1
|
Rosinke K, Starai VJ, Hoover TR. Helicobacter pylori HP0018 Has a Potential Role in the Maintenance of the Cell Envelope. Cells 2024; 13:1438. [PMID: 39273010 PMCID: PMC11394524 DOI: 10.3390/cells13171438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Helicobacter pylori is a bacterial pathogen that colonizes the human stomach, where it can cause a variety of diseases. H. pylori uses a cluster of sheathed flagella for motility, which is required for host colonization in animal models. The flagellar sheath is continuous with the outer membrane and is found in most Helicobacter species identified to date. HP0018 is a predicted lipoprotein of unknown function that is conserved in Helicobacter species that have flagellar sheaths but is absent in Helicobacter species that have sheath-less flagella. Deletion of hp0018 in H. pylori B128 resulted in the formation of long chains of outer membrane vesicles, which were most evident in an aflagellated variant of the Δhp0018 mutant that had a frameshift mutation in fliP. Flagellated cells of the Δhp0018 mutant possessed what appeared to be a normal flagellar sheath, suggesting that HP0018 is not required for sheath formation. Cells of the Δhp0018 mutant were also less helical in shape compared to wild-type cells. A HP0018-superfolder green fluorescent fusion protein expressed in the H. pylori Δhp0018 mutant formed fluorescent foci at the cell poles and lateral sites. Co-immunoprecipitation assays with HP0018 identified two enzymes involved in the modification of the cell wall peptidoglycan, AmiA and MltD, as potential HP0018 interaction partners. HP0018 may modulate the activity of AmiA or MltD, and in the absence of HP0018, the unregulated activity of these enzymes may alter the peptidoglycan layer in a manner that results in an altered cell shape and hypervesiculation.
Collapse
Affiliation(s)
- Kyle Rosinke
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Vincent J Starai
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Timothy R Hoover
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
2
|
Sahoo PK, Sheenu, Jain D. REC domain stabilizes the active heptamer of σ 54-dependent transcription factor, FleR from Pseudomonas aeruginosa. iScience 2023; 26:108397. [PMID: 38058307 PMCID: PMC10696123 DOI: 10.1016/j.isci.2023.108397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 09/12/2023] [Accepted: 11/02/2023] [Indexed: 12/08/2023] Open
Abstract
Motility in Pseudomonas aeruginosa is mediated through a single, polar flagellum, which is essential for virulence, colonization, and biofilm formation. FleSR, a two-component system (TCS), serves as a critical checkpoint in flagellar assembly. FleR is a σ54-dependent response regulator that undergoes phosphorylation via cognate sensor kinase FleS for the assembly of the functionally active form. The active form remodels the σ54-RNAP complex to initiate transcription. Small-angle X-ray scattering, crystallography, and negative staining electron microscopy reconstructions of FleR revealed that it exists predominantly as a dimer in the inactive form with low ATPase activity and assembles into heptamers upon phosphorylation with amplified ATPase activity. We establish that receiver (REC) domain stabilizes the heptamers and is indispensable for assembly of the functional phosphorylated form of FleR. The structural, biochemical, and in vivo complementation assays provide details of the phosphorylation-mediated assembly of FleR to regulate the expression of flagellar genes.
Collapse
Affiliation(s)
- Pankaj Kumar Sahoo
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India
| | - Sheenu
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India
| | - Deepti Jain
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India
| |
Collapse
|
3
|
Botting JM, Tachiyama S, Gibson KH, Liu J, Starai VJ, Hoover TR. FlgV forms a flagellar motor ring that is required for optimal motility of Helicobacter pylori. PLoS One 2023; 18:e0287514. [PMID: 37976320 PMCID: PMC10655999 DOI: 10.1371/journal.pone.0287514] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/07/2023] [Indexed: 11/19/2023] Open
Abstract
Flagella-driven motility is essential for Helicobacter pylori to colonize the human stomach, where it causes a variety of diseases, including chronic gastritis, peptic ulcer disease, and gastric cancer. H. pylori has evolved a high-torque-generating flagellar motor that possesses several accessories not found in the archetypical Escherichia coli motor. FlgV was one of the first flagellar accessory proteins identified in Campylobacter jejuni, but its structure and function remain poorly understood. Here, we confirm that deletion of flgV in H. pylori B128 and a highly motile variant of H. pylori G27 (G27M) results in reduced motility in soft agar medium. Comparative analyses of in-situ flagellar motor structures of wild-type, ΔflgV, and a strain expressing FlgV-YFP showed that FlgV forms a ring-like structure closely associated with the junction of two highly conserved flagellar components: the MS and C rings. The results of our studies suggest that the FlgV ring has adapted specifically in Campylobacterota to support the assembly and efficient function of the high-torque-generating motors.
Collapse
Affiliation(s)
- Jack M. Botting
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Shoichi Tachiyama
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, United States of America
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Katherine H. Gibson
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Jun Liu
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, United States of America
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Vincent J. Starai
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Timothy R. Hoover
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
4
|
Gibson KH, Botting JM, Al-Otaibi N, Maitre K, Bergeron J, Starai VJ, Hoover TR. Control of the flagellation pattern in Helicobacter pylori by FlhF and FlhG. J Bacteriol 2023; 205:e0011023. [PMID: 37655916 PMCID: PMC10521351 DOI: 10.1128/jb.00110-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/06/2023] [Indexed: 09/02/2023] Open
Abstract
FlhF and FlhG control the location and number of flagella, respectively, in many polar-flagellated bacteria. The roles of FlhF and FlhG are not well characterized in bacteria that have multiple polar flagella, such as Helicobacter pylori. Deleting flhG in H. pylori shifted the flagellation pattern where most cells had approximately four flagella to a wider and more even distribution in flagellar number. As reported in other bacteria, deleting flhF in H. pylori resulted in reduced motility, hypoflagellation, and the improper localization of flagella to nonpolar sites. Motile variants of H. pylori ∆flhF mutants that had a higher proportion of flagella localizing correctly to the cell pole were isolated, but we were unable to identify the genetic determinants responsible for the increased localization of flagella to the cell pole. One motile variant though produced more flagella than the ΔflhF parental strain, which apparently resulted from a missense mutation in fliF (encodes the MS ring protein), which changed Asn-255 to aspartate. Recombinant FliFN255D, but not recombinant wild-type FliF, formed ordered ring-like assemblies in vitro that were ~50 nm wide and displayed the MS ring architecture. We infer from these findings that the FliFN225D variant forms the MS ring more effectively in vivo in the absence of FlhF than wild-type FliF. IMPORTANCE Helicobacter pylori colonizes the human stomach where it can cause a variety of diseases, including peptic ulcer disease and gastric cancer. H. pylori uses flagella for motility, which is required for host colonization. FlhG and FlhF control the flagellation patterns in many bacteria. We found that in H. pylori, FlhG ensures that cells have approximately equal number of flagella and FlhF is needed for flagellum assembly and localization. FlhF is proposed to facilitate the assembly of FliF into the MS ring, which is one of the earliest structures formed in flagellum assembly. We identified a FliF variant that assembles the MS ring in the absence of FlhF, which supports the proposed role of FlhF in facilitating MS ring assembly.
Collapse
Affiliation(s)
| | - Jack M. Botting
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Natalie Al-Otaibi
- Randall Division of Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| | - Kriti Maitre
- Randall Division of Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| | - Julien Bergeron
- Randall Division of Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| | - Vincent J. Starai
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Timothy R. Hoover
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
5
|
Feng M, Namanja-Magliano H, Rajagopalan S, Mishra T, Ducati RG, Hirsch BM, Kelly L, Szymczak W, Fajardo JE, Sidoli S, Fiser A, Jacobs WR, Schramm VL. MAT Gain of Activity Mutation in Helicobacter pylori Is Associated with Resistance to MTAN Transition State Analogues. ACS Infect Dis 2023; 9:966-978. [PMID: 36920074 DOI: 10.1021/acsinfecdis.2c00644] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Helicobacter pylori is found in the gut lining of more than half of the world's population, causes gastric ulcers, and contributes to stomach cancers. Menaquinone synthesis in H. pylori relies on the rare futalosine pathway, where H. pylori 5'-methylthioadenosine nucleosidase (MTAN) is proposed to play an essential role. Transition state analogues of MTAN, including BuT-DADMe-ImmA (BTDIA) and MeT-DADMe-ImmA (MTDIA), exhibit bacteriostatic action against numerous diverse clinical isolates of H. pylori with minimum inhibitory concentrations (MIC's) of <2 ng/mL. Three H. pylori BTDIA-resistant clones were selected under increasing BTDIA pressure. Whole genome sequencing showed no mutations in MTAN. Instead, resistant clones had mutations in metK, methionine adenosyltransferase (MAT), feoA, a regulator of the iron transport system, and flhF, a flagellar synthesis regulator. The mutation in metK causes expression of a MAT with increased catalytic activity, leading to elevated cellular S-adenosylmethionine. Metabolite analysis and the mutations associated with resistance suggest multiple inputs associated with BTDIA resistance. Human gut microbiome exposed to MTDIA revealed no growth inhibition under aerobic or anaerobic conditions. Transition state analogues of H. pylori MTAN have potential as agents for treating H. pylori infection without disruption of the human gut microbiome or inducing resistance in the MTAN target.
Collapse
Affiliation(s)
- Mu Feng
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Hilda Namanja-Magliano
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Saranathan Rajagopalan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Tanmay Mishra
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Rodrigo G Ducati
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Brett M Hirsch
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Libusha Kelly
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, United States.,Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Wendy Szymczak
- Department of Pathology, Montefiore-Einstein Medical Center, Bronx, New York 10467, United States
| | - Jorge Eduardo Fajardo
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Andras Fiser
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - William R Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Vern L Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| |
Collapse
|
6
|
Regulation of Helicobacter pylori Urease and Acetone Carboxylase Genes by Nitric Oxide and the CrdRS Two-Component System. Microbiol Spectr 2023; 11:e0463322. [PMID: 36625670 PMCID: PMC9927306 DOI: 10.1128/spectrum.04633-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Helicobacter pylori colonizes the human gastric mucosa and causes various gastroduodenal diseases, including peptic ulceration and gastric cancer. Colonization requires the actions of two-component systems (TCSs) to sense and respond to changes in the host environment. In this study, we evaluated gene regulation mediated by the CrdRS TCS. Few studies have evaluated this TCS, leaving the signal(s) yet to be exhaustively determined and a need for a more complete regulon to be delineated. We performed RNA sequencing (RNA-Seq) on three isogenic H. pylori 26695 mutants: a control, a mutant with deletion of the sensory histidine kinase, ΔcrdS, and a mutant with deletion of the response regulator, ΔcrdR. Comparison of the RNA-Seq results from these mutants established a 40-gene regulon putatively controlled by the CrdRS TCS. Quantitative reverse transcriptase PCR (RT-qPCR) was used to validate 7 of 11 putative regulon members selected for analysis. We further investigated 6 confirmed CrdRS regulon genes by using phospho-incompetent H. pylori 26695 CrdR D53A and CrdS H173A mutants. These experiments further confirmed the role of CrdRS in regulation of urease, acetone carboxylase, hofD, and HP1440. Expression of these CrdRS regulon genes was also evaluated under 10 μM nitric oxide (NO) conditions. This revealed that ureA, acxA, hofD, and HP1440 expression is affected by NO in a CrdRS-dependent manner. Importantly, three of these genes (ureA, acxA, and hofD) are known to play important roles in H. pylori colonization of the stomach. IMPORTANCE The molecular strategies used by Helicobacter pylori to colonize and persist in the harsh environment of the human stomach are a critical area of study. Our study identified several genes in this gastric pathogen, including ureA, a gene encoding a protein essential to the survival of H. pylori, that are regulated via the CrdRS two-component system (TCS) in response to nitric oxide (NO). NO is a product of the innate immune system of the human host. The identification of these genes whose expression is regulated by this molecule may give insights to novel therapeutics. Two genes (ureA and acxA) determined in this study to be regulated by NO via CrdRS have been previously determined to be regulated by other TCSs, indicating that the expression of these genes may be of critical importance to H. pylori.
