1
|
Dinzouna-Boutamba SD, Moon Z, Lee S, Afridi SG, Lê HG, Hong Y, Na BK, Goo YK. Population genetic analysis of Plasmodium vivax vir genes in Pakistan. PARASITES, HOSTS AND DISEASES 2024; 62:313-322. [PMID: 39218630 PMCID: PMC11366537 DOI: 10.3347/phd.24036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/21/2024] [Indexed: 09/04/2024]
Abstract
Plasmodium vivax variant interspersed repeats (vir) refer to the key protein used for escaping the host immune system. Knowledge in the genetic variation of vir genes can be used for the development of vaccines or diagnostic methods. Therefore, we evaluated the genetic diversity of the vir genes of P. vivax populations of several Asian countries, including Pakistan, which is a malaria-endemic country experiencing a significant rise in malaria cases in recent years. We analyzed the genetic diversity and population structure of 4 vir genes (vir 4, vir 12, vir 21, and vir 27) in the Pakistan P. vivax population and compared these features to those of the corresponding vir genes in other Asian countries. In Pakistan, vir 4 (S=198, H=9, Hd=0.889, Tajima's D value=1.12321) was the most genetically heterogenous, while the features of vir 21 (S=8, H=7, Hd=0.664, Tajima's D value =-0.63763) and vir 27 (S =25, H =11, Hd =0.682, Tajima's D value=-2.10836) were relatively conserved. Additionally, vir 4 was the most genetically diverse among Asian P. vivax populations, although within population diversity was low. Meanwhile, vir 21 and vir 27 among all Asian populations were closely related genetically. Our findings on the genetic diversity of vir genes and its relationships between populations in diverse geographical locations contribute toward a better understanding of the genetic characteristics of vir. The high level of genetic diversity of vir 4 suggests that this gene can be a useful genetic marker for understanding the P. vivax population structure. Longitudinal genetic diversity studies of vir genes in P. vivax isolates obtained from more diverse geographical areas are needed to better understand the function of vir genes and their use for the development of malaria control measures, such as vaccines.
Collapse
Affiliation(s)
| | - Zin Moon
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu 41944,
Korea
| | - Sanghyun Lee
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu 41944,
Korea
| | - Sahib Gul Afridi
- Department of Biochemistry, Abdul Wali Khan University Mardan,
Pakistan
| | - Hương Giang Lê
- Department of Parasitology and Tropical Medicine, Department of Convergence Medical Science, and Institute of Health Science, Gyeongsang National University College of Medicine, Jinju 52727,
Korea
| | - Yeonchul Hong
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu 41944,
Korea
| | - Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine, Department of Convergence Medical Science, and Institute of Health Science, Gyeongsang National University College of Medicine, Jinju 52727,
Korea
| | - Youn-Kyoung Goo
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu 41944,
Korea
- Institute for Veterinary Biomedical Science, College of Veterinary Medicine, Kyungpook National University, Daegu 41566,
Korea
| |
Collapse
|
2
|
Hawadak J, Arya A, Chaudhry S, Singh V. Genetic diversity and natural selection analysis of VAR2CSA and vir genes: implication for vaccine development. Genomics Inform 2024; 22:11. [PMID: 39010183 PMCID: PMC11247734 DOI: 10.1186/s44342-024-00009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/27/2023] [Indexed: 07/17/2024] Open
Abstract
Variable surface antigens (VSAs) encoded by var and vir genes in Plasmodium falciparum and Plasmodium vivax, respectively, are known to be involved in malaria pathogenesis and host immune escape through antigenic variations. Knowledge of the genetic diversity of these antigens is essential for malaria control and effective vaccine development. In this study, we analysed the genetic diversity and evolutionary patterns of two fragments (DBL2X and DBL3X) of VAR2CSA gene and four vir genes (vir 4, vir 12, vir 21 and vir 27) from different endemic regions, including Southeast Asia and sub-Saharan Africa. High levels of segregating sites (S) and haplotype diversity (Hd) were observed in both var and vir genes. Among vir genes, vir 12 (S = 131, Hd = 0.996) and vir 21 (S = 171, Hd = 892) were found to be more diverse as compared to vir 4 (S = 11, Hd = 0.748) and vir 27 (S = 23, Hd = 0.814). DBL2X (S = 99, Hd = 0.996) and DBL3X (S = 307, Hd = 0.999) fragments showed higher genetic diversity. Our analysis indicates that var and vir genes are highly diverse and follow the similar evolutionary pattern globally. Some codons showed signatures of positive or negative selection pressure, but vir and var genes are likely to be under balancing selection. This study highlights the high variability of var and vir genes and underlines the need of functional experimental studies to determine the most relevant allelic forms for effective progress towards vaccine formulation and testing.
Collapse
Affiliation(s)
- Joseph Hawadak
- ICMR-National Institute of Malaria Research (NIMR), Delhi, 110077, India
| | - Aditi Arya
- ICMR-National Institute of Malaria Research (NIMR), Delhi, 110077, India
| | - Shewta Chaudhry
- ICMR-National Institute of Malaria Research (NIMR), Delhi, 110077, India
| | - Vineeta Singh
- ICMR-National Institute of Malaria Research (NIMR), Delhi, 110077, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Rehn T, Lubiana P, Nguyen THT, Pansegrau E, Schmitt M, Roth LK, Brehmer J, Roeder T, Cadar D, Metwally NG, Bruchhaus I. Ectopic Expression of Plasmodium vivax vir Genes in P. falciparum Affects Cytoadhesion via Increased Expression of Specific var Genes. Microorganisms 2022; 10:microorganisms10061183. [PMID: 35744701 PMCID: PMC9230084 DOI: 10.3390/microorganisms10061183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
Plasmodium falciparum-infected erythrocytes (PfIEs) adhere to endothelial cell receptors (ECRs) of blood vessels mainly via PfEMP1 proteins to escape elimination via the spleen. Evidence suggests that P. vivax-infected reticulocytes (PvIRs) also bind to ECRs, presumably enabled by VIR proteins, as shown by inhibition experiments and studies with transgenic P. falciparum expressing vir genes. To test this hypothesis, our study investigated the involvement of VIR proteins in cytoadhesion using vir gene-expressing P. falciparum transfectants. Those VIR proteins with a putative transmembrane domain were present in Maurer's clefts, and some were also present in the erythrocyte membrane. The VIR protein without a transmembrane domain (PVX_050690) was not exported. Five of the transgenic P. falciparum cell lines, including the one expressing PVX_050690, showed binding to CD36. We observed highly increased expression of specific var genes encoding PfEMP1s in all CD36-binding transfectants. These results suggest that ectopic vir expression regulates var expression through a yet unknown mechanism. In conclusion, the observed cytoadhesion of P. falciparum expressing vir genes depended on PfEMP1s, making this experimental unsuitable for characterizing VIR proteins.
Collapse
Affiliation(s)
- Torben Rehn
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (T.R.); (P.L.); (T.H.T.N.); (E.P.); (M.S.); (L.K.R.); (J.B.); (D.C.); (N.G.M.)
| | - Pedro Lubiana
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (T.R.); (P.L.); (T.H.T.N.); (E.P.); (M.S.); (L.K.R.); (J.B.); (D.C.); (N.G.M.)
| | - Thi Huyen Trang Nguyen
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (T.R.); (P.L.); (T.H.T.N.); (E.P.); (M.S.); (L.K.R.); (J.B.); (D.C.); (N.G.M.)
| | - Eva Pansegrau
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (T.R.); (P.L.); (T.H.T.N.); (E.P.); (M.S.); (L.K.R.); (J.B.); (D.C.); (N.G.M.)
| | - Marius Schmitt
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (T.R.); (P.L.); (T.H.T.N.); (E.P.); (M.S.); (L.K.R.); (J.B.); (D.C.); (N.G.M.)
| | - Lisa Katharina Roth
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (T.R.); (P.L.); (T.H.T.N.); (E.P.); (M.S.); (L.K.R.); (J.B.); (D.C.); (N.G.M.)
| | - Jana Brehmer
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (T.R.); (P.L.); (T.H.T.N.); (E.P.); (M.S.); (L.K.R.); (J.B.); (D.C.); (N.G.M.)
| | - Thomas Roeder
- Molecular Physiology Department, Zoological Institute, Christian-Albrechts University Kiel, 24118 Kiel, Germany;
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), 24118 Kiel, Germany
| | - Dániel Cadar
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (T.R.); (P.L.); (T.H.T.N.); (E.P.); (M.S.); (L.K.R.); (J.B.); (D.C.); (N.G.M.)
| | - Nahla Galal Metwally
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (T.R.); (P.L.); (T.H.T.N.); (E.P.); (M.S.); (L.K.R.); (J.B.); (D.C.); (N.G.M.)
| | - Iris Bruchhaus
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (T.R.); (P.L.); (T.H.T.N.); (E.P.); (M.S.); (L.K.R.); (J.B.); (D.C.); (N.G.M.)
- Department of Biology, University of Hamburg, 22601 Hamburg, Germany
- Correspondence:
| |
Collapse
|
4
|
Goo YK. Vivax Malaria and the Potential Role of the Subtelomeric Multigene vir Superfamily. Microorganisms 2022; 10:microorganisms10061083. [PMID: 35744600 PMCID: PMC9228997 DOI: 10.3390/microorganisms10061083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 02/01/2023] Open
Abstract
Vivax malaria, caused by Plasmodium vivax, remains a public health concern in Central and Southeast Asia and South America, with more than two billion people at risk of infection. Compared to Plasmodium falciparum, P. vivax is considered a benign infection. However, in recent decades, incidences of severe vivax malaria have been confirmed. The P. falciparum erythrocyte membrane protein 1 family encoded by var genes is known as a mediator of severe falciparum malaria by cytoadherence property. Correspondingly, the vir multigene superfamily has been identified as the largest multigene family in P. vivax and is implicated in cytoadherence to endothelial cells and immune response activation. In this review, the functions of vir genes are reviewed in the context of their potential roles in severe vivax malaria.
Collapse
Affiliation(s)
- Youn-Kyoung Goo
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
5
|
Lee S, Choi YK, Goo YK. Humoral and cellular immune response to Plasmodium vivax VIR recombinant and synthetic antigens in individuals naturally exposed to P. vivax in the Republic of Korea. Malar J 2021; 20:288. [PMID: 34183015 PMCID: PMC8237554 DOI: 10.1186/s12936-021-03810-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plasmodium vivax proteins with variant interspersed repeats (VIR) are the key proteins used by the parasite to escape from the host immune system through the creation of antigenic variations. However, few studies have been done to elucidate their role as targets of immunity. Thus, this study evaluated the naturally-acquired immune response against VIR proteins in vivax malaria-infected individuals in the Republic of Korea (ROK). METHODS Seven recombinant VIR proteins and two synthetic peptides previously studied in other countries that elicited a robust immune response were used to investigate the antibody and cellular immune response in 681 P. vivax-infected people in ROK. The expression of IgM, IgG, and IgG subclasses against each VIR antigen or against PvMSP1-19 was analysed by ELISA. PvMSP1-19, known as a promising vaccine candidate of P. vivax, was used as the positive control for immune response assessment. Furthermore, the cellular immune response to VIR antigens was evaluated by in vitro proliferative assay, cellular activation assay, and cytokine detection in mononuclear cells of the P. vivax-infected population. RESULTS IgM or IgG were detected in 52.4% of the population. Among all the VIR antigens, VIR25 elicited the highest humoral immune response in the whole population with IgG and IgM prevalence of 27.8% and 29.2%, respectively, while PvMSP1-19 elicited even higher prevalence (92%) of IgG in the population. As for the cellular immune response, VIR-C2, PvLP2, and PvMSP1-19 induced high cell activation and secretion of IL-2, IL-6, IL-10, and G-CSF in mononuclear cells from the P. vivax-infected population, comparable with results from PvMSP1-19. However, no significant proliferation response to these antigens was observed between the malaria-infected and healthy groups. CONCLUSION Moderate natural acquisition of antibody and cellular responses in P. vivax-infected Korean malaria patients presented here are similar to that in other countries. It is interesting that the immune response to VIR antigens is conserved among malaria parasites in different countries, considering that VIR genes are highly polymorphic. This thus warrants further studies to elucidate molecular mechanisms by which human elicit immune response to the malaria parasite VIR antigens.
