains DNA damage inducible in the absence of RecA or when LexA binding is prevented. These observations demonstrate convincingly for the first time that there is a novel mechanism of DNA damage induction in M. tuberculosis that is independent of LexA and RecA.
Collapse
Affiliation(s)
- Elaine O Davis
- Division of Mycobacterial Research, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| | | | | | | | | | | |
Collapse
|
24
|
Fabret C, Ehrlich SD, Noirot P. A new mutation delivery system for genome-scale approaches in Bacillus subtilis. Mol Microbiol 2002; 46:25-36. [PMID: 12366828 DOI: 10.1046/j.1365-2958.2002.03140.x] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Bacillus subtilis, although many genetic tools have been developed, gene replacement remains labour-intensive and not compatible with large-scale approaches. We have developed a new one-step gene replacement procedure that allows rapid alteration of any gene sequence or multiple gene sequences in B. subtilis without altering the chromosome in any other way. This novel approach relies on the use of upp, which encodes uracil phosphoribosyl-transferase, as a counter-selectable marker. We fused the upp gene to an antibiotic-resistance gene to create an 'upp-cassette'. A polymerase chain reaction (PCR)-generated fragment, consisting of the target gene with the desired mutation joined to the upp-cassette, was integrated into the chromosome by homologous recombination, using positive selection for antibiotic resistance. Then, the eviction of the upp-cassette from the chromosome by recombination between short repeated chromosomal sequences, included in the design of the transforming DNA molecule, was achieved by counter-selection of upp. This procedure was successfully used to deliver a point mutation, to generate in-frame deletions with reduced polar effects, and to combine deletions in three paralogous genes encoding two-component sensor kinases. Also, two chromosome regions carrying previously unrecognized essential functions were identified, and large deletions in two dispensable regions were combined. This work outlines a strategy for identifying essential functions that could be used at genome scale.
Collapse
Affiliation(s)
- Céline Fabret
- Génétique Microbienne, INRA, Domain de Vilvert, 78352 Jouy en Josas Cedex, France
| | | | | |
Collapse
|
25
|
Inaoka T, Ochi K. RelA protein is involved in induction of genetic competence in certain Bacillus subtilis strains by moderating the level of intracellular GTP. J Bacteriol 2002; 184:3923-30. [PMID: 12081964 PMCID: PMC135162 DOI: 10.1128/jb.184.14.3923-3930.2002] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We found that the ability to develop genetic competence of a certain relaxed (relA) aspartate-auxotrophic strain of Bacillus subtilis is significantly lower than that of the isogenic stringent (relA+) strain. Transcriptional fusion analysis utilizing a lacZ reporter gene indicated that the amount of the ComK protein, known as the key protein for competence development, is greatly reduced in the relaxed strain than in the stringent strain. We also found that the addition of decoyinine, a GMP synthetase inhibitor, induces expression of a competence gene (comG) in the relaxed strain, accompanied by a pronounced decrease in the level of intracellular GTP as measured by high-performance liquid chromatography. The transformation efficiency of the relaxed strain increased 100-fold when decoyinine was added at t0 (the transition point between exponential to stationary growth phase). Conversely, supplementation of guanosine together with decoyinine completely abolished the observed effect of adding decoyinine on competence development. Furthermore, the impaired ability of the relaxed strain for competence development was completely restored by disrupting the codY gene, which is known to negatively control comK expression. Our results indicate that the RelA protein plays an essential role in the induction of competence development at least under certain physiological conditions by reducing the level of intracellular GTP and overcoming CodY-mediated regulation.
Collapse
Affiliation(s)
- Takashi Inaoka
- National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | | |
Collapse
|
26
|
Petit MA, Ehrlich D. Essential bacterial helicases that counteract the toxicity of recombination proteins. EMBO J 2002; 21:3137-47. [PMID: 12065426 PMCID: PMC126070 DOI: 10.1093/emboj/cdf317] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
PcrA, Rep and UvrD are three closely related bacterial helicases with a DExx signature. PcrA is encoded by Gram-positive bacteria and is essential for cell growth. Rep and UvrD are encoded by Gram-negative bacteria, and mutants lacking both helicases are also not viable. To understand the non-viability of the helicase mutants, we characterized spontaneous extragenic suppressors of a Bacillus subtilis pcrA null mutation. Here we report that one of these suppressors maps in recF and that previously isolated mutations in B.subtilis recF, recL, recO and recR, which belong to the same complementation group, all suppress the lethality of a pcrA mutation. Similarly, recF, recO or recR mutations suppress the lethality of the Escherichia coli rep uvrD double mutant. We conclude that RecFOR proteins are toxic in cells devoid of PcrA in Gram-positive bacteria, or Rep and UvrD in Gram-negative bacteria, and propose that the RecFOR proteins interfere with an essential cellular process, possibly replication, when DExx helicases PcrA, or Rep and UvrD are absent.