Collapse
|
7
|
Insights into the Orchestration of Gene Transcription Regulators in Helicobacter pylori. Int J Mol Sci 2022; 23:ijms232213688. [PMID: 36430169 PMCID: PMC9696931 DOI: 10.3390/ijms232213688] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Bacterial pathogens employ a general strategy to overcome host defenses by coordinating the virulence gene expression using dedicated regulatory systems that could raise intricate networks. During the last twenty years, many studies of Helicobacter pylori, a human pathogen responsible for various stomach diseases, have mainly focused on elucidating the mechanisms and functions of virulence factors. In parallel, numerous studies have focused on the molecular mechanisms that regulate gene transcription to attempt to understand the physiological changes of the bacterium during infection and adaptation to the environmental conditions it encounters. The number of regulatory proteins deduced from the genome sequence analyses responsible for the correct orchestration of gene transcription appears limited to 14 regulators and three sigma factors. Furthermore, evidence is accumulating for new and complex circuits regulating gene transcription and H. pylori virulence. Here, we focus on the molecular mechanisms used by H. pylori to control gene transcription as a function of the principal environmental changes.
Collapse
|
8
|
Identification of Antimotilins, Novel Inhibitors of Helicobacter pylori Flagellar Motility That Inhibit Stomach Colonization in a Mouse Model. mBio 2022; 13:e0375521. [PMID: 35227071 PMCID: PMC8941896 DOI: 10.1128/mbio.03755-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
New treatment options against the widespread cancerogenic gastric pathogen Helicobacter pylori are urgently needed. We describe a novel screening procedure for inhibitors of H. pylori flagellar biosynthesis. The assay is based on a flaA flagellin gene-luciferase reporter fusion in H. pylori and was amenable to multi-well screening formats with an excellent Z factor. We screened various compound libraries to identify virulence blockers ("antimotilins") that inhibit H. pylori motility or the flagellar type III secretion apparatus. We identified compounds that either inhibit both motility and the bacterial viability, or the flagellar system only, without negatively affecting bacterial growth. Novel anti-virulence compounds which suppressed flagellar biosynthesis in H. pylori were active on pure H. pylori cultures in vitro and partially suppressed motility directly, reduced flagellin transcript and flagellin protein amounts. We performed a proof-of-principle treatment study in a mouse model of chronic H. pylori infection and demonstrated a significant effect on H. pylori colonization for one antimotilin termed Active2 even as a monotherapy. The diversity of the intestinal microbiota was not significantly affected by Active2. In conclusion, the novel antimotilins active against motility and flagellar assembly bear promise to complement commonly used antibiotic-based combination therapies for treating and eradicating H. pylori infections. IMPORTANCE Helicobacter pylori is one of the most prevalent bacterial pathogens, inflicting hundreds of thousands of peptic ulcers and gastric cancers to patients every year. Antibacterial treatment of H. pylori is complicated due to the need of combining multiple antibiotics, entailing serious side effects and increasing selection for antibiotic resistance. Here, we aimed to explore novel nonantibiotic approaches to H. pylori treatment. We selected an antimotility approach since flagellar motility is essential for H. pylori colonization. We developed a screening system for inhibitors of H. pylori motility and flagellar assembly, and identified numerous novel antibacterial and anti-motility compounds (antimotilins). Selected compounds were further characterized, and one was evaluated in a preclinical therapy study in mice. The antimotilin compound showed a good efficacy to reduce bacterial colonization in the model, such that the antimotilin approach bears promise to be further developed into a therapy against H. pylori infection in humans.
Collapse
|
9
|
Zeng Z, Lin S, Li Q, Wang W, Wang Y, Xiao T, Guo Y. Molecular Basis of Wrinkled Variants Isolated From Pseudoalteromonas lipolytica Biofilms. Front Microbiol 2022; 13:797197. [PMID: 35295294 PMCID: PMC8919034 DOI: 10.3389/fmicb.2022.797197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Many Pseudoalteromonas species are dominant biofilm-forming Gammaproteobacteria in the ocean. The formation of Pseudoalteromonas biofilms is often accompanied by the occurrence of variants with different colony morphologies that may exhibit increased marine antifouling or anticorrosion activities. However, the genetic basis of the occurrence of these variants remains largely unexplored. In this study, we identified that wrinkled variants of P. lipolytica mainly arose due to mutations in the AT00_08765, a wspF-like gene, that are associated with decreased swimming motility and increased cellulose production. Moreover, we found that the spontaneous mutation in flhA, encoding a flagellar biosynthesis protein, also caused a wrinkled colony morphology that is associated with cellulose overproduction, indicating that flhA plays a dual role in controlling flagellar assembly and polysaccharide production in P. lipolytica. Investigation of wrinkled variants harboring spontaneous mutation in dgcB, encoding a GGDEF domain protein, also demonstrated dgcB plays an important role in regulating cellulose production and swimming motility. In addition, by screening the suppressor of the AT00_08765 variant strain, we also identified that the spontaneous mutation in cheR and bcsC directly abolished the wrinkled phenotype of the AT00_08765 variant strain, suggesting that the chemosensory signaling transduction and cellulose production are crucial for the determination of the wrinkled phenotype in P. lipolytica. Taken together, this study provides insights into the genetic variation within biofilms of P. lipolytica.
Collapse
Affiliation(s)
- Zhenshun Zeng
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Shituan Lin
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qian Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Weiquan Wang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuqi Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, China
| | - Yuexue Guo
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Yuexue Guo,
| |
Collapse
|
10
|
Mariano G, Faba-Rodriguez R, Bui S, Zhao W, Ross J, Tzokov SB, Bergeron JRC. Oligomerization of the FliF Domains Suggests a Coordinated Assembly of the Bacterial Flagellum MS Ring. Front Microbiol 2022; 12:781960. [PMID: 35087486 PMCID: PMC8786727 DOI: 10.3389/fmicb.2021.781960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/08/2021] [Indexed: 12/30/2022] Open
Abstract
The bacterial flagellum is a complex, self-assembling macromolecular machine that powers bacterial motility. It plays diverse roles in bacterial virulence, including aiding in colonization and dissemination during infection. The flagellum consists of a filamentous structure protruding from the cell, and of the basal body, a large assembly that spans the cell envelope. The basal body is comprised of over 20 different proteins forming several concentric ring structures, termed the M- S- L- P- and C-rings, respectively. In particular, the MS rings are formed by a single protein FliF, which consists of two trans-membrane helices anchoring it to the inner membrane and surrounding a large periplasmic domain. Assembly of the MS ring, through oligomerization of FliF, is one of the first steps of basal body assembly. Previous computational analysis had shown that the periplasmic region of FliF consists of three structurally similar domains, termed Ring-Building Motif (RBM)1, RBM2, and RBM3. The structure of the MS-ring has been reported recently, and unexpectedly shown that these three domains adopt different symmetries, with RBM3 having a 34-mer stoichiometry, while RBM2 adopts two distinct positions in the complex, including a 23-mer ring. This observation raises some important question on the assembly of the MS ring, and the formation of this symmetry mismatch within a single protein. In this study, we analyze the oligomerization of the individual RBM domains in isolation, in the Salmonella enterica serovar Typhimurium FliF ortholog. We demonstrate that the periplasmic domain of FliF assembles into the MS ring, in the absence of the trans-membrane helices. We also report that the RBM2 and RBM3 domains oligomerize into ring structures, but not RBM1. Intriguingly, we observe that a construct encompassing RBM1 and RBM2 is monomeric, suggesting that RBM1 interacts with RBM2, and inhibits its oligomerization. However, this inhibition is lifted by the addition of RBM3. Collectively, this data suggest a mechanism for the controlled assembly of the MS ring.
Collapse
Affiliation(s)
- Giuseppina Mariano
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom.,Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Raquel Faba-Rodriguez
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Soi Bui
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Weilong Zhao
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - James Ross
- Department of Biochemistry, University of British Columbia, Vancouver, BC, Canada
| | - Svetomir B Tzokov
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Julien R C Bergeron
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom.,Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
11
|
Szczepanowski P, Noszka M, Żyła-Uklejewicz D, Pikuła F, Nowaczyk-Cieszewska M, Krężel A, Stingl K, Zawilak-Pawlik A. HP1021 is a redox switch protein identified in Helicobacter pylori. Nucleic Acids Res 2021; 49:6863-6879. [PMID: 34139017 PMCID: PMC8266642 DOI: 10.1093/nar/gkab440] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/26/2021] [Accepted: 05/06/2021] [Indexed: 12/24/2022] Open
Abstract
Helicobacter pylori is a gram-negative, microaerophilic, pathogenic bacterium and a widespread colonizer of humans. H. pylori has developed mechanisms that enable it to overcome the harsh environment of the human stomach, including reactive oxygen species (ROS). Interestingly, up to now no typical regulator dedicated to the oxidative-stress response has been discovered. In this work, we reveal that the inhibitor of replication initiation HP1021 functions as a redox switch protein in H. pylori and plays an important role in response to oxidative stress of the gastric pathogen. Each of the two predicted HP1021 domains contains three cysteine residues. We show that the cysteine residues of HP1021 are sensitive to oxidation both in vitro and in vivo, and we demonstrate that HP1021 DNA-binding activity to oriC depends on the redox state of the protein. Moreover, Zn2+ modulates HP1021 affinity towards oriC template DNA. Transcription analysis of selected H. pylori genes by RT-qPCR indicated that HP1021 is directly involved in the oxygen-dependent control of H. pylori fecA3 and gluP genes, which are implicated in response to oxidative stress. In conclusion, HP1021 is a redox switch protein and could be a target for H. pylori control strategies.
Collapse
Affiliation(s)
- Piotr Szczepanowski
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław 53-114, Poland
| | - Mateusz Noszka
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław 53-114, Poland
| | - Dorota Żyła-Uklejewicz
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław 53-114, Poland
| | - Fabian Pikuła
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław 53-114, Poland
| | - Malgorzata Nowaczyk-Cieszewska
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław 53-114, Poland
| | - Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław 50-383, Poland
| | - Kerstin Stingl
- Department of Biological Safety, National Reference Laboratory for Campylobacter, German Federal Institute for Risk Assessment, Berlin 12277, Germany
| | - Anna Zawilak-Pawlik
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław 53-114, Poland
| |
Collapse
|
12
|
Zannoni A, Pelliciari S, Musiani F, Chiappori F, Roncarati D, Scarlato V. Definition of the Binding Architecture to a Target Promoter of HP1043, the Essential Master Regulator of Helicobacter pylori. Int J Mol Sci 2021; 22:ijms22157848. [PMID: 34360614 PMCID: PMC8345958 DOI: 10.3390/ijms22157848] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 11/30/2022] Open
Abstract
HP1043 is an essential orphan response regulator of Helicobacter pylori orchestrating multiple crucial cellular processes. Classified as a member of the OmpR/PhoB family of two-component systems, HP1043 exhibits a highly degenerate receiver domain and evolved to function independently of phosphorylation. Here, we investigated the HP1043 binding mode to a target sequence in the hp1227 promoter (Php1227). Scanning mutagenesis of HP1043 DNA-binding domain and consensus sequence led to the identification of residues relevant for the interaction of the protein with a target DNA. These determinants were used as restraints to guide a data-driven protein-DNA docking. Results suggested that, differently from most other response regulators of the same family, HP1043 binds in a head-to-head conformation to the Php1227 target promoter. HP1043 interacts with DNA largely through charged residues and contacts with both major and minor grooves of the DNA are required for a stable binding. Computational alanine scanning on molecular dynamics trajectory was performed to corroborate our findings. Additionally, in vitro transcription assays confirmed that HP1043 positively stimulates the activity of RNA polymerase.
Collapse
Affiliation(s)
- Annamaria Zannoni
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy; (A.Z.); (S.P.); (F.M.)
| | - Simone Pelliciari
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy; (A.Z.); (S.P.); (F.M.)
| | - Francesco Musiani
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy; (A.Z.); (S.P.); (F.M.)
| | - Federica Chiappori
- Istituto di Tecnologie Biomediche-Consiglio Nazionale delle Ricerche (ITB-CNR), 20054 Segrate, Italy;
| | - Davide Roncarati
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy; (A.Z.); (S.P.); (F.M.)
- Correspondence: (D.R.); (V.S.)
| | - Vincenzo Scarlato
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy; (A.Z.); (S.P.); (F.M.)
