1
|
Agarwal A, Muniyappa K. Mycobacterium smegmatis putative Holliday junction resolvases RuvC and RuvX play complementary roles in the processing of branched DNA structures. J Biol Chem 2024; 300:107732. [PMID: 39222685 PMCID: PMC11466669 DOI: 10.1016/j.jbc.2024.107732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024] Open
Abstract
In eubacteria, Holliday junction (HJ) resolvases (HJRs) are crucial for faithful segregation of newly replicated chromosomes, homologous recombination, and repair of stalled/collapsed DNA replication forks. However, compared with the Escherichia coli HJRs, little is known about their orthologs in mycobacterial species. A genome-wide analysis of Mycobacterium smegmatis identified two genes encoding putative HJRs, namely RuvC (MsRuvC) and RuvX (MsRuvX); but whether they play redundant, overlapping, or distinct roles remains unknown. Here, we reveal that MsRuvC exists as a homodimer while MsRuvX as a monomer in solution, and both showed high-binding affinity for branched DNAs compared with unbranched DNA species. Interestingly, the DNA cleavage specificities of MsRuvC and MsRuvX were found to be mutually exclusive: the former efficiently promotes HJ resolution, in a manner analogous to the Escherichia coli RuvC, but does not cleave other branched DNA species; whereas the latter is a versatile DNase capable of cleaving a variety of branched DNA structures, including 3' and 5' flap DNA, splayed-arm DNA and dsDNA with 3' and 5' overhangs but lacks the HJ resolution activity. Point mutations in the RNase H-like domains of MsRuvC and MsRuvX pinpointed critical residues required for their DNA cleavage activities and also demonstrated uncoupling between DNA-binding and DNA cleavage activities. Unexpectedly, we found robust evidence that MsRuvX possesses a double-strand/single-strand junction-specific endonuclease and ssDNA exonucleolytic activities. Combined, our findings highlight that the RuvC and RuvX DNases play distinct complementary, and not redundant, roles in the processing of branched DNA structures in M. smegmatis.
Collapse
Affiliation(s)
- Ankit Agarwal
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Kalappa Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India.
| |
Collapse
|
2
|
Versoza CJ, Howell AA, Aftab T, Blanco M, Brar A, Chaffee E, Howell N, Leach W, Lobatos J, Luca M, Maddineni M, Mirji R, Mitra C, Strasser M, Munig S, Patel Z, So M, Sy M, Weiss S, Pfeifer SP. Comparative Genomics of Closely-Related Gordonia Cluster DR Bacteriophages. Viruses 2022; 14:1647. [PMID: 36016269 PMCID: PMC9413003 DOI: 10.3390/v14081647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/16/2022] [Accepted: 07/25/2022] [Indexed: 12/10/2022] Open
Abstract
Bacteriophages infecting bacteria of the genus Gordonia have increasingly gained interest in the scientific community for their diverse applications in agriculture, biotechnology, and medicine, ranging from biocontrol agents in wastewater management to the treatment of opportunistic pathogens in pulmonary disease patients. However, due to the time and costs associated with experimental isolation and cultivation, host ranges for many bacteriophages remain poorly characterized, hindering a more efficient usage of bacteriophages in these areas. Here, we perform a series of computational genomic inferences to predict the putative host ranges of all Gordonia cluster DR bacteriophages known to date. Our analyses suggest that BiggityBass (as well as several of its close relatives) is likely able to infect host bacteria from a wide range of genera-from Gordonia to Nocardia to Rhodococcus, making it a suitable candidate for future phage therapy and wastewater treatment strategies.
Collapse
Affiliation(s)
- Cyril J. Versoza
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA;
| | - Abigail A. Howell
- Biodesign Institute, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA;
| | - Tanya Aftab
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA; (T.A.); (M.B.); (A.B.); (E.C.); (N.H.); (J.L.); (M.L.); (R.M.); (C.M.); (M.S.); (S.M.); (Z.P.); (M.S.); (M.S.); (S.W.)
| | - Madison Blanco
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA; (T.A.); (M.B.); (A.B.); (E.C.); (N.H.); (J.L.); (M.L.); (R.M.); (C.M.); (M.S.); (S.M.); (Z.P.); (M.S.); (M.S.); (S.W.)