Collapse
Affiliation(s)
- Marie-Agnès Petit
- Laboratoire de Génétique Microbienne, INRA, 78352 Jouy en Josas cedex, France.
| | | |
Collapse
|
27
|
Ogura M, Yamaguchi H, Kobayashi K, Ogasawara N, Fujita Y, Tanaka T. Whole-genome analysis of genes regulated by the Bacillus subtilis competence transcription factor ComK. J Bacteriol 2002; 184:2344-51. [PMID: 11948146 PMCID: PMC134994 DOI: 10.1128/jb.184.9.2344-2351.2002] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bacillus subtilis competence transcription factor ComK is required for establishment of competence for genetic transformation. In an attempt to study the ComK factor further, we explored the genes regulated by ComK using the DNA microarray technique. In addition to the genes known to be dependent on ComK for expression, we found many genes or operons whose ComK dependence was not known previously. Among these genes, we confirmed the ComK dependence of 16 genes by using lacZ fusions, and three genes were partially dependent on ComK. Transformation efficiency was significantly reduced in an smf disruption mutant, although disruption of the other ComK-dependent genes did not result in significant decreases in transformation efficiency. Nucleotide sequences similar to that of the ComK box were found for most of the newly discovered genes regulated by ComK.
Collapse
Affiliation(s)
- Mitsuo Ogura
- School of Marine Science and Technology, Tokai University, 3-20-1 Orido, Shimizu, Shizuoka 424-8610, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Tapias A, Fernández S, Alonso JC, Barbé J. Rhodobacter sphaeroides LexA has dual activity: optimising and repressing recA gene transcription. Nucleic Acids Res 2002; 30:1539-46. [PMID: 11917014 PMCID: PMC101838 DOI: 10.1093/nar/30.7.1539] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Transcription of the Rhodobacter sphaeroides recA promoter (P(recA)) is induced upon DNA damage in a lexA-dependent manner. In vivo experiments demonstrate that LexA protein represses and might also activate transcription of P(recA). Purified R.sphaeroides LexA protein specifically binds the SOS boxes located within the P(recA) region. In vitro transcription analysis, using Escherichia coli RNA polymerase (RNAP), indicated that the presence of LexA may stimulate and repress transcription of P(recA). EMSA and DNase I footprinting experiments show that LexA and RNAP can bind simultaneously to P(recA). At low LexA concentrations it enhances RNAP binding to P(recA), stimulates open complex formation and strand separation beyond the transcription start site. At high LexA concentrations, however, RNAP-promoted strand separation is not observed beyond the +5 region. LexA might repress transcription by interfering with the clearance process instead of blocking the access of RNAP to the promoter region. Based on these findings we propose that the R.sphaeroides LexA protein performs fine tuning of the SOS response, which might provide a physiological advantage by enhancing transcription of SOS genes and delaying full activation of the response.
Collapse
Affiliation(s)
- Angels Tapias
- Departamento de Genética y Microbiología, Universitat Autónoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | | | | |
Collapse
|
29
|
Chédin F, Kowalczykowski SC. A novel family of regulated helicases/nucleases from Gram-positive bacteria: insights into the initiation of DNA recombination. Mol Microbiol 2002; 43:823-34. [PMID: 11929535 DOI: 10.1046/j.1365-2958.2002.02785.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Frédéric Chédin
- Sections of Microbiology and of Molecular and Cellular Biology, University of California, Davis, CA 95616-8665, USA
| | | |
Collapse
|
30
|
Smith BT, Grossman AD, Walker GC. Localization of UvrA and effect of DNA damage on the chromosome of Bacillus subtilis. J Bacteriol 2002; 184:488-93. [PMID: 11751826 PMCID: PMC139587 DOI: 10.1128/jb.184.2.488-493.2002] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We found that the nucleotide excision repair protein UvrA, which is involved in DNA damage recognition, localizes to the entire chromosome both before and after damage in living Bacillus subtilis cells. We suggest that the UvrA(2)B damage recognition complex is constantly scanning the genome, searching for lesions in the DNA. We also found that DNA damage induces a dramatic reconfiguration of the chromosome such that it no longer fills the entire cell as it does during normal growth. This reconfiguration is reversible after low doses of damage and is dependent on the damage-induced SOS response. We suggest that this reconfiguration of the chromosome after damage may be either a reflection of ongoing DNA repair or an active mechanism to protect the cell's genome. Similar observations have been made in Escherichia coli, indicating that the alteration of chromosome structure after DNA damage may be a widespread phenomenon.