Collapse
Affiliation(s)
- Sanghyun Lee
- Division of Bio Bigdata, Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Chungbuk, 28159, Republic of Korea.,Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Young-Ki Choi
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| | - Youn-Kyoung Goo
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
| |
Collapse
|
6
|
Bourgard C, Lopes SCP, Lacerda MVG, Albrecht L, Costa FTM. A suitable RNA preparation methodology for whole transcriptome shotgun sequencing harvested from Plasmodium vivax-infected patients. Sci Rep 2021; 11:5089. [PMID: 33658571 PMCID: PMC7930272 DOI: 10.1038/s41598-021-84607-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/06/2021] [Indexed: 12/03/2022] Open
Abstract
Plasmodium vivax is a world-threatening human malaria parasite, whose biology remains elusive. The unavailability of in vitro culture, and the difficulties in getting a high number of pure parasites makes RNA isolation in quantity and quality a challenge. Here, a methodological outline for RNA-seq from P. vivax isolates with low parasitemia is presented, combining parasite maturation and enrichment with efficient RNA extraction, yielding ~ 100 pg.µL−1 of RNA, suitable for SMART-Seq Ultra-Low Input RNA library and Illumina sequencing. Unbiased coding transcriptome of ~ 4 M reads was achieved for four patient isolates with ~ 51% of transcripts mapped to the P. vivax P01 reference genome, presenting heterogeneous profiles of expression among individual isolates. Amongst the most transcribed genes in all isolates, a parasite-staged mixed repertoire of conserved parasite metabolic, membrane and exported proteins was observed. Still, a quarter of transcribed genes remain functionally uncharacterized. In parallel, a P. falciparum Brazilian isolate was also analyzed and 57% of its transcripts mapped against IT genome. Comparison of transcriptomes of the two species revealed a common trophozoite-staged expression profile, with several homologous genes being expressed. Collectively, these results will positively impact vivax research improving knowledge of P. vivax biology.
Collapse
Affiliation(s)
- Catarina Bourgard
- Laboratory of Tropical Diseases, Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas-UNICAMP, Campinas, SP, Brazil
| | - Stefanie C P Lopes
- Instituto Leônidas & Maria Deane, Fundação Oswaldo Cruz-Fiocruz, Manaus, AM, Brazil.,Fundação de Medicina Tropical Dr. Heitor Vieira Dourado-FMT-HVD, Gerência de Malária, Manaus, AM, Brazil
| | - Marcus V G Lacerda
- Instituto Leônidas & Maria Deane, Fundação Oswaldo Cruz-Fiocruz, Manaus, AM, Brazil.,Fundação de Medicina Tropical Dr. Heitor Vieira Dourado-FMT-HVD, Gerência de Malária, Manaus, AM, Brazil
| | - Letusa Albrecht
- Laboratory of Tropical Diseases, Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas-UNICAMP, Campinas, SP, Brazil. .,Instituto Carlos Chagas, Fundação Oswaldo Cruz-Fiocruz, Curitiba, PR, Brazil.
| | - Fabio T M Costa
- Laboratory of Tropical Diseases, Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas-UNICAMP, Campinas, SP, Brazil.
| |
Collapse
|
7
|
Schappo AP, Bittencourt NC, Bertolla LP, Forcellini S, da Silva ABIE, dos Santos HG, Gervásio JH, Lacerda MVG, Lopes SCP, Costa FTM, Albrecht L. Antigenicity and adhesiveness of a Plasmodium vivax VIR-E protein from Brazilian isolates. Mem Inst Oswaldo Cruz 2021; 116:e210227. [PMID: 35137905 PMCID: PMC8824159 DOI: 10.1590/0074-02760210227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/05/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Plasmodium vivax, the major cause of malaria in Latin America, has a large subtelomeric multigene family called vir. In the P. vivax genome, about 20% of its sequences are vir genes. Vir antigens are grouped in subfamilies according to their sequence similarities and have been shown to have distinct roles and subcellular locations. However, little is known about vir subfamilies, especially when comes to their functions. OBJECTIVE To evaluate the diversity, antigenicity, and adhesiveness of Plasmodium vivax VIR-E. METHODS Vir-E genes were amplified from six P. vivax isolates from Manaus, North of Brazil. The presence of naturally acquired antibodies to recombinant PvBrVIR-E and PvAMA-1 was evaluated by ELISA. Binding capacity of recombinant PvBrVIR-E was assessed by adhesion assay to CHO-ICAM1 cells. FINDINGS Despite vir-E sequence diversity, among those identified sequences, a representative one was chosen to be expressed as recombinant protein. The presence of IgM or IgG antibodies to PvBrVIR-E was detected in 23.75% of the study population while the presence of IgG antibodies to PvAMA-1 antigen was 66.25% in the same population. PvBrVIR-E was adhesive to CHO-ICAM1. MAIN CONCLUSIONS PvBrVIR-E was antigenic and adhesive to CHO-ICAM1.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Marcus VG Lacerda
- Fundação Oswaldo Cruz-Fiocruz, Brazil; Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Brazil
| | | | | | - Letusa Albrecht
- Fundação Oswaldo Cruz-Fiocruz, Brazil; Universidade Estadual de Campinas, Brazil
| |
Collapse
|
8
|
Na BK, Kim TS, Lin K, Baek MC, Chung DI, Hong Y, Goo YK. Genetic polymorphism of vir genes of Plasmodium vivax in Myanmar. Parasitol Int 2020; 80:102233. [PMID: 33144194 DOI: 10.1016/j.parint.2020.102233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 09/10/2020] [Accepted: 09/25/2020] [Indexed: 02/03/2023]
Abstract
The Plasmodium vivax variant proteins encoded by vir genes are highly polymorphic antigens and are considered as one of key proteins of P. vivax for host immune evasion via antigenic variations. Because genetic diversity of these antigens is a critical hurdle in the development of an effective vaccine, understanding the genetic nature of the vir genes in natural population is important. In this study, we selected four vir genes (vir 4, vir 12, vir 21, and vir 27) previously used for genetic analysis in several studies and evaluated the genetic polymorphisms and phylogenetic relationship of these 4 vir genes in Myanmar P. vivax population. Taken all genetic diversity values, the vir 12 (S = 168, H = 17, Hd = 0.854, Tajima's D value = 2.91524) was the most genetically diverse gene and the vir 4 (S = 9, H = 4, Hd = 0.744, Tajima's D value = -0.49151) was the most conserved gene. All phylogenetic trees showed two clades, and vir 4 and 12 haplotypes from Myanmar were clustered in a distinct clade with those from India and Republic of Korea. These results confirmed the pattern of high genetic polymorphism of vir genes and provided information on vir gene for further functional research and studies focused toward the practical use of vir genes.
Collapse
Affiliation(s)
- Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea
| | - Tong-Soo Kim
- Department of Tropical Medicine, Inha Research Institute for Medical Sciences, Inha University College of Medicine, Incheon 22212, Republic of Korea
| | - Khin Lin
- Department of Medical Research Pyin Oo Lwin Branch, Pyin Oo Lwin, Myanmar
| | - Moon-Chang Baek
- Department of Molecular Medicine, CMRI, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Dong-Il Chung
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Yeonchul Hong
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Youn-Kyoung Goo
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea.
| |
Collapse
|
9
|
Siegel SV, Chappell L, Hostetler JB, Amaratunga C, Suon S, Böhme U, Berriman M, Fairhurst RM, Rayner JC. Analysis of Plasmodium vivax schizont transcriptomes from field isolates reveals heterogeneity of expression of genes involved in host-parasite interactions. Sci Rep 2020; 10:16667. [PMID: 33028892 PMCID: PMC7541449 DOI: 10.1038/s41598-020-73562-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/18/2020] [Indexed: 11/28/2022] Open
Abstract
Plasmodium vivax gene regulation remains difficult to study due to the lack of a robust in vitro culture method, low parasite densities in peripheral circulation and asynchronous parasite development. We adapted an RNA-seq protocol “DAFT-seq” to sequence the transcriptome of four P. vivax field isolates that were cultured for a short period ex vivo before using a density gradient for schizont enrichment. Transcription was detected from 78% of the PvP01 reference genome, despite being schizont-enriched samples. This extensive data was used to define thousands of 5′ and 3′ untranslated regions, some of which overlapped with neighbouring transcripts, and to improve the gene models of 352 genes, including identifying 20 novel gene transcripts. This dataset has also significantly increased the known amount of heterogeneity between P. vivax schizont transcriptomes from individual patients. The majority of genes found to be differentially expressed between the isolates lack Plasmodium falciparum homologs and are predicted to be involved in host-parasite interactions, with an enrichment in reticulocyte binding proteins, merozoite surface proteins and exported proteins with unknown function. An improved understanding of the diversity within P. vivax transcriptomes will be essential for the prioritisation of novel vaccine targets.
Collapse
Affiliation(s)
- Sasha V Siegel
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Lia Chappell
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Jessica B Hostetler
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK.,Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.,National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chanaki Amaratunga
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bankgok, Thailand.,Center for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Seila Suon
- National Center for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Ulrike Böhme
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Matthew Berriman
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Rick M Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.,AstraZeneca, Gaithersburg, MD, 20878, USA
| | - Julian C Rayner
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK. .,Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK.
| |
Collapse
|
10
|
Penman BS, Gandon S. Adaptive immunity selects against malaria infection blocking mutations. PLoS Comput Biol 2020; 16:e1008181. [PMID: 33031369 PMCID: PMC7544067 DOI: 10.1371/journal.pcbi.1008181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/22/2020] [Indexed: 11/18/2022] Open
Abstract
The mutation responsible for Duffy negativity, which impedes Plasmodium vivax infection, has reached high frequencies in certain human populations. Conversely, mutations capable of blocking the more lethal P. falciparum have not succeeded in malarious zones. Here we present an evolutionary-epidemiological model of malaria which demonstrates that if adaptive immunity against the most virulent effects of malaria is gained rapidly by the host, mutations which prevent infection per se are unlikely to succeed. Our results (i) explain the rarity of strain-transcending P. falciparum infection blocking adaptations in humans; (ii) make the surprising prediction that mutations which block P. falciparum infection are most likely to be found in populations experiencing low or infrequent malaria transmission, and (iii) predict that immunity against some of the virulent effects of P. vivax malaria may be built up over the course of many infections.
Collapse
Affiliation(s)
- Bridget S. Penman
- Zeeman Institute and School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Sylvain Gandon
- CEFE, CNRS, University of Montpellier, Paul Valéry University of Montpellier, EPHE, IRD, Montpellier, France
| |
Collapse
|
11
|
Bourgard C, Albrecht L, Kayano ACAV, Sunnerhagen P, Costa FTM. Plasmodium vivax Biology: Insights Provided by Genomics, Transcriptomics and Proteomics. Front Cell Infect Microbiol 2018; 8:34. [PMID: 29473024 PMCID: PMC5809496 DOI: 10.3389/fcimb.2018.00034] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/25/2018] [Indexed: 12/17/2022] Open
Abstract
During the last decade, the vast omics field has revolutionized biological research, especially the genomics, transcriptomics and proteomics branches, as technological tools become available to the field researcher and allow difficult question-driven studies to be addressed. Parasitology has greatly benefited from next generation sequencing (NGS) projects, which have resulted in a broadened comprehension of basic parasite molecular biology, ecology and epidemiology. Malariology is one example where application of this technology has greatly contributed to a better understanding of Plasmodium spp. biology and host-parasite interactions. Among the several parasite species that cause human malaria, the neglected Plasmodium vivax presents great research challenges, as in vitro culturing is not yet feasible and functional assays are heavily limited. Therefore, there are gaps in our P. vivax biology knowledge that affect decisions for control policies aiming to eradicate vivax malaria in the near future. In this review, we provide a snapshot of key discoveries already achieved in P. vivax sequencing projects, focusing on developments, hurdles, and limitations currently faced by the research community, as well as perspectives on future vivax malaria research.