| | - Akarshi Brar
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA; (T.A.); (M.B.); (A.B.); (E.C.); (N.H.); (J.L.); (M.L.); (R.M.); (C.M.); (M.S.); (S.M.); (Z.P.); (M.S.); (M.S.); (S.W.)
| | - Elaine Chaffee
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA; (T.A.); (M.B.); (A.B.); (E.C.); (N.H.); (J.L.); (M.L.); (R.M.); (C.M.); (M.S.); (S.M.); (Z.P.); (M.S.); (M.S.); (S.W.)
| | - Nicholas Howell
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA; (T.A.); (M.B.); (A.B.); (E.C.); (N.H.); (J.L.); (M.L.); (R.M.); (C.M.); (M.S.); (S.M.); (Z.P.); (M.S.); (M.S.); (S.W.)
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85281, USA;
| | - Willow Leach
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85281, USA;
| | - Jackelyn Lobatos
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA; (T.A.); (M.B.); (A.B.); (E.C.); (N.H.); (J.L.); (M.L.); (R.M.); (C.M.); (M.S.); (S.M.); (Z.P.); (M.S.); (M.S.); (S.W.)
| | - Michael Luca
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA; (T.A.); (M.B.); (A.B.); (E.C.); (N.H.); (J.L.); (M.L.); (R.M.); (C.M.); (M.S.); (S.M.); (Z.P.); (M.S.); (M.S.); (S.W.)
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281, USA;
| | - Meghna Maddineni
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281, USA;
| | - Ruchira Mirji
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA; (T.A.); (M.B.); (A.B.); (E.C.); (N.H.); (J.L.); (M.L.); (R.M.); (C.M.); (M.S.); (S.M.); (Z.P.); (M.S.); (M.S.); (S.W.)
| | - Corinne Mitra
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA; (T.A.); (M.B.); (A.B.); (E.C.); (N.H.); (J.L.); (M.L.); (R.M.); (C.M.); (M.S.); (S.M.); (Z.P.); (M.S.); (M.S.); (S.W.)
| | - Maria Strasser
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA; (T.A.); (M.B.); (A.B.); (E.C.); (N.H.); (J.L.); (M.L.); (R.M.); (C.M.); (M.S.); (S.M.); (Z.P.); (M.S.); (M.S.); (S.W.)
| | - Saige Munig
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA; (T.A.); (M.B.); (A.B.); (E.C.); (N.H.); (J.L.); (M.L.); (R.M.); (C.M.); (M.S.); (S.M.); (Z.P.); (M.S.); (M.S.); (S.W.)
| | - Zeel Patel
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA; (T.A.); (M.B.); (A.B.); (E.C.); (N.H.); (J.L.); (M.L.); (R.M.); (C.M.); (M.S.); (S.M.); (Z.P.); (M.S.); (M.S.); (S.W.)
| | - Minerva So
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA; (T.A.); (M.B.); (A.B.); (E.C.); (N.H.); (J.L.); (M.L.); (R.M.); (C.M.); (M.S.); (S.M.); (Z.P.); (M.S.); (M.S.); (S.W.)
| | - Makena Sy
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA; (T.A.); (M.B.); (A.B.); (E.C.); (N.H.); (J.L.); (M.L.); (R.M.); (C.M.); (M.S.); (S.M.); (Z.P.); (M.S.); (M.S.); (S.W.)
| | - Sarah Weiss
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA; (T.A.); (M.B.); (A.B.); (E.C.); (N.H.); (J.L.); (M.L.); (R.M.); (C.M.); (M.S.); (S.M.); (Z.P.); (M.S.); (M.S.); (S.W.)
