1
|
Singh V, Harinarayanan R. (p)ppGpp Buffers Cell Division When Membrane Fluidity Decreases in Escherichia coli. Mol Microbiol 2024. [PMID: 39461000 DOI: 10.1111/mmi.15323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 10/28/2024]
Abstract
Fluidity is an inherent property of biological membranes and its maintenance (homeoviscous adaptation) is important for optimal functioning of membrane-associated processes. The fluidity of bacterial cytoplasmic membrane increases with temperature or an increase in the proportion of unsaturated fatty acids and vice versa. We found that strains deficient in the synthesis of guanine nucleotide analogs (p)ppGpp and lacking FadR, a transcription factor involved in fatty acid metabolism exhibited a growth defect that was rescued by an increase in growth temperature or unsaturated fatty acid content. The strain lacking (p)ppGpp was sensitive to genetic or chemical perturbations that decrease the proportion of unsaturated fatty acids over saturated fatty acids. Microscopy showed that the growth defect was associated with cell filamentation and lysis and rescued by combined expression of cell division genes ftsQ, ftsA, and ftsZ from plasmid or the gain-of-function ftsA* allele but not over-expression of ftsN. The results implicate (p)ppGpp in positive regulation of cell division during membrane fluidity loss through enhancement of FtsZ proto-ring stability. To our knowledge, this is the first report of a (p)ppGpp-mediated regulation needed for adaptation to membrane fluidity loss in bacteria.
Collapse
Affiliation(s)
- Vani Singh
- Center for DNA Fingerprinting and Diagnostics, Hyderabad, India
- Manipal Academy of Higher Education, Manipal, India
| | | |
Collapse
|
2
|
Gong H, Yan D, Cui Y, Li Y, Yang J, Yang W, Zhan R, Wan Q, Wang X, He H, Chen X, Lutkenhaus J, Yang X, Du S. The divisome is a self-enhancing machine in Escherichia coli and Caulobacter crescentus. Nat Commun 2024; 15:8198. [PMID: 39294118 PMCID: PMC11410940 DOI: 10.1038/s41467-024-52217-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/27/2024] [Indexed: 09/20/2024] Open
Abstract
During bacterial cytokinesis, polymers of the bacterial tubulin FtsZ coalesce into the Z ring to orchestrate divisome assembly and septal cell wall synthesis. Previous studies have found that Z ring condensation and stability is critical for successful cell division. However, how FtsZ filaments condense into a Z ring remains enigmatic and whether septal cell wall synthesis can feedback to the Z ring has not been investigated. Here, we show that FtsZ-associated proteins (Zaps) play important roles in Z ring condensation and stability, and discover septal cell wall synthesis as a novel player for Z ring condensation and stabilization in Escherichia coli and Caulobacter crescentus. Moreover, we find that the interaction between the Z ring membrane anchor, FtsA, and components of the septal cell wall synthetic complex are critical for septal cell wall synthesis-mediated Z ring condensation. Altogether, these findings suggest that the divisome is a self-enhancing machine in these two gram-negative bacteria, where the Z ring and the septal cell wall synthetic complex communicate with and reinforce each other to ensure robustness of cell division.
Collapse
Affiliation(s)
- Han Gong
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
- Key Laboratory of Polar Environment Monitoring and Public Governance (Ministry of Education), Wuhan University, Wuhan, China
| | - Di Yan
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yuanyuan Cui
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Ying Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Jize Yang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Wenjie Yang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Rui Zhan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Qianqian Wan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xinci Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Haofeng He
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiangdong Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Joe Lutkenhaus
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Xinxing Yang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| | - Shishen Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China.
- Key Laboratory of Polar Environment Monitoring and Public Governance (Ministry of Education), Wuhan University, Wuhan, China.
| |
Collapse
|
3
|
Mahone CR, Payne IP, Lyu Z, McCausland JW, Barrows JM, Xiao J, Yang X, Goley ED. Integration of cell wall synthesis and chromosome segregation during cell division in Caulobacter. J Cell Biol 2024; 223:e202211026. [PMID: 38015166 PMCID: PMC10683668 DOI: 10.1083/jcb.202211026] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 10/17/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023] Open
Abstract
To divide, bacteria must synthesize their peptidoglycan (PG) cell wall, a protective meshwork that maintains cell shape. FtsZ, a tubulin homolog, dynamically assembles into a midcell band, recruiting division proteins, including the PG synthases FtsW and FtsI. FtsWI are activated to synthesize PG and drive constriction at the appropriate time and place. However, their activation pathway remains unresolved. In Caulobacter crescentus, FtsWI activity requires FzlA, an essential FtsZ-binding protein. Through time-lapse imaging and single-molecule tracking of Caulobacter FtsW and FzlA, we demonstrate that FzlA is a limiting constriction activation factor that signals to promote conversion of inactive FtsW to an active, slow-moving state. We find that FzlA interacts with the DNA translocase FtsK and place FtsK genetically in a pathway with FzlA and FtsWI. Misregulation of the FzlA-FtsK-FtsWI pathway leads to heightened DNA damage and cell death. We propose that FzlA integrates the FtsZ ring, chromosome segregation, and PG synthesis to ensure robust and timely constriction during Caulobacter division.
Collapse
Affiliation(s)
- Christopher R. Mahone
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Isaac P. Payne
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhixin Lyu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joshua W. McCausland
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jordan M. Barrows
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xinxing Yang
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Life Sciences and Medicine, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, School of Basic Medical Sciences, University of Science and Technology of China, Hefei, China
| | - Erin D. Goley
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Bonde NJ, Wood EA, Myers KS, Place M, Keck JL, Cox MM. Identification of recG genetic interactions in Escherichia coli by transposon sequencing. J Bacteriol 2023; 205:e0018423. [PMID: 38019006 PMCID: PMC10870727 DOI: 10.1128/jb.00184-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/07/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE DNA damage and subsequent DNA repair processes are mutagenic in nature and an important driver of evolution in prokaryotes, including antibiotic resistance development. Genetic screening approaches, such as transposon sequencing (Tn-seq), have provided important new insights into gene function and genetic relationships. Here, we employed Tn-seq to gain insight into the function of the recG gene, which renders Escherichia coli cells moderately sensitive to a variety of DNA-damaging agents when they are absent. The reported recG genetic interactions can be used in combination with future screens to aid in a more complete reconstruction of DNA repair pathways in bacteria.
Collapse
Affiliation(s)
- Nina J. Bonde
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Elizabeth A. Wood
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kevin S. Myers
- Great Lakes Bioenergy Research Center and the Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Michael Place
- Great Lakes Bioenergy Research Center and the Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - James L. Keck
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Michael M. Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Fivenson EM, Rohs PD, Vettiger A, Sardis MF, Torres G, Forchoh A, Bernhardt TG. A role for the Gram-negative outer membrane in bacterial shape determination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.527047. [PMID: 36778245 PMCID: PMC9915748 DOI: 10.1101/2023.02.03.527047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The cell envelope of Gram-negative bacteria consists of three distinct layers: the cytoplasmic membrane, a cell wall made of peptidoglycan (PG), and an asymmetric outer membrane (OM) composed of phospholipid in the inner leaflet and lipopolysaccharide (LPS) glycolipid in the outer leaflet. The PG layer has long been thought to be the major structural component of the envelope protecting cells from osmotic lysis and providing them with their characteristic shape. In recent years, the OM has also been shown to be a load-bearing layer of the cell surface that fortifies cells against internal turgor pressure. However, whether the OM also plays a role in morphogenesis has remained unclear. Here, we report that changes in LPS synthesis or modification predicted to strengthen the OM can suppress the growth and shape defects of Escherichia coli mutants with reduced activity in a conserved PG synthesis machine called the Rod system (elongasome) that is responsible for cell elongation and shape determination. Evidence is presented that OM fortification in the shape mutants restores the ability of MreB cytoskeletal filaments to properly orient the synthesis of new cell wall material by the Rod system. Our results are therefore consistent with a role for the OM in the propagation of rod shape during growth in addition to its well-known function as a diffusion barrier promoting the intrinsic antibiotic resistance of Gram-negative bacteria. SIGNIFICANCE The cell wall has traditionally been thought to be the main structural determinant of the bacterial cell envelope that resists internal turgor and determines cell shape. However, the outer membrane (OM) has recently been shown to contribute to the mechanical strength of Gram-negative bacterial envelopes. Here, we demonstrate that changes to OM composition predicted to increase its load bearing capacity rescue the growth and shape defects of Escherichia coli mutants defective in the major cell wall synthesis machinery that determines rod shape. Our results therefore reveal a previously unappreciated role for the OM in bacterial shape determination in addition to its well-known function as a diffusion barrier that protects Gram-negative bacteria from external insults like antibiotics.
Collapse
Affiliation(s)
- Elayne M. Fivenson
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Patricia D.A. Rohs
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Andrea Vettiger
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Marios F. Sardis
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Grasiela Torres
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Alison Forchoh
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Thomas G. Bernhardt
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
- Howard Hughes Medical Institute, Boston, United States
| |
Collapse
|
6
|
McKenzie AM, Henry C, Myers KS, Place MM, Keck JL. Identification of genetic interactions with priB links the PriA/PriB DNA replication restart pathway to double-strand DNA break repair in Escherichia coli. G3 (BETHESDA, MD.) 2022; 12:jkac295. [PMID: 36326440 PMCID: PMC9713433 DOI: 10.1093/g3journal/jkac295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/20/2022] [Indexed: 11/30/2023]
Abstract
Collisions between DNA replication complexes (replisomes) and impediments such as damaged DNA or proteins tightly bound to the chromosome lead to premature dissociation of replisomes at least once per cell cycle in Escherichia coli. Left unrepaired, these events produce incompletely replicated chromosomes that cannot be properly partitioned into daughter cells. DNA replication restart, the process that reloads replisomes at prematurely terminated sites, is therefore essential in E. coli and other bacteria. Three replication restart pathways have been identified in E. coli: PriA/PriB, PriA/PriC, and PriC/Rep. A limited number of genetic interactions between replication restart and other genome maintenance pathways have been defined, but a systematic study placing replication restart reactions in a broader cellular context has not been performed. We have utilized transposon-insertion sequencing to identify new genetic interactions between DNA replication restart pathways and other cellular systems. Known genetic interactors with the priB replication restart gene (uniquely involved in the PriA/PriB pathway) were confirmed and several novel priB interactions were discovered. Targeted genetic and imaging-based experiments with priB and its genetic partners revealed significant double-strand DNA break accumulation in strains with mutations in dam, rep, rdgC, lexA, or polA. Modulating the activity of the RecA recombinase partially suppressed the detrimental effects of rdgC or lexA mutations in ΔpriB cells. Taken together, our results highlight roles for several genes in double-strand DNA break homeostasis and define a genetic network that facilitates DNA repair/processing upstream of PriA/PriB-mediated DNA replication restart in E. coli.