- Correspondence: (D.R.); (V.S.)
| |
Collapse
|
13
|
Bacterial Flagellar Filament: A Supramolecular Multifunctional Nanostructure. Int J Mol Sci 2021; 22:ijms22147521. [PMID: 34299141 PMCID: PMC8306008 DOI: 10.3390/ijms22147521] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/06/2021] [Accepted: 07/10/2021] [Indexed: 02/07/2023] Open
Abstract
The bacterial flagellum is a complex and dynamic nanomachine that propels bacteria through liquids. It consists of a basal body, a hook, and a long filament. The flagellar filament is composed of thousands of copies of the protein flagellin (FliC) arranged helically and ending with a filament cap composed of an oligomer of the protein FliD. The overall structure of the filament core is preserved across bacterial species, while the outer domains exhibit high variability, and in some cases are even completely absent. Flagellar assembly is a complex and energetically costly process triggered by environmental stimuli and, accordingly, highly regulated on transcriptional, translational and post-translational levels. Apart from its role in locomotion, the filament is critically important in several other aspects of bacterial survival, reproduction and pathogenicity, such as adhesion to surfaces, secretion of virulence factors and formation of biofilms. Additionally, due to its ability to provoke potent immune responses, flagellins have a role as adjuvants in vaccine development. In this review, we summarize the latest knowledge on the structure of flagellins, capping proteins and filaments, as well as their regulation and role during the colonization and infection of the host.
Collapse
|
14
|
SpoT-mediated NapA upregulation promotes oxidative stress-induced Helicobacter pylori biofilm formation and confers multidrug resistance. Antimicrob Agents Chemother 2021; 65:AAC.00152-21. [PMID: 33649116 PMCID: PMC8092859 DOI: 10.1128/aac.00152-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recently, there is increased incidence of drug-resistant Helicobacter pylori infection. Biofilm formation confers multidrug resistance to bacteria. Moreover, it has been found that the formation of biofilm on the surface of gastric mucosa is an important reason for the difficulty of eradication of H. pylori The mechanisms underlying H. pylori biofilm formation in vivo have not been elucidated. Reactive oxygen species (ROS) released by the host immune cells in response to H. pylori infection cannot effectively clear the pathogen. Moreover, the extracellular matrix of the biofilm protects the bacteria against ROS-mediated toxicity. This study hypothesized that ROS can promote H. pylori biofilm formation and treatment with low concentrations of hydrogen peroxide (H2O2) promoted this process in vitro The comparative transcriptome analysis of planktonic and biofilm-forming cells revealed that the expression of SpoT, a (p)ppGpp (guanosine 3'-diphosphate 5'-triphosphate and guanosine 3',5'-bispyrophosphate) synthetase/hydrolase, is upregulated in H2O2-induced biofilms and that knockout of spoT inhibited H. pylori biofilm formation. Additionally, this study examined the key target molecules involved in SpoT regulation using weighted gene co-expression network analysis. The analysis revealed that neutrophil-activating protein (NapA; HP0243) promoted H2O2-induced biofilm formation and conferred multidrug resistance. Furthermore, vitamin C exhibited anti-H. pylori biofilm activity and downregulated the expression of napA in vitro These findings provide novel insight into the clearance of H. pylori biofilms.
Collapse
|
15
|
Yang K, Kao C, Su MS, Wang S, Chen Y, Hu S, Chen J, Teng C, Tsai P, Wu J. Glycosyltransferase Jhp0106 (PseE) contributes to flagellin maturation in Helicobacter pylori. Helicobacter 2021; 26:e12787. [PMID: 33586844 PMCID: PMC7988653 DOI: 10.1111/hel.12787] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 01/25/2023]
Abstract
BACKGROUND Flagella-mediated motility is both a crucial virulence determinant of Helicobacter pylori and a factor associated with gastrointestinal diseases. Flagellar formation requires flagellins to be glycosylated with pseudaminic acid (Pse), a process that has been extensively studied. However, the transfer of Pse to flagellins remains poorly understood. Therefore, the aim of this study is to characterize a putative glycosyltransferase jhp0106 in flagellar formation. MATERIALS AND METHODS Western blotting and chemical deglycosylation were performed to examine FlaA glycosylation. Protein structural analyses were executed to identify the active site residues of Jhp0106, while the Jhp0106-FlaA interaction was examined using a bacterial two-hybrid assay. Lastly, site-directed mutants with mutated active site residues in the jhp0106 gene were generated and investigated using a motility assay, Western blotting, cDNA-qPCR analysis, and electron microscopic examination. RESULTS Loss of flagellar formation in the Δjhp0106 mutant was confirmed to be associated with non-glycosylated FlaA. Furthermore, three active site residues of Jhp0106 (S350, F376, and E415) were identified within a potential substrate-binding region. The interaction between FlaA and Jhp0106, Jhp0106::S350A, Jhp0106::F376A, or Jhp0106::E415A was determined to be significant. As well, the substitution of S350A, F376A, or E415A in the site-directed Δjhp0106 mutants resulted in impaired motility, deficient FlaA glycosylation, and lacking flagella. However, these phenotypic changes were regardless of flaA expression, implying an indefinite proteolytic degradation of FlaA occurred. CONCLUSIONS This study demonstrated that Jhp0106 (PseE) binds to FlaA mediating FlaA glycosylation and flagellar formation. Our discovery of PseE has revealed a new glycosyltransferase family responsible for flagellin glycosylation in pathogens.
Collapse
Affiliation(s)
- Kai‐Yuan Yang
- Institute of Microbiology and ImmunologySchool of Life ScienceNational Yang‐Ming UniversityTaipeiTaiwan
| | - Cheng‐Yen Kao
- Institute of Microbiology and ImmunologySchool of Life ScienceNational Yang‐Ming UniversityTaipeiTaiwan,Department of Biotechnology and Laboratory Science in MedicineSchool of Biomedical Science and EngineeringNational Yang‐Ming UniversityTaipeiTaiwan
| | - Marcia Shu‐Wei Su
- Department of Biotechnology and Laboratory Science in MedicineSchool of Biomedical Science and EngineeringNational Yang‐Ming UniversityTaipeiTaiwan
| | - Shuying Wang
- Department of Microbiology and ImmunologyCollege of MedicineNational Cheng‐Kung UniversityTainanTaiwan
| | - Yueh‐Lin Chen
- Department of Biotechnology and Laboratory Science in MedicineSchool of Biomedical Science and EngineeringNational Yang‐Ming UniversityTaipeiTaiwan
| | - Shiau‐Ting Hu
- Institute of Microbiology and ImmunologySchool of Life ScienceNational Yang‐Ming UniversityTaipeiTaiwan
| | - Jenn‐Wei Chen
- Department of Microbiology and ImmunologyCollege of MedicineNational Cheng‐Kung UniversityTainanTaiwan
| | - Ching‐Hao Teng
- Institute of Molecular MedicineCollege of MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Pei‐Jane Tsai
- Department of Medical Laboratory Science and BiotechnologyCollege of MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Jiunn‐Jong Wu
- Department of Biotechnology and Laboratory Science in MedicineSchool of Biomedical Science and EngineeringNational Yang‐Ming UniversityTaipeiTaiwan
| |
Collapse
|
16
|
Sigma 54-Regulated Transcription Is Associated with Membrane Reorganization and Type III Secretion Effectors during Conversion to Infectious Forms of Chlamydia trachomatis. mBio 2020; 11:mBio.01725-20. [PMID: 32900805 PMCID: PMC7482065 DOI: 10.1128/mbio.01725-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The factors that control the growth and infectious processes for Chlamydia are still poorly understood. This study used recently developed genetic tools to determine the regulon for one of the key transcription factors encoded by Chlamydia, sigma 54. Surrogate and computational analyses provide additional support for the hypothesis that sigma 54 plays a key role in controlling the expression of many components critical to converting and enabling the infectious capability of Chlamydia. These components include those that remodel the membrane for the extracellular environment and incorporation of an arsenal of type III secretion effectors in preparation for infecting new cells. Chlamydia bacteria are obligate intracellular organisms with a phylum-defining biphasic developmental cycle that is intrinsically linked to its ability to cause disease. The progression of the chlamydial developmental cycle is regulated by the temporal expression of genes predominantly controlled by RNA polymerase sigma (σ) factors. Sigma 54 (σ54) is one of three sigma factors encoded by Chlamydia for which the role and regulon are unknown. CtcC is part of a two-component signal transduction system that is requisite for σ54 transcriptional activation. CtcC activation of σ54 requires phosphorylation, which relieves inhibition by the CtcC regulatory domain and enables ATP hydrolysis by the ATPase domain. Prior studies with CtcC homologs in other organisms have shown that expression of the ATPase domain alone can activate σ54 transcription. Biochemical analysis of CtcC ATPase domain supported the idea of ATP hydrolysis occurring in the absence of the regulatory domain, as well as the presence of an active-site residue essential for ATPase activity (E242). Using recently developed genetic approaches in Chlamydia to induce expression of the CtcC ATPase domain, a transcriptional profile was determined that is expected to reflect the σ54 regulon. Computational evaluation revealed that the majority of the differentially expressed genes were preceded by highly conserved σ54 promoter elements. Reporter gene analyses using these putative σ54 promoters reinforced the accuracy of the model of the proposed regulon. Investigation of the gene products included in this regulon supports the idea that σ54 controls expression of genes that are critical for conversion of Chlamydia from replicative reticulate bodies into infectious elementary bodies.
Collapse
|
17
|
Lam WWL, Sun K, Zhang H, Au SWN. Crystal Structure of Flagellar Export Chaperone FliS in Complex With Flagellin and HP1076 of Helicobacter pylori. Front Microbiol 2020; 11:787. [PMID: 32508757 PMCID: PMC7248283 DOI: 10.3389/fmicb.2020.00787] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
Functional flagella formation is a widespread virulence factor that plays a critical role in survival and host colonization. Flagellar synthesis is a complex and highly coordinated process. The assembly of the axial structure beyond the cell membrane is mediated by export chaperone proteins that transport their cognate substrates to the export gate complex. The export chaperone FliS interacts with flagellin, the basic component used to construct the filament. Unlike enterobacteria, the gastric pathogen Helicobacter pylori produces two different flagellins, FlaA and FlaB, which exhibit distinct spatial localization patterns in the filament. Previously, we demonstrated a molecular interaction between FliS and an uncharacterized protein, HP1076, in H. pylori. Here, we present the crystal structure of FliS in complex with both the C-terminal D0 domain of FlaB and HP1076. Although this ternary complex reveals that FliS interacts with flagellin using a conserved binding mode demonstrated previously in Aquifex aeolicus, Bacillus subtilis, and Salmonella enterica serovar Typhimurium, the helical conformation of FlaB in this complex was different. Moreover, HP1076 and the D1 domain of flagellin share structural similarity and interact with the same binding interface on FliS. This observation was further validated through competitive pull-down assays and kinetic binding analyses. Interestingly, we did not observe any detrimental flagellation or motility phenotypes in an hp1076-null strain. Our localization studies suggest that HP1076 is a membrane-associated protein with a cellular localization independent of FliS. As HP1076 is uniquely expressed in H. pylori and related species, we propose that this protein may contribute to the divergence of the flagellar system, although its relationship with FliS remains incompletely elucidated.
Collapse
Affiliation(s)
- Wendy Wai-Ling Lam
- Center for Protein Science and Crystallography, School of Life Sciences, Faculty of Science, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kailei Sun
- Center for Protein Science and Crystallography, School of Life Sciences, Faculty of Science, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Huawei Zhang
- Center for Protein Science and Crystallography, School of Life Sciences, Faculty of Science, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Shannon Wing-Ngor Au
- Center for Protein Science and Crystallography, School of Life Sciences, Faculty of Science, Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
18
|
Sukri A, Hanafiah A, Mohamad Zin N, Kosai NR. Epidemiology and role of Helicobacter pylori virulence factors in gastric cancer carcinogenesis. APMIS 2020; 128:150-161. [PMID: 32352605 DOI: 10.1111/apm.13034] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/09/2020] [Indexed: 02/06/2023]
Abstract
Infection with Helicobacter pylori is associated with the development of gastric cancer. Although the prevalence of gastric cancer has declined throughout years due to improvement in early screening strategy, mortality due to gastric cancer has not changed. Incidence and mortality due to gastric cancer are higher in developing countries as compared to developed countries. Diagnosis and prognosis of gastric cancer are still poor with patients usually diagnosed with cancer at an advanced stage. Eradication of H. pylori is pertinent for the prevention of gastric cancer. However, the rise in antimicrobial resistance among H. pylori isolates has complicated the prevention strategy. H. pylori express multiple virulence factors for survival in the hostile acid gastric environment. The expression of oncogenic protein cytotoxin-associated gene A (CagA), vacuolating cytotoxin A (VacA), and outer inflammatory protein is essential for H. pylori to exert pathogenesis towards the host. Interestingly, <3% of H. pylori-infected subjects develop gastric cancer, suggesting a unique way of interaction between the host's immune response and H. pylori virulence factors. This article is aimed to review the epidemiology and role of H. pylori in gastric carcinogenesis. A better understanding of the interaction between H. pylori virulence factors and host is required for better gastric cancer prevention.