| | - Susanne P. Pfeifer
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA;
| |
Collapse
|
3
|
Sprotte S, Rasmussen TS, Cho GS, Brinks E, Lametsch R, Neve H, Vogensen FK, Nielsen DS, Franz CMAP. Morphological and Genetic Characterization of Eggerthella lenta Bacteriophage PMBT5. Viruses 2022; 14:1598. [PMID: 35893664 PMCID: PMC9394477 DOI: 10.3390/v14081598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/01/2022] [Accepted: 07/19/2022] [Indexed: 01/27/2023] Open
Abstract
Eggerthella lenta is a common member of the human gut microbiome. We here describe the isolation and characterization of a putative virulent bacteriophage having E. lenta as host. The double-layer agar method for isolating phages was adapted to anaerobic conditions for isolating bacteriophage PMBT5 from sewage on a strictly anaerobic E. lenta strain of intestinal origin. For this, anaerobically grown E. lenta cells were concentrated by centrifugation and used for a 24 h phage enrichment step. Subsequently, this suspension was added to anaerobically prepared top (soft) agar in Hungate tubes and further used in the double-layer agar method. Based on morphological characteristics observed by transmission electron microscopy, phage PMBT5 could be assigned to the Siphoviridae phage family. It showed an isometric head with a flexible, noncontractile tail and a distinct single 45 nm tail fiber under the baseplate. Genome sequencing and assembly resulted in one contig of 30,930 bp and a mol% GC content of 51.3, consisting of 44 predicted protein-encoding genes. Phage-related proteins could be largely identified based on their amino acid sequence, and a comparison with metagenomes in the human virome database showed that the phage genome exhibits similarity to two distantly related phages.
Collapse
Affiliation(s)
- Sabrina Sprotte
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, 24103 Kiel, Germany; (G.-S.C.); (E.B.); (H.N.); (C.M.A.P.F.)
| | - Torben S. Rasmussen
- Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg, Denmark; (T.S.R.); (R.L.); (F.K.V.); (D.S.N.)
| | - Gyu-Sung Cho
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, 24103 Kiel, Germany; (G.-S.C.); (E.B.); (H.N.); (C.M.A.P.F.)
| | - Erik Brinks
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, 24103 Kiel, Germany; (G.-S.C.); (E.B.); (H.N.); (C.M.A.P.F.)
| | - René Lametsch
- Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg, Denmark; (T.S.R.); (R.L.); (F.K.V.); (D.S.N.)
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, 24103 Kiel, Germany; (G.-S.C.); (E.B.); (H.N.); (C.M.A.P.F.)
| | - Finn K. Vogensen
- Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg, Denmark; (T.S.R.); (R.L.); (F.K.V.); (D.S.N.)
| | - Dennis S. Nielsen
- Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg, Denmark; (T.S.R.); (R.L.); (F.K.V.); (D.S.N.)
| | - Charles M. A. P. Franz
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, 24103 Kiel, Germany; (G.-S.C.); (E.B.); (H.N.); (C.M.A.P.F.)
| |
Collapse
|
4
|
Mutational Analysis of the Antitoxin in the Lactococcal Type III Toxin-Antitoxin System AbiQ. Appl Environ Microbiol 2015; 81:3848-55. [PMID: 25819963 DOI: 10.1128/aem.00572-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 03/23/2015] [Indexed: 01/21/2023] Open
Abstract
The lactococcal abortive phage infection mechanism AbiQ recently was classified as a type III toxin-antitoxin system in which the toxic protein (ABIQ) is regulated following cleavage of its repeated noncoding RNA antitoxin (antiQ). In this study, we investigated the role of the antitoxin in antiphage activity. The cleavage of antiQ by ABIQ was characterized using 5' rapid amplification of cDNA ends PCR and was located in an adenine-rich region of antiQ. We next generated a series of derivatives with point mutations within antiQ or with various numbers of antiQ repetitions. These modifications were analyzed for their effect on the antiphage activity (efficiency of plaquing) and on the endoribonuclease activity (Northern hybridization). We observed that increasing or reducing the number of antiQ repeats significantly decreased the antiphage activity of the system. Several point mutations had a similar effect on the antiphage activity and were associated with changes in the digestion profile of antiQ. Interestingly, a point mutation in the putative pseudoknot structure of antiQ mutants led to an increased AbiQ antiphage activity, thereby offering a novel way to increase the activity of an abortive infection mechanism.