Collapse
Affiliation(s)
- Bradley T Smith
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
31
|
Papavinasasundaram KG, Anderson C, Brooks PC, Thomas NA, Movahedzadeh F, Jenner PJ, Colston MJ, Davis EO. Slow induction of RecA by DNA damage in Mycobacterium tuberculosis. MICROBIOLOGY (READING, ENGLAND) 2001; 147:3271-9. [PMID: 11739759 DOI: 10.1099/00221287-147-12-3271] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In mycobacteria, as in most bacterial species, the expression of RecA is induced by DNA damage. However, the authors show here that the kinetics of recA induction in Mycobacterium smegmatis and in Mycobacterium tuberculosis are quite different: whilst maximum expression in M. smegmatis occurred 3-6 h after addition of a DNA-damaging agent, incubation for 18-36 h was required to reach peak levels in M. tuberculosis. This is despite the fact that the M. tuberculosis promoter can be activated more rapidly when transferred to M. smegmatis. In addition, it is demonstrated that in both species the DNA is sufficiently damaged to give maximum induction within the first hour of incubation with mitomycin C. The difference in the induction kinetics of recA between the two species was mirrored by a difference in the levels of DNA-binding-competent LexA following DNA damage. A decrease in the ability of LexA to bind to the SOS box was readily detected by 2 h in M. smegmatis, whilst a decrease was not apparent until 18-24 h in M. tuberculosis and then only a very small decrease was observed.
Collapse
Affiliation(s)
- K G Papavinasasundaram
- Division of Mycobacterial Research, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Narumi I, Satoh K, Kikuchi M, Funayama T, Yanagisawa T, Kobayashi Y, Watanabe H, Yamamoto K. The LexA protein from Deinococcus radiodurans is not involved in RecA induction following gamma irradiation. J Bacteriol 2001; 183:6951-6. [PMID: 11698386 PMCID: PMC95538 DOI: 10.1128/jb.183.23.6951-6956.2001] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The involvement of LexA in induction of RecA was investigated in Deinococcus radiodurans. As in the wild-type strain, an increase in RecA protein synthesis following gamma irradiation was detected in a lexA disruptant, indicating that LexA is not involved in the induction of RecA in D. radiodurans.
Collapse
Affiliation(s)
- I Narumi
- Biotechnology Laboratory, Takasaki Radiation Chemistry Research Establishment, Japan Atomic Energy Research Institute, Takasaki 370-1292, 1233 Watanuki, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Hamoen LW, Haijema B, Bijlsma JJ, Venema G, Lovett CM. The Bacillus subtilis competence transcription factor, ComK, overrides LexA-imposed transcriptional inhibition without physically displacing LexA. J Biol Chem 2001; 276:42901-7. [PMID: 11555642 DOI: 10.1074/jbc.m104407200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During the development of competence in Bacillus subtilis the recA gene is activated by the competence transcription factor, ComK, which is presumably required to alleviate the transcriptional repression of recA by LexA. To investigate the mechanism by which ComK activates recA transcription we examined the binding of ComK and LexA to the recA promoter in vitro. Using hydroxyl radical protection analyses to establish the location of ComK dimer-binding sites within the recA promoter, we identified four AT-boxes in a configuration unique for ComK-regulated promoters. Gel mobility shift experiments showed that all four ComK dimer-binding sites were occupied at ComK concentrations in the physiological range. In addition, occupation of all ComK-binding sites did not prevent LexA from binding to the recA promoter, despite the fact that the ComK and LexA recognition motifs partially overlap. Although ComK did not replace LexA from the recA promoter, in vitro transcription analyses indicated that the presence of ComK is sufficient to alleviate LexA repression of recA.
