1
|
El Harati R, Fancello F, Multineddu C, Zara G, Zara S. Screening and In Silico Analyses of the Yeast Saccharomyces cerevisiae Σ1278b Bank Mutants Using Citral as a Natural Antimicrobial. Foods 2024; 13:1457. [PMID: 38790757 PMCID: PMC11119076 DOI: 10.3390/foods13101457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/19/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
The antimicrobial function of citral, one of the main compounds of the essential oils (EO) of the Citrus genus, and widely used by the food industry toward spoilage yeast, was previously proven. In this study, the possible mode of action of citral against yeast cells was evaluated by using a global deletome approach. Firstly, the suitability of Saccharomyces cerevisiae Σ1278b to serve as model yeast was assessed by determining its sensitivity to citral (MIC = 0.5 μL/mL). Subsequently, the complete library of Σ1278b haploid mutants deleted in 4019 non-essential genes was screened to identify potential molecular targets of citral. Finally, the deleted genes in the 590 mutants showing increased citral resistance was analyzed with an in-silico approach (Gene Ontology). The significantly enriched GO Terms were "cytoplasm", "vacuole", and "mitochondrion" (cellular components); "catalytic activity" (molecular function); "pseudohyphal growth" (biological process). For molecular function, resistant mutants were grouped into thiosulfate sulfur transferase activity, transferase activity, and oxidoreductase activity; for cellular components, resistant mutants were grouped as: cytoplasm, intracellular organelle, membrane-bounded organelle, mitochondrion, organelle membrane, and vacuole; and finally, with regard to biological process, deleted genes were grouped as: pseudohyphal growth, mitochondrion organization, lipid metabolic process, DNA recombination and repair, and proteolysis. Interestingly, many identified genes were associated with the cellular response to oxidative stress and ROS scavenging. These findings have important implications for the development of citral-based antimicrobials and the elucidation of its mechanism of action.
Collapse
Affiliation(s)
| | | | | | | | - Severino Zara
- Department di Agricultural Sciences, University of Sassari, 07100 Sassari, Italy; (R.E.H.); (F.F.); (C.M.); (G.Z.)
| |
Collapse
|
2
|
Kim YH, Ryu JI, Devare MN, Jung J, Kim JY. The intricate role of Sir2 in oxidative stress response during the post-diauxic phase in Saccharomyces cerevisiae. Front Microbiol 2023; 14:1285559. [PMID: 38029141 PMCID: PMC10666771 DOI: 10.3389/fmicb.2023.1285559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Silent information regulator 2 (Sir2) is a conserved NAD+-dependent histone deacetylase crucial for regulating cellular stress response and the aging process in Saccharomyces cerevisiae. In this study, we investigated the molecular mechanism underlying how the absence of Sir2 can lead to altered stress susceptibilities in S. cerevisiae under different environmental and physiological conditions. In a glucose-complex medium, the sir2Δ strain showed increased sensitivity to H2O2 compared to the wild-type strain during the post-diauxic phase. In contrast, it displayed increased resistance during the exponential growth phase. Transcriptome analysis of yeast cells in the post-diauxic phase indicated that the sir2Δ mutant expressed several oxidative defense genes at lower levels than the wild-type, potentially accounting for its increased susceptibility to H2O2. Interestingly, however, the sir2Δras2Δ double mutant exhibited greater resistance to H2O2 than the ras2Δ single mutant counterpart. We found that the expression regulation of the cytoplasmic catalase encoded by CTT1 was critical for the increased resistance to H2O2 in the sir2Δras2Δ strain. The expression of the CTT1 gene was influenced by the combined effect of RAS2 deletion and the transcription factor Azf1, whose level was modulated by Sir2. These findings provide insights into the importance of understanding the intricate interactions among various factors contributing to cellular stress response.
Collapse
Affiliation(s)
| | | | | | | | - Jeong-Yoon Kim
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
3
|
Shao W, Zhang Y, Chen C, Xing Y. Function of the Mitochondrial Transport Protein BcMtp1 in Regulating Vegetative Development, Asexual Reproduction, Stress Response, Fungicide Sensitivity, and Virulence of Botrytis cinerea. J Fungi (Basel) 2022; 9:jof9010025. [PMID: 36675846 PMCID: PMC9864816 DOI: 10.3390/jof9010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
In model fungi, mitochondrial transport proteins (MTPs), also known as "mitochondrial carriers" (MC), are known to facilitate the exchange of biochemical substances across the mitochondrial inner membrane. In this study, we characterized an MTP in Botrytis cinerea homologous to the known MTPs in Saccharomyces cerevisiae designated BcMtp1. The BcMtp1 deletion mutant phenotype was strikingly defective in vegetative development, conidiation, and sclerotia production. In addition, ΔBcMtp1 showed increased sensitivity to osmotic stress, oxidative stress, and cell wall biogenesis inhibitors. In the pathogenicity assay, ΔBcMtp1 displayed compromised virulence on various host-plant tissues. The BcMtp1 deletion mutant phenotype was rescued by transforming the wild-type BcMtp1 variant into the mutant. Together, these data indicate that BcMtp1 is critical for vegetative development, asexual reproduction, stress tolerance, and virulence of B. cinerea.
Collapse
Affiliation(s)
- Wenyong Shao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yu Zhang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Department of Plant Pathology, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Changjun Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (C.C.); (Y.X.)
| | - Yujun Xing
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Correspondence: (C.C.); (Y.X.)
| |
Collapse
|
4
|
Role of ROX1, SKN7, and YAP6 Stress Transcription Factors in the Production of Secondary Metabolites in Xanthophyllomyces dendrorhous. Int J Mol Sci 2022; 23:ijms23169282. [PMID: 36012547 PMCID: PMC9409151 DOI: 10.3390/ijms23169282] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Xanthophyllomyces dendrorhous is a natural source of astaxanthin and mycosporines. This yeast has been isolated from high and cold mountainous regions around the world, and the production of these secondary metabolites may be a survival strategy against the stress conditions present in its environment. Biosynthesis of astaxanthin is regulated by catabolic repression through the interaction between MIG1 and corepressor CYC8–TUP1. To evaluate the role of the stress-associated transcription factors SKN7, ROX1, and YAP6, we employed an omic and phenotypic approach. Null mutants were constructed and grown in two fermentable carbon sources. The yeast proteome and transcriptome were quantified by iTRAQ and RNA-seq, respectively. The total carotenoid, sterol, and mycosporine contents were determined and compared to the wild-type strain. Each mutant strain showed significant metabolic changes compared to the wild type that were correlated to its phenotype. In a metabolic context, the principal pathways affected were glycolysis/gluconeogenesis, the pentose phosphate (PP) pathway, and the citrate (TCA) cycle. Additionally, fatty acid synthesis was affected. The absence of ROX1 generated a significant decline in carotenoid production. In contrast, a rise in mycosporine and sterol synthesis was shown in the absence of the transcription factors SKN7 and YAP6, respectively.