Collapse
Affiliation(s)
- Aidan M McKenzie
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Camille Henry
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kevin S Myers
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Michael M Place
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - James L Keck
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| |
Collapse
|
7
|
Sloan R, Surber J, Roy EJ, Hartig E, Morgenstein RM. Enzyme 1 of the phosphoenolpyruvate:sugar phosphotransferase system is involved in resistance to MreB disruption in wild-type and ∆envC cells. Mol Microbiol 2022; 118:588-600. [PMID: 36199205 PMCID: PMC9671846 DOI: 10.1111/mmi.14988] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 01/12/2023]
Abstract
Cell wall synthesis in bacteria is determined by two protein complexes: the elongasome and divisome. The elongasome is coordinated by the actin homolog MreB while the divisome is organized by the tubulin homolog FtsZ. While these two systems must coordinate with each other to ensure that elongation and division are coregulated, this cross talk has been understudied. Using the MreB depolymerizing agent, A22, we found that multiple gene deletions result in cells exhibiting increased sensitivity to MreB depolymerization. One of those genes encodes for EnvC, a part of the divisome that is responsible for splitting daughter cells after the completion of cytokinesis through the activation of specific amidases. Here we show this increased sensitivity to A22 works through two known amidase targets of EnvC: AmiA and AmiB. In addition, suppressor analysis revealed that mutations in enzyme 1 of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) can suppress the effects of A22 in both wild-type and envC deletion cells. Together this work helps to link elongation, division, and metabolism.
Collapse
Affiliation(s)
- Ryan Sloan
- Department of Microbiology and Molecular GeneticsOklahoma State UniversityStillwaterOklahomaUSA
| | - Jacob Surber
- Department of Microbiology and Molecular GeneticsOklahoma State UniversityStillwaterOklahomaUSA
| | - Emma J. Roy
- Department of Microbiology and Molecular GeneticsOklahoma State UniversityStillwaterOklahomaUSA
| | - Ethan Hartig
- Department of Microbiology and Molecular GeneticsOklahoma State UniversityStillwaterOklahomaUSA
| | - Randy M. Morgenstein
- Department of Microbiology and Molecular GeneticsOklahoma State UniversityStillwaterOklahomaUSA
| |
Collapse
|
8
|
Synthetic Genetic Interactions Reveal a Dense and Cryptic Regulatory Network of Small Noncoding RNAs in Escherichia coli. mBio 2022; 13:e0122522. [PMID: 35920556 PMCID: PMC9426594 DOI: 10.1128/mbio.01225-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Over the past 20 years, we have learned that bacterial small noncoding RNAs (sRNAs) can rapidly effect changes in gene expression in response to stress. However, the broader role and impact of sRNA-mediated regulation in promoting bacterial survival has remained elusive. Indeed, there are few examples where disruption of sRNA-mediated gene regulation results in a discernible change in bacterial growth or survival. The lack of phenotypes attributable to loss of sRNA function suggests that either sRNAs are wholly dispensable or functional redundancies mask the impact of deleting a single sRNA. We investigated synthetic genetic interactions among sRNA genes in Escherichia coli by constructing pairwise deletions in 54 genes, including 52 sRNAs. Some 1,373 double deletion strains were studied for growth defects under 32 different nutrient stress conditions and revealed 1,131 genetic interactions. In one example, we identified a profound synthetic lethal interaction between ArcZ and CsrC when E. coli was grown on pyruvate, lactate, oxaloacetate, or d-/l-alanine, and we provide evidence that the expression of ppsA is dysregulated in the double deletion background, causing the conditionally lethal phenotype. This work employs a unique platform for studying sRNA-mediated gene regulation and sheds new light on the genetic network of sRNAs that underpins bacterial growth.
Collapse
|
9
|
Chodisetti PK, Bahadur R, Amrutha RN, Reddy M. A LytM-Domain Factor, ActS, Functions in Two Distinctive Peptidoglycan Hydrolytic Pathways in E. coli. Front Microbiol 2022; 13:913949. [PMID: 35774457 PMCID: PMC9238320 DOI: 10.3389/fmicb.2022.913949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
Bacterial cell wall contains peptidoglycan (PG) to protect the cells from turgor and environmental stress. PG consists of polymeric glycans cross-linked with each other by short peptide chains and forms an elastic mesh-like sacculus around the cytoplasmic membrane. Bacteria encode a plethora of PG hydrolytic enzymes of diverse specificity playing crucial roles in growth, division, or turnover of PG. In Escherichia coli, the cross-link-specific endopeptidases, MepS, -M, and -H, facilitate the enlargement of PG sacculus during cell elongation, whereas LytM-domain factors, EnvC and NlpD activate the division-specific amidases, AmiA, -B, and -C to facilitate the cell separation. In a screen to isolate additional factors involved in PG enlargement, we identified actS (encoding a LytM paralog, formerly ygeR) as its overexpression compensated the loss of elongation-specific endopeptidase, MepS. The overexpression of ActS resulted in the generation of partly denuded glycan strands in PG sacculi, indicating that ActS is either an amidase or an activator of amidase(s). The detailed genetic and biochemical analyses established that ActS is not a PG hydrolase, but an activator of the division-specific amidase, AmiC. However, interestingly, the suppression of the mepS growth defects by actS is not mediated through AmiC. The domain-deletion experiments confirmed the requirement of the N-terminal LysM domain of ActS for the activation of AmiC, but not for the alleviation of growth defects in mepS mutants, indicating that ActS performs two distinctive PG metabolic functions. Altogether our results suggest that in addition to activating the division-specific amidase, AmiC, ActS modulates yet another pathway that remains to be identified.
Collapse
|
10
|
Fatkhullin BF, Gabdulkhakov AG, Yusupov MM. Is RsfS a Hibernation Factor or a Ribosome Biogenesis Factor? BIOCHEMISTRY. BIOKHIMIIA 2022; 87:500-510. [PMID: 35790407 DOI: 10.1134/s0006297922060025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Solving the structures of bacterial, archaeal, and eukaryotic ribosomes by crystallography and cryo-electron microscopy has given an impetus for studying intracellular regulatory proteins affecting various stages of protein translation. Among them are ribosome hibernation factors, which have been actively investigated during the last decade. These factors are involved in the regulation of protein biosynthesis under stressful conditions. The main role of hibernation factors is the reduction of energy consumption for protein biosynthesis and preservation of existing functional ribosomes from degradation, which increases cell survival under unfavorable conditions. Despite a broad interest in this topic, only a few articles have been published on the ribosomal silencing factor S (RsfS). According to the results of these studies, RsfS can be assigned to the group of hibernation factors. However, recent structural studies of the 50S ribosomal subunit maturation demonstrated that RsfS has the features inherent to biogenesis factors for example, ability to bind to the immature ribosomal subunit (similar to the RsfS mitochondrial ortholog MALSU1, mitochondrial assembly of ribosomal large subunit 1). In this review, we summarized the information on the function and structural features RsfS, as well as compared RsfS with MALSU1 in order to answer the emerging question on whether RsfS is a hibernation factor or a ribosome biogenesis factor. We believe that this review might promote future studies of the RsfS-involving molecular mechanisms, which so far remain completely unknown.
Collapse
Affiliation(s)
- Bulat F Fatkhullin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
- Institute of Genetics and Molecular and Cellular Biology, Illkirsch-Graffenstaden, F-67400, France
| | - Azat G Gabdulkhakov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Marat M Yusupov
- Institute of Genetics and Molecular and Cellular Biology, Illkirsch-Graffenstaden, F-67400, France
- Laboratory of Structural Analyze of Biomacromolecules, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Kazan, 420111, Russia
| |
Collapse
|
11
|
Park S, Cho H. The Tol-Pal System Plays an Important Role in Maintaining Cell Integrity During Elongation in Escherichia coli. Front Microbiol 2022; 13:891926. [PMID: 35592005 PMCID: PMC9111525 DOI: 10.3389/fmicb.2022.891926] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
The Tol-Pal system is a transenvelope complex widely conserved among Gram-negative bacteria. It is recruited to the septal ring during cytokinesis, and its inactivation causes pleiotropic phenotypes mainly associated with the division process. From our genetic screen to identify factors required for delaying lysis upon treatment of beta lactams, we discovered that the tol-pal mutant shares similar defects with mutants of the major class A PBP system (PBP1b-LpoB) in terms of lysis prevention. Further phenotypic analyses revealed that the Tol-Pal system plays an important role in maintaining cell integrity not only during septation, but also during cell elongation. Simultaneous inactivation of the Tol-Pal system and the PBP1b-LpoB system leads to lysis during cell elongation as well as during division. Moreover, production of the Lpo activator-bypass PBP1b, but not wild-type PBP1b, partially suppressed the Tol-Pal defect in maintaining cell integrity upon treatment of mecillinam specific for the Rod system, suggesting that the Tol-Pal system is likely to be involved in the activation of aPBP by Lpo factors. Overall, our results indicate that the Tol-Pal system plays an important role in maintaining cell wall integrity during elongation in addition to its multifaceted roles during cytokinesis.
Collapse
Affiliation(s)
- Sohee Park
- Department of Biological Sciences, College of Natural Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Hongbaek Cho
- Department of Biological Sciences, College of Natural Sciences, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
12
|
The rarA gene as part of an expanded RecFOR recombination pathway: Negative epistasis and synthetic lethality with ruvB, recG, and recQ. PLoS Genet 2021; 17:e1009972. [PMID: 34936656 PMCID: PMC8735627 DOI: 10.1371/journal.pgen.1009972] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/06/2022] [Accepted: 12/01/2021] [Indexed: 11/19/2022] Open
Abstract
The RarA protein, homologous to human WRNIP1 and yeast MgsA, is a AAA+ ATPase and one of the most highly conserved DNA repair proteins. With an apparent role in the repair of stalled or collapsed replication forks, the molecular function of this protein family remains obscure. Here, we demonstrate that RarA acts in late stages of recombinational DNA repair of post-replication gaps. A deletion of most of the rarA gene, when paired with a deletion of ruvB or ruvC, produces a growth defect, a strong synergistic increase in sensitivity to DNA damaging agents, cell elongation, and an increase in SOS induction. Except for SOS induction, these effects are all suppressed by inactivating recF, recO, or recJ, indicating that RarA, along with RuvB, acts downstream of RecA. SOS induction increases dramatically in a rarA ruvB recF/O triple mutant, suggesting the generation of large amounts of unrepaired ssDNA. The rarA ruvB defects are not suppressed (and in fact slightly increased) by recB inactivation, suggesting RarA acts primarily downstream of RecA in post-replication gaps rather than in double strand break repair. Inactivating rarA, ruvB and recG together is synthetically lethal, an outcome again suppressed by inactivation of recF, recO, or recJ. A rarA ruvB recQ triple deletion mutant is also inviable. Together, the results suggest the existence of multiple pathways, perhaps overlapping, for the resolution or reversal of recombination intermediates created by RecA protein in post-replication gaps within the broader RecF pathway. One of these paths involves RarA.
Collapse
|
13
|
Levin PA, Janakiraman A. Localization, Assembly, and Activation of the Escherichia coli Cell Division Machinery. EcoSal Plus 2021; 9:eESP00222021. [PMID: 34910577 PMCID: PMC8919703 DOI: 10.1128/ecosalplus.esp-0022-2021] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/14/2021] [Indexed: 01/01/2023]
Abstract
Decades of research, much of it in Escherichia coli, have yielded a wealth of insight into bacterial cell division. Here, we provide an overview of the E. coli division machinery with an emphasis on recent findings. We begin with a short historical perspective into the discovery of FtsZ, the tubulin homolog that is essential for division in bacteria and archaea. We then discuss assembly of the divisome, an FtsZ-dependent multiprotein platform, at the midcell septal site. Not simply a scaffold, the dynamic properties of polymeric FtsZ ensure the efficient and uniform synthesis of septal peptidoglycan. Next, we describe the remodeling of the cell wall, invagination of the cell envelope, and disassembly of the division apparatus culminating in scission of the mother cell into two daughter cells. We conclude this review by highlighting some of the open questions in the cell division field, emphasizing that much remains to be discovered, even in an organism as extensively studied as E. coli.