Collapse
Affiliation(s)
- L W Hamoen
- Department of Genetics, University of Groningen, NL-9751 NN Haren, The Netherlands.
| | | | | | | | | |
Collapse
|
34
|
Haijema BJ, Hahn J, Haynes J, Dubnau D. A ComGA-dependent checkpoint limits growth during the escape from competence. Mol Microbiol 2001; 40:52-64. [PMID: 11298275 DOI: 10.1046/j.1365-2958.2001.02363.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Bacillus subtilis, competence for transformation develops in 5-10% of the cells in a stationary phase culture. These cells exhibit a prolonged lag in the resumption of growth and cell division during the escape from competence. To better understand the basis of this lag, we have characterized competent cultures microscopically. To distinguish the minority of competent cells, a translational fusion between ComK, the competence transcription factor, and the green fluorescent protein (GFP) was used as a marker. Only 5-10% of the cells in a competent culture were fluorescent, indicating that ComK synthesis is an all or nothing event. To validate the identification of competent cells, we demonstrated the coincident expression of comEA, a late competence gene, and comK-gfp. Competent cells resemble stationary phase cells; the majority are single (not in chains), contain single nucleoids, and rarely contain FtsZ rings. Upon dilution into fresh medium, competent cells maintain this appearance for about 2 h. In contrast, the majority of non-competent cells rapidly resume growth, exhibiting chaining, nuclear division and FtsZ-ring formation. The late competence protein ComGA is required for the competence-related block in chromosome replication and cell division. In the competent cells of a comGA mutant culture, chromosomal replication and FtsZ-ring formation were no longer blocked, although competent comGA mutant cells were abnormal in appearance. It is likely that one role for ComGA is to prevent growth, chromosome replication and cell division until ComK can be eliminated by degradation. A mutation in the ATP-binding site of comGA inactivated the protein for transformation but did not prevent it from inhibiting DNA replication and cell division. The buoyant density difference between competent and non-competent cells depends on the competence-specific growth arrest.
Collapse
Affiliation(s)
- B J Haijema
- Public Health Research Institute, 455 First Ave, New York, NY 10016, USA
| | | | | | | |
Collapse
|
35
|
Hamoen LW, Van Werkhoven AF, Venema G, Dubnau D. The pleiotropic response regulator DegU functions as a priming protein in competence development in Bacillus subtilis. Proc Natl Acad Sci U S A 2000; 97:9246-51. [PMID: 10908654 PMCID: PMC16853 DOI: 10.1073/pnas.160010597] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The response regulator DegU is involved in various late-growth developmental processes in Bacillus subtilis, including the production of degradative enzymes and the development of genetic competence. DegU is essential for the expression of the competence transcription factor, encoded by comK. ComK is required for the transcription of genes encoding the DNA uptake and integration machinery, as well as for the transcription of its own gene. We have purified DegU to study its role in the expression of comK, and we demonstrate here that DegU binds specifically to the comK promoter. The binding of the response regulator DegU to a promoter target had not been reported previously. DNase I protection analyses show that the DegU binding site overlaps with the ComK binding site, and gel retardation experiments indicate that DegU strongly stimulates the binding of ComK to the comK promoter. We propose that DegU functions at the initiation of competence development, when ComK concentrations are insufficient to support comK transcription, by facilitating ComK binding to the comK promoter. DegU therefore acts as a priming protein that primes the autostimulatory transcription of comK. Such priming activity adds a function to the class of response regulator proteins.
Collapse
Affiliation(s)
- L W Hamoen
- Public Health Research Institute, 455 First Avenue, New York, NY 10016, USA
| | | | | | | |
Collapse
|
36
|
Ashikaga S, Nanamiya H, Ohashi Y, Kawamura F. Natural genetic competence in Bacillus subtilis natto OK2. J Bacteriol 2000; 182:2411-5. [PMID: 10762239 PMCID: PMC111301 DOI: 10.1128/jb.182.9.2411-2415.2000] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We isolated a Bacillus subtilis natto strain, designated OK2, from a lot of commercial fermented soybean natto and studied its ability to undergo natural competence development using a comG-lacZ fusion at the amyE locus. Although transcription of the late competence genes was not detected in the B. subtilis natto strain OK2 during competence development, these genes were constitutively transcribed in the OK2 strain carrying either the mecA or the clpC mutation derived from B. subtilis 168. In addition, both OK2 mutants exhibited high transformation frequencies, comparable with that observed for B. subtilis 168. Moreover, as expected from these results, overproduction of ComK derived from strain 168 in strain OK2 resulted in a high transformation frequency as well as in induction of the late competence genes. These results clearly indicated that ComK produced in both the mecA and clpC mutants of strain OK2 (ComK(OK2)) could activate the transcription of the whole set of late competence genes and suggested that ComK(OK2) was not activated in strain OK2 during competence development. We therefore sequenced the comS gene of OK2 and compared it with that of 168. The comS(OK2) had a single-base change, resulting in the replacement of Ser (strain 168) by Cys (strain OK2) at position 11.