Collapse
Affiliation(s)
- Asif Sukri
- Programme of Biomedical Science, Faculty of Health Science, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Alfizah Hanafiah
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Noraziah Mohamad Zin
- Programme of Biomedical Science, Faculty of Health Science, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nik Ritza Kosai
- Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
19
|
Mazzantini D, Fonnesu R, Celandroni F, Calvigioni M, Vecchione A, Mrusek D, Bange G, Ghelardi E. GTP-Dependent FlhF Homodimer Supports Secretion of a Hemolysin in Bacillus cereus. Front Microbiol 2020; 11:879. [PMID: 32435240 PMCID: PMC7218170 DOI: 10.3389/fmicb.2020.00879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/15/2020] [Indexed: 01/09/2023] Open
Abstract
The multidomain (B-NG) protein FlhF, a flagellar biogenesis regulator in several bacteria, is the third paralog of the signal recognition particle (SRP)-GTPases Ffh and FtsY, which are known to drive protein-delivery to the plasma membrane. Previously, we showed that FlhF is required for Bacillus cereus pathogenicity in an insect model of infection, being essential for physiological peritrichous flagellation, for motility, and for the secretion of virulence proteins. Among these proteins, we found that the L2 component of hemolysin BL, one of the most powerful toxins B. cereus produces, was drastically reduced by the FlhF depletion. Herein, we demonstrate that B. cereus FlhF forms GTP-dependent homodimers in vivo since the replacement of residues critical for their GTP-dependent homodimerization alters this ability. The protein directly or indirectly controls flagellation by affecting flagellin-gene transcription and its overproduction leads to a hyperflagellated phenotype. On the other hand, FlhF does not affect the expression of the L2-encoding gene (hblC), but physically binds L2 when in its homodimeric form, recruiting the protein to the plasma membrane for secretion. We additionally show that FlhF overproduction increases L2 secretion and that the FlhF/L2 interaction requires the NG domain of FlhF. Our findings demonstrate the peculiar behavior of B. cereus FlhF, which is required for the correct flagellar pattern and acts as SRP-GTPase in the secretion of a bacterial toxin subunit.
Collapse
Affiliation(s)
- Diletta Mazzantini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Rossella Fonnesu
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Francesco Celandroni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Marco Calvigioni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Alessandra Vecchione
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Devid Mrusek
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, Philipps University, Marburg, Germany
| | - Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, Philipps University, Marburg, Germany
| | - Emilia Ghelardi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
20
|
Li X, Ren F, Cai G, Huang P, Chai Q, Gundogdu O, Jiao X, Huang J. Investigating the Role of FlhF Identifies Novel Interactions With Genes Involved in Flagellar Synthesis in Campylobacter jejuni. Front Microbiol 2020; 11:460. [PMID: 32265885 PMCID: PMC7105676 DOI: 10.3389/fmicb.2020.00460] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 03/04/2020] [Indexed: 12/15/2022] Open
Abstract
FlhF is a key protein required for complete flagellar synthesis, and its deletion results in the complete absence of a flagella and thus motility in Campylobacter jejuni. However, the specific mechanism still remains unknown. In this study, RNA-Seq, EMSAs, ChIP-qPCR and β-Galactosidase assays were performed to elucidate the novel interactions between FlhF and genes involved in flagellar synthesis. Results showed that FlhF has an overall influence on the transcription of flagellar genes with an flhF mutant displaying down-regulation of most flagellar related genes. FlhF can directly bind to the flgI promoter to regulate its expression, which has significant expression change in an flhF mutant. The possible binding site of FlhF to the flgI promoter was explored by continuously narrowing the flgI promoter region and performing further point mutations. Meanwhile, FlhF can directly bind to the promoters of rpoD, flgS, and fliA encoding early flagellin regulators, thereby directly or indirectly regulating the synthesis of class I, II, and III flagellar genes, respectively. Collectively, this study demonstrates that FlhF may directly regulate the transcription of flagellar genes by binding to their promoters as a transcriptional regulator, which will be helpful in understanding the mechanism of FlhF in flagellar biosynthetic and bacterial flagellation in general.
Collapse
Affiliation(s)
- Xiaofei Li
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Fangzhe Ren
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Guoqiang Cai
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou, China
| | - Pingyu Huang
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou, China
| | - Qinwen Chai
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou, China
| | - Ozan Gundogdu
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Xinan Jiao
- Joint International Research Laboratory of Agriculture and Agri-product Safety, Ministry of Education of China, Yangzhou, China
| | - Jinlin Huang
- Joint International Research Laboratory of Agriculture and Agri-product Safety, Ministry of Education of China, Yangzhou, China
| |
Collapse
|
21
|
A Polar Flagellar Transcriptional Program Mediated by Diverse Two-Component Signal Transduction Systems and Basal Flagellar Proteins Is Broadly Conserved in Polar Flagellates. mBio 2020; 11:mBio.03107-19. [PMID: 32127455 PMCID: PMC7064773 DOI: 10.1128/mbio.03107-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Relative to peritrichous bacteria, polar flagellates possess regulatory systems that order flagellar gene transcription differently and produce flagella in specific numbers only at poles. How transcriptional and flagellar biogenesis regulatory systems are interlinked to promote the correct synthesis of polar flagella in diverse species has largely been unexplored. We found evidence for many Gram-negative polar flagellates encoding two-component signal transduction systems with activity linked to the formation of flagellar type III secretion systems to enable production of flagellar rod and hook proteins at a discrete, subsequent stage during flagellar assembly. This polar flagellar transcriptional program assists, in some manner, the FlhF/FlhG flagellar biogenesis regulatory system, which forms specific flagellation patterns in polar flagellates in maintaining flagellation and motility when activity of FlhF or FlhG might be altered. Our work provides insight into the multiple regulatory processes required for polar flagellation. Bacterial flagella are rotating nanomachines required for motility. Flagellar gene expression and protein secretion are coordinated for efficient flagellar biogenesis. Polar flagellates, unlike peritrichous bacteria, commonly order flagellar rod and hook gene transcription as a separate step after production of the MS ring, C ring, and flagellar type III secretion system (fT3SS) core proteins that form a competent fT3SS. Conserved regulatory mechanisms in diverse polar flagellates to create this polar flagellar transcriptional program have not been thoroughly assimilated. Using in silico and genetic analyses and our previous findings in Campylobacter jejuni as a foundation, we observed a large subset of Gram-negative bacteria with the FlhF/FlhG regulatory system for polar flagellation to possess flagellum-associated two-component signal transduction systems (TCSs). We present data supporting a general theme in polar flagellates whereby MS ring, rotor, and fT3SS proteins contribute to a regulatory checkpoint during polar flagellar biogenesis. We demonstrate that Vibrio cholerae and Pseudomonas aeruginosa require the formation of this regulatory checkpoint for the TCSs to directly activate subsequent rod and hook gene transcription, which are hallmarks of the polar flagellar transcriptional program. By reprogramming transcription in V. cholerae to more closely follow the peritrichous flagellar transcriptional program, we discovered a link between the polar flagellar transcription program and the activity of FlhF/FlhG flagellar biogenesis regulators in which the transcriptional program allows polar flagellates to continue to produce flagella for motility when FlhF or FlhG activity may be altered. Our findings integrate flagellar transcriptional and biogenesis regulatory processes involved in polar flagellation in many species.
Collapse
|
22
|
Chu J, Liu J, Hoover TR. Phylogenetic Distribution, Ultrastructure, and Function of Bacterial Flagellar Sheaths. Biomolecules 2020; 10:biom10030363. [PMID: 32120823 PMCID: PMC7175336 DOI: 10.3390/biom10030363] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
A number of Gram-negative bacteria have a membrane surrounding their flagella, referred to as the flagellar sheath, which is continuous with the outer membrane. The flagellar sheath was initially described in Vibrio metschnikovii in the early 1950s as an extension of the outer cell wall layer that completely surrounded the flagellar filament. Subsequent studies identified other bacteria that possess flagellar sheaths, most of which are restricted to a few genera of the phylum Proteobacteria. Biochemical analysis of the flagellar sheaths from a few bacterial species revealed the presence of lipopolysaccharide, phospholipids, and outer membrane proteins in the sheath. Some proteins localize preferentially to the flagellar sheath, indicating mechanisms exist for protein partitioning to the sheath. Recent cryo-electron tomography studies have yielded high resolution images of the flagellar sheath and other structures closely associated with the sheath, which has generated insights and new hypotheses for how the flagellar sheath is synthesized. Various functions have been proposed for the flagellar sheath, including preventing disassociation of the flagellin subunits in the presence of gastric acid, avoiding activation of the host innate immune response by flagellin, activating the host immune response, adherence to host cells, and protecting the bacterium from bacteriophages.
Collapse
Affiliation(s)
- Joshua Chu
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA;
| | - Jun Liu
- Microbial Sciences Institute, Department of Microbial Pathogenesis, Yale University, West Haven, CT 06516, USA;
| | - Timothy R. Hoover
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
- Correspondence: ; Tel.: +1-706-542-2675
| |
Collapse
|
23
|
Alvarado A, Behrens W, Josenhans C. Protein Activity Sensing in Bacteria in Regulating Metabolism and Motility. Front Microbiol 2020; 10:3055. [PMID: 32010106 PMCID: PMC6978683 DOI: 10.3389/fmicb.2019.03055] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/18/2019] [Indexed: 01/24/2023] Open
Abstract
Bacteria have evolved complex sensing and signaling systems to react to their changing environments, most of which are present in all domains of life. Canonical bacterial sensing and signaling modules, such as membrane-bound ligand-binding receptors and kinases, are very well described. However, there are distinct sensing mechanisms in bacteria that are less studied. For instance, the sensing of internal or external cues can also be mediated by changes in protein conformation, which can either be implicated in enzymatic reactions, transport channel formation or other important cellular functions. These activities can then feed into pathways of characterized kinases, which translocate the information to the DNA or other response units. This type of bacterial sensory activity has previously been termed protein activity sensing. In this review, we highlight the recent findings about this non-canonical sensory mechanism, as well as its involvement in metabolic functions and bacterial motility. Additionally, we explore some of the specific proteins and protein-protein interactions that mediate protein activity sensing and their downstream effects. The complex sensory activities covered in this review are important for bacterial navigation and gene regulation in their dynamic environment, be it host-associated, in microbial communities or free-living.
Collapse
Affiliation(s)
- Alejandra Alvarado
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, Munich, Germany.,German Center for Infection Research (DZIF) Partner Site Munich, Munich, Germany
| | - Wiebke Behrens
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hanover, Germany
| | - Christine Josenhans
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, Munich, Germany.,German Center for Infection Research (DZIF) Partner Site Munich, Munich, Germany.,Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
24
|
Xu H, He J, Liu J, Motaleb MA. BB0326 is responsible for the formation of periplasmic flagellar collar and assembly of the stator complex in Borrelia burgdorferi. Mol Microbiol 2019; 113:418-429. [PMID: 31743518 DOI: 10.1111/mmi.14428] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 12/19/2022]
Abstract
Borrelia burgdorferi is a highly motile spirochete due to its periplasmic flagella. Unlike flagella of other bacteria, spirochetes' periplasmic flagella possess a complex structure called the collar, about which little is known in terms of function and composition. Using various approaches, we have identified a novel protein, BB0326, as a key component of the collar. We show that a peripheral portion of the collar is diminished in the Δbb0326 mutant and restored in the complemented bb0326+ cells, leading us to rename BB0326 as periplasmic flagellar collar protein A or FlcA. The ΔflcA mutant cells produced fewer, abnormally tilted and shorter flagella, as well as diminished stators, suggesting that FlcA is crucial for flagellar and stator assemblies. We provide further evidence that FlcA interacts with the stator and that this collar-stator interaction is essential for the high torque needed to power the spirochete's periplasmic flagellar motors. These observations suggest that the collar provides various important functions to the spirochete's periplasmic flagellar assembly and rotation.