Collapse
|
5
|
Yaakoub H, Mina S, Calenda A, Bouchara JP, Papon N. Oxidative stress response pathways in fungi. Cell Mol Life Sci 2022; 79:333. [PMID: 35648225 PMCID: PMC11071803 DOI: 10.1007/s00018-022-04353-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/21/2022] [Accepted: 05/05/2022] [Indexed: 11/03/2022]
Abstract
Fungal response to any stress is intricate, specific, and multilayered, though it employs only a few evolutionarily conserved regulators. This comes with the assumption that one regulator operates more than one stress-specific response. Although the assumption holds true, the current understanding of molecular mechanisms that drive response specificity and adequacy remains rudimentary. Deciphering the response of fungi to oxidative stress may help fill those knowledge gaps since it is one of the most encountered stress types in any kind of fungal niche. Data have been accumulating on the roles of the HOG pathway and Yap1- and Skn7-related pathways in mounting distinct and robust responses in fungi upon exposure to oxidative stress. Herein, we review recent and most relevant studies reporting the contribution of each of these pathways in response to oxidative stress in pathogenic and opportunistic fungi after giving a paralleled overview in two divergent models, the budding and fission yeasts. With the concept of stress-specific response and the importance of reactive oxygen species in fungal development, we first present a preface on the expanding domain of redox biology and oxidative stress.
Collapse
Affiliation(s)
- Hajar Yaakoub
- Univ Angers, Univ Brest, IRF, SFR ICAT, 49000, Angers, France
| | - Sara Mina
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | | | | | - Nicolas Papon
- Univ Angers, Univ Brest, IRF, SFR ICAT, 49000, Angers, France.
| |
Collapse
|
6
|
Hörberg J, Moreau K, Tamás MJ, Reymer A. Sequence-specific dynamics of DNA response elements and their flanking sites regulate the recognition by AP-1 transcription factors. Nucleic Acids Res 2021; 49:9280-9293. [PMID: 34387667 PMCID: PMC8450079 DOI: 10.1093/nar/gkab691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 11/28/2022] Open
Abstract
Activator proteins 1 (AP-1) comprise one of the largest families of eukaryotic basic leucine zipper transcription factors. Despite advances in the characterization of AP-1 DNA-binding sites, our ability to predict new binding sites and explain how the proteins achieve different gene expression levels remains limited. Here we address the role of sequence-specific DNA flexibility for stability and specific binding of AP-1 factors, using microsecond-long molecular dynamics simulations. As a model system, we employ yeast AP-1 factor Yap1 binding to three different response elements from two genetic environments. Our data show that Yap1 actively exploits the sequence-specific flexibility of DNA within the response element to form stable protein–DNA complexes. The stability also depends on the four to six flanking nucleotides, adjacent to the response elements. The flanking sequences modulate the conformational adaptability of the response element, making it more shape-efficient to form specific contacts with the protein. Bioinformatics analysis of differential expression of the studied genes supports our conclusions: the stability of Yap1–DNA complexes, modulated by the flanking environment, influences the gene expression levels. Our results provide new insights into mechanisms of protein–DNA recognition and the biological regulation of gene expression levels in eukaryotes.
Collapse
Affiliation(s)
- Johanna Hörberg
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 40530, Sweden
| | - Kevin Moreau
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 40530, Sweden
| | - Markus J Tamás
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 40530, Sweden
| | - Anna Reymer
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 40530, Sweden
| |
Collapse
|
7
|
Stępień Ł, Lalak-Kańczugowska J. Signaling pathways involved in virulence and stress response of plant-pathogenic Fusarium species. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2020.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Maciaszczyk-Dziubinska E, Reymer A, Kumar NV, Białek W, Mizio K, Tamás MJ, Wysocki R. The ancillary N-terminal region of the yeast AP-1 transcription factor Yap8 contributes to its DNA binding specificity. Nucleic Acids Res 2020; 48:5426-5441. [PMID: 32356892 PMCID: PMC7261193 DOI: 10.1093/nar/gkaa316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023] Open
Abstract
Activator protein 1 (AP-1) is one of the largest families of basic leucine zipper (bZIP) transcription factors in eukaryotic cells. How AP-1 proteins achieve target DNA binding specificity remains elusive. In Saccharomyces cerevisiae, the AP-1-like protein (Yap) family comprises eight members (Yap1 to Yap8) that display distinct genomic target sites despite high sequence homology of their DNA binding bZIP domains. In contrast to the other members of the Yap family, which preferentially bind to short (7–8 bp) DNA motifs, Yap8 binds to an unusually long DNA motif (13 bp). It has been unclear what determines this unique specificity of Yap8. In this work, we use molecular and biochemical analyses combined with computer-based structural design and molecular dynamics simulations of Yap8–DNA interactions to better understand the structural basis of DNA binding specificity determinants. We identify specific residues in the N-terminal tail preceding the basic region, which define stable association of Yap8 with its target promoter. We propose that the N-terminal tail directly interacts with DNA and stabilizes Yap8 binding to the 13 bp motif. Thus, beside the core basic region, the adjacent N-terminal region contributes to alternative DNA binding selectivity within the AP-1 family.
Collapse
Affiliation(s)
| | - Anna Reymer
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, S-405 30 Gothenburg, Sweden
| | - Nallani Vijay Kumar
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, S-405 30 Gothenburg, Sweden
| | - Wojciech Białek
- Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Katarzyna Mizio
- Institute of Experimental Biology, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Markus J Tamás
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, S-405 30 Gothenburg, Sweden
| | - Robert Wysocki
- Institute of Experimental Biology, University of Wroclaw, 50-328 Wroclaw, Poland
| |
Collapse
|
9
|
The bZIP transcription factor FpAda1 is essential for fungal growth and conidiation in Fusarium pseudograminearum. Curr Genet 2019; 66:507-515. [PMID: 31696258 PMCID: PMC7198649 DOI: 10.1007/s00294-019-01042-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 12/17/2022]
Abstract
Fusarium pseudograminearum is an important pathogen of Fusarium crown rot and Fusarium head blight, which is able to infect wheat and barley worldwide, causing great economic losses. Transcription factors (TFs) of the basic leucine zipper (bZIP) protein family control important processes in all eukaryotes. In this study, we identified a gene, designated FpAda1, encoding a bZIP TF in F. pseudograminearum. The homolog of FpAda1 is also known to affect hyphal growth in Neurospora crassa. Deletion of FpAda1 in F. pseudograminearum resulted in defects in hyphal growth, mycelial branching and conidia formation. Pathogenicity assays showed that virulence of the Δfpada1 mutant was dramatically decreased on wheat coleoptiles and barley leaves. However, wheat coleoptile inoculation assay showed that Δfpada1 could penetrate and proliferate in wheat cells. Moreover, the FpAda1 was required for abnormal nuclear morphology in conidia and transcription of FpCdc2 and FpCdc42. Taken together, these results indicate that FpAda1 is an important transcription factor involved in growth and development in F. pseudograminearum.