Collapse
|
5
|
Green V, Curtis FA, Sedelnikova S, Rafferty JB, Sharples GJ. Mutants of phage bIL67 RuvC with enhanced Holliday junction binding selectivity and resolution symmetry. Mol Microbiol 2013; 89:1240-58. [PMID: 23888987 PMCID: PMC3864405 DOI: 10.1111/mmi.12343] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2013] [Indexed: 11/27/2022]
Abstract
Viral and bacterial Holliday junction resolvases differ in specificity with the former typically being more promiscuous, acting on a variety of branched DNA substrates, while the latter exclusively targets Holliday junctions. We have determined the crystal structure of a RuvC resolvase from bacteriophage bIL67 to help identify features responsible for DNA branch discrimination. Comparisons between phage and bacterial RuvC structures revealed significant differences in the number and position of positively-charged residues in the outer sides of the junction binding cleft. Substitutions were generated in phage RuvC residues implicated in branch recognition and six were found to confer defects in Holliday junction and replication fork cleavage in vivo. Two mutants, R121A and R124A that flank the DNA binding site were purified and exhibited reduced in vitro binding to fork and linear duplex substrates relative to the wild-type, while retaining the ability to bind X junctions. Crucially, these two variants cleaved Holliday junctions with enhanced specificity and symmetry, a feature more akin to cellular RuvC resolvases. Thus, additional positive charges in the phage RuvC binding site apparently stabilize productive interactions with branched structures other than the canonical Holliday junction, a feature advantageous for viral DNA processing but deleterious for their cellular counterparts.
Collapse
Affiliation(s)
- Victoria Green
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | | | | | | | | |
Collapse
|
6
|
Bidnenko E, Chopin A, Ehrlich SD, Chopin MC. Activation of mRNA translation by phage protein and low temperature: the case of Lactococcus lactis abortive infection system AbiD1. BMC Mol Biol 2009; 10:4. [PMID: 19173723 PMCID: PMC2661086 DOI: 10.1186/1471-2199-10-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2008] [Accepted: 01/27/2009] [Indexed: 01/09/2024] Open
Abstract
Background Abortive infection (Abi) mechanisms comprise numerous strategies developed by bacteria to avoid being killed by bacteriophage (phage). Escherichia coli Abis are considered as mediators of programmed cell death, which is induced by infecting phage. Abis were also proposed to be stress response elements, but no environmental activation signals have yet been identified. Abis are widespread in Lactococcus lactis, but regulation of their expression remains an open question. We previously showed that development of AbiD1 abortive infection against phage bIL66 depends on orf1, which is expressed in mid-infection. However, molecular basis for this activation remains unclear. Results In non-infected AbiD1+ cells, specific abiD1 mRNA is unstable and present in low amounts. It does not increase during abortive infection of sensitive phage. Protein synthesis directed by the abiD1 translation initiation region is also inefficient. The presence of the phage orf1 gene, but not its mutant AbiD1R allele, strongly increases abiD1 translation efficiency. Interestingly, cell growth at low temperature also activates translation of abiD1 mRNA and consequently the AbiD1 phenotype, and occurs independently of phage infection. There is no synergism between the two abiD1 inducers. Purified Orf1 protein binds mRNAs containing a secondary structure motif, identified within the translation initiation regions of abiD1, the mid-infection phage bIL66 M-operon, and the L. lactis osmC gene. Conclusion Expression of the abiD1 gene and consequently AbiD1 phenotype is specifically translationally activated by the phage Orf1 protein. The loss of ability to activate translation of abiD1 mRNA determines the molecular basis for phage resistance to AbiD1. We show for the first time that temperature downshift also activates abortive infection by activation of abiD1 mRNA translation.
Collapse
Affiliation(s)
- Elena Bidnenko
- Laboratoire de Génétique Microbienne, INRA, 78352 Jouy-en-Josas, France.
| | | | | | | |
Collapse
|
7
|
Xie Z, Li W, Tian Y, Liu G, Tan H. Identification and characterization of sawC, a whiA-like gene, essential for sporulation in Streptomyces ansochromogenes. Arch Microbiol 2007; 188:575-82. [PMID: 17639349 DOI: 10.1007/s00203-007-0278-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Revised: 05/16/2007] [Accepted: 06/16/2007] [Indexed: 11/28/2022]
Abstract
sawC, encoding a protein homologous to the WhiA sporulation regulator of Streptomyces coelicolor, was cloned from a fairly distantly related species, Streptomyces ansochromogenes. Disruption of sawC led to formation of aerial mycelium much longer than normal spore chains and with somewhat increased coiling, indicating that sawC plays an important role in the cessation of aerial hyphal growth similar to that of whiA, and that it has an effect on cell wall structure. However, complementation of sawC and whiA mutants with the same DNA fragment gave different results, which suggested that there may be some difference in regulation or function of WhiA/SawC between the two strains. S1 nuclease mapping identified one transcription start point of sawC. Using EGFP as a reporter, the spatial expression of sawC was shown to be confined to aerial hyphae. Computer-aided structural prediction analysis of SawC/WhiA proteins revealed the presence of a fold very similar to the endonuclease domain of PI-PfuI, raising the possibility that these proteins may interact with an intermediate in DNA repair or replication.