Collapse
Affiliation(s)
- Hui Xu
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Jun He
- Department of Microbial Pathogenesis, Microbial Sciences Institute, Yale School of Medicine, New Haven, CT, USA
| | - Jun Liu
- Department of Microbial Pathogenesis, Microbial Sciences Institute, Yale School of Medicine, New Haven, CT, USA
| | - Md A Motaleb
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| |
Collapse
|
25
|
Loss of a Cardiolipin Synthase in Helicobacter pylori G27 Blocks Flagellum Assembly. J Bacteriol 2019; 201:JB.00372-19. [PMID: 31427391 DOI: 10.1128/jb.00372-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/28/2019] [Indexed: 12/30/2022] Open
Abstract
Helicobacter pylori uses a cluster of polar, sheathed flagella for motility, which it requires for colonization of the gastric epithelium in humans. As part of a study to identify factors that contribute to localization of the flagella to the cell pole, we disrupted a gene encoding a cardiolipin synthase (clsC) in H. pylori strains G27 and B128. Flagellum biosynthesis was abolished in the H. pylori G27 clsC mutant but not in the B128 clsC mutant. Transcriptome sequencing analysis showed that flagellar genes encoding proteins needed early in flagellum assembly were expressed at wild-type levels in the G27 clsC mutant. Examination of the G27 clsC mutant by cryo-electron tomography indicated the mutant assembled nascent flagella that contained the MS ring, C ring, flagellar protein export apparatus, and proximal rod. Motile variants of the G27 clsC mutant were isolated after allelic exchange mutagenesis using genomic DNA from the B128 clsC mutant as the donor. Genome resequencing of seven motile G27 clsC recipients revealed that each isolate contained the flgI (encodes the P-ring protein) allele from B128. Replacing the flgI allele in the G27 clsC mutant with the B128 flgI allele rescued flagellum biosynthesis. We postulate that H. pylori G27 FlgI fails to form the P ring when cardiolipin levels in the cell envelope are low, which blocks flagellum assembly at this point. In contrast, H. pylori B128 FlgI can form the P ring when cardiolipin levels are low and allows for the biosynthesis of mature flagella.IMPORTANCE H. pylori colonizes the epithelial layer of the human stomach, where it can cause a variety of diseases, including chronic gastritis, peptic ulcer disease, and gastric cancer. To colonize the stomach, H. pylori must penetrate the viscous mucous layer lining the stomach, which it accomplishes using its flagella. The significance of our research is identifying factors that affect the biosynthesis and assembly of the H. pylori flagellum, which will contribute to our understanding of motility in H. pylori, as well as other bacterial pathogens that use their flagella for host colonization.
Collapse
|
26
|
Tsai J, Yeh Y, Lin L, Sun Y, Hsiao C. Crystal structure of the flagellin protein FlaG from Helicobacter pylori. J CHIN CHEM SOC-TAIP 2019. [DOI: 10.1002/jccs.201900162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jia‐Yin Tsai
- Department of Life Science and Institute of Bioinformatics and Structural BiologyNational Tsing Hua University Hsinchu Taiwan
| | - Yi‐Hung Yeh
- Institute of Molecular BiologyAcademia Sinica Taipei Taiwan
| | - Lun‐Der Lin
- Department of Life Science and Institute of Bioinformatics and Structural BiologyNational Tsing Hua University Hsinchu Taiwan
| | - Yuh‐Ju Sun
- Department of Life Science and Institute of Bioinformatics and Structural BiologyNational Tsing Hua University Hsinchu Taiwan
| | | |
Collapse
|
27
|
Navarrete B, Leal-Morales A, Serrano-Ron L, Sarrió M, Jiménez-Fernández A, Jiménez-Díaz L, López-Sánchez A, Govantes F. Transcriptional organization, regulation and functional analysis of flhF and fleN in Pseudomonas putida. PLoS One 2019; 14:e0214166. [PMID: 30889223 PMCID: PMC6424431 DOI: 10.1371/journal.pone.0214166] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/07/2019] [Indexed: 11/25/2022] Open
Abstract
The Pseudomonas putida flhA-flhF-fleN-fliA cluster encodes a component of the flagellar export gate and three regulatory elements potentially involved in flagellar biogenesis and other functions. Here we show that these four genes form an operon, whose transcription is driven from the upstream PflhA promoter. A second promoter, PflhF, provides additional transcription of the three distal genes. PflhA and PflhF are σN-dependent, activated by the flagellar regulator FleQ, and negatively regulated by FleN. Motility, surface adhesion and colonization defects of a transposon insertion mutant in flhF revealed transcriptional polarity on fleN and fliA, as the former was required for strong surface adhesion and biofilm formation, and the latter was required for flagellar synthesis. On the other hand, FlhF and FleN were necessary to attain proper flagellar location and number for a fully functional flagellar complement. FleN, along with FleQ and the second messenger c-di-GMP differentially regulated transcription of lapA and the bcs operon, encoding a large adhesion protein and cellulose synthase. FleQ positively regulated the PlapA promoter and activation was antagonized by FleN and c-di-GMP. PbcsD was negatively regulated by FleQ and FleN, and repression was antagonized by c-di-GMP. FleN promoted FleQ binding to both PlapA and PbcsD in vitro, while c-di-GMP antagonized interaction with PbcsD and stimulated interaction with PlapA. A single FleQ binding site in PlapA was critical to activation in vivo. Our results suggest that FleQ, FleN and c-di-GMP cooperate to coordinate the regulation of flagellar motility and biofilm development.
Collapse
Affiliation(s)
- Blanca Navarrete
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - Antonio Leal-Morales
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - Laura Serrano-Ron
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - Marina Sarrió
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - Alicia Jiménez-Fernández
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - Lorena Jiménez-Díaz
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - Aroa López-Sánchez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - Fernando Govantes
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
- * E-mail:
| |
Collapse
|
28
|
Bifunctional Enzyme SpoT Is Involved in Biofilm Formation of Helicobacter pylori with Multidrug Resistance by Upregulating Efflux Pump Hp1174 ( gluP). Antimicrob Agents Chemother 2018; 62:AAC.00957-18. [PMID: 30181372 PMCID: PMC6201075 DOI: 10.1128/aac.00957-18] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/22/2018] [Indexed: 02/06/2023] Open
Abstract
The drug resistance of Helicobacter pylori is gradually becoming a serious problem. Biofilm formation is an important factor that leads to multidrug resistance (MDR) in bacteria. The drug resistance of Helicobacter pylori is gradually becoming a serious problem. Biofilm formation is an important factor that leads to multidrug resistance (MDR) in bacteria. The ability of H. pylori to form biofilms on the gastric mucosa is known. However, there are few studies on the regulatory mechanisms of H. pylori biofilm formation and multidrug resistance. Guanosine 3′-diphosphate 5′-triphosphate and guanosine 3′,5′-bispyrophosphate [(p)ppGpp] are global regulatory factors and are synthesized in H. pylori by the bifunctional enzyme SpoT. It has been reported that (p)ppGpp is involved in the biofilm formation and multidrug resistance of various bacteria. In this study, we found that SpoT also plays an important role in H. pylori biofilm formation and multidrug resistance. Therefore, it was necessary to carry out some further studies regarding its regulatory mechanism. Considering that efflux pumps are of great importance in the biofilm formation and multidrug resistance of bacteria, we tried to determine whether efflux pumps controlled by SpoT participate in these activities. We found that Hp1174 (glucose/galactose transporter [gluP]), an efflux pump of the major facilitator superfamily (MFS), is highly expressed in biofilm-forming and multidrug-resistant (MDR) H. pylori strains and is upregulated by SpoT. Through further research, we determined that gluP is involved in H. pylori biofilm formation and multidrug resistance. Furthermore, the average expression level of gluP in the clinical MDR strains (C-MDR) was considerably higher than that in the clinical drug-sensitive strains (C-DSS). Taken together, our results revealed a novel molecular mechanism of H. pylori resistance to multidrug exposure.
Collapse
|
29
|
Ren F, Lei T, Song Z, Yu T, Li Q, Huang J, Jiao XA. Could FlhF be a key element that controls Campylobacter jejuni flagella biosynthesis in the initial assembly stage? Microbiol Res 2017; 207:240-248. [PMID: 29458860 DOI: 10.1016/j.micres.2017.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/09/2017] [Accepted: 12/16/2017] [Indexed: 01/09/2023]
Abstract
The disordered arrangement of flagella biosynthetic genes, combined with a simplified regulatory mechanism, has made elucidating the process of Campylobacter jejuni flagellation difficult. FlhF is a recently identified element that controls the assembly of the flagella, although its function mechanism and regulatory preference are not well defined at present. In this study, we found that inactivation of FlhF caused the transcription of most flagella genes down-regulated. The importance of FlhF was systematically evaluated by analyzing changes in the transcription profiles between wild-type and flhF mutant strains, which showed that FlhF affects late flagella genes obviously. FlhF is constitutively expressed during C. jejuni growth, demonstrating that it is a class I flagella element that participates in early flagella assembly. In addition, the early flagella component FlhB was not localized to the cell pole in the flhF mutant. Thus, flagella assembly was impeded at the initial stage. We propose a model in which FlhF helps target the early flagella components to the cell pole, functioning prior to the formation of the flagella export apparatus, and thus places FlhF at the top of the flagella regulatory cascade hierarchy. Inactivation of FlhF impeded flagella assembly at the initial stage and decreased transcription of flagella genes through a feed-back control mechanism, leading to FlhF having a significant influence on the expression of late flagella components and resulting in the aflagellate C. jejuni phenotype. Our present study has uncovered how FlhF influences C. jejuni flagella biosynthesis, which will be helpful in understanding the C. jejuni flagella biosynthetic pathway and bacterial flagellation in general.
Collapse
Affiliation(s)
- Fangzhe Ren
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Tianyao Lei
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou, China
| | - Zhaojun Song
- Joint International Research Laboratory of Agriculture and Agri-product Safety, Ministry of Education of China, Yangzhou, China
| | - Ting Yu
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou, China
| | - Qiuchun Li
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-product Safety, Ministry of Education of China, Yangzhou, China
| | - Jinlin Huang
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-product Safety, Ministry of Education of China, Yangzhou, China.
| | - Xin-An Jiao
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-product Safety, Ministry of Education of China, Yangzhou, China.
| |
Collapse
|
30
|
Loconte V, Kekez I, Matković-Čalogović D, Zanotti G. Structural characterization of FlgE2 protein fromHelicobacter pylorihook. FEBS J 2017; 284:4328-4342. [DOI: 10.1111/febs.14312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/28/2017] [Accepted: 10/25/2017] [Indexed: 01/01/2023]
Affiliation(s)
| | - Ivana Kekez
- Divison of General and Inorganic Chemistry; Department of Chemistry; Faculty of Science; University of Zagreb; Croatia
| | - Dubravka Matković-Čalogović
- Divison of General and Inorganic Chemistry; Department of Chemistry; Faculty of Science; University of Zagreb; Croatia
| | | |
Collapse
|
31
|
Lee AY, Kao CY, Wang YK, Lin SY, Lai TY, Sheu BS, Lo CJ, Wu JJ. Inactivation of ferric uptake regulator (Fur) attenuates Helicobacter pylori J99 motility by disturbing the flagellar motor switch and autoinducer-2 production. Helicobacter 2017; 22. [PMID: 28402041 DOI: 10.1111/hel.12388] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Flagellar motility of Helicobacter pylori has been shown to be important for the bacteria to establish initial colonization. The ferric uptake regulator (Fur) is a global regulator that has been identified in H. pylori which is involved in the processes of iron uptake and establishing colonization. However, the role of Fur in H. pylori motility is still unclear. MATERIALS AND METHODS Motility of the wild-type, fur mutant, and fur revertant J99 were determined by a soft-agar motility assay and direct video observation. The bacterial shape and flagellar structure were evaluated by transmission electron microscopy. Single bacterial motility and flagellar switching were observed by phase-contrast microscopy. Autoinducer-2 (AI-2) production in bacterial culture supernatant was analyzed by a bioluminescence assay. RESULTS The fur mutant showed impaired motility in the soft-agar assay compared with the wild-type J99 and fur revertant. The numbers and lengths of flagellar filaments on the fur mutant cells were similar to those of the wild-type and revertant cells. Phenotypic characterization showed similar swimming speed but reduction in switching rate in the fur mutant. The AI-2 production of the fur mutant was dramatically reduced compared with wild-type J99 in log-phase culture medium. CONCLUSIONS These results indicate that Fur positively modulates H. pylori J99 motility through interfering with bacterial flagellar switching.