Collapse
|
10
|
Aristizabal MJ, Dever K, Negri GL, Shen M, Hawe N, Benschop JJ, Holstege FCP, Krogan NJ, Sadowski I, Kobor MS. Regulation of Skn7-dependent, oxidative stress-induced genes by the RNA polymerase II-CTD phosphatase, Fcp1, and Mediator kinase subunit, Cdk8, in yeast. J Biol Chem 2019; 294:16080-16094. [PMID: 31506296 DOI: 10.1074/jbc.ra119.008515] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 08/23/2019] [Indexed: 11/06/2022] Open
Abstract
Fcp1 is a protein phosphatase that facilitates transcription elongation and termination by dephosphorylating the C-terminal domain of RNA polymerase II. High-throughput genetic screening and gene expression profiling of fcp1 mutants revealed a novel connection to Cdk8, the Mediator complex kinase subunit, and Skn7, a key transcription factor in the oxidative stress response pathway. Briefly, Skn7 was enriched as a regulator of genes whose mRNA levels were altered in fcp1 and cdk8Δ mutants and was required for the suppression of fcp1 mutant growth defects by loss of CDK8 under oxidative stress conditions. Targeted analysis revealed that mutating FCP1 decreased Skn7 mRNA and protein levels as well as its association with target gene promoters but paradoxically increased the mRNA levels of Skn7-dependent oxidative stress-induced genes (TRX2 and TSA1) under basal and induced conditions. The latter was in part recapitulated via chemical inhibition of transcription in WT cells, suggesting that a combination of transcriptional and posttranscriptional effects underscored the increased mRNA levels of TRX2 and TSA1 observed in the fcp1 mutant. Interestingly, loss of CDK8 robustly normalized the mRNA levels of Skn7-dependent genes in the fcp1 mutant background and also increased Skn7 protein levels by preventing its turnover. As such, our work suggested that loss of CDK8 could overcome transcriptional and/or posttranscriptional alterations in the fcp1 mutant through its regulatory effect on Skn7. Furthermore, our work also implicated FCP1 and CDK8 in the broader response to environmental stressors in yeast.
Collapse
Affiliation(s)
- Maria J Aristizabal
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada.,Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario M5G 1Z8, Canada
| | - Kristy Dever
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Gian Luca Negri
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver V5Z 1L3, British Columbia, Canada
| | - Mary Shen
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Nicole Hawe
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics, Life Sciences Institute, University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada
| | - Joris J Benschop
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Frank C P Holstege
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158
| | - Ivan Sadowski
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics, Life Sciences Institute, University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| |
Collapse
|
11
|
Dose dependent gene expression is dynamically modulated by the history, physiology and age of yeast cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:457-471. [DOI: 10.1016/j.bbagrm.2019.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/21/2019] [Accepted: 02/23/2019] [Indexed: 12/14/2022]
|
12
|
Tang G, Zhang C, Ju Z, Zheng S, Wen Z, Xu S, Chen Y, Ma Z. The mitochondrial membrane protein FgLetm1 regulates mitochondrial integrity, production of endogenous reactive oxygen species and mycotoxin biosynthesis in Fusarium graminearum. MOLECULAR PLANT PATHOLOGY 2018; 19:1595-1611. [PMID: 29077257 PMCID: PMC6637989 DOI: 10.1111/mpp.12633] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/10/2017] [Accepted: 10/23/2017] [Indexed: 05/14/2023]
Abstract
Deoxynivalenol (DON) is a mycotoxin produced in cereal crops infected with Fusarium graminearum. DON poses a serious threat to human and animal health, and is a critical virulence factor. Various environmental factors, including reactive oxygen species (ROS), have been shown to interfere with DON biosynthesis in this pathogen. The regulatory mechanisms of how ROS trigger DON production have been investigated extensively in F. graminearum. However, the role of the endogenous ROS-generating system in DON biosynthesis is largely unknown. In this study, we genetically analysed the function of leucine zipper-EF-hand-containing transmembrane 1 (LETM1) superfamily proteins and evaluated the role of the mitochondrial-produced ROS in DON biosynthesis. Our results show that there are two Letm1 orthologues, FgLetm1 and FgLetm2, in F. graminearum. FgLetm1 is localized to the mitochondria and is essential for mitochondrial integrity, whereas FgLetm2 plays a minor role in the maintenance of mitochondrial integrity. The ΔFgLetm1 mutant demonstrated a vegetative growth defect, abnormal conidia and increased sensitivity to various stress agents. More importantly, the ΔFgLetm1 mutant showed significantly reduced levels of endogenous ROS, decreased DON biosynthesis and attenuated virulence in planta. To our knowledge, this is the first report showing that mitochondrial integrity and endogenous ROS production by mitochondria are important for DON production and virulence in Fusarium species.
Collapse
Affiliation(s)
- Guangfei Tang
- Institute of BiotechnologyZhejiang UniversityHangzhou 310058China
| | - Chengqi Zhang
- Institute of BiotechnologyZhejiang UniversityHangzhou 310058China
- College of Plant ProtectionAnhui Agricultural UniversityHefei 230036China
| | - Zhenzhen Ju
- Institute of BiotechnologyZhejiang UniversityHangzhou 310058China
| | - Shiyu Zheng
- Institute of BiotechnologyZhejiang UniversityHangzhou 310058China
| | - Ziyue Wen
- Institute of BiotechnologyZhejiang UniversityHangzhou 310058China
| | - Sunde Xu
- Institute of BiotechnologyZhejiang UniversityHangzhou 310058China
| | - Yun Chen
- Institute of BiotechnologyZhejiang UniversityHangzhou 310058China
| | - Zhonghua Ma
- Institute of BiotechnologyZhejiang UniversityHangzhou 310058China
| |
Collapse
|
13
|
Song Z, Yin Y, Lin Y, Du F, Ren G, Wang Z. The bZIP transcriptional factor activator protein-1 regulates Metarhizium rileyi morphology and mediates microsclerotia formation. Appl Microbiol Biotechnol 2018; 102:4577-4588. [DOI: 10.1007/s00253-018-8941-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 11/24/2022]
|
14
|
Yang Q, Zhang J, Hu J, Wang X, Lv B, Liang W. Involvement of BcYak1 in the Regulation of Vegetative Differentiation and Adaptation to Oxidative Stress of Botrytis cinerea. Front Microbiol 2018. [PMID: 29515556 PMCID: PMC5826331 DOI: 10.3389/fmicb.2018.00281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Yak1, a member of the dual-specificity tyrosine phosphorylation-regulated protein kinases, plays an important role in diverse cellular processes in fungi. However, to date, the role of BcYak1 in Botrytis cinerea, the causal agent of gray mold diseases in various plant species, remains uncharacterized. Our previous study identified one lysine acetylation site (Lys252) in BcYak1, which is the first report of such a site in Yak1. In this study, the function of BcYak1 and its lysine acetylation site were investigated using gene disruption and site-directed mutagenesis. The gene deletion mutant ΔBcYak1 not only exhibits much lower pathogenicity, conidiation and sclerotium formation, but was also much more sensitive to H2O2 and the ergosterol biosynthesis inhibitor (EBI) triadimefon. The Lys252 site-directed mutagenesis mutant strain ΔBcYak1-K252Q (mimicking the acetylation of the site), however, only showed lower sclerotium formation and higher sensitivity to H2O2. These results indicate that BcYAK1 is involved in the vegetative differentiation, adaptation to oxidative stress and triadimefon, and virulence of B. cinerea.