Collapse
Affiliation(s)
- Catarina Bourgard
- Laboratory of Tropical Diseases, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas - UNICAMP, Campinas, Brazil
| | - Letusa Albrecht
- Laboratory of Tropical Diseases, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas - UNICAMP, Campinas, Brazil.,Laboratory of Regulation of Gene Expression, Instituto Carlos Chagas, Curitiba, Brazil
| | - Ana C A V Kayano
- Laboratory of Tropical Diseases, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas - UNICAMP, Campinas, Brazil
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Fabio T M Costa
- Laboratory of Tropical Diseases, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas - UNICAMP, Campinas, Brazil
| |
Collapse
|
12
|
Totino PR, Lopes SC. Insights into the Cytoadherence Phenomenon of Plasmodium vivax: The Putative Role of Phosphatidylserine. Front Immunol 2017; 8:1148. [PMID: 28979260 PMCID: PMC5611623 DOI: 10.3389/fimmu.2017.01148] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 08/30/2017] [Indexed: 12/11/2022] Open
Abstract
Plasmodium vivax is the most geographically widespread and the dominant human malaria parasite in most countries outside of sub-Saharan Africa and, although it was classically recognized to cause benign infection, severe cases and deaths caused by P. vivax have remarkably been reported. In contrast to Plasmodium falciparum, which well-known ability to bind to endothelium and placental tissue and form rosettes is related to severity of the disease, it has been a dogma that P. vivax is unable to undergo cytoadherent phenomena. However, some studies have demonstrated that red blood cells (RBCs) infected by P. vivax can cytoadhere to host cells, while the molecules participating in this host–parasite interaction are still a matter of speculation. In the present overview, we address the evidences currently supporting the adhesive profile of P. vivax and, additionally, discuss the putative role of phosphatidylserine—a cell membrane phospholipid with cytoadhesive properties that has been detected on the surface of Plasmodium-parasitized RBCs.
Collapse
Affiliation(s)
- Paulo Renato Totino
- Laboratory of Malaria Research, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | |
Collapse
|
13
|
Abstract
Plasmodium vivax is the second most prevalent cause of malaria worldwide and the leading cause of malaria outside of Africa. Although infections are seldom fatal clinical disease can be debilitating and imposes significant health and economic impacts on affected populations. Estimates of transmission and prevalence intensity can be problematic because many episodes of vivax originate from hypnozoite stages in the liver that have remained dormant from previous infections by an unknown mechanism. Lack of treatment options to clear hypnozoites and the ability to infect mosquitoes before disease symptoms present represent major challenges for control and eradication of vivax malaria. Compounding these challenges is the unique biology of P. vivax and limited progress in development of experimental research tools, thereby hindering development of new drugs and vaccines. Renewed emphasis on vivax malaria research is beginning to make progress in overcoming some of these challenges.
Collapse
Affiliation(s)
- John H Adams
- Center for Global Health and Infectious Diseases, Department of Global Health, University of South Florida, Tampa, Florida 33612
| | - Ivo Mueller
- Population Health & Immunity Division, Walter & Eliza Hall Institute, Parkville, Victoria 3052, Australia
| |
Collapse
|
14
|
Son UH, Dinzouna-Boutamba SD, Lee S, Yun HS, Kim JY, Joo SY, Jeong S, Rhee MH, Hong Y, Chung DI, Kwak D, Goo YK. Diversity of vir Genes in Plasmodium vivax from Endemic Regions in the Republic of Korea: an Initial Evaluation. THE KOREAN JOURNAL OF PARASITOLOGY 2017; 55:149-158. [PMID: 28506037 PMCID: PMC5452439 DOI: 10.3347/kjp.2017.55.2.149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 02/15/2017] [Accepted: 02/19/2017] [Indexed: 11/23/2022]
Abstract
Variant surface antigens (VSAs) encoded by pir families are considered to be the key proteins used by many Plasmodium spp. to escape the host immune system by antigenic variation. This attribute of VSAs is a critical issue in the development of a novel vaccine. In this regard, a population genetic study of vir genes from Plasmodium vivax was performed in the Republic of Korea (ROK). Eighty-five venous blood samples and 4 of the vir genes, namely vir 27, vir 21, vir 12, and vir 4, were selected for study. The number of segregating sites (S), number of haplotypes (H), haplotype diversity (Hd), DNA diversity (π and Θw), and Tajima’s D test value were conducted. Phylogenetic trees of each gene were constructed. The vir 21 (S=143, H=22, Hd=0.827) was the most genetically diverse gene, and the vir 4 (S=6, H=4, Hd=0.556) was the opposite one. Tajima’s D values for vir 27 (1.08530, P>0.1), vir 12 (2.89007, P<0.01), and vir 21 (0.40782, P>0.1) were positive, and that of vir 4 (−1.32162, P>0.1) was negative. All phylogenetic trees showed 2 clades with no particular branching according to the geographical differences and cluster. This study is the first survey on the vir genes in ROK, providing information on the genetic level. The sample sequences from vir 4 showed a clear difference to the Sal-1 reference gene sequence, whereas they were very similar to those from Indian isolates.
Collapse
Affiliation(s)
- Ui-Han Son
- Department of Parasitology and Tropical Medicine, Kyungpook National University School of Medicine, Daegu 41944, Korea.,Laboratory of Parasitology, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
| | | | - Sanghyun Lee
- Pathogen Resource TF, Center for Infectious Diseases, Korea National Institute of Health, Korea CDC, Chungbuk 28159, Korea
| | - Hae Soo Yun
- Department of Parasitology and Tropical Medicine, Kyungpook National University School of Medicine, Daegu 41944, Korea
| | - Jung-Yeon Kim
- Division of Malaria and Parasitic Diseases, National Institute of Health, Korea CDC, Chungbuk 28159, Korea
| | - So-Young Joo
- Department of Parasitology and Tropical Medicine, Kyungpook National University School of Medicine, Daegu 41944, Korea
| | - Sookwan Jeong
- Department of Parasitology and Tropical Medicine, Kyungpook National University School of Medicine, Daegu 41944, Korea
| | - Man Hee Rhee
- Laboratory of Veterinary Physiology & Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
| | - Yeonchul Hong
- Department of Parasitology and Tropical Medicine, Kyungpook National University School of Medicine, Daegu 41944, Korea
| | - Dong-Il Chung
- Department of Parasitology and Tropical Medicine, Kyungpook National University School of Medicine, Daegu 41944, Korea
| | - Dongmi Kwak
- Laboratory of Parasitology, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
| | - Youn-Kyoung Goo
- Department of Parasitology and Tropical Medicine, Kyungpook National University School of Medicine, Daegu 41944, Korea
| |
Collapse
|
15
|
The Rheopathobiology of Plasmodium vivax and Other Important Primate Malaria Parasites. Trends Parasitol 2016; 33:321-334. [PMID: 28040374 DOI: 10.1016/j.pt.2016.11.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/17/2016] [Accepted: 11/28/2016] [Indexed: 12/11/2022]
Abstract
Our current understanding of how malaria parasites remodel their host red blood cells (RBCs) and ultimately cause disease is largely based on studies of Plasmodium falciparum. In this review, we expand our knowledge to include what is currently known about pathophysiological changes to RBCs that are infected by non-falciparum malaria parasites. We highlight the potential folly of making generalizations about the rheology of malaria infection, and emphasize the need for more systematic studies into the erythrocytic biology of non-falciparum malaria parasites. We propose that a better understanding of the mechanisms that underlie the changes to RBCs induced by malaria parasites other than P. falciparum may be highly informative for the development of therapeutics that specifically disrupt the altered rheological profile of RBCs infected with either sexual- or asexual-stage parasites, resulting in drugs that block transmission, reduce disease severity, and help delay the onset of resistance to current and future anti-malaria drugs.
Collapse
|
16
|
Boopathi PA, Subudhi AK, Middha S, Acharya J, Mugasimangalam RC, Kochar SK, Kochar DK, Das A. Design, construction and validation of a Plasmodium vivax microarray for the transcriptome profiling of clinical isolates. Acta Trop 2016; 164:438-447. [PMID: 27720625 DOI: 10.1016/j.actatropica.2016.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 09/05/2016] [Accepted: 10/03/2016] [Indexed: 02/04/2023]
Abstract
High density oligonucleotide microarrays have been used on Plasmodium vivax field isolates to estimate whole genome expression. However, no microarray platform has been experimentally optimized for studying the transcriptome of field isolates. In the present study, we adopted both bioinformatics and experimental testing approaches to select best optimized probes suitable for detecting parasite transcripts from field samples and included them in designing a custom 15K P. vivax microarray. This microarray has long oligonucleotide probes (60mer) that were in-situ synthesized onto glass slides using Agilent SurePrint technology and has been developed into an 8X15K format (8 identical arrays on a single slide). Probes in this array were experimentally validated and represents 4180 P. vivax genes in sense orientation, of which 1219 genes have also probes in antisense orientation. Validation of the 15K array by using field samples (n=14) has shown 99% of parasite transcript detection from any of the samples. Correlation analysis between duplicate probes (n=85) present in the arrays showed perfect correlation (r2=0.98) indicating the reproducibility. Multiple probes representing the same gene exhibited similar kind of expression pattern across the samples (positive correlation, r≥0.6). Comparison of hybridization data with the previous studies and quantitative real-time PCR experiments were performed to highlight the microarray validation procedure. This array is unique in its design, and results indicate that the array is sensitive and reproducible. Hence, this microarray could be a valuable functional genomics tool to generate reliable expression data from P. vivax field isolates.
Collapse
|
17
|
Fougère A, Jackson AP, Paraskevi Bechtsi D, Braks JAM, Annoura T, Fonager J, Spaccapelo R, Ramesar J, Chevalley-Maurel S, Klop O, van der Laan AMA, Tanke HJ, Kocken CHM, Pasini EM, Khan SM, Böhme U, van Ooij C, Otto TD, Janse CJ, Franke-Fayard B. Variant Exported Blood-Stage Proteins Encoded by Plasmodium Multigene Families Are Expressed in Liver Stages Where They Are Exported into the Parasitophorous Vacuole. PLoS Pathog 2016; 12:e1005917. [PMID: 27851824 PMCID: PMC5113031 DOI: 10.1371/journal.ppat.1005917] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/06/2016] [Indexed: 01/05/2023] Open
Abstract
Many variant proteins encoded by Plasmodium-specific multigene families are exported into red blood cells (RBC). P. falciparum-specific variant proteins encoded by the var, stevor and rifin multigene families are exported onto the surface of infected red blood cells (iRBC) and mediate interactions between iRBC and host cells resulting in tissue sequestration and rosetting. However, the precise function of most other Plasmodium multigene families encoding exported proteins is unknown. To understand the role of RBC-exported proteins of rodent malaria parasites (RMP) we analysed the expression and cellular location by fluorescent-tagging of members of the pir, fam-a and fam-b multigene families. Furthermore, we performed phylogenetic analyses of the fam-a and fam-b multigene families, which indicate that both families have a history of functional differentiation unique to RMP. We demonstrate for all three families that expression of family members in iRBC is not mutually exclusive. Most tagged proteins were transported into the iRBC cytoplasm but not onto the iRBC plasma membrane, indicating that they are unlikely to play a direct role in iRBC-host cell interactions. Unexpectedly, most family members are also expressed during the liver stage, where they are transported into the parasitophorous vacuole. This suggests that these protein families promote parasite development in both the liver and blood, either by supporting parasite development within hepatocytes and erythrocytes and/or by manipulating the host immune response. Indeed, in the case of Fam-A, which have a steroidogenic acute regulatory-related lipid transfer (START) domain, we found that several family members can transfer phosphatidylcholine in vitro. These observations indicate that these proteins may transport (host) phosphatidylcholine for membrane synthesis. This is the first demonstration of a biological function of any exported variant protein family of rodent malaria parasites. Malaria-parasites invade and multiply in hepatocytes and erythrocytes. The human parasite P. falciparum transports proteins encoded by multigene families onto the surface of erythrocytes, mediating interactions between infected red blood cells (iRBCs) and other host-cells and are thought to play a key role in parasite survival during blood-stage development. The function of other exported Plasmodium protein families remains largely unknown. We provide novel insights into expression and cellular location of proteins encoded by three large multigene families of rodent malaria parasites (Fam-a, Fam-b and PIR). Multiple members of the same family are expressed in a single iRBC, unlike P. falciparum PfEMP1 proteins where individual iRBCs express only a single member. Most proteins we examined are located in the RBC cytoplasm and are not transported onto the iRBC surface membrane, indicating that these proteins are unlikely to mediate interactions between iRBCs and host-cells. Unexpectedly, liver stages also express many of these proteins, where they locate to the vacuole surrounding the parasite inside the hepatocyte. In support of a role of these proteins for parasite growth within their host cells we provide evidence that Fam-A proteins have a role in uptake and transport of (host) phosphatidylcholine for parasite-membrane synthesis.