Collapse
Affiliation(s)
- Ai-Yun Lee
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Yen Kao
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang Ming University, Taipei, Taiwan
| | - Yao-Kuan Wang
- Department of Physics and Graduate Institute of Biophysics, National Central University, Jhongli, Taiwan
| | - Ssu-Yuan Lin
- Department of Physics and Graduate Institute of Biophysics, National Central University, Jhongli, Taiwan
| | - Tze-Ying Lai
- Department of Physics and Graduate Institute of Biophysics, National Central University, Jhongli, Taiwan
| | - Bor-Shyang Sheu
- Department of Internal Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Internal Medicine, Tainan Hospital, Ministry of Health & Welfare, Taiwan
| | - Chien-Jung Lo
- Department of Physics and Graduate Institute of Biophysics, National Central University, Jhongli, Taiwan
| | - Jiunn-Jong Wu
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang Ming University, Taipei, Taiwan
| |
Collapse
|
32
|
Abstract
BACKGROUND Helicobacter pylori is well adapted to colonize the epithelial surface of the human gastric mucosa and can cause persistent infections. In order to infect the gastric mucosa, it has to survive in the gastric acidic pH. This organism has well developed mechanisms to neutralize the effects of acidic pH. OBJECTIVE This review article was designed to summarize the various functional and molecular aspects by which the bacterium can combat and survive the gastric acidic pH in order to establish the persistent infections. METHODS We used the keywords (acid acclimation, gastric acidic environment, H. pylori and survival) in combination or alone for pubmed search of recent scientific literatures. One hundred and forty one papers published between 1989 and 2016 were sorted out. The articles published with only abstracts, other than in English language, case reports and reviews were excluded. RESULTS Many literatures describing the role of several factors in acid survival were found. Recently, the role of several other factors has been claimed to participate in acid survival. CONCLUSION In conclusion, this organism has well characterized mechanisms for acid survival.
Collapse
Affiliation(s)
- Shamshul Ansari
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan,Department of Medicine-Gastroenterology, Baylor College of Medicine, Houston, Texas, USA,Corresponding author: Yoshio Yamaoka, MD, PhD, Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu-City, Oita 879-5593, Japan, Tel: +81-97-586-5740; Fax: +81-97-586-5749,
| |
Collapse
|
33
|
Abstract
Helicobacter pylori infection causes chronic active gastritis that after many years of infection can develop into peptic ulceration or gastric adenocarcinoma. The bacterium is highly adapted to surviving in the gastric environment and a key adaptation is the virulence factor urease. Although widely postulated, the requirement of urease expression for persistent infection has not been elucidated experimentally as conventional urease knockout mutants are incapable of colonization. To overcome this constraint, conditional H. pylori urease mutants were constructed by adapting the tetracycline inducible expression system that enabled changing the urease phenotype of the bacteria during established infection. Through tight regulation we demonstrate that urease expression is not only required for establishing initial colonization but also for maintaining chronic infection. Furthermore, successful isolation of tet-escape mutants from a late infection time point revealed the strong selective pressure on this gastric pathogen to continuously express urease in order to maintain chronic infection. In addition to mutations in the conditional gene expression system, escape mutants were found to harbor changes in other genes including the alternative RNA polymerase sigma factor, fliA, highlighting the genetic plasticity of H. pylori to adapt to a changing niche. The tet-system described here opens up opportunities to studying genes involved in the chronic stage of H. pylori infection to gain insight into bacterial mechanisms promoting immune escape and life-long infection. Furthermore, this genetic tool also allows for a new avenue of inquiry into understanding the importance of various virulence determinants in a changing biological environment when the bacterium is put under duress. Helicobacter pylori is a bacterial pathogen that chronically infects half the global population and is a major contributor to the development of peptic ulcers and stomach cancer. H. pylori has evolved to survive in the stomach and one important adaptation is the enzyme urease. The bacteria cannot establish an infection in the host without this enzyme, and although widely postulated, the requirement of urease for chronic infection of the host has not been tested experimentally as conventional urease mutants are incapable of colonization. To overcome this constraint, a genetic system was introduced that allowed for the making of H. pylori strains in which urease expression could be turned off after the bacteria have colonised the stomach. We show for the first time that this enzyme is not only important for initial colonization but that it is also very important for maintaining chronic infection. We also show that if urease is turned off, the bacterium can mutate several different genes in order to restore urease expression. The genetic approach described here opens up opportunities to studying genes involved in the chronic stage of H. pylori infection to gain insight into how the bacterium is able to avoid clearance by the immune system and how it is able to adapt to changing biological environments.
Collapse
|
34
|
Inaba S, Nishigaki T, Takekawa N, Kojima S, Homma M. Localization and domain characterization of the SflA regulator of flagellar formation in Vibrio alginolyticus. Genes Cells 2017; 22:619-627. [DOI: 10.1111/gtc.12501] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/07/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Satoshi Inaba
- Division of Biological Science, Graduate School of Science; Nagoya University; Chikusa-Ku Nagoya 464-8602 Japan
| | - Takehiko Nishigaki
- Division of Biological Science, Graduate School of Science; Nagoya University; Chikusa-Ku Nagoya 464-8602 Japan
| | - Norihiro Takekawa
- Division of Biological Science, Graduate School of Science; Nagoya University; Chikusa-Ku Nagoya 464-8602 Japan
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science; Nagoya University; Chikusa-Ku Nagoya 464-8602 Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science; Nagoya University; Chikusa-Ku Nagoya 464-8602 Japan
| |
Collapse
|
35
|
De la Cruz MA, Ares MA, von Bargen K, Panunzi LG, Martínez-Cruz J, Valdez-Salazar HA, Jiménez-Galicia C, Torres J. Gene Expression Profiling of Transcription Factors of Helicobacter pylori under Different Environmental Conditions. Front Microbiol 2017; 8:615. [PMID: 28443084 PMCID: PMC5385360 DOI: 10.3389/fmicb.2017.00615] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/27/2017] [Indexed: 12/22/2022] Open
Abstract
Helicobacter pylori is a Gram-negative bacterium that colonizes the human gastric mucosa and causes peptic ulcers and gastric carcinoma. H. pylori strain 26695 has a small genome (1.67 Mb), which codes for few known transcriptional regulators that control bacterial metabolism and virulence. We analyzed by qRT-PCR the expression of 16 transcriptional regulators in H. pylori 26695, including the three sigma factors under different environmental conditions. When bacteria were exposed to acidic pH, urea, nickel, or iron, the sigma factors were differentially expressed with a particularly strong induction of fliA. The regulatory genes hrcA, hup, and crdR were highly induced in the presence of urea, nickel, and iron. In terms of biofilm formation fliA, flgR, hp1021, fur, nikR, and crdR were induced in sessile bacteria. Transcriptional expression levels of rpoD, flgR, hspR, hp1043, and cheY were increased in contact with AGS epithelial cells. Kanamycin, chloramphenicol, and tetracycline increased or decreased expression of regulatory genes, showing that these antibiotics affect the transcription of H. pylori. Our data indicate that environmental cues which may be present in the human stomach modulate H. pylori transcription.
Collapse
Affiliation(s)
- Miguel A De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatria, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro SocialMexico City, Mexico
| | - Miguel A Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatria, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro SocialMexico City, Mexico
| | | | - Leonardo G Panunzi
- CNRS UMR7280, Inserm, U1104, Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2Marseille, France
| | - Jessica Martínez-Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatria, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro SocialMexico City, Mexico
| | - Hilda A Valdez-Salazar
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatria, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro SocialMexico City, Mexico
| | - César Jiménez-Galicia
- Laboratorio Clínico, Unidad Médica de Alta Especialidad, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro SocialMexico City, Mexico
| | - Javier Torres
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatria, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro SocialMexico City, Mexico
| |
Collapse
|
36
|
Kao CY, Chen JW, Wang S, Sheu BS, Wu JJ. The Helicobacter pylori J99 jhp0106 Gene, under the Control of the CsrA/RpoN Regulatory System, Modulates Flagella Formation and Motility. Front Microbiol 2017; 8:483. [PMID: 28400753 PMCID: PMC5368276 DOI: 10.3389/fmicb.2017.00483] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/08/2017] [Indexed: 12/11/2022] Open
Abstract
CsrA has been shown to positively control the expression of flagella-related genes, including flaA and flaB, through regulating expression of an alternative sigma factor RpoN in Helicobacter pylori J99. Here, we aimed to characterize the CsrA regulatory system by comparative transcriptomic analysis carried out with RNA-seq on strain J99 and a csrA mutant. Fifty-three genes in the csrA mutant were found to be differentially expressed compared with the wild-type. Among CsrA-regulated genes, jhp0106, with unclear function, was found located downstream of flaB in the J99 genome. We hypothesized that flaB-jhp0106 is in an operon under the control of RpoN binding to the flaB promoter. The RT-qPCR results showed the expression of jhp0106 was decreased 76 and 92% in the csrA and rpoN mutants, respectively, compared to the wild-type. Moreover, mutations of the RpoN binding site in the flaB promoter region resulted in decreased expression of flaB and jhp0106 and deficient motility. Three-dimensional structure modeling results suggested that Jhp0106 was a glycosyltransferase. The role of jhp0106 in H. pylori was further investigated by constructing the jhp0106 mutant and revertant strains. A soft-agar motility assay and transmission electron microscope were used to determine the motility and flagellar structure of examined strains, and the results showed the loss of motility and flagellar structure in jhp0106 mutant J99. In conclusion, we found jhp0106, under the control of the CsrA/RpoN regulatory system, plays a critical role in H. pylori flagella formation.
Collapse
Affiliation(s)
- Cheng-Yen Kao
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang Ming University Taipei, Taiwan
| | - Jenn-Wei Chen
- Center of Infectious Disease and Signaling Research, National Cheng Kung UniversityTainan, Taiwan; Department of Microbiology and Immunology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Shuying Wang
- Center of Infectious Disease and Signaling Research, National Cheng Kung UniversityTainan, Taiwan; Department of Microbiology and Immunology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Bor-Shyang Sheu
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung UniversityTainan, Taiwan; Department of Internal Medicine, Tainan Hospital, Ministry of Health & WelfareTainan, Taiwan
| | - Jiunn-Jong Wu
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang Ming University Taipei, Taiwan
| |
Collapse
|
37
|
Insight into the essential role of the Helicobacter pylori HP1043 orphan response regulator: genome-wide identification and characterization of the DNA-binding sites. Sci Rep 2017; 7:41063. [PMID: 28112213 PMCID: PMC5253667 DOI: 10.1038/srep41063] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/14/2016] [Indexed: 12/26/2022] Open
Abstract
Many bacterial regulatory genes appear to be dispensable, as they can be deleted from the genome without loss of bacterial functionalities. In Helicobacter pylori, the hp1043 gene, also known as hsrA, is one of the transcriptional regulator that is essential for cell viability. This gene could not be deleted, nor the amount of protein modulated, supporting the hypothesis that HP1043 could be involved in the regulation of crucial cellular processes. Even though detailed structural data are available for the HP1043 protein, its targets are still ill-defined. Using Chromatin Immunoprecipitation-sequencing (ChIP-seq), one of the most powerful approaches to characterize protein-DNA interactions in vivo, we were able to identify genome-wide several new HP1043 binding sites. Moreover, in vitro DNA binding assays enabled precise mapping of the HP1043 binding sites on the new targets, revealing the presence of a conserved nucleotide sequence motif. Intriguingly, a significant fraction of the newly identified binding sites overlaps promoter regions controlling the expression of genes involved in translation. Accordingly, when protein translation was blocked, a significant induction of almost all HP1043 target genes was detected. These observations prompted us to propose HP1043 as a key regulator in H. pylori, likely involved in sensing and in coordinating the response to environmental conditions that provoke an arrest of protein synthesis. The essential role of HP1043 in coordinating central cellular processes is discussed.