Collapse
Affiliation(s)
- Petra Anne Levin
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
- Center for Science & Engineering of Living Systems (CSELS), McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Anuradha Janakiraman
- Department of Biology, The City College of New York, New York, New York, USA
- Programs in Biology and Biochemistry, The Graduate Center of the City University of New York, New York, New York, USA
| |
Collapse
|
14
|
Papadopoulos AO, Ealand C, Gordhan BG, VanNieuwenhze M, Kana BD. Characterisation of a putative M23-domain containing protein in Mycobacterium tuberculosis. PLoS One 2021; 16:e0259181. [PMID: 34784363 PMCID: PMC8594824 DOI: 10.1371/journal.pone.0259181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/14/2021] [Indexed: 12/01/2022] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis remains a global health concern, further compounded by the high rates of HIV-TB co-infection and emergence of multi- and extensive drug resistant TB, all of which have hampered efforts to eradicate this disease. As a result, novel anti-tubercular interventions are urgently required, with the peptidoglycan component of the M. tuberculosis cell wall emerging as an attractive drug target. Peptidoglycan M23 endopeptidases can function as active cell wall hydrolases or degenerate activators of hydrolases in a variety of bacteria, contributing to important processes such as bacterial growth, division and virulence. Herein, we investigate the function of the Rv0950-encoded putative M23 endopeptidase in M. tuberculosis. In silico analysis revealed that this protein is conserved in mycobacteria, with a zinc-binding catalytic site predictive of hydrolytic activity. Transcript analysis indicated that expression of Rv0950c was elevated during lag and log phases of growth and reduced in stationary phase. Deletion of Rv0950c yielded no defects in growth, colony morphology, antibiotic susceptibility or intracellular survival but caused a reduction in cell length. Staining with a monopeptide-derived fluorescent D-amino acid, which spatially reports on sites of active PG biosynthesis or repair, revealed an overall reduction in uptake of the probe in ΔRv0950c. When stained with a dipeptide probe in the presence of cell wall damaging agents, the ΔRv0950c mutant displayed reduced sidewall labelling. As bacterial peptidoglycan metabolism is important for survival and pathogenesis, the role of Rv0950c and other putative M23 endopeptidases in M. tuberculosis should be explored further.
Collapse
Affiliation(s)
- Andrea Olga Papadopoulos
- Faculty of Health Sciences, DSI/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, University of the Witwatersrand, National Health Laboratory Service, Johannesburg, South Africa
| | - Christopher Ealand
- Faculty of Health Sciences, DSI/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, University of the Witwatersrand, National Health Laboratory Service, Johannesburg, South Africa
| | - Bhavna Gowan Gordhan
- Faculty of Health Sciences, DSI/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, University of the Witwatersrand, National Health Laboratory Service, Johannesburg, South Africa
| | - Michael VanNieuwenhze
- Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana, United States of America
| | - Bavesh Davandra Kana
- Faculty of Health Sciences, DSI/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, University of the Witwatersrand, National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
15
|
Urrutia-Irazabal I, Ault JR, Sobott F, Savery NJ, Dillingham MS. Analysis of the PcrA-RNA polymerase complex reveals a helicase interaction motif and a role for PcrA/UvrD helicase in the suppression of R-loops. eLife 2021; 10:68829. [PMID: 34279225 PMCID: PMC8318588 DOI: 10.7554/elife.68829] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
The PcrA/UvrD helicase binds directly to RNA polymerase (RNAP) but the structural basis for this interaction and its functional significance have remained unclear. In this work, we used biochemical assays and hydrogen-deuterium exchange coupled to mass spectrometry to study the PcrA-RNAP complex. We find that PcrA binds tightly to a transcription elongation complex in a manner dependent on protein:protein interaction with the conserved PcrA C-terminal Tudor domain. The helicase binds predominantly to two positions on the surface of RNAP. The PcrA C-terminal domain engages a conserved region in a lineage-specific insert within the β subunit which we identify as a helicase interaction motif present in many other PcrA partner proteins, including the nucleotide excision repair factor UvrB. The catalytic core of the helicase binds near the RNA and DNA exit channels and blocking PcrA activity in vivo leads to the accumulation of R-loops. We propose a role for PcrA as an R-loop suppression factor that helps to minimize conflicts between transcription and other processes on DNA including replication.
Collapse
Affiliation(s)
- Inigo Urrutia-Irazabal
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol. Biomedical Sciences Building, University Walk, Bristol, United Kingdom
| | - James R Ault
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Frank Sobott
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Nigel J Savery
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol. Biomedical Sciences Building, University Walk, Bristol, United Kingdom
| | - Mark S Dillingham
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol. Biomedical Sciences Building, University Walk, Bristol, United Kingdom
| |
Collapse
|
16
|
Phan MD, Bottomley AL, Peters KM, Harry EJ, Schembri MA. Uncovering novel susceptibility targets to enhance the efficacy of third-generation cephalosporins against ESBL-producing uropathogenic Escherichia coli. J Antimicrob Chemother 2021; 75:1415-1423. [PMID: 32073605 DOI: 10.1093/jac/dkaa023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/17/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Uropathogenic Escherichia coli (UPEC) are a major cause of urinary tract infection (UTI), one of the most common infectious diseases in humans. UPEC are increasingly associated with resistance to multiple antibiotics. This includes resistance to third-generation cephalosporins, a common class of antibiotics frequently used to treat UTI. METHODS We employed a high-throughput genome-wide screen using saturated transposon mutagenesis and transposon directed insertion-site sequencing (TraDIS) together with phenotypic resistance assessment to identify key genes required for survival of the MDR UPEC ST131 strain EC958 in the presence of the third-generation cephalosporin cefotaxime. RESULTS We showed that blaCMY-23 is the major ESBL gene in EC958 responsible for mediating resistance to cefotaxime. Our screen also revealed that mutation of genes involved in cell division and the twin-arginine translocation pathway sensitized EC958 to cefotaxime. The role of these cell-division and protein-secretion genes in cefotaxime resistance was confirmed through the construction of mutants and phenotypic testing. Mutation of these genes also sensitized EC958 to other cephalosporins. CONCLUSIONS This work provides an exemplar for the application of TraDIS to define molecular mechanisms of resistance to antibiotics. The identification of mutants that sensitize UPEC to cefotaxime, despite the presence of a cephalosporinase, provides a framework for the development of new approaches to treat infections caused by MDR pathogens.
Collapse
Affiliation(s)
- Minh-Duy Phan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Amy L Bottomley
- The ithree institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kate M Peters
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Elizabeth J Harry
- The ithree institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
17
|
Identification of Three Type II Toxin-Antitoxin Systems in Model Bacterial Plant Pathogen Dickeya dadantii 3937. Int J Mol Sci 2021; 22:ijms22115932. [PMID: 34073004 PMCID: PMC8198452 DOI: 10.3390/ijms22115932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 11/17/2022] Open
Abstract
Type II toxin-antitoxin (TA) systems are genetic elements usually encoding two proteins: a stable toxin and an antitoxin, which binds the toxin and neutralizes its toxic effect. The disturbance in the intracellular toxin and antitoxin ratio typically leads to inhibition of bacterial growth or bacterial cell death. Despite the fact that TA modules are widespread in bacteria and archaea, the biological role of these systems is ambiguous. Nevertheless, a number of studies suggests that the TA modules are engaged in such important processes as biofilm formation, stress response or virulence and maintenance of mobile genetic elements. The Dickeya dadantii 3937 strain serves as a model for pathogens causing the soft-rot disease in a wide range of angiosperm plants. Until now, several chromosome-encoded type II TA systems were identified in silico in the genome of this economically important bacterium, however so far only one of them was experimentally validated. In this study, we investigated three putative type II TA systems in D. dadantii 3937: ccdAB2Dda, phd-docDda and dhiTA, which represents a novel toxin/antitoxin superfamily. We provide an experimental proof for their functionality in vivo both in D. dadantii and Escherichia coli. Finally, we examined the prevalence of those systems across the Pectobacteriaceae family by a phylogenetic analysis.
Collapse
|
18
|
Mueller EA, Iken AG, Ali Öztürk M, Winkle M, Schmitz M, Vollmer W, Di Ventura B, Levin PA. The active repertoire of Escherichia coli peptidoglycan amidases varies with physiochemical environment. Mol Microbiol 2021; 116:311-328. [PMID: 33666292 DOI: 10.1111/mmi.14711] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022]
Abstract
Nearly all bacteria are encased in peptidoglycan, an extracytoplasmic matrix of polysaccharide strands crosslinked through short peptide stems. In the Gram-negative model organism Escherichia coli, more than 40 synthases and autolysins coordinate the growth and division of the peptidoglycan sacculus in the periplasm. The precise contribution of many of these enzymes to peptidoglycan metabolism remains unclear due to significant apparent redundancy, particularly among the autolysins. E. coli produces three major LytC-type-N-acetylmuramoyl-L-alanine amidases, which share a role in separating the newly formed daughter cells during cytokinesis. Here, we reveal two of the three amidases that exhibit growth medium-dependent changes in activity. Specifically, we report acidic growth conditions stimulate AmiB-and to a lesser extent, AmiC-amidase activity. Combining genetic, biochemical, and computational analyses, we demonstrate that low pH-dependent stimulation of AmiB is mediated through the periplasmic amidase activators NlpD, EnvC, and ActS (formerly known as YgeR). Although NlpD and EnvC promote amidase activity across pH environments, ActS preferentially stimulates AmiB activity in acidic conditions. Altogether, our findings support partially overlapping roles for E. coli amidases and their regulators in cell separation and illuminate the physiochemical environment as an important mediator of cell wall enzyme activity.