Collapse
Affiliation(s)
- S Ashikaga
- Laboratory of Molecular Genetics, College of Science, Rikkyo (St. Paul's) University, Toshima-ku, Tokyo 171-8501, Japan
| | | | | | | |
Collapse
|
37
|
Abstract
Genetic competence in both Bacillus subtilis and Streptococcus pneumoniae, as well as virulence in Staphylococcus aureus, are regulated by quorum-sensing mechanisms that use two-component signal transduction systems to respond to extracellular peptide pheromones. Recent data indicate that in all three systems closely related strains express markedly different pheromones and polytopic membrane receptor proteins. This polymorphism may function as a sexual isolation mechanism. In B. subtilis the downstream segment of the competence regulatory pathway acts by controlling the stability of a key transcription factor. In S. pneumoniae the downstream segment involves the transcriptional activation of a minor sigma factor that is in turn responsible for the expression of late competence genes.
Collapse
Affiliation(s)
- P Tortosa
- Public Health Research Institute, New York, New York 10016, USA
| | | |
Collapse
|
38
|
Abstract
Natural competence is widespread among bacterial species. The mechanism of DNA uptake in both gram-positive and gram-negative bacteria is reviewed. The transformation pathways are discussed, with attention to the fate of donor DNA as it is processed by the competent cell. The proteins involved in mediating various steps in these pathways are described, and models for the transformation mechanisms are presented. Uptake of DNA across the inner membrane is probably similar in gram-positive and gram-negative bacteria, and at least some of the required proteins are orthologs. The initial transformation steps differ, as expected, from the presence of an outer membrane only in the gram-negative organisms. The similarity of certain essential competence proteins to those required for the assembly of type-4 pili and for type-2 protein secretion is discussed. Finally several hypotheses for the biological role of transformation are presented and evaluated.
Collapse
Affiliation(s)
- D Dubnau
- Public Health Research Institute, New York, NY 10016, USA.
| |
Collapse
|
39
|
Persuh M, Turgay K, Mandic-Mulec I, Dubnau D. The N- and C-terminal domains of MecA recognize different partners in the competence molecular switch. Mol Microbiol 1999; 33:886-94. [PMID: 10447896 DOI: 10.1046/j.1365-2958.1999.01544.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ComK is a transcription factor required for the expression of competence genes in Bacillus subtilis. Binding to MecA targets ComK for degradation by the ClpCP protease. MecA therefore acts as an adapter protein recruiting a regulatory protein for proteolysis. However, when ComS is synthesized, ComK is released from binding by MecA and thereby protected from degradation. MecA binds to three protein partners during these processes: ComK, ClpC and ComS. Using limited proteolysis, we have defined N- and C-terminal structural domains of MecA and evaluated the interactions of these domains with the protein partners of MecA. Using surface plasmon resonance, we have determined that the N-terminal domain of MecA interacts with ComK and ComS and the C-terminal domain with ClpC. MecA is shown to exist as a dimer with dimerization sites on both the N- and C-terminal domains. The C-terminal domain stimulates the ATPase activity of ClpC and is degraded by the ClpCP protease, while the N-terminal domain is inactive in both of these assays. In vivo data were consistent with these findings, as comG-lacZ expression was decreased in a strain overproducing the N-terminal domain, indicating reduced ComK activity. We propose a model in which binding of ClpC to the C-terminal domain of MecA induces a conformational change enabling the N-terminal domain to bind ComK with enhanced affinity. MecA is widespread among Gram-positive organisms and may act generally as an adapter protein, targeting proteins for regulated degradation.
Collapse
Affiliation(s)
- M Persuh
- Public Health Research Institute, 455 First Avenue, New York, NY 10016, USA.; University of Ljubljana, 1000 Ljubljana, Slovenia
| | | | | | | |
Collapse
|
40
|
Yang MK, Wu PI. Identification of the promoter region of the Xanthomonas campestris pv. citri recA gene responsible for induction by DNA-damaging agents. FEMS Microbiol Lett 1999; 176:57-65. [PMID: 10418131 DOI: 10.1111/j.1574-6968.1999.tb13642.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The abundance of the RecA protein and of recA transcripts was markedly increased on exposure of Xanthomonas campestris pathovar citri to various DNA-damaging agents, including mitomycin C. The promoter sequence responsible for mediating the sensitivity of recA expression to DNA damage was investigated by subcloning a 426-bp restriction fragment of the 5' untranslated and coding region of the gene into a promoterless vector containing the luxAB genes of Vibrio fischeri. Xanthomonas campestris pv. citri cells transformed with this vector responded to DNA-damaging agents with a marked increase in luciferase activity. Deletion of nucleotides from the 5' end of the recA fragment inserted into the reporter plasmid revealed that the 58 bp upstream of the transcription initiation site are sufficient to mediate induction of recA expression by mitomycin C.