Collapse
|
38
|
Behrens W, Schweinitzer T, McMurry JL, Loewen PC, Buettner FFR, Menz S, Josenhans C. Localisation and protein-protein interactions of the Helicobacter pylori taxis sensor TlpD and their connection to metabolic functions. Sci Rep 2016; 6:23582. [PMID: 27045738 PMCID: PMC4820699 DOI: 10.1038/srep23582] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/09/2016] [Indexed: 12/24/2022] Open
Abstract
The Helicobacter pylori energy sensor TlpD determines tactic behaviour under low energy conditions and is important in vivo. We explored protein-protein interactions of TlpD and their impact on TlpD localisation and function. Pull-down of tagged TlpD identified protein interaction partners of TlpD, which included the chemotaxis histidine kinase CheAY2, the central metabolic enzyme aconitase (AcnB) and the detoxifying enzyme catalase (KatA). We confirmed that KatA and AcnB physically interact with TlpD. While the TlpD-dependent behavioural response appeared not influenced in the interactor mutants katA and acnB in steady-state behavioural assays, acetone carboxylase subunit (acxC) mutant behaviour was altered. TlpD was localised in a bipolar subcellular pattern in media of high energy. We observed a significant change in TlpD localisation towards the cell body in cheAY2-, catalase- or aconitase-deficient bacteria or in bacteria incubated under low energy conditions, including oxidative stress or respiratory inhibition. Inactivation of tlpD resulted in an increased sensitivity to iron limitation and oxidative stress and influenced the H. pylori transcriptome. Oxidative stress, iron limitation and overexpressing the iron-sulfur repair system nifSU altered TlpD-dependent behaviour. We propose that TlpD localisation is instructed by metabolic activity and protein interactions, and its sensory activity is linked to iron-sulfur cluster integrity.
Collapse
Affiliation(s)
- Wiebke Behrens
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Tobias Schweinitzer
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Jonathan L McMurry
- Department of Molecular &Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Peter C Loewen
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Falk F R Buettner
- Institute for Cellular Chemistry, Hannover Medical School, Hannover, Germany
| | - Sarah Menz
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Christine Josenhans
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany.,German Center of Infection Research, partner site Hannover-Braunschweig, Germany
| |
Collapse
|
39
|
Kao CY, Sheu BS, Wu JJ. Helicobacter pylori infection: An overview of bacterial virulence factors and pathogenesis. Biomed J 2016; 39:14-23. [PMID: 27105595 PMCID: PMC6138426 DOI: 10.1016/j.bj.2015.06.002] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/08/2015] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori pathogenesis and disease outcomes are mediated by a complex interplay between bacterial virulence factors, host, and environmental factors. After H. pylori enters the host stomach, four steps are critical for bacteria to establish successful colonization, persistent infection, and disease pathogenesis: (1) Survival in the acidic stomach; (2) movement toward epithelium cells by flagella-mediated motility; (3) attachment to host cells by adhesins/receptors interaction; (4) causing tissue damage by toxin release. Over the past 20 years, the understanding of H. pylori pathogenesis has been improved by studies focusing on the host and bacterial factors through epidemiology researches and molecular mechanism investigations. These include studies identifying the roles of novel virulence factors and their association with different disease outcomes, especially the bacterial adhesins, cag pathogenicity island, and vacuolating cytotoxin. Recently, the development of large-scale screening methods, including proteomic, and transcriptomic tools, has been used to determine the complex gene regulatory networks in H. pylori. In addition, a more available complete genomic database of H. pylori strains isolated from patients with different gastrointestinal diseases worldwide is helpful to characterize this bacterium. This review highlights the key findings of H. pylori virulence factors reported over the past 20 years.
Collapse
Affiliation(s)
- Cheng-Yen Kao
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bor-Shyang Sheu
- Department of Internal Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jiunn-Jong Wu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan; Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
40
|
Orillard E, Tan M. Functional analysis of three topoisomerases that regulate DNA supercoiling levels in Chlamydia. Mol Microbiol 2015; 99:484-96. [PMID: 26447825 DOI: 10.1111/mmi.13241] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2015] [Indexed: 02/01/2023]
Abstract
Chlamydia is a medically important bacterium that infects eukaryotic cells. Temporal expression of chlamydial genes during the intracellular infection is proposed to be regulated by changes in DNA supercoiling levels. To understand how chlamydial supercoiling levels are regulated, we purified and analyzed three putative Chlamydia trachomatis topoisomerases. As predicted by sequence homology, CT189/190 are the two subunits of DNA gyrase, whereas CT643 is a topoisomerase I. CT660/661 have been predicted to form a second DNA gyrase, but the reconstitute holoenzyme decatenated and relaxed DNA, indicating that the proteins are subunits of topoisomerase IV. Promoter analysis showed that each topoisomerase is transcribed from its own operon by the major chlamydial RNA polymerase. Surprisingly, all three topoisomerase promoters had higher activity from a more supercoiled DNA template. This supercoiling-responsivesness is consistent with negative feedback control of topoisomerase I and topoisomerase IV expression, which is typical of other bacteria. However, activation of the chlamydial gyrase promoter by increased supercoiling is unorthodox compared with the relaxation-induced transcription of gyrase in other bacteria. We present a model in which supercoiling levels during the intracellular chlamydial developmental cycle are regulated by unusual positive feedback control of the gyrase promoter and the temporal expression of three topoisomerases.
Collapse
Affiliation(s)
- Emilie Orillard
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA, USA
| | - Ming Tan
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA, USA.,Department of Medicine, University of California, Irvine, CA, USA
| |
Collapse
|
41
|
Gulbronson CJ, Ribardo DA, Balaban M, Knauer C, Bange G, Hendrixson DR. FlhG employs diverse intrinsic domains and influences FlhF GTPase activity to numerically regulate polar flagellar biogenesis in Campylobacter jejuni. Mol Microbiol 2015; 99:291-306. [PMID: 26411371 DOI: 10.1111/mmi.13231] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2015] [Indexed: 11/30/2022]
Abstract
Flagellation in polar flagellates is one of the rare biosynthetic processes known to be numerically regulated in bacteria. Polar flagellates must spatially and numerically regulate flagellar biogenesis to create flagellation patterns for each species that are ideal for motility. FlhG ATPases numerically regulate polar flagellar biogenesis, yet FlhG orthologs are diverse in motif composition. We discovered that Campylobacter jejuni FlhG is at the center of a multipartite mechanism that likely influences a flagellar biosynthetic step to control flagellar number for amphitrichous flagellation, rather than suppressing activators of flagellar gene transcription as in Vibrio and Pseudomonas species. Unlike other FlhG orthologs, the FlhG ATPase domain was not required to regulate flagellar number in C. jejuni. Instead, two regions of C. jejuni FlhG that are absent or significantly altered in FlhG orthologs are involved in numerical regulation of flagellar biogenesis. Additionally, we found that C. jejuni FlhG influences FlhF GTPase activity, which may mechanistically contribute to flagellar number regulation. Our work suggests that FlhG ATPases divergently evolved in each polarly flagellated species to employ different intrinsic domains and extrinsic effectors to ultimately mediate a common output - precise numerical control of polar flagellar biogenesis required to create species-specific flagellation patterns optimal for motility.
Collapse
Affiliation(s)
- Connor J Gulbronson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Deborah A Ribardo
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Murat Balaban
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Carina Knauer
- LOEWE Center for Synthetic Microbiology (Synmikro) and Department of Chemistry, Philipps University Marburg, 35403, Marburg, Germany
| | - Gert Bange
- LOEWE Center for Synthetic Microbiology (Synmikro) and Department of Chemistry, Philipps University Marburg, 35403, Marburg, Germany
| | - David R Hendrixson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
42
|
Hung CL, Cheng HH, Hsieh WC, Tsai ZTY, Tsai HK, Chu CH, Hsieh WP, Chen YF, Tsou Y, Lai CH, Wang WC. The CrdRS two-component system in Helicobacter pylori responds to nitrosative stress. Mol Microbiol 2015; 97:1128-41. [PMID: 26082024 DOI: 10.1111/mmi.13089] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2015] [Indexed: 11/28/2022]
Abstract
Helicobacter pylori inhabits the gastric mucosa where it senses and responds to various stresses via a two-component systems (TCSs) that enable its persistent colonization. The aim of this study was to investigate whether any of the three paired TCSs (ArsRS, FleRS and CrdRS) in H. pylori respond to nitrosative stress. The results showed that the expression of crdS was significantly increased upon exposure to nitric oxide (NO). crdS-knockout (ΔcrdS) and crdR/crdS-knockout (ΔcrdRS) H. pylori, but not arsS-knockout (ΔarsS) or fleS-knockout (ΔfleS) H. pylori, showed a significant loss of viability upon exposure to NO compared with wild-type strain. Knockin crdS (ΔcrdS-in) significantly restored viability in the presence of NO. Global transcriptional profiling analysis of wild-type and ΔcrdS H. pylori in the presence or absence of NO showed that 101 genes were differentially expressed, including copper resistance determinant A (crdA), transport, binding and envelope proteins. The CrdR binding motifs were investigated by competitive electrophoretic mobility shift assay, which revealed that the two AC-rich regions in the crdA promoter region are required for binding. These results demonstrate that CrdR-crdA interaction enables H. pylori to survive under nitrosative stress.
Collapse
Affiliation(s)
- Chiu-Lien Hung
- Department of Biochemistry and Molecular Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, California, USA.,Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsin-Hung Cheng
- Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Wan-Chen Hsieh
- Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Zing Tsung-Yeh Tsai
- Bioinformatics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
| | - Huai-Kuang Tsai
- Bioinformatics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
| | - Chia-Han Chu
- Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan
| | - Wen-Ping Hsieh
- Institute of Statistics, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Fan Chen
- Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu Tsou
- Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Ho Lai
- Department of Nursing, Asia University, Taichung, Taiwan.,Graduate Institute of Basic Medical Science, School of Medicine, China Medical University, Taichung, Taiwan.,Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Wen-Ching Wang
- Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan.,Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
43
|
Schuhmacher JS, Thormann KM, Bange G. How bacteria maintain location and number of flagella? FEMS Microbiol Rev 2015. [PMID: 26195616 DOI: 10.1093/femsre/fuv034] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Bacteria differ in number and location of their flagella that appear in regular patterns at the cell surface (flagellation pattern). Despite the plethora of bacterial species, only a handful of these patterns exist. The correct flagellation pattern is a prerequisite for motility, but also relates to biofilm formation and the pathogenicity of disease-causing flagellated bacteria. However, the mechanisms that maintain location and number of flagella are far from being understood. Here, we review our knowledge on mechanisms that enable bacteria to maintain their appropriate flagellation pattern. While some peritrichous flagellation patterns might occur by rather simple stochastic processes, other bacterial species appear to rely on landmark systems to define the designated flagellar position. Such landmarks are the Tip system of Caulobacter crescentus or the signal recognition particle (SRP)-GTPase FlhF and the MinD/ParA-type ATPase FlhG (synonyms: FleN, YlxH and MinD2). The latter two proteins constitute a regulatory circuit essential for diverse flagellation patterns in many Gram-positive and negative species. The interactome of FlhF/G (e.g. C-ring proteins FliM, FliN, FliY or the transcriptional regulator FleQ/FlrA) seems evolutionary adapted to meet the specific needs for a respective pattern. This variability highlights the importance of the correct flagellation pattern for motile species.
Collapse
Affiliation(s)
- Jan S Schuhmacher
- LOEWE Center for Synthetic Microbiology & Dep. of Chemistry, Philipps University Marburg, Hans-Meerwein-Strasse, D-35043 Marburg, Germany
| | - Kai M Thormann
- Justus-Liebig University, Department of Microbiology and Molecular Biology, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | - Gert Bange
- LOEWE Center for Synthetic Microbiology & Dep. of Chemistry, Philipps University Marburg, Hans-Meerwein-Strasse, D-35043 Marburg, Germany
| |
Collapse
|
44
|
Lertsethtakarn P, Howitt MR, Castellon J, Amieva MR, Ottemann KM. Helicobacter pylori CheZ(HP) and ChePep form a novel chemotaxis-regulatory complex distinct from the core chemotaxis signaling proteins and the flagellar motor. Mol Microbiol 2015; 97:1063-78. [PMID: 26061894 DOI: 10.1111/mmi.13086] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2015] [Indexed: 12/20/2022]
Abstract
Chemotaxis is important for Helicobacter pylori to colonize the stomach. Like other bacteria, H. pylori uses chemoreceptors and conserved chemotaxis proteins to phosphorylate the flagellar rotational response regulator, CheY, and modulate the flagellar rotational direction. Phosphorylated CheY is returned to its non-phosphorylated state by phosphatases such as CheZ. In previously studied cases, chemotaxis phosphatases localize to the cellular poles by interactions with either the CheA chemotaxis kinase or flagellar motor proteins. We report here that the H. pylori CheZ, CheZ(HP), localizes to the poles independently of the flagellar motor, CheA, and all typical chemotaxis proteins. Instead, CheZ(HP) localization depends on the chemotaxis regulatory protein ChePep, and reciprocally, ChePep requires CheZ(HP) for its polar localization. We furthermore show that these proteins interact directly. Functional domain mapping of CheZ(HP) determined the polar localization motif lies within the central domain of the protein and that the protein has regions outside of the active site that participate in chemotaxis. Our results suggest that CheZ(HP) and ChePep form a distinct complex. These results therefore suggest the intriguing idea that some phosphatases localize independently of the other chemotaxis and motility proteins, possibly to confer unique regulation on these proteins' activities.