Collapse
Affiliation(s)
- Elizabeth A Mueller
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA.,Center for Science & Engineering of Living Systems (CSELS), McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Abbygail G Iken
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Mehmet Ali Öztürk
- Signalling Research Centers BIOSS and CIBSS, McKelvey School of Engineering, University of Freiburg, Freiburg, Germany.,Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Matthias Winkle
- The Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Mirko Schmitz
- Signalling Research Centers BIOSS and CIBSS, McKelvey School of Engineering, University of Freiburg, Freiburg, Germany.,Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Waldemar Vollmer
- The Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Barbara Di Ventura
- Signalling Research Centers BIOSS and CIBSS, McKelvey School of Engineering, University of Freiburg, Freiburg, Germany.,Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Petra Anne Levin
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA.,Center for Science & Engineering of Living Systems (CSELS), McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
19
|
Jorgenson MA, Bryant JC. A genetic screen to identify factors affected by undecaprenyl phosphate recycling uncovers novel connections to morphogenesis in Escherichia coli. Mol Microbiol 2021; 115:191-207. [PMID: 32979869 PMCID: PMC10568968 DOI: 10.1111/mmi.14609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/11/2020] [Indexed: 01/30/2023]
Abstract
Undecaprenyl phosphate (Und-P) is an essential lipid carrier that ferries cell wall intermediates across the cytoplasmic membrane in bacteria. Und-P is generated by dephosphorylating undecaprenyl pyrophosphate (Und-PP). In Escherichia coli, BacA, PgpB, YbjG, and LpxT dephosphorylate Und-PP and are conditionally essential. To identify vulnerabilities that arise when Und-P metabolism is defective, we developed a genetic screen for synthetic interactions which, in combination with ΔybjG ΔlpxT ΔbacA, are lethal or reduce fitness. The screen uncovered novel connections to cell division, DNA replication/repair, signal transduction, and glutathione metabolism. Further analysis revealed several new morphogenes; loss of one of these, qseC, caused cells to enlarge and lyse. QseC is the sensor kinase component of the QseBC two-component system. Loss of QseC causes overactivation of the QseB response regulator by PmrB cross-phosphorylation. Here, we show that deleting qseB completely reverses the shape defect of ΔqseC cells, as does overexpressing rprA (a small RNA). Surprisingly, deleting pmrB only partially suppressed qseC-related shape defects. Thus, QseB is activated by multiple factors in QseC's absence and prior functions ascribed to QseBC may originate from cell wall defects. Altogether, our findings provide a framework for identifying new determinants of cell integrity that could be targeted in future therapies.
Collapse
Affiliation(s)
- Matthew A. Jorgenson
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Joseph C. Bryant
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
20
|
Karaboja X, Ren Z, Brandão HB, Paul P, Rudner DZ, Wang X. XerD unloads bacterial SMC complexes at the replication terminus. Mol Cell 2021; 81:756-766.e8. [PMID: 33472056 DOI: 10.1016/j.molcel.2020.12.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/11/2020] [Accepted: 12/14/2020] [Indexed: 11/24/2022]
Abstract
Bacillus subtilis structural maintenance of chromosomes (SMC) complexes are topologically loaded at centromeric sites adjacent to the replication origin by the partitioning protein ParB. These ring-shaped ATPases then translocate down the left and right chromosome arms while tethering them together. Here, we show that the site-specific recombinase XerD, which resolves chromosome dimers, is required to unload SMC tethers when they reach the terminus. We identify XerD-specific binding sites in the terminus region and show that they dictate the site of unloading in a manner that depends on XerD but not its catalytic residue, its partner protein XerC, or the recombination site dif. Finally, we provide evidence that ParB and XerD homologs perform similar functions in Staphylococcus aureus. Thus, two broadly conserved factors that act at the origin and terminus have second functions in loading and unloading SMC complexes that travel between them.
Collapse
Affiliation(s)
- Xheni Karaboja
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Zhongqing Ren
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Hugo B Brandão
- Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA
| | - Payel Paul
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - David Z Rudner
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA.
| | - Xindan Wang
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
21
|
Boes A, Kerff F, Herman R, Touze T, Breukink E, Terrak M. The bacterial cell division protein fragment EFtsN binds to and activates the major peptidoglycan synthase PBP1b. J Biol Chem 2020; 295:18256-18265. [PMID: 33109614 PMCID: PMC7939390 DOI: 10.1074/jbc.ra120.015951] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/21/2020] [Indexed: 12/20/2022] Open
Abstract
Peptidoglycan (PG) is an essential constituent of the bacterial cell wall. During cell division, the machinery responsible for PG synthesis localizes mid-cell, at the septum, under the control of a multiprotein complex called the divisome. In Escherichia coli, septal PG synthesis and cell constriction rely on the accumulation of FtsN at the division site. Interestingly, a short sequence of FtsN (Leu75-Gln93, known as EFtsN) was shown to be essential and sufficient for its functioning in vivo, but what exactly this sequence is doing remained unknown. Here, we show that EFtsN binds specifically to the major PG synthase PBP1b and is sufficient to stimulate its biosynthetic glycosyltransferase (GTase) activity. We also report the crystal structure of PBP1b in complex with EFtsN, which demonstrates that EFtsN binds at the junction between the GTase and UB2H domains of PBP1b. Interestingly, mutations to two residues (R141A/R397A) within the EFtsN-binding pocket reduced the activation of PBP1b by FtsN but not by the lipoprotein LpoB. This mutant was unable to rescue the ΔponB-ponAts strain, which lacks PBP1b and has a thermosensitive PBP1a, at nonpermissive temperature and induced a mild cell-chaining phenotype and cell lysis. Altogether, the results show that EFtsN interacts with PBP1b and that this interaction plays a role in the activation of its GTase activity by FtsN, which may contribute to the overall septal PG synthesis and regulation during cell division.
Collapse
Affiliation(s)
- Adrien Boes
- InBioS-Centre d'Ingénierie des Protéines, Liège University, Liège, Belgium
| | - Frederic Kerff
- InBioS-Centre d'Ingénierie des Protéines, Liège University, Liège, Belgium
| | - Raphael Herman
- InBioS-Centre d'Ingénierie des Protéines, Liège University, Liège, Belgium
| | - Thierry Touze
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Eefjan Breukink
- Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Mohammed Terrak
- InBioS-Centre d'Ingénierie des Protéines, Liège University, Liège, Belgium.
| |
Collapse
|
22
|
Bohrhunter JL, Rohs PDA, Torres G, Yunck R, Bernhardt TG. MltG activity antagonizes cell wall synthesis by both types of peptidoglycan polymerases in Escherichia coli. Mol Microbiol 2020; 115:1170-1180. [PMID: 33278861 DOI: 10.1111/mmi.14660] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 11/25/2020] [Indexed: 12/23/2022]
Abstract
Bacterial cells are surrounded by a peptidoglycan (PG) cell wall. This structure is essential for cell integrity and its biogenesis pathway is a key antibiotic target. Most bacteria utilize two types of synthases that polymerize glycan strands and crosslink them: class A penicillin-binding proteins (aPBPs) and complexes of SEDS proteins and class B PBPs (bPBPs). Although the enzymatic steps of PG synthesis are well characterized, the steps involved in terminating PG glycan polymerization remain poorly understood. A few years ago, the conserved lytic transglycosylase MltG was identified as a potential terminase for PG synthesis in Escherichia coli. However, characterization of the in vivo function of MltG was hampered by the lack of a growth or morphological phenotype in ΔmltG cells. Here, we report the isolation of MltG-defective mutants as suppressors of lethal deficits in either aPBP or SEDS/bPBP PG synthase activity. We used this phenotype to perform a domain-function analysis for MltG, which revealed that access to the inner membrane is important for its in vivo activity. Overall, our results support a model in which MltG functions as a terminase for both classes of PG synthases by cleaving PG glycans as they are being actively synthesized.
Collapse
Affiliation(s)
| | | | - Grasiela Torres
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Rachel Yunck
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Thomas G Bernhardt
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.,Howard Hughes Medical Institute, Chevy Chase, 20815, MD, USA
| |
Collapse
|
23
|
Sanyal R, Harinarayanan R. Activation of RelA by pppGpp as the basis for its differential toxicity over ppGpp in Escherichia coli. J Biosci 2020. [DOI: 10.1007/s12038-020-9991-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
DrpB (YedR) Is a Nonessential Cell Division Protein in Escherichia coli. J Bacteriol 2020; 202:JB.00284-20. [PMID: 32900831 PMCID: PMC7648144 DOI: 10.1128/jb.00284-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022] Open
Abstract
A thorough understanding of bacterial cell division requires identifying and characterizing all of the proteins that participate in this process. Our discovery of DrpB brings us one step closer to this goal in E. coli. We report that the small Escherichia coli membrane protein DrpB (formerly YedR) is involved in cell division. We discovered DrpB in a screen for multicopy suppressors of a ΔftsEX mutation that prevents divisome assembly when cells are plated on low ionic strength medium, such as lysogeny broth without NaCl. Characterization of DrpB revealed that (i) translation initiates at an ATG annotated as codon 22 rather than the GTG annotated as codon 1, (ii) DrpB localizes to the septal ring when cells are grown in medium of low ionic strength but localization is greatly reduced in medium of high ionic strength, (iii) overproduction of DrpB in a ΔftsEX mutant background improves recruitment of the septal peptidoglycan synthase FtsI, implying multicopy suppression works by rescuing septal ring assembly, (iv) a ΔdrpB mutant divides quite normally, but a ΔdrpB ΔdedD double mutant has a strong division and viability defect, albeit only in medium of high ionic strength, and (v) DrpB homologs are found in E. coli and a few closely related enteric bacteria, but not outside this group. In sum, DrpB is a poorly conserved nonessential division protein that improves the efficiency of cytokinesis under suboptimal conditions. Proteins like DrpB are likely to be a widespread feature of the bacterial cell division apparatus, but they are easily overlooked because mutants lack obvious shape defects. IMPORTANCE A thorough understanding of bacterial cell division requires identifying and characterizing all of the proteins that participate in this process. Our discovery of DrpB brings us one step closer to this goal in E. coli.
Collapse
|
25
|
Romero ZJ, Chen SH, Armstrong T, Wood EA, van Oijen A, Robinson A, Cox MM. Resolving Toxic DNA repair intermediates in every E. coli replication cycle: critical roles for RecG, Uup and RadD. Nucleic Acids Res 2020; 48:8445-8460. [PMID: 32644157 PMCID: PMC7470958 DOI: 10.1093/nar/gkaa579] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 01/31/2023] Open
Abstract
DNA lesions or other barriers frequently compromise replisome progress. The SF2 helicase RecG is a key enzyme in the processing of postreplication gaps or regressed forks in Escherichia coli. A deletion of the recG gene renders cells highly sensitive to a range of DNA damaging agents. Here, we demonstrate that RecG function is at least partially complemented by another SF2 helicase, RadD. A ΔrecGΔradD double mutant exhibits an almost complete growth defect, even in the absence of stress. Suppressors appear quickly, primarily mutations that compromise priA helicase function or recA promoter mutations that reduce recA expression. Deletions of uup (encoding the UvrA-like ABC system Uup), recO, or recF also suppress the ΔrecGΔradD growth phenotype. RadD and RecG appear to avoid toxic situations in DNA metabolism, either resolving or preventing the appearance of DNA repair intermediates produced by RecA or RecA-independent template switching at stalled forks or postreplication gaps. Barriers to replisome progress that require intervention by RadD or RecG occur in virtually every replication cycle. The results highlight the importance of the RadD protein for general chromosome maintenance and repair. They also implicate Uup as a new modulator of RecG function.