Collapse
Affiliation(s)
- Qianqian Yang
- The Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Jianan Zhang
- The Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Jicheng Hu
- The Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Xue Wang
- The Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Binna Lv
- The Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Wenxing Liang
- The Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
15
|
Roles of the Skn7 response regulator in stress resistance, cell wall integrity and GA biosynthesis in Ganoderma lucidum. Fungal Genet Biol 2018. [PMID: 29524659 DOI: 10.1016/j.fgb.2018.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The transcription factor Skn7 is a highly conserved fungal protein that participates in a variety of processes, including oxidative stress adaptation, fungicide sensitivity, cell wall biosynthesis, cell cycle, and sporulation. In this study, a homologous gene of Saccharomyces cerevisiae Skn7 was cloned from Ganoderma lucidum. RNA interference (RNAi) was used to study the functions of Skn7, and the two knockdown strains Skn7i-5 and Skn7i-7 were obtained in G. lucidum. The knockdown of GlSkn7 resulted in hypersensitivity to oxidative and cell wall stresses. The concentrations of chitin and β-1,3-glucan distinctly decreased in the GlSkn7 knockdown strains compared with those of the wild type (WT). In addition, the expression of cell wall biosynthesis related genes was also significantly down-regulated and the thickness of the cell wall also significantly reduced in the GlSkn7 knockdown strains. The intracellular reactive oxygen species (ROS) content and ganoderic acids biosynthesis increased significantly in the GlSkn7 knockdown strains. Interestingly, the level of intracellular ROS and the content of ganoderic acids decreased after N-acetyl-L-cysteine (NAC), an ROS scavenger, was added, indicating that GlSkn7 might regulate ganoderic acids biosynthesis via the intracellular ROS level. The transcript level of GlSkn7 were up-regulated in osmotic stress, heat stress and fungicide condition. At the same time, the content of ganoderic acids in the GlSkn7 knockdown strains also changed distinctly in these conditions. Overall, GlSkn7 is involved in stress resistance, cell wall integrity and ganoderic acid biosynthesis in G. lucidum.
Collapse
|
16
|
Shao W, Lv C, Zhang Y, Wang J, Chen C. Involvement of BcElp4 in vegetative development, various environmental stress response and virulence of Botrytis cinerea. Microb Biotechnol 2017; 10:886-895. [PMID: 28474462 PMCID: PMC5481526 DOI: 10.1111/1751-7915.12720] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 12/23/2022] Open
Abstract
The Saccharomyces cerevisiae Elongator complex consisting of the six Elp1-Elp6 proteins has been proposed to participate in three distinct cellular processes: transcriptional elongation, polarized exocytosis and formation of modified wobble uridines in tRNA. In this study, we investigated the function of BcElp4 in Botrytis cinerea, which is homologous to S. cerevisiae Elp4. A bcelp4 deletion mutant was significantly impaired in vegetative growth, sclerotia formation and melanin biosynthesis. This mutant exhibited decreased sensitivity to osmotic and oxidative stresses as well as cell way-damaging agent. Pathogenicity assays revealed that BcElp4 is involved in the virulence of B. cinerea. In addition, the deletion of bcelp4 led to increased aerial mycelia development. All these defects were restored by genetic complementation of the bcelp4 deletion mutant with the wild-type bcelp4 gene. The results of this study indicated that BcElp4 is involved in regulation of vegetative development, various environmental stress response and virulence in B. cinerea.
Collapse
Affiliation(s)
- Wenyong Shao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chiyuan Lv
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jin Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Changjun Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
17
|
Rodrigues LNDS, Brito WDA, Parente AFA, Weber SS, Bailão AM, Casaletti L, Borges CL, Soares CMDA. Osmotic stress adaptation of Paracoccidioides lutzii, Pb01, monitored by proteomics. Fungal Genet Biol 2016; 95:13-23. [DOI: 10.1016/j.fgb.2016.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/25/2016] [Accepted: 08/01/2016] [Indexed: 12/18/2022]
|
18
|
Alvarez AF, Barba-Ostria C, Silva-Jiménez H, Georgellis D. Organization and mode of action of two component system signaling circuits from the various kingdoms of life. Environ Microbiol 2016; 18:3210-3226. [DOI: 10.1111/1462-2920.13397] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/17/2016] [Accepted: 05/23/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Adrian F. Alvarez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México; 04510 México City, México
| | - Carlos Barba-Ostria
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México; 04510 México City, México
| | - Hortencia Silva-Jiménez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México; 04510 México City, México
| | - Dimitris Georgellis
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México; 04510 México City, México
| |
Collapse
|
19
|
Zhang S, Jiang C, Zhang Q, Qi L, Li C, Xu JR. Thioredoxins are involved in the activation of the PMK1 MAP kinase pathway during appressorium penetration and invasive growth in Magnaporthe oryzae. Environ Microbiol 2016; 18:3768-3784. [PMID: 27059015 DOI: 10.1111/1462-2920.13315] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In Magnaporthe oryzae, the Mst11-Mst7-Pmk1 MAP kinase pathway is essential for appressorium formation and invasive growth. To determine their roles in Pmk1 activation and plant infection, we characterized the two thioredoxin genes, TRX1 and TRX2, in M. oryzae. Whereas the Δtrx1 mutants had no detectable phenotypes, deletion of TRX2 caused pleiotropic defects in growth, conidiation, light sensing, responses to stresses and plant infection progresses. The Δtrx1 Δtrx2 double mutant had more severe defects than the Δtrx2 mutant and was non-pathogenic in infection assays. The Δtrx2 and Δtrx1 Δtrx2 mutant rarely formed appressoria on hyphal tips and were defective in invasive growth after penetration. Pmk1 phosphorylation was barely detectable in the Δtrx2 and Δtrx1 Δtrx2 mutants. Deletion of TRX2 affected proper folding or intra-/inter-molecular interaction of Mst7 and expression of the dominant active MST7 allele partially rescued the defects of the Δtrx1 Δtrx2 mutant. Furthermore, Cys305 is important for Mst7 function and Trx2 directly interacts with Mst7 in co-IP assays. Our data indicated that thioredoxins play important roles in intra-cellular ROS signalling and pathogenesis in M. oryzae. As the predominant thioredoxin gene, TRX2 may regulate the activation of Pmk1 MAPK via its effects on Mst7.