Collapse
Affiliation(s)
- Paphavee Lertsethtakarn
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, 95064, USA
| | - Michael R Howitt
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Juan Castellon
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, 95064, USA
| | - Manuel R Amieva
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Karen M Ottemann
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, 95064, USA
| |
Collapse
|
45
|
Basal Body Structures Differentially Affect Transcription of RpoN- and FliA-Dependent Flagellar Genes in Helicobacter pylori. J Bacteriol 2015; 197:1921-30. [PMID: 25825427 DOI: 10.1128/jb.02533-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/20/2015] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Flagellar biogenesis in Helicobacter pylori is regulated by a transcriptional hierarchy governed by three sigma factors, RpoD (σ(80)), RpoN (σ(54)), and FliA (σ(28)), that temporally coordinates gene expression with the assembly of the flagellum. Previous studies showed that loss of flagellar protein export apparatus components inhibits transcription of flagellar genes. The FlgS/FlgR two-component system activates transcription of RpoN-dependent genes though an unknown mechanism. To understand better the extent to which flagellar gene regulation is coupled to flagellar assembly, we disrupted flagellar biogenesis at various points and determined how these mutations affected transcription of RpoN-dependent (flaB and flgE) and FliA-dependent (flaA) genes. The MS ring (encoded by fliF) is one of the earliest flagellar structures assembled. Deletion of fliF resulted in the elimination of RpoN-dependent transcripts and an ∼4-fold decrease in flaA transcript levels. FliH is a cytoplasmic protein that functions with the C ring protein FliN to shuttle substrates to the export apparatus. Deletions of fliH and genes encoding C ring components (fliM and fliY) decreased transcript levels of flaB and flgE but had little or no effect on transcript levels of flaA. Transcript levels of flaB and flgE were elevated in mutants where genes encoding rod proteins (fliE and flgBC) were deleted, while transcript levels of flaA was reduced ∼2-fold in both mutants. We propose that FlgS responds to an assembly checkpoint associated with the export apparatus and that FliH and one or more C ring component assist FlgS in engaging this flagellar structure. IMPORTANCE The mechanisms used by bacteria to couple transcription of flagellar genes with assembly of the flagellum are poorly understood. The results from this study identified components of the H. pylori flagellar basal body that either positively or negatively affect expression of RpoN-dependent flagellar genes. Some of these basal body proteins may interact directly with regulatory proteins that control transcription of the H. pylori RpoN regulon, a hypothesis that can be tested by examining protein-protein interactions in vitro.
Collapse
|
46
|
Nunn BL, Slattery KV, Cameron KA, Timmins-Schiffman E, Junge K. Proteomics of Colwellia psychrerythraea at subzero temperatures - a life with limited movement, flexible membranes and vital DNA repair. Environ Microbiol 2015; 17:2319-35. [PMID: 25471130 DOI: 10.1111/1462-2920.12691] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 10/23/2014] [Accepted: 10/23/2014] [Indexed: 11/27/2022]
Abstract
The mechanisms that allow psychrophilic bacteria to remain metabolically active at subzero temperatures result from form and function of their proteins. We present first proteomic evidence of physiological changes of the marine psychrophile Colwellia psychrerythraea 34H (Cp34H) after exposure to subzero temperatures (-1, and -10°C in ice) through 8 weeks. Protein abundance was compared between different treatments to understand the effects of temperature and time, independently and jointly, within cells transitioning to, and being maintained in ice. Parallel [3H]-leucine and [3H]-thymidine incubations indicated active protein and DNA synthesis to -10°C. Mass spectrometry-based proteomics identified 1763 proteins across four experimental treatments. Proteins involved in osmolyte regulation and polymer secretion were found constitutively present across all treatments, suggesting that they are required for metabolic success below 0°C. Differentially abundant protein groups indicated a reallocation of resources from DNA binding to DNA repair and from motility to chemo-taxis and sensing. Changes to iron and nitrogen metabolism, cellular membrane structures, and protein synthesis and folding were also revealed. By elucidating vital strategies during life in ice, this study provides novel insight into the extensive molecular adaptations that occur in cold-adapted marine organisms to sustain cellular function in their habitat.
Collapse
Affiliation(s)
- Brook L Nunn
- Department of Genome Sciences, University of Washington, Box 355065, Seattle, WA, 98195, USA
| | - Krystal V Slattery
- Applied Physics Laboratory, Polar Science Center, University of Washington, Box 355640, Seattle, WA, 98195, USA
| | - Karen A Cameron
- Applied Physics Laboratory, Polar Science Center, University of Washington, Box 355640, Seattle, WA, 98195, USA
| | - Emma Timmins-Schiffman
- Department of Genome Sciences, University of Washington, Box 355065, Seattle, WA, 98195, USA
| | - Karen Junge
- Applied Physics Laboratory, Polar Science Center, University of Washington, Box 355640, Seattle, WA, 98195, USA
| |
Collapse
|
47
|
Baidya AK, Bhattacharya S, Chowdhury R. Role of the Flagellar Hook-Length Control Protein FliK and σ28 in cagA Expression in Gastric Cell-Adhered Helicobacter pylori. J Infect Dis 2014; 211:1779-89. [PMID: 25512629 DOI: 10.1093/infdis/jiu808] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 12/08/2014] [Indexed: 01/26/2023] Open
Abstract
Adherence of Helicobacter pylori to the gastric epithelial cell line AGS strongly induces expression of fliK encoding a flagellar hook-length control protein. FliK has a role in triggering dissociation of the alternate sigma factor, σ(28), from a nonfunctional σ(28)-FlgM complex, releasing free, functional σ(28). The σ(28)-RNA polymerase initiates transcription of cagA, the major virulence gene, from a promoter identified in this study. Consequently, significant up-regulation of cagA was observed in AGS-adhered H. pylori. Direct binding of σ(28) to the cagA promoter was demonstrated by chromatin immunoprecipitation and the transcription start site was identified by 5' RACE (rapid amplification of complementary DNA ends). The σ(28)-dependent cagA promoter was active specifically in AGS-adhered H. pylori, and this motif might be associated with high cagA expression and severity of disease. These results also indicate that H. pylori has evolved to integrate expression of the major virulence gene cagA with the flagellar regulatory circuit, essential for colonization of the human host.
Collapse
Affiliation(s)
- Amit K Baidya
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata, India
| | - Saurabh Bhattacharya
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata, India
| | - Rukhsana Chowdhury
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
48
|
Kao CY, Sheu BS, Wu JJ. CsrA regulates Helicobacter pylori J99 motility and adhesion by controlling flagella formation. Helicobacter 2014; 19:443-54. [PMID: 25109343 DOI: 10.1111/hel.12148] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Motility mediated by the flagella of Helicobacter pylori has been shown to be required for normal colonization and is thought to be important for the bacteria to move toward the gastric mucus in niches adjacent to the epithelium. Barnard et al. showed that CsrA appears to be necessary for full motility and the ability to infect mice, but its mechanism of regulation is still unclear. METHODS Motility and cell adhesion ability were determined in wild-type, csrA mutant, and revertant J99 strains. The bacterial shape and flagellar structure were evaluated by transmission electron microscopy. The expression of two major flagellins, flaA/flaB, and the alternative sigma factor rpoN (σ(54)) were determined by real-time quantitative RT-PCR and Western blot. RESULTS The csrA mutant showed loss of motility and lower adhesion ability compared with the wild-type and revertant J99 strains. The csrA mutant was not flagellated. Transcription of flaA and flaB mRNA decreased to only 40% and 16%, respectively, in the csrA mutant compared with the wild-type J99 (p = .006 and <.0001, respectively), and Western blot analysis showed dramatically reduced FlaA/FlaB proteins in a csrA mutant. The disruption of csrA also decreased expression of rpoN to 48% in the csrA mutant, but the degradation rate of rpoN mRNA was not changed. CONCLUSION These results suggest that CsrA regulates H. pylori J99 flagella formation and thereby affects bacterial motility.
Collapse
Affiliation(s)
- Cheng-Yen Kao
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | |
Collapse
|
49
|
Requirement of the flagellar protein export apparatus component FliO for optimal expression of flagellar genes in Helicobacter pylori. J Bacteriol 2014; 196:2709-17. [PMID: 24837287 DOI: 10.1128/jb.01332-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Flagellar biogenesis in Helicobacter pylori involves the coordinated expression of flagellar genes with assembly of the flagellum. The H. pylori flagellar genes are organized into three regulons based on the sigma factor needed for their transcription (RpoD [σ(80)], RpoN [σ(54)], or FliA [σ(28)]). Transcription of RpoN-dependent genes is activated by a two-component system consisting of the sensor kinase FlgS and the response regulator FlgR. While the cellular cues sensed by the FlgS/FlgR two-component system remain to be elucidated, previous studies revealed that disrupting certain components of the flagellar export apparatus inhibited transcription of the RpoN regulon. FliO is the least conserved of the membrane-bound components of the export apparatus and has not been annotated for any of the H. pylori genomes sequenced to date. A PSI-BLAST analysis identified a potential H. pylori FliO protein which membrane topology algorithms predict to possess a large N-terminal periplasmic domain that is absent from FliO of Escherichia coli and Salmonella, the paradigms for flagellar structure/function studies. FliO was necessary for flagellar biogenesis as well as wild-type levels of motility and transcription of RpoN-dependent and FliA-dependent flagellar genes in H. pylori strain B128. FliO also appears to be required for wild-type levels of the export apparatus protein FlhA in the membrane. Interestingly, the periplasmic and cytoplasmic domains were somewhat dispensable for flagellar gene regulation and assembly, suggesting that these domains have relatively minor roles in flagellar synthesis.
Collapse
|
50
|
Pereira LE, Tsang J, Mrázek J, Hoover TR. The zinc-ribbon domain of Helicobacter pylori HP0958: requirement for RpoN accumulation and possible roles of homologs in other bacteria. MICROBIAL INFORMATICS AND EXPERIMENTATION 2014; 1:1-10. [PMID: 22408721 PMCID: PMC3372290 DOI: 10.1186/2042-5783-1-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Helicobacter pylori HP0958 protein (FlgZ) prevents the rapid turnover of RpoN (σ54), a transcription factor required for expression of several flagellar genes in H. pylori. FlgZ possesses a zinc-ribbon domain (DUF164) that contains two conserved CXXC motifs which coordinate a zinc ion and is thought to interact with nucleic acids or proteins. Two conserved cysteine residues in FlgZ (Cys-202 and Cys-223) were replaced with serine to assess their significance in FlgZ function. After confirming the importance of the CXXC motifs in the DUF164 domain of FlgZ, the distribution of DUF164 proteins and RpoN homologs in other bacteria was examined to determine if a correlation existed for the concurrence of the two proteins. Results Levels of RpoN were greatly reduced in H. pylori strains that expressed the FlgZC202S or FlgZC223S variants. The FlgZC202S variant, but not the FlgZC223S variant, accumulated at levels similar to the wild-type protein. DUF164 proteins are not universally distributed and appear to be absent in several major bacterial taxa, including Cyanobacteria as well as Alpha-, Beta- and Gammaproteobacteria. With the exception of the Actinobacteria, members of which generally lack RpoN, genes encoding DUF164 proteins and RpoN are frequently found in the same genome. Interestingly, many of the DUF164 proteins in Actinobacteria and Bacteroidetes lack most or even all of the conserved cysteine residues. Conclusions These findings suggest the importance of the zinc-ribbon domain of FlgZ in protecting RpoN from turnover. Since many bacteria that possess a DUF164 protein also contain RpoN, DUF164 proteins may have roles in RpoN protection or function in other bacteria.
Collapse
Affiliation(s)
- Lara E Pereira
- Emory Vaccine Center, 954 Gatewood Road, Emory University, Atlanta, GA 30329, USA
| | | | | | | |
Collapse
|