Collapse
Affiliation(s)
- M K Yang
- Department of Biology, Fu Jen University, Taipei, Taiwan, ROC.
| | | |
Collapse
|
41
|
Turgay K, Hahn J, Burghoorn J, Dubnau D. Competence in Bacillus subtilis is controlled by regulated proteolysis of a transcription factor. EMBO J 1998; 17:6730-8. [PMID: 9890793 PMCID: PMC1171018 DOI: 10.1093/emboj/17.22.6730] [Citation(s) in RCA: 273] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Competence is a physiological state, distinct from sporulation and vegetative growth, that enables cells to bind and internalize transforming DNA. The transcriptional regulator ComK drives the development of competence in Bacillus subtilis. ComK is directly required for its own transcription as well as for the transcription of the genes that encode DNA transport proteins. When ComK is sequestered by binding to a complex of the proteins MecA and ClpC, the positive feedback loop leading to ComK synthesis is interrupted. The small protein ComS, produced as a result of signaling by a quorum-sensing two-component regulatory pathway, triggers the release of ComK from the complex, enabling comK transcription to occur. We show here, based on in vivo and in vitro experiments, that ComK accumulation is also regulated by proteolysis and that binding to MecA targets ComK for degradation by the ClpP protease in association with ClpC. The release of ComK from binding by MecA and ClpC, which occurs when ComS is synthesized, protects ComK from proteolysis. Following this release, the rates of MecA and ComS degradation by ClpCP are increased in our in vitro system. In this novel system, MecA serves to recruit ComK to the ClpCP protease and connects ComK degradation to the quorum-sensing signal-transduction pathway, thereby regulating a key developmental process. This is the first regulated degradation system in which a specific targeting molecule serves such a function.
Collapse
Affiliation(s)
- K Turgay
- Department of Endocrinology and Reproduction, Faculty of Medicine, Erasmus University, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
42
|
Hamoen LW, Van Werkhoven AF, Bijlsma JJ, Dubnau D, Venema G. The competence transcription factor of Bacillus subtilis recognizes short A/T-rich sequences arranged in a unique, flexible pattern along the DNA helix. Genes Dev 1998; 12:1539-50. [PMID: 9585513 PMCID: PMC316842 DOI: 10.1101/gad.12.10.1539] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of genetic competence in Bacillus subtilis is regulated by a complex signal transduction cascade, which leads to the synthesis of the competence transcription factor (CTF). Previous studies suggested that CTF is encoded by comK. ComK is required for the transcription of comK itself, as well as of the late competence genes encoding the DNA uptake machinery and of genes required for homologous recombination. Here, we used purified ComK to study its role in transcription and to determine the DNA recognition sequence for ComK. In vitro transcription from the comG promoter, which depends on ComK in vivo, was observed on the addition of purified ComK together with Bacillus subtilis RNA polymerase, proving that ComK is CTF. To determine the DNA sequences involved in ComK recognition, footprinting analysis was performed with promoter fragments of the CTF-dependent genes: comC, comE, comF, comG, comK, and addAB. The ComK binding sites determined by DNase I protection experiments were unusually long, with average lengths of approximately 65 bp, and displayed only weak sequence similarities. Hydroxy-radical footprinting, performed with the addAB promoter, revealed a unique arrangement of four short A/T-rich sequences. Gel retardation experiments indicated that four molecules of ComK bound the addAB promoter and the dyad symmetrical arrangement of the four A/T-rich sequences implied that ComK functions as a tetramer composed of two dimers each recognizing the motif AAAAN5TTTT. Comparable A/T-rich sequences were identified in all six DNase I footprints and could be used to predict ComK targets in the B. subtilis genome. On the basis of the variability in distance between the ComK-dimer binding sites, ComK-regulated promoters could be divided into three classes, demonstrating a remarkable flexibility in the binding of ComK. The pattern of hydroxy-radical protections suggested that ComK binds at one face of the DNA helix through the minor groove. This inference was strengthened by the observation that minor groove binding drugs inhibited the binding of ComK.