Collapse
Affiliation(s)
- Zachary J Romero
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Stefanie H Chen
- Biotechnology Program, North Carolina State University, Raleigh, NC 27695, USA
| | - Thomas Armstrong
- Molecular Horizons Institute and School of Chemistry, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Elizabeth A Wood
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Antoine van Oijen
- Molecular Horizons Institute and School of Chemistry, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Andrew Robinson
- Molecular Horizons Institute and School of Chemistry, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
26
|
Sanyal R, Vimala A, Harinarayanan R. Studies on the Regulation of (p)ppGpp Metabolism and Its Perturbation Through the Over-Expression of Nudix Hydrolases in Escherichia coli. Front Microbiol 2020; 11:562804. [PMID: 33178149 PMCID: PMC7593582 DOI: 10.3389/fmicb.2020.562804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 09/23/2020] [Indexed: 11/17/2022] Open
Abstract
Stringent response mediated by modified guanosine nucleotides is conserved across bacteria and is regulated through the Rel/Spo functions. In Escherichia coli, RelA and SpoT proteins synthesize the modified nucleotides ppGpp and pppGpp, together referred to as (p)ppGpp. SpoT is also the primary (p)ppGpp hydrolase. In this study, using hypomorphic relA alleles, we provide experimental evidence for SpoT-mediated negative regulation of the amplification of RelA-dependent stringent response. We investigated the kinetics of ppGpp degradation in cells recovering from stringent response in the complete absence of SpoT function. We found that, although greatly diminished, there was slow ppGpp degradation and growth resumption after a lag period, concomitant with decrease in ppGpp pool. We present evidence for reduction in the ppGpp degradation rate following an increase in pppGpp pool, during recovery from stringent response. From a genetic screen, the nudix hydrolases MutT and NudG were identified as over-expression suppressors of the growth defect of ΔspoT and ΔspoT ΔgppA strains. The effect of over-expression of these hydrolases on the stringent response to amino acid starvation and basal (p)ppGpp pool was studied. Over-expression of each hydrolase reduced the strength of the stringent response to amino acid starvation, and additionally, perturbed the ratio of ppGpp to pppGpp in strains with reduced SpoT hydrolase activity. In these strains that do not accumulate pppGpp during amino acid starvation, the expression of NudG or MutT supported pppGpp accumulation. This lends support to the idea that a reduction in the SpoT hydrolase activity is sufficient to cause the loss of pppGpp accumulation and therefore the phenomenon is independent of hydrolases that target pppGpp, such as GppA.
Collapse
Affiliation(s)
- Rajeshree Sanyal
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Allada Vimala
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Rajendran Harinarayanan
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| |
Collapse
|
27
|
Singhi D, Srivastava P. How similar or dissimilar cells are produced by bacterial cell division? Biochimie 2020; 176:71-84. [DOI: 10.1016/j.biochi.2020.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 10/24/2022]
|
28
|
Truong TT, Vettiger A, Bernhardt TG. Cell division is antagonized by the activity of peptidoglycan endopeptidases that promote cell elongation. Mol Microbiol 2020; 114:966-978. [PMID: 32866331 DOI: 10.1111/mmi.14587] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/29/2020] [Indexed: 12/16/2022]
Abstract
A peptidoglycan (PG) cell wall composed of glycans crosslinked by short peptides surrounds most bacteria and protects them against osmotic rupture. In Escherichia coli, cell elongation requires crosslink cleavage by PG endopeptidases to make space for the incorporation of new PG material throughout the cell cylinder. Cell division, on the contrary, requires the localized synthesis and remodeling of new PG at midcell by the divisome. Little is known about the factors that modulate transitions between these two modes of PG biogenesis. In a transposon-insertion sequencing screen to identify mutants synthetically lethal with a defect in the division protein FtsP, we discovered that mutants impaired for cell division are sensitive to elevated activity of the endopeptidases. Increased endopeptidase activity in these cells was shown to interfere with the assembly of mature divisomes, and conversely, inactivation of MepS was found to suppress the lethality of mutations in essential division genes. Overall, our results are consistent with a model in which the cell elongation and division systems are in competition with one another and that control of PG endopeptidase activity represents an important point of regulation influencing the transition from elongation to the division mode of PG biogenesis.
Collapse
Affiliation(s)
- Thao T Truong
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Andrea Vettiger
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Thomas G Bernhardt
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.,Howard Hughes Medical Institute, Boston, MA, USA
| |
Collapse
|
29
|
Roles of ATP Hydrolysis by FtsEX and Interaction with FtsA in Regulation of Septal Peptidoglycan Synthesis and Hydrolysis. mBio 2020; 11:mBio.01247-20. [PMID: 32636250 PMCID: PMC7343993 DOI: 10.1128/mbio.01247-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In Escherichia coli, FtsEX coordinates peptidoglycan (PG) synthesis and hydrolysis at the septum. It acts on FtsA in the cytoplasm to promote recruitment of septal PG synthetases and recruits EnvC, an activator of septal PG hydrolases, in the periplasm. Following recruitment, ATP hydrolysis by FtsEX is thought to regulate both PG synthesis and hydrolysis, but how it does this is not well understood. Here, we show that an ATPase mutant of FtsEX blocks septal PG synthesis similarly to cephalexin, suggesting that ATP hydrolysis by FtsEX is required throughout septation. Using mutants that uncouple the roles of FtsEX in septal PG synthesis and hydrolysis, we find that recruitment of EnvC to the septum by FtsEX, but not ATP hydrolysis, is required to promote cell separation when the NlpD-mediated cell separation system is present. However, ATP hydrolysis by FtsEX becomes necessary for efficient cell separation when the NlpD system is inactivated, suggesting that the ATPase activity of FtsEX is required for optimal activity of EnvC. Importantly, under conditions that suppress the role of FtsEX in cell division, disruption of the FtsEX-FtsA interaction delays cell separation, highlighting the importance of this interaction in coupling the cell separation system with the septal PG synthetic complex.IMPORTANCE Cytokinesis in Gram-negative bacteria requires coordinated invagination of the three layers of the cell envelope; otherwise, cells become sensitive to hydrophobic antibiotics and can even undergo cell lysis. In E. coli, the ABC transporter FtsEX couples the synthesis and hydrolysis of the stress-bearing peptidoglycan layer at the septum by interacting with FtsA and EnvC, respectively. ATP hydrolysis by FtsEX is critical for its function, but the reason why is not clear. Here, we find that in the absence of ATP hydrolysis, FtsEX blocks septal PG synthesis similarly to cephalexin. However, an FtsEX ATPase mutant, under conditions where it cannot block division, rescues ftsEX phenotypes as long as a partially redundant cell separation system is present. Furthermore, we find that the FtsEX-FtsA interaction is important for efficient cell separation.
Collapse
|
30
|
Novel Divisome-Associated Protein Spatially Coupling the Z-Ring with the Chromosomal Replication Terminus in Caulobacter crescentus. mBio 2020; 11:mBio.00487-20. [PMID: 32345642 PMCID: PMC7188993 DOI: 10.1128/mbio.00487-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Growing bacteria require careful tuning of cell division processes with dynamic organization of replicating chromosomes. In enteric bacteria, ZapA associates with the cytoskeletal Z-ring and establishes a physical linkage to the chromosomal replication terminus through its interaction with ZapB-MatP-DNA complexes. However, because ZapB and MatP are found only in enteric bacteria, it remains unclear how the Z-ring and the terminus are coordinated in the vast majority of bacteria. Here, we provide evidence that a novel conserved protein, termed ZapT, mediates colocalization of the Z-ring with the terminus in Caulobacter crescentus, a model organism that is phylogenetically distant from enteric bacteria. Given that ZapT facilitates cell division processes in C. crescentus, this study highlights the universal importance of the physical linkage between the Z-ring and the terminus in maintaining cell integrity. Cell division requires proper spatial coordination with the chromosome, which undergoes dynamic changes during chromosome replication and segregation. FtsZ is a bacterial cytoskeletal protein that assembles into the Z-ring, providing a platform to build the cell division apparatus. In the model bacterium Caulobacter crescentus, the cellular localization of the Z-ring is controlled during the cell cycle in a chromosome replication-coupled manner. Although dynamic localization of the Z-ring at midcell is driven primarily by the replication origin-associated FtsZ inhibitor MipZ, the mechanism ensuring accurate positioning of the Z-ring remains unclear. In this study, we showed that the Z-ring colocalizes with the replication terminus region, located opposite the origin, throughout most of the C. crescentus cell cycle. Spatial organization of the two is mediated by ZapT, a previously uncharacterized protein that interacts with the terminus region and associates with ZapA and ZauP, both of which are part of the incipient division apparatus. While the Z-ring and the terminus region coincided with the presence of ZapT, colocalization of the two was perturbed in cells lacking zapT, which is accompanied by delayed midcellular positioning of the Z-ring. Moreover, cells overexpressing ZapT showed compromised positioning of the Z-ring and MipZ. These findings underscore the important role of ZapT in controlling cell division processes. We propose that ZapT acts as a molecular bridge that physically links the terminus region to the Z-ring, thereby ensuring accurate site selection for the Z-ring. Because ZapT is conserved in proteobacteria, these findings may define a general mechanism coordinating cell division with chromosome organization.
Collapse
|
31
|
Yakhnina AA, Bernhardt TG. The Tol-Pal system is required for peptidoglycan-cleaving enzymes to complete bacterial cell division. Proc Natl Acad Sci U S A 2020; 117:6777-6783. [PMID: 32152098 PMCID: PMC7104345 DOI: 10.1073/pnas.1919267117] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tol-Pal is a multiprotein system present in the envelope of Gram-negative bacteria. Inactivation of this widely conserved machinery compromises the outer membrane (OM) layer of these organisms, resulting in hypersensitivity to many antibiotics. Mutants in the tol-pal locus fail to complete division and form cell chains. This phenotype along with the localization of Tol-Pal components to the cytokinetic ring in Escherichia coli has led to the proposal that the primary function of the system is to promote OM constriction during division. Accordingly, a poorly constricted OM is believed to link the cell chains formed upon Tol-Pal inactivation. However, we show here that cell chains of E. coli tol-pal mutants are connected by an incompletely processed peptidoglycan (PG) layer. Genetic suppressors of this defect were isolated and found to overproduce OM lipoproteins capable of cleaving the glycan strands of PG. Among the factors promoting cell separation in mutant cells was a protein of previously unknown function (YddW), which we have identified as a divisome-localized glycosyl hydrolase that cleaves peptide-free PG glycans. Overall, our results indicate that the cell chaining defect of Tol-Pal mutants cannot simply be interpreted as a defect in OM constriction. Rather, the complex also appears to be required for the activity of several OM-localized enzymes with cell wall remodeling activity. Thus, the Tol-Pal system may play a more general role in coordinating OM invagination with PG remodeling at the division site than previously appreciated.
Collapse
Affiliation(s)
| | - Thomas G Bernhardt
- Department of Microbiology, Harvard Medical School, Boston, MA 02115;
- Howard Hughes Medical Institute, Boston, MA 02115
| |
Collapse
|
32
|
Sher JW, Lim HC, Bernhardt TG. Global phenotypic profiling identifies a conserved actinobacterial cofactor for a bifunctional PBP-type cell wall synthase. eLife 2020; 9:54761. [PMID: 32167475 PMCID: PMC7205459 DOI: 10.7554/elife.54761] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/12/2020] [Indexed: 12/11/2022] Open
Abstract
Members of the Corynebacterineae suborder of Actinobacteria have a unique cell surface architecture and, unlike most well-studied bacteria, grow by tip-extension. To investigate the distinct morphogenic mechanisms shared by these organisms, we performed a genome-wide phenotypic profiling analysis using Corynebacterium glutamicum as a model. A high-density transposon mutagenized library was challenged with a panel of antibiotics and other stresses. The fitness of mutants in each gene under each condition was then assessed by transposon-sequencing. Clustering of the resulting phenotypic fingerprints revealed a role for several genes of previously unknown function in surface biogenesis. Further analysis identified CofA (Cgp_0016) as an interaction partner of the peptidoglycan synthase PBP1a that promotes its stable accumulation at sites of polar growth. The related Mycobacterium tuberculosis proteins were also found to interact, highlighting the utility of our dataset for uncovering conserved principles of morphogenesis for this clinically relevant bacterial suborder.