Collapse
Affiliation(s)
- Aurélie Fougère
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Department of Experimental Medicine, University of Perugia, Italy
| | - Andrew P. Jackson
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UnitedKingdom
| | | | - Joanna A. M. Braks
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Takeshi Annoura
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Department of Department of Parasitology, National Institute of Infectious Diseases (NIID), Tokyo, Japan
| | - Jannik Fonager
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Department of Microbiological Diagnostics and Virology, Statens Serum Institute, Copenhagen, Denmark
| | | | - Jai Ramesar
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Séverine Chevalley-Maurel
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Onny Klop
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | | | - Hans J. Tanke
- Department of Molecular Cell Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | | | - Erica M. Pasini
- Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Shahid M. Khan
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Ulrike Böhme
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UnitedKingdom
| | - Christiaan van Ooij
- The Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London, UnitedKingdom
| | - Thomas D. Otto
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UnitedKingdom
| | - Chris J. Janse
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Blandine Franke-Fayard
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
18
|
Requena P, Rui E, Padilla N, Martínez-Espinosa FE, Castellanos ME, Bôtto-Menezes C, Malheiro A, Arévalo-Herrera M, Kochar S, Kochar SK, Kochar DK, Umbers AJ, Ome-Kaius M, Wangnapi R, Hans D, Menegon M, Mateo F, Sanz S, Desai M, Mayor A, Chitnis CC, Bardají A, Mueller I, Rogerson S, Severini C, Fernández-Becerra C, Menéndez C, del Portillo H, Dobaño C. Plasmodium vivax VIR Proteins Are Targets of Naturally-Acquired Antibody and T Cell Immune Responses to Malaria in Pregnant Women. PLoS Negl Trop Dis 2016; 10:e0005009. [PMID: 27711158 PMCID: PMC5053494 DOI: 10.1371/journal.pntd.0005009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/29/2016] [Indexed: 11/19/2022] Open
Abstract
P. vivax infection during pregnancy has been associated with poor outcomes such as anemia, low birth weight and congenital malaria, thus representing an important global health problem. However, no vaccine is currently available for its prevention. Vir genes were the first putative virulent factors associated with P. vivax infections, yet very few studies have examined their potential role as targets of immunity. We investigated the immunogenic properties of five VIR proteins and two long synthetic peptides containing conserved VIR sequences (PvLP1 and PvLP2) in the context of the PregVax cohort study including women from five malaria endemic countries: Brazil, Colombia, Guatemala, India and Papua New Guinea (PNG) at different timepoints during and after pregnancy. Antibody responses against all antigens were detected in all populations, with PNG women presenting the highest levels overall. P. vivax infection at sample collection time was positively associated with antibody levels against PvLP1 (fold-increase: 1.60 at recruitment -first antenatal visit-) and PvLP2 (fold-increase: 1.63 at delivery), and P. falciparum co-infection was found to increase those responses (for PvLP1 at recruitment, fold-increase: 2.25). Levels of IgG against two VIR proteins at delivery were associated with higher birth weight (27 g increase per duplicating antibody levels, p<0.05). Peripheral blood mononuclear cells from PNG uninfected pregnant women had significantly higher antigen-specific IFN-γ TH1 responses (p=0.006) and secreted less pro-inflammatory cytokines TNF and IL-6 after PvLP2 stimulation than P. vivax-infected women (p<0.05). These data demonstrate that VIR antigens induce the natural acquisition of antibody and T cell memory responses that might be important in immunity to P. vivax during pregnancy in very diverse geographical settings. Naturally-acquired antibody responses to novel recombinant proteins and synthetic peptides based on sequences from P. vivax VIR antigens were evaluated in women from five distinct geographical regions endemic for malaria, during and after pregnancy. Levels of IgG to VIR antigens were indicative of cumulative malaria exposure and increased with current P. vivax infection and P. falciparum co-infection. Antibody data were consistent with levels of malaria endemicity and current prevalence in the diverse geographical areas studied. In addition, the magnitude of IgG response to two VIR antigens at delivery was associated with higher birth weight. Furthermore, T cell responses to VIR antigens were naturally induced and their magnitude varied according to P. vivax infectious status. Peripheral blood mononuclear cells from uninfected pregnant women from a highly endemic area produced higher TH1 (IFN-γ) and lower pro-inflammatory cytokines (TNF and IL-6) upon stimulation with a long synthetic peptide representing conserved globular domains of VIR antigens than P. vivax-infected women. Data suggest that further investigation on these antigens as potential targets of immunity in naturally-exposed individuals is warranted.
Collapse
Affiliation(s)
- Pilar Requena
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Edmilson Rui
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Norma Padilla
- Centro de Estudios en Salud, Universidad del Valle de Guatemala, Guatemala City, Guatemala
| | - Flor E. Martínez-Espinosa
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Instituto Leônidas e Maria Deane (ILMD/Fiocruz Amazonia), Brazil
| | | | - Camila Bôtto-Menezes
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Adriana Malheiro
- Instituto de Ciências Biológicas. Universidade Federal do Amazonas, Manaus, Brazil
| | | | - Swati Kochar
- Department of Medicine, Medical College, Bikaner, Rajasthan, India
| | - Sanjay K. Kochar
- Department of Medicine, Medical College, Bikaner, Rajasthan, India
| | | | | | - Maria Ome-Kaius
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Regina Wangnapi
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Dhiraj Hans
- International Center for Genetic Engineering and Biotechnology, Delhi, India
| | - Michela Menegon
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Mateo
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Sergi Sanz
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Meghna Desai
- Centers for Disease Control and Prevention, Division of Parasitic Diseases and Malaria, Malaria Branch, Atlanta, Georgia, United States of America
| | - Alfredo Mayor
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Chetan C. Chitnis
- International Center for Genetic Engineering and Biotechnology, Delhi, India
| | - Azucena Bardají
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Ivo Mueller
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Walter and Eliza Hall Institute, Parkville, Australia
| | - Stephen Rogerson
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Carlo Severini
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Carmen Fernández-Becerra
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Clara Menéndez
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Hernando del Portillo
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- ICREA, Barcelona, Spain
- * E-mail: (HdP); (CD)
| | - Carlota Dobaño
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- * E-mail: (HdP); (CD)
| |
Collapse
|
19
|
Yam XY, Brugat T, Siau A, Lawton J, Wong DS, Farah A, Twang JS, Gao X, Langhorne J, Preiser PR. Characterization of the Plasmodium Interspersed Repeats (PIR) proteins of Plasmodium chabaudi indicates functional diversity. Sci Rep 2016; 6:23449. [PMID: 26996203 PMCID: PMC4800443 DOI: 10.1038/srep23449] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 03/04/2016] [Indexed: 12/02/2022] Open
Abstract
Plasmodium multigene families play a central role in the pathogenesis of malaria. The Plasmodium interspersed repeat (pir) genes comprise the largest multigene family in many Plasmodium spp. However their function(s) remains unknown. Using the rodent model of malaria, Plasmodium chabaudi, we show that individual CIR proteins have differential localizations within infected red cell (iRBC), suggesting different functional roles in a blood-stage infection. Some CIRs appear to be located on the surface of iRBC and merozoites and are therefore well placed to interact with host molecules. In line with this hypothesis, we show for the first time that a subset of recombinant CIRs bind mouse RBCs suggesting a role for CIR in rosette formation and/or invasion. Together, our results unravel differences in subcellular localization and ability to bind mouse erythrocytes between the members of the cir family, which strongly suggest different functional roles in a blood-stage infection.
Collapse
Affiliation(s)
- Xue Yan Yam
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Thibaut Brugat
- Francis Crick Institute, Mill Hill Laboratory, London, UK
| | - Anthony Siau
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | | | - Daniel S Wong
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Abdirahman Farah
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore.,Karolinska Institutet, Stockholm, Sweden
| | - Jing Shun Twang
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Xiaohong Gao
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Jean Langhorne
- Francis Crick Institute, Mill Hill Laboratory, London, UK
| | - Peter R Preiser
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| |
Collapse
|
20
|
Zhu L, Mok S, Imwong M, Jaidee A, Russell B, Nosten F, Day NP, White NJ, Preiser PR, Bozdech Z. New insights into the Plasmodium vivax transcriptome using RNA-Seq. Sci Rep 2016; 6:20498. [PMID: 26858037 PMCID: PMC4746618 DOI: 10.1038/srep20498] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/05/2016] [Indexed: 12/13/2022] Open
Abstract
Historically seen as a benign disease, it is now becoming clear that Plasmodium vivax can cause significant morbidity. Effective control strategies targeting P. vivax malaria is hindered by our limited understanding of vivax biology. Here we established the P. vivax transcriptome of the Intraerythrocytic Developmental Cycle (IDC) of two clinical isolates in high resolution by Illumina HiSeq platform. The detailed map of transcriptome generates new insights into regulatory mechanisms of individual genes and reveals their intimate relationship with specific biological functions. A transcriptional hotspot of vir genes observed on chromosome 2 suggests a potential active site modulating immune evasion of the Plasmodium parasite across patients. Compared to other eukaryotes, P. vivax genes tend to have unusually long 5′ untranslated regions and also present multiple transcription start sites. In contrast, alternative splicing is rare in P. vivax but its association with the late schizont stage suggests some of its significance for gene function. The newly identified transcripts, including up to 179 vir like genes and 3018 noncoding RNAs suggest an important role of these gene/transcript classes in strain specific transcriptional regulation.