Collapse
Affiliation(s)
- L W Hamoen
- Department of Genetics, University of Groningen, NL-9751 NN Haren, The
| | | | | | | | | |
Collapse
|
43
|
Winterling KW, Chafin D, Hayes JJ, Sun J, Levine AS, Yasbin RE, Woodgate R. The Bacillus subtilis DinR binding site: redefinition of the consensus sequence. J Bacteriol 1998; 180:2201-11. [PMID: 9555905 PMCID: PMC107149 DOI: 10.1128/jb.180.8.2201-2211.1998] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/1997] [Accepted: 02/11/1998] [Indexed: 02/07/2023] Open
Abstract
Recently, the DinR protein was established as the cellular repressor of the SOS response in the bacterium Bacillus subtilis. It is believed that DinR functions as the repressor by binding to a consensus sequence located in the promoter region of each SOS gene. The binding site for DinR is believed to be synonymous with the formerly identified Cheo box, a region of 12 bp displaying dyad symmetry (GAAC-N4-GTTC). Electrophoretic mobility shift assays revealed that highly purified DinR does bind to such sites located upstream of the dinA, dinB, dinC, and dinR genes. Furthermore, detailed mutational analysis of the B. subtilis recA operator indicates that some nucleotides are more important than others for maintaining efficient DinR binding. For example, nucleotide substitutions immediately 5' and 3' of the Cheo box as well as those in the N4 region appear to affect DinR binding. This data, combined with computational analyses of potential binding sites in other gram-positive organisms, yields a new consensus (DinR box) of 5'-CGAACRNRYGTTYC-3'. DNA footprint analysis of the B. subtilis dinR and recA DinR boxes revealed that the DinR box is centrally located within a DNA region of 31 bp that is protected from hydroxyl radical cleavage in the presence of DinR. Furthermore, while DinR is predominantly monomeric in solution, it apparently binds to the DinR box in a dimeric state.
Collapse
Affiliation(s)
- K W Winterling
- Section on DNA Replication, Repair, and Mutagenesis, National Institute of Child Health and Human Development, Bethesda, Maryland 20892-2725, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Mortier-Barrière I, de Saizieu A, Claverys JP, Martin B. Competence-specific induction of recA is required for full recombination proficiency during transformation in Streptococcus pneumoniae. Mol Microbiol 1998; 27:159-70. [PMID: 9466264 DOI: 10.1046/j.1365-2958.1998.00668.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Transcriptional activation of the recA gene of Streptococcus pneumoniae was previously shown to occur at competence. A 5.7 kb recA-specific transcript that contained at least two additional genes, cinA and dinF, was identified. We now report the complete characterization of the recA operon and investigation of the role of the competence-specific induction of recA. The 5.7 kb competence-specific recA transcript is shown to include lytA, which encodes the pneumococcal autolysin, a protein previously shown to contribute to virulence of S. pneumoniae. Uncoupling (denoted Ind-) of recA and/or the downstream genes was achieved through the placement of transcription terminators within the operon, either upstream or downstream of recA. Prevention of the competence-specific induction of recA severely affected spontaneous transformation. Transformation efficiencies of recA+ (Ind-) and of wild-type cells were compared under various conditions and with different donor DNA. Chromosomal transformation was reduced 17-(chromosomal donor) to 45-fold (recombinant plasmid donor), depending on the donor DNA, and plasmid establishment was reduced 129-fold. Measurement of uptake of radioactively labelled donor DNA in transformed cells in parallel with scoring for transformants (chromosomal donor) revealed normal uptake, but a 21-fold reduction in recombination in a recA+ (Ind-) strain, indicating that the transformation defect was primarily in recombination. Strikingly enough, a much larger (460-fold) reduction in recombination was observed for the shortest homologous donor fragment used (878 nucleotides long). Possible interpretations of the observation that basal RecA appears unable to promote efficient recombination whatever the number and the length of donor fragments taken up are proposed. The role of recA induction is discussed in view of the potential contribution of transformation to genome plasticity in this pathogen.
Collapse
Affiliation(s)
- I Mortier-Barrière
- Microbiologie et Génétique Moléculaire CNRS-UPR 9007, Université Paul Sabatier, Toulouse, France
| | | | | | | |
Collapse
|
45
|
Ogura M, Ohshiro Y, Hirao S, Tanaka T. A new Bacillus subtilis gene, med, encodes a positive regulator of comK. J Bacteriol 1997; 179:6244-53. [PMID: 9335269 PMCID: PMC179536 DOI: 10.1128/jb.179.20.6244-6253.1997] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Bacillus subtilis degR, a positive regulator of the production of degradative enzymes, is negatively regulated by the competence transcription factor ComK which is overproduced in mecA null mutants. We used transposon Tn10 to search for a mutation that reduced the repression level of degR caused by a mecA mutation. A new gene exerting positive regulation on comK was obtained and designated med (suppressor of mecA effect on degR). Sequence determination, Northern analysis, and primer extension analyses revealed that the med gene contained an open reading frame (ORF) composed of 317 codons and was transcribed into an approximately 1,250-nucleotide mRNA together with its short downstream gene. The expression of comK is positively regulated by factors such as ComK itself, ComS (SrfA)-MecA, DegU, SinR, and AbrB. Quantitative analyses using comK'-'lacZ, srfA-lacZ, degU'-'lacZ, and sinR'-'lacZ fusions showed that disruption of med caused a significant decrease in comK expression in both mecA+ and mecA strains, while expression of srfA, sinR, and degU was not affected by the mutation. An epistatic analysis revealed that overproduction of ComK resulted in alteration of med expression, suggesting a regulatory loop between comK and med. Several possible mechanisms for positive regulation of comK by Med are discussed.