Collapse
Affiliation(s)
- Zhoujie Xie
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | | | | | | | | |
Collapse
|
8
|
Radovic S, Rapisarda VA, Tosato V, Bruschi CV. Functional and comparative characterization of Saccharomyces cerevisiae RVB1 and RVB2 genes with bacterial Ruv homologues. FEMS Yeast Res 2007; 7:527-39. [PMID: 17302941 DOI: 10.1111/j.1567-1364.2006.00205.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Expression of yeast RuvB-like gene analogues of bacterial RuvB is self-regulated, as episomal overexpression of RVB1 and RVB2 decreases the expression of their chromosomal copies by 85%. Heterozygosity for either gene correlates with lower double-strand break repair of inverted-repeat DNA and decreased survival after UV irradiation, suggesting their haploinsufficiency, while overexpression of the bacterial RuvAB complex improves UV survival in yeast. Rvb2p preferentially binds artificial DNA Holiday junctions like the bacterial RuvAB complex, whereas Rvb1p binds to duplex or cruciform DNA. As both proteins also interact with chromatin, their role in recombination and repair through chromatin remodelling, and their evolutionary relationship to the bacterial homologue, is discussed.
Collapse
Affiliation(s)
- Slobodanka Radovic
- Yeast Molecular Genetics Group, ICGEB, Area Science Park - W, Trieste, Italy
| | | | | | | |
Collapse
|
9
|
Fortier LC, Bransi A, Moineau S. Genome sequence and global gene expression of Q54, a new phage species linking the 936 and c2 phage species of Lactococcus lactis. J Bacteriol 2006; 188:6101-14. [PMID: 16923877 PMCID: PMC1595367 DOI: 10.1128/jb.00581-06] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lytic lactococcal phage Q54 was previously isolated from a failed sour cream production. Its complete genomic sequence (26,537 bp) is reported here, and the analysis indicated that it represents a new Lactococcus lactis phage species. A striking feature of phage Q54 is the low level of similarity of its proteome (47 open reading frames) with proteins in databases. A global gene expression study confirmed the presence of two early gene modules in Q54. The unusual configuration of these modules, combined with results of comparative analysis with other lactococcal phage genomes, suggests that one of these modules was acquired through recombination events between c2- and 936-like phages. Proteolytic cleavage and cross-linking of the major capsid protein were demonstrated through structural protein analyses. A programmed translational frameshift between the major tail protein (MTP) and the receptor-binding protein (RBP) was also discovered. A "shifty stop" signal followed by putative secondary structures is likely involved in frameshifting. To our knowledge, this is only the second report of translational frameshifting (+1) in double-stranded DNA bacteriophages and the first case of translational coupling between an MTP and an RBP. Thus, phage Q54 represents a fascinating member of a new species with unusual characteristics that brings new insights into lactococcal phage evolution.
Collapse
Affiliation(s)
- Louis-Charles Fortier
- Département de biochimie et de microbiologie, Faculté des sciences et de génie, Groupe de recherche en écologie buccale, Felix d'Hérelle Reference Centre for Bacterial Viruses, Université Laval, Québec, Canada G1K 7P4
| | | | | |
Collapse
|
10
|
Chopin MC, Chopin A, Bidnenko E. Phage abortive infection in lactococci: variations on a theme. Curr Opin Microbiol 2005; 8:473-9. [PMID: 15979388 DOI: 10.1016/j.mib.2005.06.006] [Citation(s) in RCA: 250] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Accepted: 06/14/2005] [Indexed: 10/25/2022]
Abstract
Abortive infection (Abi) systems, also called phage exclusion, block phage multiplication and cause premature bacterial cell death upon phage infection. This decreases the number of progeny particles and limits their spread to other cells allowing the bacterial population to survive. Twenty Abi systems have been isolated in Lactococcus lactis, a bacterium used in cheese-making fermentation processes, where phage attacks are of economical importance. Recent insights in their expression and mode of action indicate that, behind diverse phenotypic and molecular effects, lactococcal Abis share common traits with the well-studied Escherichia coli systems Lit and Prr. Abis are widespread in bacteria, and recent analysis indicates that Abis might have additional roles other than conferring phage resistance.
Collapse
|