Collapse
Affiliation(s)
- Lei Zhu
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Sachel Mok
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Mallika Imwong
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Anchalee Jaidee
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Bruce Russell
- Yong Loo Lin School of Medicine, National University Singapore, Singapore
| | - Francois Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Nicholas P Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Peter R Preiser
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
21
|
Wassmer SC, Taylor TE, Rathod PK, Mishra SK, Mohanty S, Arevalo-Herrera M, Duraisingh MT, Smith JD. Investigating the Pathogenesis of Severe Malaria: A Multidisciplinary and Cross-Geographical Approach. Am J Trop Med Hyg 2015; 93:42-56. [PMID: 26259939 PMCID: PMC4574273 DOI: 10.4269/ajtmh.14-0841] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 03/10/2015] [Indexed: 01/14/2023] Open
Abstract
More than a century after the discovery of Plasmodium spp. parasites, the pathogenesis of severe malaria is still not well understood. The majority of malaria cases are caused by Plasmodium falciparum and Plasmodium vivax, which differ in virulence, red blood cell tropism, cytoadhesion of infected erythrocytes, and dormant liver hypnozoite stages. Cerebral malaria coma is one of the most severe manifestations of P. falciparum infection. Insights into its complex pathophysiology are emerging through a combination of autopsy, neuroimaging, parasite binding, and endothelial characterizations. Nevertheless, important questions remain regarding why some patients develop life-threatening conditions while the majority of P. falciparum-infected individuals do not, and why clinical presentations differ between children and adults. For P. vivax, there is renewed recognition of severe malaria, but an understanding of the factors influencing disease severity is limited and remains an important research topic. Shedding light on the underlying disease mechanisms will be necessary to implement effective diagnostic tools for identifying and classifying severe malaria syndromes and developing new therapeutic approaches for severe disease. This review highlights progress and outstanding questions in severe malaria pathophysiology and summarizes key areas of pathogenesis research within the International Centers of Excellence for Malaria Research program.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Joseph D. Smith
- Division of Parasitology, Department of Microbiology, New York University School of Medicine, New York, New York; Department of Pathology, Sydney Medical School, The University of Sydney, Sydney, Australia; Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan; Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi; Departments of Chemistry and Global Health, University of Washington, Seattle, Washington; Department of Internal Medicine, Ispat General Hospital, Orissa, India; Caucaseco Scientific Research Center, Cali, Colombia; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts; Seattle Biomedical Research Institute, Seattle, Washington; Department of Global Health, University of Washington, Seattle, Washington
| |
Collapse
|
22
|
Host erythrocyte environment influences the localization of exported protein 2, an essential component of the Plasmodium translocon. EUKARYOTIC CELL 2015; 14:371-84. [PMID: 25662767 DOI: 10.1128/ec.00228-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/28/2015] [Indexed: 11/20/2022]
Abstract
Malaria parasites replicating inside red blood cells (RBCs) export a large subset of proteins into the erythrocyte cytoplasm to facilitate parasite growth and survival. PTEX, the parasite-encoded translocon, mediates protein transport across the parasitophorous vacuolar membrane (PVM) in Plasmodium falciparum-infected erythrocytes. Proteins exported into the erythrocyte cytoplasm have been localized to membranous structures, such as Maurer's clefts, small vesicles, and a tubovesicular network. Comparable studies of protein trafficking in Plasmodium vivax-infected reticulocytes are limited. With Plasmodium yoelii-infected reticulocytes, we identified exported protein 2 (Exp2) in a proteomic screen of proteins putatively transported across the PVM. Immunofluorescence studies showed that P. yoelii Exp2 (PyExp2) was primarily localized to the PVM. Unexpectedly, PyExp2 was also associated with distinct, membrane-bound vesicles in the reticulocyte cytoplasm. This is in contrast to P. falciparum in mature RBCs, where P. falciparum Exp2 (PfExp2) is exclusively localized to the PVM. Two P. yoelii-exported proteins, PY04481 (encoded by a pyst-a gene) and PY06203 (PypAg-1), partially colocalized with these PyExp2-positive vesicles. Further analysis revealed that with P. yoelii, Plasmodium berghei, and P. falciparum, cytoplasmic Exp2-positive vesicles were primarily observed in CD71(+) reticulocytes versus mature RBCs. In transgenic P. yoelii 17X parasites, the association of hemagglutinin-tagged PyExp2 with the PVM and cytoplasmic vesicles was retained, but the pyexp2 gene was refractory to deletion. These data suggest that the localization of Exp2 in mouse and human RBCs can be influenced by the host cell environment. Exp2 may function at multiple points in the pathway by which parasites traffic proteins into and through the reticulocyte cytoplasm.
Collapse
|
23
|
Ay F, Bunnik EM, Varoquaux N, Vert JP, Noble WS, Le Roch KG. Multiple dimensions of epigenetic gene regulation in the malaria parasite Plasmodium falciparum: gene regulation via histone modifications, nucleosome positioning and nuclear architecture in P. falciparum. Bioessays 2014; 37:182-94. [PMID: 25394267 DOI: 10.1002/bies.201400145] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Plasmodium falciparum is the most deadly human malarial parasite, responsible for an estimated 207 million cases of disease and 627,000 deaths in 2012. Recent studies reveal that the parasite actively regulates a large fraction of its genes throughout its replicative cycle inside human red blood cells and that epigenetics plays an important role in this precise gene regulation. Here, we discuss recent advances in our understanding of three aspects of epigenetic regulation in P. falciparum: changes in histone modifications, nucleosome occupancy and the three-dimensional genome structure. We compare these three aspects of the P. falciparum epigenome to those of other eukaryotes, and show that large-scale compartmentalization is particularly important in determining histone decomposition and gene regulation in P. falciparum. We conclude by presenting a gene regulation model for P. falciparum that combines the described epigenetic factors, and by discussing the implications of this model for the future of malaria research.
Collapse
Affiliation(s)
- Ferhat Ay
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | | | | | | | | |
Collapse
|
24
|
Large, rapidly evolving gene families are at the forefront of host-parasite interactions in Apicomplexa. Parasitology 2014; 142 Suppl 1:S57-70. [PMID: 25257746 PMCID: PMC4413850 DOI: 10.1017/s0031182014001528] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Apicomplexa is a phylum of parasitic protozoa, which includes the malaria parasite Plasmodium, amongst other species that can devastate human and animal health. The past decade has seen the release of genome sequences for many of the most important apicomplexan species, providing an excellent basis for improving our understanding of their biology. One of the key features of each genome is a unique set of large, variant gene families. Although closely related species share the same families, even different types of malaria parasite have distinct families. In some species they tend to be found at the ends of chromosomes, which may facilitate aspects of gene expression regulation and generation of sequence diversity. In others they are scattered apparently randomly across chromosomes. For some families there is evidence they are involved in antigenic variation, immune regulation and immune evasion. For others there are no known functions. Even where function is unknown these families are most often predicted to be exposed to the host, contain much sequence diversity and evolve rapidly. Based on these properties it is clear that they are at the forefront of host–parasite interactions. In this review I compare and contrast the genomic context, gene structure, gene expression, protein localization and function of these families across different species.
Collapse
|
25
|
Identification of a vir-orthologous immune evasion gene family from primate malaria parasites. Parasitology 2014; 141:641-5. [PMID: 24477117 DOI: 10.1017/s003118201300214x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The immune evasion gene family of malaria parasites encodes variant surface proteins that are expressed at the surface of infected erythrocytes and help the parasite in evading the host immune response by means of antigenic variation. The identification of Plasmodium vivax vir orthologous immune evasion gene family from primate malaria parasites would provide new insight into the evolution of virulence and pathogenesis. Three vir subfamilies viz. vir-B, vir-D and vir-G were successfully PCR amplified from primate malaria parasites, cloned and sequenced. DNA sequence analysis confirmed orthologues of vir-D subfamily in Plasmodium cynomolgi, Plasmodium simium, Plasmodium simiovale and Plasmodium fieldi. The identified vir-D orthologues are 1-9 distinct members of the immune evasion gene family which have 68-83% sequence identity with vir-D and 71.2-98.5% sequence identity within the members identified from primate malaria parasites. The absence of other vir subfamilies among primate malaria parasites reflects the limitations in the experimental approach. This study clearly identified the presence of vir-D like sequences in four species of Plasmodium infecting primates that would be useful in understanding the evolution of virulence in malaria parasites.
Collapse
|
26
|
De las Salas B, Segura C, Pabón A, Lopes SCP, Costa FTM, Blair S. Adherence to human lung microvascular endothelial cells (HMVEC-L) of Plasmodium vivax isolates from Colombia. Malar J 2013; 12:347. [PMID: 24080027 PMCID: PMC3850517 DOI: 10.1186/1475-2875-12-347] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 09/24/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND For years Plasmodium vivax has been considered the cause of benign malaria. Nevertheless, it has been observed that this parasite can produce a severe disease comparable to Plasmodium falciparum. It has been suggested that some physiopathogenic processes might be shared by these two species, such as cytoadherence. Recently, it has been demonstrated that P. vivax-infected erythrocytes (Pv-iEs) have the capacity to adhere to endothelial cells, in which intercellular adhesion molecule-1 (ICAM-1) seems to be involved in this process. METHODS Adherence capacity of 21 Colombian isolates, from patients with P. vivax mono-infection to a microvascular line of human lung endothelium (HMVEC-L) was assessed in static conditions and binding was evaluated at basal levels or in tumor necrosis factor (TNF) stimulated cells. The adherence specificity for the ICAM-1 receptor was determined through inhibition with an anti-CD54 monoclonal antibody. RESULTS The majority of P. vivax isolates, 13 out of 21 (61.9%), adhered to the HMVEC-L cells, but P. vivax adherence was at least seven times lower when compared to the four P. falciparum isolates. Moreover, HMVEC-L stimulation with TNF led to an increase of 1.6-fold in P. vivax cytoadhesion, similar to P. falciparum isolates (1.8-fold) at comparable conditions. Also, blockage of ICAM-1 receptor with specific antibodies showed a significant 50% adherence reduction. CONCLUSIONS Plasmodium vivax isolates found in Colombia are also capable of adhering specifically in vitro to lung endothelial cells, via ICAM-1 cell receptor, both at basal state and after cell stimulation with TNF. Collectively, these findings reinforce the concept of cytoadherence for P. vivax, but here, to a different endothelial cell line and using geographical distinct isolates, thus contributing to understanding P. vivax biology.
Collapse
Affiliation(s)
- Briegel De las Salas
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No, 52-21, Medellín, Colombia.
| | | | | | | | | | | |
Collapse
|
27
|
Mueller I, Galinski MR, Tsuboi T, Arevalo-Herrera M, Collins WE, King CL. Natural acquisition of immunity to Plasmodium vivax: epidemiological observations and potential targets. ADVANCES IN PARASITOLOGY 2013; 81:77-131. [PMID: 23384622 DOI: 10.1016/b978-0-12-407826-0.00003-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Population studies show that individuals acquire immunity to Plasmodium vivax more quickly than Plasmodium falciparum irrespective of overall transmission intensity, resulting in the peak burden of P. vivax malaria in younger age groups. Similarly, actively induced P. vivax infections in malaria therapy patients resulted in faster and generally more strain-transcending acquisition of immunity than P. falciparum infections. The mechanisms behind the more rapid acquisition of immunity to P. vivax are poorly understood. Natural acquired immune responses to P. vivax target both pre-erythrocytic and blood-stage antigens and include humoral and cellular components. To date, only a few studies have investigated the association of these immune responses with protection, with most studies focussing on a few merozoite antigens (such as the Pv Duffy binding protein (PvDBP), the Pv reticulocyte binding proteins (PvRBPs), or the Pv merozoite surface proteins (PvMSP1, 3 & 9)) or the circumsporozoite protein (PvCSP). Naturally acquired transmission-blocking (TB) immunity (TBI) was also found in several populations. Although limited, these data support the premise that developing a multi-stage P. vivax vaccine may be feasible and is worth pursuing.
Collapse
Affiliation(s)
- Ivo Mueller
- Walter + Eliza Hall Institute, Infection & Immunity Division, Parkville, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
28
|
Lopez FJ, Bernabeu M, Fernandez-Becerra C, del Portillo HA. A new computational approach redefines the subtelomeric vir superfamily of Plasmodium vivax. BMC Genomics 2013; 14:8. [PMID: 23324551 PMCID: PMC3566924 DOI: 10.1186/1471-2164-14-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 01/02/2013] [Indexed: 01/20/2023] Open
Abstract
Background Subtelomeric multigene families of malaria parasites encode virulent determinants. The published genome sequence of Plasmodium vivax revealed the largest subtelomeric multigene family of human malaria parasites, the vir super-family, presently composed of 346 vir genes subdivided into 12 different subfamilies based on sequence homologies detected by BLAST. Results A novel computational approach was used to redefine vir genes. First, a protein-weighted graph was built based on BLAST alignments. This graph was processed to ensure that edge weights are not exclusively based on the BLAST score between the two corresponding proteins, but strongly dependant on their graph neighbours and their associations. Then the Markov Clustering Algorithm was applied to the protein graph. Next, the Homology Block concept was used to further validate this clustering approach. Finally, proteome-wide analysis was carried out to predict new VIR members. Results showed that (i) three previous subfamilies cannot longer be classified as vir genes; (ii) most previously unclustered vir genes were clustered into vir subfamilies; (iii) 39 hypothetical proteins were predicted as VIR proteins; (iv) many of these findings are supported by a number of structural and functional evidences, sub-cellular localization studies, gene expression analysis and chromosome localization (v) this approach can be used to study other multigene families in malaria. Conclusions This methodology, resource and new classification of vir genes will contribute to a new structural framing of this multigene family and other multigene families of malaria parasites, facilitating the design of experiments to understand their role in pathology, which in turn may help furthering vaccine development.