Collapse
Affiliation(s)
- M Ogura
- School of Marine Science and Technology, Tokai University, Shimizu, Shizuoka, Japan
| | | | | | | |
Collapse
|
46
|
Movahedzadeh F, Colston MJ, Davis EO. Determination of DNA sequences required for regulated Mycobacterium tuberculosis RecA expression in response to DNA-damaging agents suggests that two modes of regulation exist. J Bacteriol 1997; 179:3509-18. [PMID: 9171394 PMCID: PMC179142 DOI: 10.1128/jb.179.11.3509-3518.1997] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The recA gene of Mycobacterium tuberculosis has previously been cloned and sequenced (E. O. Davis, S. G. Sedgwick, and M. J. Colston, J. Bacteriol. 173:5653-5662, 1991). In this study, the expression of this gene was shown to be inducible in response to various DNA-damaging agents by using a transcriptional fusion to the reporter gene encoding chloramphenicol acetyltransferase. A segment of DNA around 300 bp upstream of the coding region was shown to be required for expression. However, primer extension analysis indicated that the transcriptional start sites were 47 and 93 bp upstream of the translation initiation codon. Sequence motifs with homology to two families of Escherichia coli promoters but also with significant differences were located near these proposed transcription start sites. The differences from the E. coli consensus patterns would explain the previously described lack of expression of the M. tuberculosis recA gene from its own promoter in E. coli. In addition, the M. tuberculosis LexA protein was shown to bind specifically to a sequence, GAAC-N4-GTTC, overlapping one of these putative promoters and homologous to the Bacillus subtilis Cheo box involved in the regulation of SOS genes. The region of DNA 300 bp upstream of the recA gene was shown not to contain a promoter, suggesting that it functions as an upstream activator sequence.
Collapse
Affiliation(s)
- F Movahedzadeh
- Division of Mycobacterial Research, National Institute for Medical Research, London, England
| | | | | |
Collapse
|
47
|
Winterling KW, Levine AS, Yasbin RE, Woodgate R. Characterization of DinR, the Bacillus subtilis SOS repressor. J Bacteriol 1997; 179:1698-703. [PMID: 9045831 PMCID: PMC178884 DOI: 10.1128/jb.179.5.1698-1703.1997] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In Bacillus subtilis, exposure to DNA damage and the development of natural competence lead to the induction of the SOS regulon. It has been hypothesized that the DinR protein is the cellular repressor of the B. subtilis SOS system due to its homology to the Escherichia coli LexA transcriptional repressor. Indeed, comparison of DinR and its homologs from gram-negative and -positive bacteria revealed conserved structural motifs within the carboxyl-terminal domain that are believed to be important for autocatalysis of the protein. In contrast, regions within the DNA binding domain were conserved only within gram-negative or -positive genera, which possibly explains the differences in the sequence specificities between gram-negative and gram-positive SOS boxes. The hypothesis that DinR is the repressor of the SOS regulon in B. subtilis has been tested through overexpression, purification, and characterization of the DinR protein. Like E. coli LexA, B. subtilis DinR undergoes an autocatalytic reaction at alkaline pH at a siscile Ala91-Gly92 bond. The cleavage reaction can also be mediated in vitro under more physiological conditions by the E. coli RecA protein. By using electrophoretic mobility shift assays, we demonstrated that DinR interacts with the previously characterized SOS box of the B. subtilis recA gene, but not with sequences containing single base pair mutations within the SOS box. Together, these observations strongly suggest that DinR is the repressor of the SOS regulon in B. subtilis.
Collapse
Affiliation(s)
- K W Winterling
- Section on DNA replication, repair, and mutagenesis, National Institute of Child Health and Human Development, Bethesda, Maryland 20892-2725, USA
| | | | | | | |
Collapse
|