Collapse
Affiliation(s)
- Joel W Sher
- Department of Microbiology, Harvard Medical School, Boston, United States
| | - Hoong Chuin Lim
- Department of Microbiology, Harvard Medical School, Boston, United States
| | - Thomas G Bernhardt
- Department of Microbiology, Harvard Medical School, Boston, United States.,Howard Hughes Medical Institute, Chevy Chase, United States
| |
Collapse
|
33
|
Do T, Page JE, Walker S. Uncovering the activities, biological roles, and regulation of bacterial cell wall hydrolases and tailoring enzymes. J Biol Chem 2020; 295:3347-3361. [PMID: 31974163 DOI: 10.1074/jbc.rev119.010155] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacteria account for 1000-fold more biomass than humans. They vary widely in shape and size. The morphological diversity of bacteria is due largely to the different peptidoglycan-based cell wall structures that encase bacterial cells. Although the basic structure of peptidoglycan is highly conserved, consisting of long glycan strands that are cross-linked by short peptide chains, the mature cell wall is chemically diverse. Peptidoglycan hydrolases and cell wall-tailoring enzymes that regulate glycan strand length, the degree of cross-linking, and the addition of other modifications to peptidoglycan are central in determining the final architecture of the bacterial cell wall. Historically, it has been difficult to biochemically characterize these enzymes that act on peptidoglycan because suitable peptidoglycan substrates were inaccessible. In this review, we discuss fundamental aspects of bacterial cell wall synthesis, describe the regulation and diverse biochemical and functional activities of peptidoglycan hydrolases, and highlight recently developed methods to make and label defined peptidoglycan substrates. We also review how access to these substrates has now enabled biochemical studies that deepen our understanding of how bacterial cell wall enzymes cooperate to build a mature cell wall. Such improved understanding is critical to the development of new antibiotics that disrupt cell wall biogenesis, a process essential to the survival of bacteria.
Collapse
Affiliation(s)
- Truc Do
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Julia E Page
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Suzanne Walker
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115.
| |
Collapse
|
34
|
Sanyal R, Harinarayanan R. Activation of RelA by pppGpp as the basis for its differential toxicity over ppGpp in Escherichia coli. J Biosci 2020; 45:28. [PMID: 32020910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The nucleotide derivatives (p)ppGpp, comprising ppGpp and pppGpp, are important signalling molecules that control various facets of gene regulation and protein synthesis in Escherichia coli. Their synthesis is catalysed by RelA (in response to amino acid limitation) and by SpoT (in response to the limitation of carbon source or fatty acids). SpoT is also a hydrolase for degradation of both ppGpp and pppGpp, while GppA catalyses the conversion of pppGpp to ppGpp. Here we provide evidence to show that pppGpp exerts heightened toxicity compared to that by ppGpp. Thus, gppA spoT double mutants exhibited lethality under conditions in which the single mutants were viable. The extent of RelA-catalysed (p)ppGpp accumulation in the gppA spoT strain was substantially greater than that in its isogenic gppA+ derivative. The data is interpreted in terms of a model in which toxicity of pppGpp in the gppA spoT mutants is mediated by its activation of RelA so as to result in a vicious cycle of (p)ppGpp synthesis.
Collapse
Affiliation(s)
- Rajeshree Sanyal
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | | |
Collapse
|
35
|
Hawkins M, Dimude JU, Howard JAL, Smith AJ, Dillingham MS, Savery NJ, Rudolph CJ, McGlynn P. Direct removal of RNA polymerase barriers to replication by accessory replicative helicases. Nucleic Acids Res 2019; 47:5100-5113. [PMID: 30869136 PMCID: PMC6547429 DOI: 10.1093/nar/gkz170] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/22/2019] [Accepted: 03/08/2019] [Indexed: 11/24/2022] Open
Abstract
Bacterial genome duplication and transcription require simultaneous access to the same DNA template. Conflicts between the replisome and transcription machinery can lead to interruption of DNA replication and loss of genome stability. Pausing, stalling and backtracking of transcribing RNA polymerases add to this problem and present barriers to replisomes. Accessory helicases promote fork movement through nucleoprotein barriers and exist in viruses, bacteria and eukaryotes. Here, we show that stalled Escherichia coli transcription elongation complexes block reconstituted replisomes. This physiologically relevant block can be alleviated by the accessory helicase Rep or UvrD, resulting in the formation of full-length replication products. Accessory helicase action during replication-transcription collisions therefore promotes continued replication without leaving gaps in the DNA. In contrast, DinG does not promote replisome movement through stalled transcription complexes in vitro. However, our data demonstrate that DinG operates indirectly in vivo to reduce conflicts between replication and transcription. These results suggest that Rep and UvrD helicases operate on DNA at the replication fork whereas DinG helicase acts via a different mechanism.
Collapse
Affiliation(s)
- Michelle Hawkins
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Juachi U Dimude
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | | | - Abigail J Smith
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Mark S Dillingham
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Nigel J Savery
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Christian J Rudolph
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Peter McGlynn
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| |
Collapse
|
36
|
Lim HC, Bernhardt TG. A PopZ-linked apical recruitment assay for studying protein-protein interactions in the bacterial cell envelope. Mol Microbiol 2019; 112:1757-1768. [PMID: 31550057 DOI: 10.1111/mmi.14391] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2019] [Indexed: 02/03/2023]
Abstract
Most bacteria are surrounded by a complex cell envelope. As with many biological processes, studies of envelope assembly have benefited from cell-based assays for detecting protein-protein interactions. These assays use simple readouts and lack a protein purification requirement, making them ideal for early stage investigations. The most widely used two-hybrid interaction assay for proteins involved in envelope biogenesis is based on the reconstitution of adenylate cyclase activity from a split enzyme. Because adenylate cyclase is only functional in the cytoplasm, both protein fusions used in the assay must have a terminus located in this compartment. However, many envelope assembly factors are wholly extracytoplasmic. Detecting interactions involving such proteins using two-hybrid systems has therefore been problematic. To address this issue, we developed a cytological assay in Escherichia coli based on PopZ from Caulobacter crescentus. Here, we demonstrate the utility of this PopZ-Linked Apical Recruitment (POLAR) method for detecting interactions between proteins located in different cellular compartments. Additionally, we report that recruitment of an active peptidoglycan synthase to the cell pole is detrimental for E. coli and that interactions between proteins in the inner and outer membranes of the Gram-negative envelope may provide a mechanism for recruiting protein complexes to subpolar sites.
Collapse
Affiliation(s)
- Hoong Chuin Lim
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Thomas G Bernhardt
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA.,Howard Hughes Medical Institute, Boston, MA, 02115, USA
| |
Collapse
|
37
|
A Novel Gene Contributing to the Initiation of Fatty Acid Biosynthesis in Escherichia coli. J Bacteriol 2019; 201:JB.00354-19. [PMID: 31331975 DOI: 10.1128/jb.00354-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 07/08/2019] [Indexed: 11/20/2022] Open
Abstract
Type II fatty acid biosynthesis in bacteria can be broadly classified into the initiation and elongation phases. The biochemical functions defining each step in the two phases have been studied in vitro Among the β-ketoacyl-acyl carrier protein (ACP) synthases, FabH catalyzes the initiation reaction, while FabB and FabF, which primarily catalyze the elongation reaction, can also drive initiation as side reactions. A role for FabB and FabF in the initiation of fatty acid biosynthesis would be supported by the viability of the ΔfabH mutant. In this study, we show that the ΔfabH and ΔyiiD mutations were synthetically lethal and that ΔfabH ΔrelA ΔspoT and ΔfabH ΔdksA synthetic lethality was rescued by the heterologous expression of yiiD In the ΔfabH mutant, the expression of yiiD was positively regulated by (p)ppGpp. The growth defect, reduced cell size, and altered fatty acid profile of the ΔfabH mutant and the growth defect of the ΔfabH ΔfabF fabB15(Ts) mutant in oleate- and palmitate-supplemented medium at 42°C were rescued by the expression of yiiD from a multicopy plasmid. Together, these results indicate that the yiiD-encoded function supported initiation of fatty acid biosynthesis in the absence of FabH. We have renamed yiiD as fabY IMPORTANCE Fatty acid biosynthesis is an essential process conserved across life forms. β-Ketoacyl-ACP synthases are essential for fatty acid biosynthesis. FabH is a β-ketoacyl-ACP synthase that contributes to the initiation of fatty acid biosynthesis in Escherichia coli In this study, we present genetic and biochemical evidence that the yiiD (renamed fabY)-encoded function contributes to the biosynthesis of fatty acid in the absence of FabH activity and that under these conditions, the expression of FabY was regulated by the stringent response factors (p)ppGpp and DksA. Combined inactivation of FabH and FabY resulted in growth arrest, possibly due to the loss of fatty acid biosynthesis. A molecule(s) that inhibits the two activities can be an effective microbicide.
Collapse
|
38
|
Midgley-Smith SL, Dimude JU, Rudolph CJ. A role for 3' exonucleases at the final stages of chromosome duplication in Escherichia coli. Nucleic Acids Res 2019; 47:1847-1860. [PMID: 30544222 PMCID: PMC6393302 DOI: 10.1093/nar/gky1253] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/25/2018] [Accepted: 12/06/2018] [Indexed: 11/13/2022] Open
Abstract
Chromosome duplication initiates via the assembly of replication fork complexes at defined origins, from where they proceed in opposite directions until they fuse with a converging fork. Recent work highlights that the completion of DNA replication is highly complex in both pro- and eukaryotic cells. In this study we have investigated how 3' and 5' exonucleases contribute towards the successful termination of chromosome duplication in Escherichia coli. We show that the absence of 3' exonucleases can trigger levels of over-replication in the termination area robust enough to allow successful chromosome duplication in the absence of oriC firing. Over-replication is completely abolished if replication fork complexes are prevented from fusing by chromosome linearization. Our data strongly support the idea that 3' flaps are generated as replication fork complexes fuse. In the absence of 3' exonucleases, such as ExoI, these 3' flaps can be converted into 5' flaps, which are degraded by 5' exonucleases, such as ExoVII and RecJ. Our data support the idea that multiple protein activities are required to process fork fusion intermediates. They highlight the complexity of fork fusions and further support the idea that the termination area evolved to contain fork fusion-mediated pathologies.