Collapse
Affiliation(s)
- Francisco Javier Lopez
- Barcelona Centre for International Health Research, CRESIB, Hospital Clínic-Universitat de Barcelona, Roselló 153, 1a planta CEK Building, 08036 Barcelona, Spain
| | | | | | | |
Collapse
|
29
|
Costa FT, Lopes SC, Albrecht L, Ataíde R, Siqueira AM, Souza RM, Russell B, Renia L, Marinho CR, Lacerda MV. On the pathogenesis of Plasmodium vivax malaria: Perspectives from the Brazilian field. Int J Parasitol 2012; 42:1099-105. [DOI: 10.1016/j.ijpara.2012.08.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 08/18/2012] [Accepted: 08/21/2012] [Indexed: 01/05/2023]
|
30
|
Gupta P, Das A, Singh OP, Ghosh SK, Singh V. Assessing the genetic diversity of the vir genes in Indian Plasmodium vivax population. Acta Trop 2012; 124:133-9. [PMID: 22820026 DOI: 10.1016/j.actatropica.2012.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 07/05/2012] [Accepted: 07/12/2012] [Indexed: 11/19/2022]
Abstract
Variant surface antigens (VSAs) present on the surface of parasitized erythrocytes facilitate many Plasmodium spp. to escape the host immune system during infection. Multigene families coding for VSAs exist in several Plasmodium spp. and are located on telomeric and subtelomeric regions of the chromosomes. P. vivax genome also contains a multigene superfamily vir (variant interspersed repeats), present in the subtelomeric region with a possible role in immune evasion like the var gene in P. falciparum. Blood samples from 148 symptomatic malaria cases were collected from five different regions of India, viz. Mangalore, Rourkela, Goa, Delhi and Jabalpur. P. vivax isolates (74 single infections) were sequenced for four vir genes (viz. vir 27, vir 4, vir 12 and vir 21) and analyzed for the genetic variability existing in different populations of India. The results indicate that vir genes in different P. vivax populations in India are highly divergent both within and between the isolates. High levels of single nucleotide polymorphisms (SNPs) were observed attributing to the existing polymorphism for all the four vir genes studied across the population. Detailed knowledge of the genetic variation among the vir genes will help in understanding the evolutionary aspects of vir genes and may also provide basis for understanding the disease chronicity.
Collapse
Affiliation(s)
- P Gupta
- National Institute of Malaria Research, Sector-8 Dwarka, New Delhi 110077, India
| | | | | | | | | |
Collapse
|
31
|
Cernetich-Ott A, Daly TM, Vaidya AB, Bergman LW, Burns JM. Remarkable stability in patterns of blood-stage gene expression during episodes of non-lethal Plasmodium yoelii malaria. Malar J 2012; 11:265. [PMID: 22866913 PMCID: PMC3489522 DOI: 10.1186/1475-2875-11-265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 07/22/2012] [Indexed: 11/12/2022] Open
Abstract
Background Microarray studies using in vitro cultures of synchronized, blood-stage Plasmodium falciparum malaria parasites have revealed a ‘just-in-time’ cascade of gene expression with some indication that these transcriptional patterns remain stable even in the presence of external stressors. However, direct analysis of transcription in P. falciparum blood-stage parasites obtained from the blood of infected patients suggests that parasite gene expression may be modulated by factors present in the in vivo environment of the host. The aim of this study was to examine changes in gene expression of the rodent malaria parasite, Plasmodium yoelii 17X, while varying the in vivo setting of replication. Methods Using P. yoelii 17X parasites replicating in vivo, differential gene expression in parasites isolated from individual mice, from independent infections, during ascending, peak and descending parasitaemia and in the presence and absence of host antibody responses was examined using P. yoelii DNA microarrays. A genome-wide analysis to identify coordinated changes in groups of genes associated with specific biological pathways was a primary focus, although an analysis of the expression patterns of two multi-gene families in P. yoelii, the yir and pyst-a families, was also completed. Results Across experimental conditions, transcription was surprisingly stable with little evidence for distinct transcriptional states or for consistent changes in specific pathways. Differential gene expression was greatest when comparing differences due to parasite load and/or host cell availability. However, the number of differentially expressed genes was generally low. Of genes that were differentially expressed, many involved biologically diverse pathways. There was little to no differential expression of members of the yir and pyst-a multigene families that encode polymorphic proteins associated with the membrane of infected erythrocytes. However, a relatively large number of these genes were expressed during blood-stage infection regardless of experimental condition. Conclusions Taken together, these results indicate that 1) P. yoelii gene expression remains stable in the presence of a changing host environment, and 2) concurrent expression of a large number of the polymorphic yir and pyst-a genes, rather than differential expression in response to specific host factors, may in itself limit the effectiveness of host immune responses.
Collapse
Affiliation(s)
- Amy Cernetich-Ott
- Centre for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | | | | | | | | |
Collapse
|
32
|
Akinyi S, Hanssen E, Meyer EVS, Jiang J, Korir CC, Singh B, Lapp S, Barnwell JW, Tilley L, Galinski MR. A 95 kDa protein of Plasmodium vivax and P. cynomolgi visualized by three-dimensional tomography in the caveola-vesicle complexes (Schüffner's dots) of infected erythrocytes is a member of the PHIST family. Mol Microbiol 2012; 84:816-31. [PMID: 22537295 DOI: 10.1111/j.1365-2958.2012.08060.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Plasmodium vivax and P. cynomolgi produce numerous caveola-vesicle complex (CVC) structures within the surface of the infected erythrocyte membrane. These contrast with the electron-dense knob protrusions expressed at the surface of Plasmodium falciparum-infected erythrocytes. Here we investigate the three-dimensional (3-D) structure of the CVCs and the identity of a predominantly expressed 95 kDa CVC protein. Liquid chromatography - tandem mass spectrometry analysis of immunoprecipitates by monoclonal antibodies from P. cynomolgi extracts identified this protein as a member of the Plasmodium helical interspersed subtelomeric (PHIST) superfamily with a calculated mass of 81 kDa. We named the orthologous proteins PvPHIST/CVC-81(95) and PcyPHIST/CVC-81(95) , analysed their structural features, including a PEXEL motif, repeated sequences and a C-terminal PHIST domain, and show that PHIST/CVC-81(95) is most highly expressed in trophozoites. We generated images of CVCs in 3-D using electron tomography (ET), and used immuno-ET to show PHIST/CVC-81(95) localizes to the cytoplasmic side of the CVC tubular extensions. Targeted gene disruptions were attempted in vivo. The pcyphist/cvc-81(95) gene was not disrupted, but parasites containing episomes with the tgdhfr selection cassette were retrieved by selection with pyrimethamine. This suggests that PHIST/CVC-81(95) is essential for survival of these malaria parasites.
Collapse
Affiliation(s)
- Sheila Akinyi
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Lawton J, Brugat T, Yan YX, Reid AJ, Böhme U, Otto TD, Pain A, Jackson A, Berriman M, Cunningham D, Preiser P, Langhorne J. Characterization and gene expression analysis of the cir multi-gene family of Plasmodium chabaudi chabaudi (AS). BMC Genomics 2012; 13:125. [PMID: 22458863 PMCID: PMC3384456 DOI: 10.1186/1471-2164-13-125] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 03/29/2012] [Indexed: 11/13/2022] Open
Abstract
Background The pir genes comprise the largest multi-gene family in Plasmodium, with members found in P. vivax, P. knowlesi and the rodent malaria species. Despite comprising up to 5% of the genome, little is known about the functions of the proteins encoded by pir genes. P. chabaudi causes chronic infection in mice, which may be due to antigenic variation. In this model, pir genes are called cirs and may be involved in this mechanism, allowing evasion of host immune responses. In order to fully understand the role(s) of CIR proteins during P. chabaudi infection, a detailed characterization of the cir gene family was required. Results The cir repertoire was annotated and a detailed bioinformatic characterization of the encoded CIR proteins was performed. Two major sub-families were identified, which have been named A and B. Members of each sub-family displayed different amino acid motifs, and were thus predicted to have undergone functional divergence. In addition, the expression of the entire cir repertoire was analyzed via RNA sequencing and microarray. Up to 40% of the cir gene repertoire was expressed in the parasite population during infection, and dominant cir transcripts could be identified. In addition, some differences were observed in the pattern of expression between the cir subgroups at the peak of P. chabaudi infection. Finally, specific cir genes were expressed at different time points during asexual blood stages. Conclusions In conclusion, the large number of cir genes and their expression throughout the intraerythrocytic cycle of development indicates that CIR proteins are likely to be important for parasite survival. In particular, the detection of dominant cir transcripts at the peak of P. chabaudi infection supports the idea that CIR proteins are expressed, and could perform important functions in the biology of this parasite. Further application of the methodologies described here may allow the elucidation of CIR sub-family A and B protein functions, including their contribution to antigenic variation and immune evasion.
Collapse
Affiliation(s)
- Jennifer Lawton
- Division of Parasitology, MRC National Institute for Medical Research, London, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bernabeu M, Lopez FJ, Ferrer M, Martin-Jaular L, Razaname A, Corradin G, Maier AG, Del Portillo HA, Fernandez-Becerra C. Functional analysis of Plasmodium vivax VIR proteins reveals different subcellular localizations and cytoadherence to the ICAM-1 endothelial receptor. Cell Microbiol 2011; 14:386-400. [PMID: 22103402 DOI: 10.1111/j.1462-5822.2011.01726.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The subcellular localization and function of variant subtelomeric multigene families in Plasmodium vivax remain vastly unknown. Among them, the vir superfamily is putatively involved in antigenic variation and in mediating adherence to endothelial receptors. In the absence of a continuous in vitro culture system for P. vivax, we have generated P. falciparum transgenic lines expressing VIR proteins to infer location and function. We chose three proteins pertaining to subfamilies A (VIR17), C (VIR14) and D (VIR10), with domains and secondary structures that predictably traffic these proteins to different subcellular compartments. Here, we showed that VIR17 remained inside the parasite and around merozoites, whereas VIR14 and VIR10 were exported to the membrane of infected red blood cells (iRBCs) in an apparent independent pathway of Maurer's clefts. Remarkably, VIR14 was exposed at the surface of iRBCs and mediated adherence to different endothelial receptors expressed in CHO cells under static conditions. Under physiological flow conditions, however, cytoadherence was only observed to ICAM-1, which was the only receptor whose adherence was specifically and significantly inhibited by antibodies against conserved motifs of VIR proteins. Immunofluorescence studies using these antibodies also showed different subcellular localizations of VIR proteins in P. vivax-infected reticulocytes from natural infections. These data suggest that VIR proteins are trafficked to different cellular compartments and functionally demonstrates that VIR proteins can specifically mediate cytoadherence to the ICAM-1 endothelial receptor.