Collapse
Affiliation(s)
- Shijie Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Qiang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Linlu Qi
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Chaohui Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
20
|
Unraveling the Function of the Response Regulator BcSkn7 in the Stress Signaling Network of Botrytis cinerea. EUKARYOTIC CELL 2015; 14:636-51. [PMID: 25934690 DOI: 10.1128/ec.00043-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/24/2015] [Indexed: 12/25/2022]
Abstract
Important for the lifestyle and survival of every organism is the ability to respond to changing environmental conditions. The necrotrophic plant pathogen Botrytis cinerea triggers an oxidative burst in the course of plant infection and therefore needs efficient signal transduction to cope with this stress. The factors involved in this process and their precise roles are still not well known. Here, we show that the transcription factor Bap1 and the response regulator (RR) B. cinerea Skn7 (BcSkn7) are two key players in the oxidative stress response (OSR) of B. cinerea; both have a major influence on the regulation of classical OSR genes. A yeast-one-hybrid (Y1H) approach proved direct binding to the promoters of gsh1 and grx1 by Bap1 and of glr1 by BcSkn7. While the function of Bap1 is restricted to the regulation of oxidative stress, analyses of Δbcskn7 mutants revealed functions beyond the OSR. Involvement of BcSkn7 in development and virulence could be demonstrated, indicated by reduced vegetative growth, impaired formation of reproductive structures, and reduced infection cushion-mediated penetration of the host by the mutants. Furthermore, Δbcskn7 mutants were highly sensitive to oxidative, osmotic, and cell wall stress. Analyses of Δbap1 bcskn7 double mutants indicated that loss of BcSkn7 uncovers an underlying phenotype of Bap1. In contrast to Saccharomyces cerevisiae, the ortholog of the glutathione peroxidase Gpx3p is not required for nuclear translocation of Bap1. The presented results contribute to the understanding of the OSR in B. cinerea and prove that it differs substantially from that of yeast, demonstrating the complexity and versatility of components involved in signaling pathways.
Collapse
|
21
|
Yang Q, Yin D, Yin Y, Cao Y, Ma Z. The response regulator BcSkn7 is required for vegetative differentiation and adaptation to oxidative and osmotic stresses in Botrytis cinerea. MOLECULAR PLANT PATHOLOGY 2015; 16:276-287. [PMID: 25130972 PMCID: PMC6638353 DOI: 10.1111/mpp.12181] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The high-osmolarity glycerol pathway plays an important role in the responses of fungi to various environmental stresses. Saccharomyces cerevisiae Skn7 is a response regulator in the high-osmolarity glycerol pathway, which regulates the oxidative stress response, cell cycle and cell wall biosynthesis. In this study, we characterized an Skn7 orthologue BcSkn7 in Botrytis cinerea. BcSKN7 can partly restore the growth defects of S. cerevisiae SKN7 mutant and vice versa. The BcSKN7 mutant (ΔBcSkn7-1) revealed increased sensitivity to ionic osmotic and oxidative stresses and to ergosterol biosynthesis inhibitors. In addition, ΔBcSkn7-1 was also impaired dramatically in conidiation and sclerotial formation. Western blot analysis showed that BcSkn7 positively regulated the phosphorylation of BcSak1 (the orthologue of S. cerevisiae Hog1) under osmotic stress, indicating that BcSkn7 is associated with the high-osmolarity glycerol pathway in B. cinerea. In contrast with BcSak1, BcSkn7 is not involved in the regulation of B. cinerea virulence. All of the phenotypic defects of ΔBcSkn7-1 are restored by genetic complementation of the mutant with the wild-type BcSKN7. The results of this study indicate that BcSkn7 plays an important role in the regulation of vegetative differentiation and in the response to various stresses in B. cinerea.
Collapse
Affiliation(s)
- Qianqian Yang
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China; Zhejiang Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou, 310006, China
| | | | | | | | | |
Collapse
|
22
|
Juárez-Cepeda J, Orta-Zavalza E, Cañas-Villamar I, Arreola-Gómez J, Pérez-Cornejo GP, Hernández-Carballo CY, Gutiérrez-Escobedo G, Castaño I, De Las Peñas A. The EPA2 adhesin encoding gene is responsive to oxidative stress in the opportunistic fungal pathogen Candida glabrata. Curr Genet 2015; 61:529-44. [DOI: 10.1007/s00294-015-0473-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 12/19/2014] [Accepted: 01/05/2015] [Indexed: 01/18/2023]
|
23
|
Elucidating the response of Kluyveromyces lactis to arsenite and peroxide stress and the role of the transcription factor KlYap8. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1295-306. [DOI: 10.1016/j.bbagrm.2014.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 09/01/2014] [Accepted: 09/05/2014] [Indexed: 11/24/2022]
|
24
|
Jiang C, Zhang S, Zhang Q, Tao Y, Wang C, Xu JR. FgSKN7 and FgATF1 have overlapping functions in ascosporogenesis, pathogenesis and stress responses in Fusarium graminearum. Environ Microbiol 2014; 17:1245-60. [PMID: 25040476 DOI: 10.1111/1462-2920.12561] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 06/28/2014] [Indexed: 11/30/2022]
Abstract
Fusarium head blight caused by Fusarium graminearum is one of the most destructive diseases of wheat and barley. Deoxynivalenol (DON) produced by the pathogen is an important mycotoxins and virulence factor. Because oxidative burst is a common defense response and reactive oxygen species (ROS) induces DON production, in this study, we characterized functional relationships of three stress-related transcription factor genes FgAP1, FgATF1 and FgSKN7. Although all of them played a role in tolerance to oxidative stress, deletion of FgAP1 or FgATF1 had no significant effect on DON production. In contrast, Fgskn7 mutants were reduced in DON production and defective in H2 O2 -induced TRI gene expression. The Fgap1 mutant had no detectable phenotype other than increased sensitivity to H2 O2 and Fgap1 Fgatf1 and Fgap1 Fgskn7 mutants lacked additional or more severe phenotypes than the single mutants. The Fgatf1, but not Fgskn7, mutant was significantly reduced in virulence and delayed in ascospore release. The Fgskn7 Fgatf1 double mutant had more severe defects in growth, conidiation and virulence than the Fgatf1 or Fgskn7 mutant. Instead of producing four-celled ascospores, it formed eight small, single-celled ascospores in each ascus. Therefore, FgSKN7 and FgATF1 must have overlapping functions in intracellular ROS signalling for growth, development and pathogenesis in F. graminearum.
Collapse
Affiliation(s)
- Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwestern A&F University, Yangling, Shaanxi, 712100, China; Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | | | | | | | | | | |
Collapse
|
25
|
Blazhenko OV, Kotlyarchuk АB, Ubiyvovk VM. Transcriptional regulation of the Hansenula polymorpha GSH2 gene in the response to cadmium ion treatment. UKRAINIAN BIOCHEMICAL JOURNAL 2014. [DOI: 10.15407/ubj86.01.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
26
|
Amaral C, Pimentel C, Matos RG, Arraiano CM, Matzapetakis M, Rodrigues-Pousada C. Two residues in the basic region of the yeast transcription factor Yap8 are crucial for its DNA-binding specificity. PLoS One 2013; 8:e83328. [PMID: 24358276 PMCID: PMC3865217 DOI: 10.1371/journal.pone.0083328] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 11/03/2013] [Indexed: 11/18/2022] Open
Abstract
In Saccharomyces cerevisiae, the transcription factor Yap8 is a key determinant in arsenic stress response. Contrary to Yap1, another basic region-leucine zipper (bZIP) yeast regulator, Yap8 has a very restricted DNA-binding specificity and only orchestrates the expression of ACR2 and ACR3 genes. In the DNA-binding basic region, Yap8 has three distinct amino acids residues, Leu26, Ser29 and Asn31, at sites of highly conserved positions in the other Yap family of transcriptional regulators and Pap1 of Schizosaccharomyces pombe. To evaluate whether these residues are relevant to Yap8 specificity, we first built a homology model of the complex Yap8bZIP-DNA based on Pap1-DNA crystal structure. Several Yap8 mutants were then generated in order to confirm the contribution of the residues predicted to interact with DNA. Using bioinformatics analysis together with in vivo and in vitro approaches, we have identified several conserved residues critical for Yap8-DNA binding. Moreover, our data suggest that Leu26 is required for Yap8 binding to DNA and that this residue together with Asn31, hinder Yap1 response element recognition by Yap8, thus narrowing its DNA-binding specificity. Furthermore our results point to a role of these two amino acids in the stability of the Yap8-DNA complex.