Collapse
Affiliation(s)
- Sarah L Midgley-Smith
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Juachi U Dimude
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Christian J Rudolph
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| |
Collapse
|
39
|
Warr AR, Hubbard TP, Munera D, Blondel CJ, Abel zur Wiesch P, Abel S, Wang X, Davis BM, Waldor MK. Transposon-insertion sequencing screens unveil requirements for EHEC growth and intestinal colonization. PLoS Pathog 2019; 15:e1007652. [PMID: 31404118 PMCID: PMC6705877 DOI: 10.1371/journal.ppat.1007652] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 08/22/2019] [Accepted: 08/01/2019] [Indexed: 12/28/2022] Open
Abstract
Enterohemorrhagic Escherichia coli O157:H7 (EHEC) is an important food-borne pathogen that colonizes the colon. Transposon-insertion sequencing (TIS) was used to identify genes required for EHEC and E. coli K-12 growth in vitro and for EHEC growth in vivo in the infant rabbit colon. Surprisingly, many conserved loci contribute to EHEC's but not to K-12's growth in vitro. There was a restrictive bottleneck for EHEC colonization of the rabbit colon, which complicated identification of EHEC genes facilitating growth in vivo. Both a refined version of an existing analytic framework as well as PCA-based analysis were used to compensate for the effects of the infection bottleneck. These analyses confirmed that the EHEC LEE-encoded type III secretion apparatus is required for growth in vivo and revealed that only a few effectors are critical for in vivo fitness. Over 200 mutants not previously associated with EHEC survival/growth in vivo also appeared attenuated in vivo, and a subset of these putative in vivo fitness factors were validated. Some were found to contribute to efficient type-three secretion while others, including tatABC, oxyR, envC, acrAB, and cvpA, promote EHEC resistance to host-derived stresses. cvpA is also required for intestinal growth of several other enteric pathogens, and proved to be required for EHEC, Vibrio cholerae and Vibrio parahaemolyticus resistance to the bile salt deoxycholate, highlighting the important role of this previously uncharacterized protein in pathogen survival. Collectively, our findings provide a comprehensive framework for understanding EHEC growth in the intestine.
Collapse
Affiliation(s)
- Alyson R. Warr
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Troy P. Hubbard
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Diana Munera
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Carlos J. Blondel
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Pia Abel zur Wiesch
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sören Abel
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xiaoxue Wang
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brigid M. Davis
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Matthew K. Waldor
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- HHMI, Boston, Massachusetts, United States of America
| |
Collapse
|
40
|
Lim HC, Sher JW, Rodriguez-Rivera FP, Fumeaux C, Bertozzi CR, Bernhardt TG. Identification of new components of the RipC-FtsEX cell separation pathway of Corynebacterineae. PLoS Genet 2019; 15:e1008284. [PMID: 31437147 PMCID: PMC6705760 DOI: 10.1371/journal.pgen.1008284] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/03/2019] [Indexed: 12/23/2022] Open
Abstract
Several important human pathogens are represented in the Corynebacterineae suborder, including Mycobacterium tuberculosis and Corynebacterium diphtheriae. These bacteria are surrounded by a multilayered cell envelope composed of a cytoplasmic membrane, a peptidoglycan (PG) cell wall, a second polysaccharide layer called the arabinogalactan (AG), and finally an outer membrane-like layer made of mycolic acids. Several anti-tuberculosis drugs target the biogenesis of this complex envelope, but their efficacy is declining due to resistance. New therapies are therefore needed to treat diseases caused by these organisms, and a better understanding of the mechanisms of envelope assembly should aid in their discovery. To this end, we generated the first high-density library of transposon insertion mutants in the model organism C. glutamicum. Transposon-sequencing was then used to define its essential gene set and identify loci that, when inactivated, confer hypersensitivity to ethambutol (EMB), a drug that targets AG biogenesis. Among the EMBs loci were genes encoding RipC and the FtsEX complex, a PG cleaving enzyme required for proper cell division and its predicted regulator, respectively. Inactivation of the conserved steAB genes (cgp_1603-1604) was also found to confer EMB hypersensitivity and cell division defects. A combination of quantitative microscopy, mutational analysis, and interaction studies indicate that SteA and SteB form a complex that localizes to the cytokinetic ring to promote cell separation by RipC-FtsEX and may coordinate its PG remodeling activity with the biogenesis of other envelope layers during cell division.
Collapse
Affiliation(s)
- Hoong Chuin Lim
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joel W. Sher
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Coralie Fumeaux
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Carolyn R. Bertozzi
- Department of Chemistry, Stanford University, Stanford, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Thomas G. Bernhardt
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| |
Collapse
|
41
|
Zahir T, Camacho R, Vitale R, Ruckebusch C, Hofkens J, Fauvart M, Michiels J. High-throughput time-resolved morphology screening in bacteria reveals phenotypic responses to antibiotics. Commun Biol 2019; 2:269. [PMID: 31341968 PMCID: PMC6650389 DOI: 10.1038/s42003-019-0480-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/21/2019] [Indexed: 11/09/2022] Open
Abstract
Image-based high-throughput screening strategies for quantifying morphological phenotypes have proven widely successful. Here we describe a combined experimental and multivariate image analysis approach for systematic large-scale phenotyping of morphological dynamics in bacteria. Using off-the-shelf components and software, we established a workflow for high-throughput time-resolved microscopy. We then screened the single-gene deletion collection of Escherichia coli for antibiotic-induced morphological changes. Using single-cell quantitative descriptors and supervised classification methods, we measured how different cell morphologies developed over time for all strains in response to the β-lactam antibiotic cefsulodin. 191 strains exhibit significant variations under antibiotic treatment. Phenotypic clustering provided insights into processes that alter the antibiotic response. Mutants with stable bulges show delayed lysis, contributing to antibiotic tolerance. Lipopolysaccharides play a crucial role in bulge stability. This study demonstrates how multiparametric phenotyping by high-throughput time-resolved imaging and computer-aided cell classification can be used for comprehensively studying dynamic morphological transitions in bacteria.
Collapse
Affiliation(s)
- Taiyeb Zahir
- Centre of Microbial and Plant Genetics, KU Leuven—University of Leuven, Leuven, 3001 Belgium
- VIB-KU Leuven Center of Microbiology, Leuven, 3001 Belgium
| | - Rafael Camacho
- Department of Chemistry, KU Leuven—University of Leuven, Leuven, 3001 Belgium
| | - Raffaele Vitale
- Department of Chemistry, KU Leuven—University of Leuven, Leuven, 3001 Belgium
- LASIR CNRS, Université de Lille, Lille, F-59000 France
| | | | - Johan Hofkens
- Department of Chemistry, KU Leuven—University of Leuven, Leuven, 3001 Belgium
| | - Maarten Fauvart
- Centre of Microbial and Plant Genetics, KU Leuven—University of Leuven, Leuven, 3001 Belgium
- VIB-KU Leuven Center of Microbiology, Leuven, 3001 Belgium
- imec, Leuven, 3001 Belgium
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, KU Leuven—University of Leuven, Leuven, 3001 Belgium
- VIB-KU Leuven Center of Microbiology, Leuven, 3001 Belgium
| |
Collapse
|
42
|
Brüning JG, Howard JAL, Myka KK, Dillingham MS, McGlynn P. The 2B subdomain of Rep helicase links translocation along DNA with protein displacement. Nucleic Acids Res 2019; 46:8917-8925. [PMID: 30060236 PMCID: PMC6158625 DOI: 10.1093/nar/gky673] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/17/2018] [Indexed: 12/22/2022] Open
Abstract
Helicases catalyse DNA and RNA strand separation. Proteins bound to the nucleic acid must also be displaced in order to unwind DNA. This is exemplified by accessory helicases that clear protein barriers from DNA ahead of advancing replication forks. How helicases catalyse DNA unwinding is increasingly well understood but how protein displacement is achieved is unclear. Escherichia coli Rep accessory replicative helicase lacking one of its four subdomains, 2B, has been shown to be hyperactivated for DNA unwinding in vitro but we show here that RepΔ2B is, in contrast, deficient in displacing proteins from DNA. This defect correlates with an inability to promote replication of protein-bound DNA in vitro and lack of accessory helicase function in vivo. Defective protein displacement is manifested on double-stranded and single-stranded DNA. Thus binding and distortion of duplex DNA by the 2B subdomain ahead of the helicase is not the missing function responsible for this deficiency. These data demonstrate that protein displacement from DNA is not simply achieved by helicase translocation alone. They also imply that helicases may have evolved different specific features to optimise DNA unwinding and protein displacement, both of which are now recognised as key functions in all aspects of nucleic acid metabolism.
Collapse
Affiliation(s)
| | | | - Kamila K Myka
- Department of Biology, University of York, York YO10 5DD, UK
| | - Mark S Dillingham
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Peter McGlynn
- Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
43
|
Roles of the DedD Protein in Escherichia coli Cell Constriction. J Bacteriol 2019; 201:JB.00698-18. [PMID: 30692172 DOI: 10.1128/jb.00698-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/20/2019] [Indexed: 02/04/2023] Open
Abstract
Two key tasks of the bacterial septal-ring (SR) machinery during cell constriction are the generation of an inward-growing annulus of septal peptidoglycan (sPG) and the concomitant splitting of its outer edge into two layers of polar PG that will be inherited by the two new cell ends. FtsN is an essential SR protein that helps trigger the active constriction phase in Escherichia coli by inducing a self-enhancing cycle of processes that includes both sPG synthesis and splitting and that we refer to as the sPG loop. DedD is an SR protein that resembles FtsN in several ways. Both are bitopic inner membrane proteins with small N-terminal cytoplasmic parts and larger periplasmic parts that terminate with a SPOR domain. Though absence of DedD normally causes a mild cell-chaining phenotype, the protein is essential for division and survival of cells with limited FtsN activity. Here, we find that a small N-terminal portion of DedD (NDedD; DedD1-54) is required and sufficient to suppress ΔdedD-associated division phenotypes, and we identify residues within its transmembrane domain that are particularly critical to DedD function. Further analyses indicate that DedD and FtsN act in parallel to promote sPG synthesis, possibly by engaging different parts of the FtsBLQ subcomplex to induce a conformation that permits and/or stimulates the activity of sPG synthase complexes composed of FtsW, FtsI (PBP3), and associated proteins. We propose that, like FtsN, DedD promotes cell fission by stimulating sPG synthesis, as well as by providing positive feedback to the sPG loop.IMPORTANCE Cell division (cytokinesis) is a fundamental biological process that is incompletely understood for any organism. Division of bacterial cells relies on a ring-like machinery called the septal ring or divisome that assembles along the circumference of the mother cell at the site where constriction eventually occurs. In the well-studied bacterium Escherichia coli, this machinery contains over 30 distinct proteins. We identify functionally important parts of one of these proteins, DedD, and present evidence supporting a role for DedD in helping to induce and/or sustain a self-enhancing cycle of processes that are executed by fellow septal-ring proteins and that drive the active constriction phase of the cell division cycle.