Collapse
Affiliation(s)
- M Bernabeu
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ebbinghaus P, Krücken J. Characterization and tissue-specific expression patterns of the Plasmodium chabaudi cir multigene family. Malar J 2011; 10:272. [PMID: 21929749 PMCID: PMC3189184 DOI: 10.1186/1475-2875-10-272] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 09/19/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Variant antigens expressed on the surface of parasitized red blood cells (pRBCs) are important virulence factors of malaria parasites. Whereas Plasmodium falciparum erythrocyte membrane proteins 1 (PfEMP1) are responsible for sequestration of mature parasites, little is known about putative ligands mediating cytoadherence to host receptors in other Plasmodium species. Candidates include members of the pir superfamily found in the human parasite Plasmodium vivax (vir), in the simian pathogen Plasmodium knowlesi (kir) and in the rodent malarias Plasmodium yoelii (yir), Plasmodium berghei (bir) and Plasmodium chabaudi (cir). The aim of this study was to reveal a potential involvement of cir genes in P. chabaudi sequestration. METHODS Subfamilies of cir genes were identified by bioinformatic analyses of annotated sequence data in the Plasmodium Genome Database. In order to examine tissue-specific differences in the expression of cir mRNAs, RT-PCR with subfamily-specific primers was used. In total, 432 cDNA clones derived from six different tissues were sequenced to characterize the transcribed cir gene repertoire. To confirm differences in transcription profiles of cir genes, restriction fragment length polymorphism (RFLP) analyses were performed to compare different host tissues and to identify changes during the course of P. chabaudi infections in immunocompetent mice. RESULTS The phylogenetic analysis of annotated P. chabaudi putative CIR proteins identified two major subfamilies. Comparison of transcribed cir genes from six different tissues revealed significant differences in the frequency clones belonging to individual cir gene subgroups were obtained from different tissues. Further hints of difference in the transcription of cir genes in individual tissues were obtained by RFLP. Whereas only minimal changes in the transcription pattern of cir genes could be detected during the developmental cycle of the parasites, switching to expression of other cir genes during the course of an infection was observed around or after peak parasitemia. CONCLUSIONS The tissue-specific expression of cir mRNAs found in this study indicates correlation between expression of CIR antigens and distribution of parasites in inner organs. Together with comparable results for other members of the pir superfamily this suggests a role of cir and other pir genes in antigenic variation and sequestration of malaria parasites.
Collapse
Affiliation(s)
- Petra Ebbinghaus
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Königsweg 67, 14163 Berlin, Germany
| | | |
Collapse
|
36
|
Miao J, Cui L. Rapid isolation of single malaria parasite-infected red blood cells by cell sorting. Nat Protoc 2011; 6:140-6. [PMID: 21293455 DOI: 10.1038/nprot.2010.185] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Malaria research often requires isolation of individually infected red blood cells (RBCs) or of a homogenous parasite population derived from a single parasite (clone). Traditionally, isolation of individual, parasitized RBCs or parasite cloning is achieved by limiting dilution or micromanipulation. This protocol describes a method for more efficient cloning of the malaria parasite; the method uses a cell sorter to rapidly isolate Plasmodium falciparum-infected RBCs singly. By gating the parameters of forward-angle light scatter and side-angle light scatter in a cell sorter, singly infected RBCs can be isolated and automatically deposited into a 96-well culture plate within 1 min. Including a Percoll purification step; the entire procedure to seed a 96-well plate with singly infected RBCs can take <40 min. This highly efficient single-cell sorting protocol should be useful for cloning of both laboratory parasite populations from genetic manipulation experiments and clinical samples.
Collapse
Affiliation(s)
- Jun Miao
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA.
| | | |
Collapse
|
37
|
Franke-Fayard B, Fonager J, Braks A, Khan SM, Janse CJ. Sequestration and tissue accumulation of human malaria parasites: can we learn anything from rodent models of malaria? PLoS Pathog 2010; 6:e1001032. [PMID: 20941396 PMCID: PMC2947991 DOI: 10.1371/journal.ppat.1001032] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The sequestration of Plasmodium falciparum–infected red blood cells (irbcs) in the microvasculature of organs is associated with severe disease; correspondingly, the molecular basis of irbc adherence is an active area of study. In contrast to P. falciparum, much less is known about sequestration in other Plasmodium parasites, including those species that are used as models to study severe malaria. Here, we review the cytoadherence properties of irbcs of the rodent parasite Plasmodium berghei ANKA, where schizonts demonstrate a clear sequestration phenotype. Real-time in vivo imaging of transgenic P. berghei parasites in rodents has revealed a CD36-dependent sequestration in lungs and adipose tissue. In the absence of direct orthologs of the P. falciparum proteins that mediate binding to human CD36, the P. berghei proteins and/or mechanisms of rodent CD36 binding are as yet unknown. In addition to CD36-dependent schizont sequestration, irbcs accumulate during severe disease in different tissues, including the brain. The role of sequestration is discussed in the context of disease as are the general (dis)similarities of P. berghei and P. falciparum sequestration.
Collapse
Affiliation(s)
- Blandine Franke-Fayard
- Leiden Malaria Research Group, Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Jannik Fonager
- Leiden Malaria Research Group, Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Anneke Braks
- Leiden Malaria Research Group, Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Shahid M. Khan
- Leiden Malaria Research Group, Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Chris J. Janse
- Leiden Malaria Research Group, Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
38
|
Jemmely NY, Niang M, Preiser PR. Small variant surface antigens and Plasmodium evasion of immunity. Future Microbiol 2010; 5:663-82. [PMID: 20353305 DOI: 10.2217/fmb.10.21] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Antigenic variation at the Plasmodium-infected erythrocyte surface plays a critical role in malaria disease severity and host immune evasion. Our current understanding of the role of Plasmodium variant surface antigens in antigenic variation and immune evasion is largely limited to the extensive work carried out on the Plasmodium falciparum var gene family. Although homologues of var genes are not present in other malaria species, small variant gene families comprising the rif and stevor genes in P. falciparum and the pir genes in Plasmodium vivax, Plasmodium knowlesi and the rodent malaria Plasmodium chabaudi, Plasmodium berghei and Plasmodium yoelii also show features suggesting a role in antigenic variation and immune evasion. In this article, we highlight our current understanding of these variant antigens and provide insights on the mechanisms developed by malaria parasites to effectively avoid the host immune response and establish chronic infection.
Collapse
Affiliation(s)
- Noelle Yvonne Jemmely
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Singapore.
| | | | | |
Collapse
|
39
|
Westenberger SJ, McClean CM, Chattopadhyay R, Dharia NV, Carlton JM, Barnwell JW, Collins WE, Hoffman SL, Zhou Y, Vinetz JM, Winzeler EA. A systems-based analysis of Plasmodium vivax lifecycle transcription from human to mosquito. PLoS Negl Trop Dis 2010; 4:e653. [PMID: 20386602 PMCID: PMC2850316 DOI: 10.1371/journal.pntd.0000653] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 03/01/2010] [Indexed: 11/18/2022] Open
Abstract
Background Up to 40% of the world's population is at risk for Plasmodium vivax malaria, a disease that imposes a major public health and economic burden on endemic countries. Because P. vivax produces latent liver forms, eradication of P. vivax malaria is more challenging than it is for P. falciparum. Genetic analysis of P. vivax is exceptionally difficult due to limitations of in vitro culture. To overcome the barriers to traditional molecular biology in P. vivax, we examined parasite transcriptional changes in samples from infected patients and mosquitoes in order to characterize gene function, define regulatory sequences and reveal new potential vaccine candidate genes. Principal Findings We observed dramatic changes in transcript levels for various genes at different lifecycle stages, indicating that development is partially regulated through modulation of mRNA levels. Our data show that genes involved in common biological processes or molecular machinery are co-expressed. We identified DNA sequence motifs upstream of co-expressed genes that are conserved across Plasmodium species that are likely binding sites of proteins that regulate stage-specific transcription. Despite their capacity to form hypnozoites we found that P. vivax sporozoites show stage-specific expression of the same genes needed for hepatocyte invasion and liver stage development in other Plasmodium species. We show that many of the predicted exported proteins and members of multigene families show highly coordinated transcription as well. Conclusions We conclude that high-quality gene expression data can be readily obtained directly from patient samples and that many of the same uncharacterized genes that are upregulated in different P. vivax lifecycle stages are also upregulated in similar stages in other Plasmodium species. We also provide numerous examples of how systems biology is a powerful method for determining the likely function of genes in pathogens that are neglected due to experimental intractability. Most of the 250 million malaria cases outside of Africa are caused by the parasite Plasmodium vivax. Although drugs can be used to treat P. vivax malaria, drug resistance is spreading and there is no available vaccine. Because this species cannot be readily grown in the laboratory there are added challenges to understanding the function of the many hypothetical genes in the genome. We isolated transcriptional messages from parasites growing in human blood and in mosquitoes, labeled the messages and measured how their levels for different parasite growth conditions. The data for 5,419 parasite genes shows extensive changes as the parasite moves between human and mosquito and reveals highly expressed genes whose proteins might represent new therapeutic targets for experimental vaccines. We discover sets of genes that are likely to play a role in the earliest stages of hepatocyte infection. We find intriguing differences in the expression patterns of different blood stage parasites that may be related to host-response status.
Collapse
Affiliation(s)
- Scott J. Westenberger
- Department of Cell Biology ICND 202, The Scripps Research Institute, La Jolla, California, United States of America
| | - Colleen M. McClean
- Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | | | - Neekesh V. Dharia
- Department of Cell Biology ICND 202, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jane M. Carlton
- Department of Medical Parasitology, New York University Langone Medical Center, New York, New York, United States of America
| | - John W. Barnwell
- Centers for Disease Control and Prevention, Division of Parasitic Diseases, Atlanta, Georgia, United States of America
| | - William E. Collins
- Centers for Disease Control and Prevention, Division of Parasitic Diseases, Atlanta, Georgia, United States of America
| | | | - Yingyao Zhou
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Joseph M. Vinetz
- Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | - Elizabeth A. Winzeler
- Department of Cell Biology ICND 202, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
40
|
Cunningham D, Lawton J, Jarra W, Preiser P, Langhorne J. The pir multigene family of Plasmodium: antigenic variation and beyond. Mol Biochem Parasitol 2010; 170:65-73. [PMID: 20045030 DOI: 10.1016/j.molbiopara.2009.12.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 12/18/2009] [Accepted: 12/22/2009] [Indexed: 11/15/2022]
Abstract
Multigene families are present on the telomeric and sub-telomeric regions of most chromosomes of the malaria parasite, Plasmodium. The largest gene family identified so far is the Plasmodium interspersed repeat (pir) multigene gene family and is shared by Plasmodium vivax, and simian and rodent malaria species. Most pir genes share a similar structure across the different species; a short first exon, long second exon and a third exon encoding a trans-membrane domain, and some pir genes can be assigned to specific sub-families. Although pir genes can be differentially transcribed in different life cycle stages, suggesting different functions, there is no clear link between sub-family and transcription pattern. Some of the pir genes encode proteins expressed on or near the surface of infected erythrocytes, and therefore could be potential targets of the host's immune response, and involved in antigenic variation and immune evasion. Other functions such as signalling, trafficking and adhesion have been also postulated. The presence of pir in rodent models will allow the investigation of this gene family in vivo and thus their potential as vaccines or in other interventions in human P. vivax infections.
Collapse
Affiliation(s)
- Deirdre Cunningham
- Division of Parasitology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | | | | | | | | |
Collapse
|
41
|
Key gaps in the knowledge of Plasmodium vivax, a neglected human malaria parasite. THE LANCET. INFECTIOUS DISEASES 2009; 9:555-66. [PMID: 19695492 DOI: 10.1016/s1473-3099(09)70177-x] [Citation(s) in RCA: 472] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Cunningham D, Fonager J, Jarra W, Carret C, Preiser P, Langhorne J. Rapid changes in transcription profiles of the Plasmodium yoelii yir multigene family in clonal populations: lack of epigenetic memory? PLoS One 2009; 4:e4285. [PMID: 19173007 PMCID: PMC2628738 DOI: 10.1371/journal.pone.0004285] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 12/04/2008] [Indexed: 11/18/2022] Open
Abstract
The pir multigene family, found in the genomes of Plasmodium vivax, P. knowlesi and the rodent malaria species, encode variant antigens that could be targets of the immune response. Individual parasites of the rodent malaria Plasmodium yoelii, selected by micromanipulation, transcribe only 1 to 3 different pir (yir) suggesting tight transcriptional control at the level of individual cells. Using microarray and quantitative RT-PCR, we show that despite this very restricted transcription in a single cell, many yir genes are transcribed throughout the intra-erythrocytic asexual cycle. The timing and level of transcription differs between genes, with some being more highly transcribed in ring and trophozoite stages, whereas others are more highly transcribed in schizonts. Infection of immunodeficient mice with single infected erythrocytes results in populations of parasites each with transcriptional profiles different from that of the parent parasite population and from each other. This drift away from the original 'set' of transcribed genes does not appear to follow a preset pattern and "epigenetic memory" of the yir transcribed in the parent parasite can be rapidly lost. Thus, regulation of pir gene transcription may be different from that of the well-characterised multigene family, var, of Plasmodium falciparum.