Collapse
Affiliation(s)
- Catarina Amaral
- Genomics and Stress Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Catarina Pimentel
- Genomics and Stress Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Rute G. Matos
- Control of Gene Expression Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cecília M. Arraiano
- Control of Gene Expression Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Manolis Matzapetakis
- Biomolecular NMR Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Claudina Rodrigues-Pousada
- Genomics and Stress Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- * E-mail:
| |
Collapse
|
27
|
Kawałek A, Lefevre SD, Veenhuis M, van der Klei IJ. Peroxisomal catalase deficiency modulates yeast lifespan depending on growth conditions. Aging (Albany NY) 2013; 5:67-83. [PMID: 23425686 PMCID: PMC3616232 DOI: 10.18632/aging.100519] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We studied the role of peroxisomal catalase in chronological aging of the yeastHansenula polymorpha in relation to various growth substrates. Catalase-deficient (cat) cells showed a similar chronological life span (CLS) relative to the wild-type control upon growth on carbon and nitrogen sources that are not oxidized by peroxisomal enzymes. However, when media contained methylamine, which is oxidized by peroxisomal amine oxidase, the CLS of cat cells was significantly reduced. Conversely, the CLS of cat cells was enhanced relative to the wild-type control, when cells were grown on methanol, which is oxidized by peroxisomal alcohol oxidase. At these conditions strongly enhanced ROS levels were observed during the exponential growth phase of cat cells. This was paralleled by activation of the transcription factor Yap1, as well as an increase in the levels of the antioxidant enzymes cytochrome c peroxidase and superoxide dismutase. Upon deletion of the genes encoding Yap1 or cytochrome c peroxidase, the CLS extension of cat cells on methanol was abolished. These findings reveal for the first time an important role of enhanced cytochrome c peroxidase levels in yeast CLS extension.
Collapse
Affiliation(s)
- Adam Kawałek
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|
28
|
Hong SY, Roze LV, Linz JE. Oxidative stress-related transcription factors in the regulation of secondary metabolism. Toxins (Basel) 2013; 5:683-702. [PMID: 23598564 PMCID: PMC3705287 DOI: 10.3390/toxins5040683] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/01/2013] [Accepted: 04/09/2013] [Indexed: 11/24/2022] Open
Abstract
There is extensive and unequivocal evidence that secondary metabolism in filamentous fungi and plants is associated with oxidative stress. In support of this idea, transcription factors related to oxidative stress response in yeast, plants, and fungi have been shown to participate in controlling secondary metabolism. Aflatoxin biosynthesis, one model of secondary metabolism, has been demonstrated to be triggered and intensified by reactive oxygen species buildup. An oxidative stress-related bZIP transcription factor AtfB is a key player in coordinate expression of antioxidant genes and genes involved in aflatoxin biosynthesis. Recent findings from our laboratory provide strong support for a regulatory network comprised of at least four transcription factors that bind in a highly coordinated and timely manner to promoters of the target genes and regulate their expression. In this review, we will focus on transcription factors involved in co-regulation of aflatoxin biosynthesis with oxidative stress response in aspergilli, and we will discuss the relationship of known oxidative stress-associated transcription factors and secondary metabolism in other organisms. We will also talk about transcription factors that are involved in oxidative stress response, but have not yet been demonstrated to be affiliated with secondary metabolism. The data support the notion that secondary metabolism provides a secondary line of defense in cellular response to oxidative stress.
Collapse
Affiliation(s)
- Sung-Yong Hong
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; E-Mails: (S.-Y.H.); (L.V.R.)
| | - Ludmila V. Roze
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; E-Mails: (S.-Y.H.); (L.V.R.)
| | - John E. Linz
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; E-Mails: (S.-Y.H.); (L.V.R.)
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
- National Food Safety and Toxicology Center, Michigan State University, East Lansing, MI 48824, USA
- Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-517-355-8474; Fax: +1-517-353-8963
| |
Collapse
|
29
|
Affiliation(s)
| | | | - John E. Linz
- Department of Food Science and Human Nutrition,
- Department of Microbiology and Molecular Genetics,
- National Food Safety and Toxicology Center,
- Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824;
| |
Collapse
|
30
|
Hong SY, Roze LV, Wee J, Linz JE. Evidence that a transcription factor regulatory network coordinates oxidative stress response and secondary metabolism in aspergilli. Microbiologyopen 2013; 2:144-60. [PMID: 23281343 PMCID: PMC3584220 DOI: 10.1002/mbo3.63] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 11/13/2012] [Accepted: 11/22/2012] [Indexed: 01/28/2023] Open
Abstract
The mycotoxin aflatoxin is a secondary metabolite and potent human carcinogen. We investigated one mechanism that links stress response with coordinate activation of genes involved in aflatoxin biosynthesis in Aspergillus parasiticus. Electrophoretic mobility shift assays demonstrated that AtfB, a basic leucine zipper (bZIP) transcription factor, is a master co-regulator that binds promoters of early (fas-1), middle (ver-1), and late (omtA) aflatoxin biosynthetic genes as well as stress-response genes (mycelia-specific cat1 and mitochondria-specific Mn sod) at cAMP response element motifs. A novel conserved motif 5′-T/GNT/CAAG CCNNG/AA/GC/ANT/C-3′ was identified in promoters of the aflatoxin biosynthetic and stress-response genes. A search for transcription factors identified SrrA as a transcription factor that could bind to the motif. Moreover, we also identified a STRE motif (5′-CCCCT-3′) in promoters of aflatoxin biosynthetic and stress-response genes, and competition EMSA suggested that MsnA binds to this motif. Our study for the first time provides strong evidence to suggest that at least four transcription factors (AtfB, SrrA, AP-1, and MsnA) participate in a regulatory network that induces aflatoxin biosynthesis as part of the cellular response to oxidative stress in A. parasiticus.