Collapse
|
44
|
Topoisomerase III Acts at the Replication Fork To Remove Precatenanes. J Bacteriol 2019; 201:JB.00563-18. [PMID: 30617245 DOI: 10.1128/jb.00563-18] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/21/2018] [Indexed: 11/20/2022] Open
Abstract
The role of DNA topoisomerase III (Topo III) in bacterial cells has proven elusive. Whereas eukaryotic Top IIIα homologs are clearly involved with homologs of the bacterial DNA helicase RecQ in unraveling double Holliday junctions, preventing crossover exchange of genetic information at unscheduled recombination intermediates, and Top IIIβ homologs have been shown to be involved in regulation of various mRNAs involved in neuronal function, there is little evidence for similar reactions in bacteria. Instead, most data point to Topo III playing a role supplemental to that of topoisomerase IV in unlinking daughter chromosomes during DNA replication. In support of this model, we show that Escherichia coli Topo III associates with the replication fork in vivo (likely via interactions with the single-stranded DNA-binding protein and the β clamp-loading DnaX complex of the DNA polymerase III holoenzyme), that the DnaX complex stimulates the ability of Topo III to unlink both catenated and precatenated DNA rings, and that ΔtopB cells show delayed and disorganized nucleoid segregation compared to that of wild-type cells. These data argue that Topo III normally assists topoisomerase IV in chromosome decatenation by removing excess positive topological linkages at or near the replication fork as they are converted into precatenanes.IMPORTANCE Topological entanglement between daughter chromosomes has to be reduced to exactly zero every time an E. coli cell divides. The enzymatic agents that accomplish this task are the topoisomerases. E. coli possesses four topoisomerases. It has been thought that topoisomerase IV is primarily responsible for unlinking the daughter chromosomes during DNA replication. We show here that topoisomerase III also plays a role in this process and is specifically localized to the replisome, the multiprotein machine that duplicates the cell's genome, in order to do so.
Collapse
|
45
|
Nevermann J, Silva A, Otero C, Oyarzún DP, Barrera B, Gil F, Calderón IL, Fuentes JA. Identification of Genes Involved in Biogenesis of Outer Membrane Vesicles (OMVs) in Salmonella enterica Serovar Typhi. Front Microbiol 2019; 10:104. [PMID: 30778340 PMCID: PMC6369716 DOI: 10.3389/fmicb.2019.00104] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/17/2019] [Indexed: 12/26/2022] Open
Abstract
Outer membrane vesicles (OMVs) are nano-sized proteoliposomes discharged from the cell envelope of Gram-negative bacteria. OMVs normally contain toxins, enzymes and other factors, and are used as vehicles in a process that has been considered a generalized, evolutionarily conserved delivery system among bacteria. Furthermore, OMVs can be used in biotechnological applications that require delivery of biomolecules, such as vaccines, remarking the importance of their study. Although it is known that Salmonella enterica serovar Typhi (S. Typhi), the etiological agent of typhoid fever in humans, delivers toxins (e.g., HlyE) via OMVs, there are no reports identifying genetic determinants of the OMV biogenesis in this serovar. In the present work, and with the aim to identify genes participating in OMV biogenesis in S. Typhi, we screened 15,000 random insertion mutants for increased HlyE secretion. We found 9 S. Typhi genes (generically called zzz genes) determining an increased HlyE secretion that were also involved in OMV biogenesis. The genes corresponded to ompA, nlpI, and tolR (envelope stability), rfaE and waaC (LPS synthesis), yipP (envC), mrcB (synthesis and remodeling of peptidoglycan), degS (stress sensor serine endopeptidase) and hns (global transcriptional regulator). We found that S. Typhi Δzzz mutants were prone to secrete periplasmic, functional proteins with a relatively good envelope integrity. In addition, we showed that zzz genes participate in OMV biogenesis, modulating different properties such as OMV size distribution, OMV yield and OMV protein cargo.
Collapse
Affiliation(s)
- Jan Nevermann
- Laboratorio de Genética y Patogénesis Bacteriana, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Andrés Silva
- Laboratorio de Genética y Patogénesis Bacteriana, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Carolina Otero
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Diego P Oyarzún
- Center of Applied Nanosciences, Universidad Andres Bello, Santiago, Chile
| | - Boris Barrera
- Unidad de Microbiología, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Fernando Gil
- Microbiota-Host Interactions and Clostridia Research Group, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Iván L Calderón
- Laboratorio de Genética y Patogénesis Bacteriana, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Juan A Fuentes
- Laboratorio de Genética y Patogénesis Bacteriana, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
46
|
Klobucar K, Brown ED. Use of genetic and chemical synthetic lethality as probes of complexity in bacterial cell systems. FEMS Microbiol Rev 2018; 42:4563584. [PMID: 29069427 DOI: 10.1093/femsre/fux054] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/23/2017] [Indexed: 12/22/2022] Open
Abstract
Different conditions and genomic contexts are known to have an impact on gene essentiality and interactions. Synthetic lethal interactions occur when a combination of perturbations, either genetic or chemical, result in a more profound fitness defect than expected based on the effect of each perturbation alone. Synthetic lethality in bacterial systems has long been studied; however, during the past decade, the emerging fields of genomics and chemical genomics have led to an increase in the scale and throughput of these studies. Here, we review the concepts of genomics and chemical genomics in the context of synthetic lethality and their revolutionary roles in uncovering novel biology such as the characterization of genes of unknown function and in antibacterial drug discovery. We provide an overview of the methodologies, examples and challenges of both genetic and chemical synthetic lethal screening platforms. Finally, we discuss how to apply genetic and chemical synthetic lethal approaches to rationalize the synergies of drugs, screen for new and improved antibacterial therapies and predict drug mechanism of action.
Collapse
Affiliation(s)
- Kristina Klobucar
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main St West, Hamilton, ON L8N 3Z5, Canada
| | - Eric D Brown
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main St West, Hamilton, ON L8N 3Z5, Canada
| |
Collapse
|
47
|
MacCready JS, Vecchiarelli AG. In long bacterial cells, the Min system can act off-center. Mol Microbiol 2018; 109:268-272. [DOI: 10.1111/mmi.13995] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Joshua S. MacCready
- Molecular, Cellular, and Developmental Biology; University of Michigan College of Literature Science and the Arts; Biological Sciences Building Ann Arbor MI USA
| | - Anthony G. Vecchiarelli
- Molecular, Cellular, and Developmental Biology; University of Michigan College of Literature Science and the Arts; Biological Sciences Building Ann Arbor MI USA
| |
Collapse
|
48
|
Barshishat S, Elgrably-Weiss M, Edelstein J, Georg J, Govindarajan S, Haviv M, Wright PR, Hess WR, Altuvia S. OxyS small RNA induces cell cycle arrest to allow DNA damage repair. EMBO J 2018; 37:413-426. [PMID: 29237698 PMCID: PMC5793797 DOI: 10.15252/embj.201797651] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 11/13/2017] [Accepted: 11/20/2017] [Indexed: 11/10/2022] Open
Abstract
To maintain genome integrity, organisms employ DNA damage response, the underlying principles of which are conserved from bacteria to humans. The bacterial small RNA OxyS of Escherichia coli is induced upon oxidative stress and has been implicated in protecting cells from DNA damage; however, the mechanism by which OxyS confers genome stability remained unknown. Here, we revealed an OxyS-induced molecular checkpoint relay, leading to temporary cell cycle arrest to allow damage repair. By repressing the expression of the essential transcription termination factor nusG, OxyS enables read-through transcription into a cryptic prophage encoding kilR The KilR protein interferes with the function of the major cell division protein FtsZ, thus imposing growth arrest. This transient growth inhibition facilitates DNA damage repair, enabling cellular recovery, thereby increasing viability following stress. The OxyS-mediated growth arrest represents a novel tier of defense, introducing a new regulatory concept into bacterial stress response.
Collapse
Affiliation(s)
- Shir Barshishat
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Maya Elgrably-Weiss
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Jonathan Edelstein
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Jens Georg
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany
| | - Sutharsan Govindarajan
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Meytal Haviv
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Patrick R Wright
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany
| | - Wolfgang R Hess
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany
| | - Shoshy Altuvia
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
49
|
Escobar CA, Cross TA. False positives in using the zymogram assay for identification of peptidoglycan hydrolases. Anal Biochem 2017; 543:162-166. [PMID: 29246750 DOI: 10.1016/j.ab.2017.12.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/07/2017] [Accepted: 12/11/2017] [Indexed: 11/17/2022]
Abstract
Zymogram assays have been used extensively to identify novel peptidoglycan hydrolases. In this study it is reported that the zymogram is susceptible to false positive results when highly positively charged proteins are assayed. As an example, we report on the case of the ChiZ membrane protein from the Mycobacterium tuberculosis divisome, which previously was described as a peptidoglycan hydrolase. Even though the full length ChiZ protein was able to produce positive assay results, other direct methods for measuring peptidoglycan hydrolysis do not provide convincing evidence that ChiZ has peptidoglycan hydrolysis activity. We show that the false positive result is produced by the highly positively charged N-terminal region of ChiZ. Thus, we developed a zymogram control that can be used to identify false positives results. This control assay lacks the refolding step in the normal zymogram assay. For lysozyme the control assay shows no activity, while the N-terminal region of ChiZ shows a false positive result. Given the limitations of the zymogram assay to reliably identify peptidoglycan hydrolases, we recommend using the zymogram control assay together with other methods to evaluate possible peptidoglycan hydrolysis activity.
Collapse
Affiliation(s)
- Cristian A Escobar
- Institute of Molecular Biophysics, and National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310 USA
| | - Timothy A Cross
- Department of Chemistry and Biochemistry, Institute of Molecular Biophysics, and National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310 USA.
| |
Collapse
|
50
|
The bacterial Sec system is required for the organization and function of the MreB cytoskeleton. PLoS Genet 2017; 13:e1007017. [PMID: 28945742 PMCID: PMC5629013 DOI: 10.1371/journal.pgen.1007017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 10/05/2017] [Accepted: 09/13/2017] [Indexed: 12/11/2022] Open
Abstract
The Sec system is responsible for protein insertion, translocation and secretion across membranes in all cells. The bacterial actin homolog MreB controls various processes, including cell wall synthesis, membrane organization and polarity establishment. Here we show that the two systems genetically interact and that components of the Sec system, especially the SecA motor protein, are essential for spatiotemporal organization of MreB in E. coli, as evidenced by the accumulation of MreB at irregular sites in Sec-impaired cells. MreB mislocalization in SecA-defective cells significantly affects MreB-coordinated processes, such as cell wall synthesis, and induce formation of membrane invaginations enriched in high fluidity domains. Additionally, MreB is not recruited to the FtsZ ring in secA mutant cells, contributing to division arrest and cell filamentation. Our results show that all these faults are due to improper targeting of MreB to the membrane in the absence of SecA. Thus, when we reroute RodZ, MreB membrane-anchor, by fusing it to a SecA-independent integral membrane protein and overproducing it, MreB localization is restored and the defect in cell division is corrected. Notably, the RodZ moiety is not properly inserted into the membrane, strongly suggesting that it only serves as a bait for placing MreB around the cell circumference. Finally, we show that MreB localization depends on SecA also in C. crescentus, suggesting that regulation of MreB by the Sec system is conserved in bacteria. Taken together, our data reveal that the secretion system plays an important role in determining the organization and functioning of the cytoskeletal system in bacteria. The notion that bacterial cells have intricate spatial organization, which affects many vital processes, is relatively new and, hence, the underlying mechanisms are largely unknown. The general secretion system and the cytoskeleton are central systems, each known to organize functions associated with certain cellular domains, in both eukaryotes and prokaryotes. While the role of the Sec system in membrane protein translocation and secretion has been largely explored, not much in known about its role in inner cell organization. We show that the Sec system is important for the localization pattern and functionality of the bacterial cytoskeletal system, which controls cell shape, cell division and polarity. Our findings highlight the Sec system as a central coordinator that controls cellular functions on both sides of the membrane.
Collapse
|