Collapse
Affiliation(s)
- Deirdre Cunningham
- Division of Parasitology, National Institute for Medical Research, London, United Kingdom
| | - Jannik Fonager
- Division of Parasitology, National Institute for Medical Research, London, United Kingdom
| | - William Jarra
- Division of Parasitology, National Institute for Medical Research, London, United Kingdom
| | - Celine Carret
- Pathogen Microarrays Group, The Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Peter Preiser
- Bioscience Research Centre, Nanyang Technical University, Singapore
| | - Jean Langhorne
- Division of Parasitology, National Institute for Medical Research, London, United Kingdom
- * E-mail:
| |
Collapse
|
43
|
Fernandez-Becerra C, Yamamoto MM, Vêncio RZN, Lacerda M, Rosanas-Urgell A, del Portillo HA. Plasmodium vivax and the importance of the subtelomeric multigene vir superfamily. Trends Parasitol 2008; 25:44-51. [PMID: 19036639 DOI: 10.1016/j.pt.2008.09.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 06/02/2008] [Accepted: 09/30/2008] [Indexed: 11/25/2022]
Abstract
Plasmodium vivax is responsible for more than 100 million clinical cases yearly. Unlike P. falciparum, in which infected red blood cells cytoadhere via variant proteins, avoiding passage through the spleen, P.-vivax-infected reticulocytes seem not to cytoadhere. However, a variant subtelomeric multigene vir family has been identified in P. vivax. Thus, questions remain about how P. vivax circulates through the spleen and the role of Vir proteins. In this review, the importance of the vir multigene superfamily is reviewed in the light of the completion of the entire genome sequence of P. vivax and from data gathered from experimental infections in reticulocyte-prone non-lethal malaria parasites and natural P. vivax infections.
Collapse
Affiliation(s)
- Carmen Fernandez-Becerra
- Barcelona Centre for International Health Research, Hospital Clinic/IDIBAPS, Universitat de Barcelona, Rosello 132, 08036 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
44
|
Carlton JM, Adams JH, Silva JC, Bidwell SL, Lorenzi H, Caler E, Crabtree J, Angiuoli SV, Merino EF, Amedeo P, Cheng Q, Coulson RMR, Crabb BS, Del Portillo HA, Essien K, Feldblyum TV, Fernandez-Becerra C, Gilson PR, Gueye AH, Guo X, Kang'a S, Kooij TWA, Korsinczky M, Meyer EVS, Nene V, Paulsen I, White O, Ralph SA, Ren Q, Sargeant TJ, Salzberg SL, Stoeckert CJ, Sullivan SA, Yamamoto MM, Hoffman SL, Wortman JR, Gardner MJ, Galinski MR, Barnwell JW, Fraser-Liggett CM. Comparative genomics of the neglected human malaria parasite Plasmodium vivax. Nature 2008; 455:757-63. [PMID: 18843361 DOI: 10.1038/nature07327] [Citation(s) in RCA: 617] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Accepted: 08/08/2008] [Indexed: 11/09/2022]
Abstract
The human malaria parasite Plasmodium vivax is responsible for 25-40% of the approximately 515 million annual cases of malaria worldwide. Although seldom fatal, the parasite elicits severe and incapacitating clinical symptoms and often causes relapses months after a primary infection has cleared. Despite its importance as a major human pathogen, P. vivax is little studied because it cannot be propagated continuously in the laboratory except in non-human primates. We sequenced the genome of P. vivax to shed light on its distinctive biological features, and as a means to drive development of new drugs and vaccines. Here we describe the synteny and isochore structure of P. vivax chromosomes, and show that the parasite resembles other malaria parasites in gene content and metabolic potential, but possesses novel gene families and potential alternative invasion pathways not recognized previously. Completion of the P. vivax genome provides the scientific community with a valuable resource that can be used to advance investigation into this neglected species.
Collapse
Affiliation(s)
- Jane M Carlton
- The Institute for Genomic Research/J. Craig Venter Institute, 9704 Medical Research Drive, Rockville, Maryland 20850, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
The transcriptome of Plasmodium vivax reveals divergence and diversity of transcriptional regulation in malaria parasites. Proc Natl Acad Sci U S A 2008; 105:16290-5. [PMID: 18852452 DOI: 10.1073/pnas.0807404105] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plasmodium vivax causes over 100 million clinical infections each year. Primarily because of the lack of a suitable culture system, our understanding of the biology of this parasite lags significantly behind that of the more deadly species P. falciparum. Here, we present the complete transcriptional profile throughout the 48-h intraerythrocytic cycle of three distinct P. vivax isolates. This approach identifies strain specific patterns of expression for subsets of genes predicted to encode proteins associated with virulence and host pathogen interactions. Comparison to P. falciparum revealed significant differences in the expression of genes involved in crucial cellular functions that underpin the biological differences between the two parasite species. These data provide insights into the biology of P. vivax and constitute an important resource for the development of therapeutic approaches.
Collapse
|
46
|
Joannin N, Abhiman S, Sonnhammer EL, Wahlgren M. Sub-grouping and sub-functionalization of the RIFIN multi-copy protein family. BMC Genomics 2008; 9:19. [PMID: 18197962 PMCID: PMC2257938 DOI: 10.1186/1471-2164-9-19] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Accepted: 01/15/2008] [Indexed: 01/06/2023] Open
Abstract
Background Parasitic protozoans possess many multicopy gene families which have central roles in parasite survival and virulence. The number and variability of members of these gene families often make it difficult to predict possible functions of the encoded proteins. The families of extra-cellular proteins that are exposed to a host immune response have been driven via immune selection to become antigenically variant, and thereby avoid immune recognition while maintaining protein function to establish a chronic infection. Results We have combined phylogenetic and function shift analyses to study the evolution of the RIFIN proteins, which are antigenically variant and are encoded by the largest multicopy gene family in Plasmodium falciparum. We show that this family can be subdivided into two major groups that we named A- and B-RIFIN proteins. This suggested sub-grouping is supported by a recently published study that showed that, despite the presence of the Plasmodium export (PEXEL) motif in all RIFIN variants, proteins from each group have different cellular localizations during the intraerythrocytic life cycle of the parasite. In the present study we show that function shift analysis, a novel technique to predict functional divergence between sub-groups of a protein family, indicates that RIFINs have undergone neo- or sub-functionalization. Conclusion These results question the general trend of clustering large antigenically variant protein groups into homogenous families. Assigning functions to protein families requires their subdivision into meaningful groups such as we have shown for the RIFIN protein family. Using phylogenetic and function shift analysis methods, we identify new directions for the investigation of this broad and complex group of proteins.
Collapse
Affiliation(s)
- Nicolas Joannin
- Department of Microbiology, Tumor and Cell biology (MTC), Karolinska Institutet, SE-17177 Stockholm, Sweden and Swedish Institute for Infectious Diseases Control, SE-17182 Stockholm, Sweden.
| | | | | | | |
Collapse
|
47
|
Petter M, Haeggström M, Khattab A, Fernandez V, Klinkert MQ, Wahlgren M. Variant proteins of the Plasmodium falciparum RIFIN family show distinct subcellular localization and developmental expression patterns. Mol Biochem Parasitol 2007; 156:51-61. [PMID: 17719658 DOI: 10.1016/j.molbiopara.2007.07.011] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 07/13/2007] [Accepted: 07/17/2007] [Indexed: 11/16/2022]
Abstract
In order to avoid immune recognition in favor of a chronic infection, the malaria parasite Plasmodium falciparum has developed means to express clonally variant antigens at the surface of the infected erythrocyte (IE). Proteins of the var and rif multicopy gene families, encoding PfEMP1 and RIFINs, respectively, have been implicated in these processes. Here, we studied members of the latter family and present data revealing different subcellular localization patterns for RIFIN variants belonging to two distinct subgroups, which have been designated A- and B-type RIFINs. While A-type RIFINs were found to be associated with the parasite and transported to the surface of infected erythrocytes via Maurer's clefts, B-type RIFINs appeared to be mostly retained inside the parasite. However, expression of both subtypes does not seem to be mutually exclusive. Moreover, both A- and B-type variants were also expressed in the merozoite, present either in the apical region (A-type) or in the cytosol (B-type). The presence of RIFINs in merozoites suggests that antigenic variation in P. falciparum is not only restricted to parasite-derived proteins at the IE surface, but the phenomenon also prevails in other life cycle stages. Interestingly, some RIFIN variants were detected only in intracellular stages and not in merozoites, pointing to differential developmental expression patterns for distinct members of this large protein family.
Collapse
Affiliation(s)
- Michaela Petter
- Bernhard-Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, 20359, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Fonager J, Cunningham D, Jarra W, Koernig S, Henneman AA, Langhorne J, Preiser P. Transcription and alternative splicing in the yir multigene family of the malaria parasite Plasmodium y. yoelii: identification of motifs suggesting epigenetic and post-transcriptional control of RNA expression. Mol Biochem Parasitol 2007; 156:1-11. [PMID: 17692398 DOI: 10.1016/j.molbiopara.2007.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 05/11/2007] [Accepted: 06/15/2007] [Indexed: 11/28/2022]
Abstract
The Plasmodium interspersed repeat (pir) genes represent the largest multigene family in Plasmodium genomes, and the only one shared between the human pathogen, P. vivax, the simian malaria species P. knowlesi and the rodent malaria species P.y. yoelii, P. berghei and P.c. chabaudi. PIR have been shown to be expressed on the surface of red blood cells and are thought to play a role in antigenic variation. Here we have used a range of bioinformatic and experimental approaches to investigate the existence of gene subsets within P.y. yoelii pir. We have identified five groups of yir genes which could be further distinguished by chromosomal location and different alternative splicing events. Two of the groups were not highly represented among the transcribed pirs in blood stage parasites. Together these data suggest that different pir genes may be active at different stages of the life cycle of P. yoelii and may have different functions. Analysis of the 5' UTR identified a unique highly conserved yir/bir/cir specific promoter motif, which could serve as a general recognition element for yir transcription. However, its presence in front of all yirs makes it unlikely to play a role in regulating differential expression.
Collapse
Affiliation(s)
- Jannik Fonager
- Division of Parasitology, National Institute for Medical Research, The Ridgeway, Mill Hill, London, UK
| | | | | | | | | | | | | |
Collapse
|
49
|
de Souza-Neiras WC, de Melo LMS, Machado RLD. The genetic diversity of Plasmodium vivax: a review. Mem Inst Oswaldo Cruz 2007; 102:245-54. [PMID: 17568928 DOI: 10.1590/s0074-02762007000300002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Accepted: 05/08/2007] [Indexed: 11/22/2022] Open
Abstract
The genetic diversity of Plasmodium vivax has been investigated in several malaria-endemic areas, including the Brazilian Amazon region, where this is currently the most prevalent species causing malaria in humans. This review summarizes current views on the use of molecular markers to examine P. vivax populations, with a focus on studies performed in Brazilian research laboratories. We emphasize the importance of phylogenetic studies on this parasite and discuss the perspectives created by our increasing understanding of genetic diversity and population structure of this parasite for the development of new control strategies, including vaccines, and more effective drugs for the treatment of P. vivax malaria.
Collapse
Affiliation(s)
- Wanessa Christina de Souza-Neiras
- Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, Súo José do Rio Preto, SP, Brasil.
| | | | | |
Collapse
|
50
|
Palacpac NMQ, Leung BWY, Arisue N, Tanabe K, Sattabongkot J, Tsuboi T, Torii M, Udomsangpetch R, Horii T. Plasmodium vivax serine repeat antigen (SERA) multigene family exhibits similar expression patterns in independent infections. Mol Biochem Parasitol 2006; 150:353-8. [PMID: 16934884 DOI: 10.1016/j.molbiopara.2006.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 07/13/2006] [Accepted: 07/14/2006] [Indexed: 11/27/2022]
Affiliation(s)
- Nirianne Marie Q Palacpac
- Department of Molecular Protozoology, Research Institute for Microbial Diseases (BIKEN), Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|