Collapse
Affiliation(s)
- Sung-Yong Hong
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
31
|
Chung KR. Stress Response and Pathogenicity of the Necrotrophic Fungal Pathogen Alternaria alternata. SCIENTIFICA 2012; 2012:635431. [PMID: 24278721 PMCID: PMC3820455 DOI: 10.6064/2012/635431] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 10/03/2012] [Indexed: 05/07/2023]
Abstract
The production of host-selective toxins by the necrotrophic fungus Alternaria alternata is essential for the pathogenesis. A. alternata infection in citrus leaves induces rapid lipid peroxidation, accumulation of hydrogen peroxide (H2O2), and cell death. The mechanisms by which A. alternata avoids killing by reactive oxygen species (ROS) after invasion have begun to be elucidated. The ability to coordinate of signaling pathways is essential for the detoxification of cellular stresses induced by ROS and for pathogenicity in A. alternata. A low level of H2O2, produced by the NADPH oxidase (NOX) complex, modulates ROS resistance and triggers conidiation partially via regulating the redox-responsive regulators (YAP1 and SKN7) and the mitogen-activated protein (MAP) kinase (HOG1) mediated pathways, which subsequently regulate the genes required for the biosynthesis of siderophore, an iron-chelating compound. Siderophore-mediated iron acquisition plays a key role in ROS detoxification because of the requirement of iron for the activities of antioxidants (e.g., catalase and SOD). Fungal strains impaired for the ROS-detoxifying system severely reduce the virulence on susceptible citrus cultivars. This paper summarizes the current state of knowledge of signaling pathways associated with cellular responses to multidrugs, oxidative and osmotic stress, and fungicides, as well as the pathogenicity/virulence in the tangerine pathotype of A. alternata.
Collapse
Affiliation(s)
- Kuang-Ren Chung
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences (IFAS), University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
- Department of Plant Pathology, IFAS, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
32
|
Chen LH, Lin CH, Chung KR. Roles for SKN7 response regulator in stress resistance, conidiation and virulence in the citrus pathogen Alternaria alternata. Fungal Genet Biol 2012; 49:802-13. [PMID: 22902811 DOI: 10.1016/j.fgb.2012.07.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/17/2012] [Accepted: 07/26/2012] [Indexed: 01/17/2023]
Abstract
"Two-component" histidine kinase (HSK1) is the primary regulator of resistance to sugar osmotic stress and sensitivity to dicarboximide or phenylpyrrole fungicides in the citrus fungal pathogen Alternaria alternata. On the other hand, the mitogen-activated protein kinase HOG1 confers resistance solely to salts and oxidative stress. We report here independent and shared functions of the SKN7-mediated signaling pathway with HSK1 and HOG1. SKN7, a putative transcription downstream regulator of HSK1, is primarily required for cellular resistance to oxidative and sugar-induced osmotic stress. SKN7, perhaps acting in parallel with HOG1, is required for resistance to H(2)O(2), tert-butyl hydroperoxide, and cumyl peroxide, but not to the superoxide-generating compounds - menadione, potassium superoxide, and diamide. Because of phenotypic commonalities, SKN7 is likely involved in resistance to sugar-induced osmotic stress via the HSK1 signaling pathway. However, mutants lacking SKN7 displayed wild-type sensitivity to NaCl and KCl salts. SKN7 is constitutively localized in the nucleus regardless of H(2)O(2) treatment. When compared to the wild type, skn7 mutants exhibited lower catalase, peroxidase, and superoxide dismutase activities and induced significantly fewer necrotic lesions on the susceptible citrus cultivar. The skn7 mutant exhibited fungicide resistance at levels between the hsk1 and the hog1 mutant strains. Skn7/hog1 double mutants exhibited fungicide resistance, similar to the strain with a single AaHSK1 gene mutation. Moreover, the A. alternata SKN7 plays a role in conidia formation. Conidia produced by the skn7 mutant are smaller and have fewer transverse septae than those produced by wild type. All altered phenotypes in the mutant were restored by introducing and expressing a wild-type copy of SKN7 under control of the endogenous promoter.
Collapse
Affiliation(s)
- Li-Hung Chen
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850, USA
| | | | | |
Collapse
|
33
|
Jun H, Kieselbach T, Jönsson LJ. Comparative proteome analysis of Saccharomyces cerevisiae: a global overview of in vivo targets of the yeast activator protein 1. BMC Genomics 2012; 13:230. [PMID: 22681880 PMCID: PMC3476450 DOI: 10.1186/1471-2164-13-230] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 04/03/2012] [Indexed: 12/16/2022] Open
Abstract
Background The activity of the yeast activator protein 1 (Yap1p) increases under stress conditions, which leads to enhanced transcription of a number of genes encoding protective enzymes or other proteins. To obtain a global overview of changes in expression of Yap1p-targeted proteins, we compared a Yap1p-overexpressing transformant with a control transformant by triplicate analysis of the proteome using two-dimensional gel electrophoresis (2-DE). Proteins of interest were identified using MALDI-MS or LC-MS/MS. Results The relative quantities of 55 proteins were elevated significantly upon overexpression of Yap1p, and most of these proteins were found to have a Yap1p-binding site upstream of their coding sequences. Interestingly, the main metabolic enzymes in the glycolysis and pyruvate-ethanol pathways showed a significant increase in the Yap1p-overexpressing transformant. Moreover, a comparison of our proteome data with transcriptome data from the literature suggested which proteins were regulated at the level of the proteome, and which proteins were regulated at the level of the transcriptome. Eight proteins involved in stress response, including seven heat-shock and chaperone proteins, were significantly more abundant in the Yap1p-overexpressing transformant. Conclusions We have investigated the general protein composition in Yap1p-overexpressing S. cerevisiae using proteomic techniques, and quantified the changes in the expression of the potential Yap1p-targeted proteins. Identification of the potential Yap1p targets and analysis of their role in cellular processes not only give a global overview of the ubiquitous cellular changes elicited by Yap1p, but also provide the framework for understanding the mechanisms behind Yap1p-regulated stress response in yeast.
Collapse
Affiliation(s)
- He Jun
- Department of Chemistry, Umeå University, Sweden
| | | | | |
Collapse
|
34
|
Jandric Z, Schüller C. Stress response in Candida glabrata: pieces of a fragmented picture. Future Microbiol 2012; 6:1475-84. [PMID: 22122443 DOI: 10.2217/fmb.11.131] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Candida glabrata is closely related to yeast but obviously adapted to human commensalism. Communication with the environment is important to adjust allocation of resources between protection and proliferation in order to adapt to different situations in and outside of the host. Gene transcription regulated by environmental conditions is a major response strategy of simple fungal organisms. Differences to yeast include an extended repertoire of adhesive genes, and high drug, starvation and stress resistance. These properties largely do not originate from novel virulence genes but rather from adaptations of the transcriptional wiring. C. glabrata signaling pathways providing stress protection are adopted to meet conditions possibly encountered in a host-pathogen confrontation. The view on C. glabrata is getting clearer and points to a simple strategy combining resilience and a few adaptations.
Collapse
Affiliation(s)
- Zeljkica Jandric
- DAGZ, Department for Applied Genetics & Cell Biology, University of Natural Resources & Life Sciences, Vienna, BOKU, UFT-Campus Tulln, 24 3430 Tulln, Austria
| | | |
Collapse
|
35
|
Calvo IA, García P, Ayté J, Hidalgo E. The transcription factors Pap1 and Prr1 collaborate to activate antioxidant, but not drug tolerance, genes in response to H2O2. Nucleic Acids Res 2012; 40:4816-24. [PMID: 22344694 PMCID: PMC3367182 DOI: 10.1093/nar/gks141] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In response to hydrogen peroxide (H2O2), the transcription factor Pap1 from Schizosaccharomyces pombe regulates transcription of genes required for adaptation to oxidative stress and for tolerance to toxic drugs. H2O2 induces oxidation of Pap1, its nuclear accumulation and expression of more than fifty Pap1-dependent genes. Oxidation and nuclear accumulation of Pap1 can also be accomplished by genetic inhibition of thioredoxin reductase. Furthermore, genetic alteration of the nuclear export pathway, or mutations in Pap1 nuclear export signal trigger nuclear accumulation of reduced Pap1. We show here that a subset of Pap1-dependent genes, such as those coding for the efflux pump Caf5, the ubiquitin-like protein Obr1 or the dehydrogenase SPCC663.08c, only require nuclear Pap1 for activation, whereas another subset of genes, those coding for the antioxidants catalase, sulfiredoxin or thioredoxin reductase, do need oxidized Pap1 to form a heterodimer with the constitutively nuclear transcription factor Prr1. The ability of Pap1 to bind and activate drug tolerance promoters is independent on Prr1, whereas its affinity for the antioxidant promoters is significantly enhanced upon association with Prr1. This finding suggests that the activation of both antioxidant and drug resistance genes in response to oxidative stress share a common inducer, H2O2, but alternative effectors.
Collapse
Affiliation(s)
- Isabel A Calvo
- Oxidative Stress and Cell Cycle Group, Department de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, C/Dr. Aiguader 88, E-08003 Barcelona, Spain
| | | | | | | |
Collapse
|
36
|
Abstract
Oxidative damage to cellular constituents has frequently been associated with aging in a wide range of organisms. The power of yeast genetics and biochemistry has provided the opportunity to analyse in some detail how reactive oxygen and nitrogen species arise in cells, how cells respond to the damage that these reactive species cause, and to begin to dissect how these species may be involved in the ageing process. This chapter reviews the major sources of reactive oxygen species that occur in yeast cells, the damage they cause and how cells sense and respond to this damage.
Collapse
Affiliation(s)
- May T Aung-Htut
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia,
| | | | | | | |
Collapse
|
37
|
Volkov AN, Nicholls P, Worrall JA. The complex of cytochrome c and cytochrome c peroxidase: The end of the road? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1482-503. [DOI: 10.1016/j.bbabio.2011.07.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 07/21/2011] [Accepted: 07/22/2011] [Indexed: 11/25/2022]
|
38
|
Goudot C, Etchebest C, Devaux F, Lelandais G. The reconstruction of condition-specific transcriptional modules provides new insights in the evolution of yeast AP-1 proteins. PLoS One 2011; 6:e20924. [PMID: 21695268 PMCID: PMC3111461 DOI: 10.1371/journal.pone.0020924] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 05/15/2011] [Indexed: 11/19/2022] Open
Abstract
AP-1 proteins are transcription factors (TFs) that belong to the basic leucine zipper family, one of the largest families of TFs in eukaryotic cells. Despite high homology between their DNA binding domains, these proteins are able to recognize diverse DNA motifs. In yeasts, these motifs are referred as YRE (Yap Response Element) and are either seven (YRE-Overlap) or eight (YRE-Adjacent) base pair long. It has been proposed that the AP-1 DNA binding motif preference relies on a single change in the amino acid sequence of the yeast AP-1 TFs (an arginine in the YRE-O binding factors being replaced by a lysine in the YRE-A binding Yaps). We developed a computational approach to infer condition-specific transcriptional modules associated to the orthologous AP-1 protein Yap1p, Cgap1p and Cap1p, in three yeast species: the model yeast Saccharomyces cerevisiae and two pathogenic species Candida glabrata and Candida albicans. Exploitation of these modules in terms of predictions of the protein/DNA regulatory interactions changed our vision of AP-1 protein evolution. Cis-regulatory motif analyses revealed the presence of a conserved adenine in 5' position of the canonical YRE sites. While Yap1p, Cgap1p and Cap1p shared a remarkably low number of target genes, an impressive conservation was observed in the YRE sequences identified by Yap1p and Cap1p. In Candida glabrata, we found that Cgap1p, unlike Yap1p and Cap1p, recognizes YRE-O and YRE-A motifs. These findings were supported by structural data available for the transcription factor Pap1p (Schizosaccharomyces pombe). Thus, whereas arginine and lysine substitutions in Cgap1p and Yap1p proteins were reported as responsible for a specific YRE-O or YRE-A preference, our analyses rather suggest that the ancestral yeast AP-1 protein could recognize both YRE-O and YRE-A motifs and that the arginine/lysine exchange is not the only determinant of the specialization of modern Yaps for one motif or another.
Collapse
Affiliation(s)
- Christel Goudot
- Dynamique des Structures et Interactions des Macromolécules Biologiques (DSIMB), INSERM, U665, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S665, Paris, France
- INTS, Paris, France
| | - Catherine Etchebest
- Dynamique des Structures et Interactions des Macromolécules Biologiques (DSIMB), INSERM, U665, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S665, Paris, France
- INTS, Paris, France
| | - Frédéric Devaux
- Laboratoire de Génomique des Microorganismes, UMR7238 CNRS, Université Pierre et Marie Curie, Paris, France
| | - Gaëlle Lelandais
- Dynamique des Structures et Interactions des Macromolécules Biologiques (DSIMB), INSERM, U665, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S665, Paris, France
- INTS, Paris, France
| |
Collapse
|
39
|
The Rho1 GTPase acts together with a vacuolar glutathione S-conjugate transporter to protect yeast cells from oxidative stress. Genetics 2011; 188:859-70. [PMID: 21625004 DOI: 10.1534/genetics.111.130724] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Maintenance of redox homeostasis is critical for the survival of all aerobic organisms. In the budding yeast Saccharomyces cerevisiae, as in other eukaryotes, reactive oxygen species (ROS) are generated during metabolism and upon exposure to environmental stresses. The abnormal production of ROS triggers defense mechanisms to avoid the deleterious consequence of ROS accumulation. Here, we show that the Rho1 GTPase is necessary to confer resistance to oxidants in budding yeast. Temperature-sensitive rho1 mutants (rho1(ts)) are hypersensitive to oxidants and exhibit high accumulation of ROS even at a semipermissive temperature. Rho1 associates with Ycf1, a vacuolar glutathione S-conjugate transporter, which is important for heavy metal detoxification in yeast. Rho1 and Ycf1 exhibit a two-hybrid interaction with each other and form a bimolecular fluorescent complex on the vacuolar membrane. A fluorescent-based complementation assay suggests that the GTP-bound Rho1 associates with Ycf1 and that their interaction is enhanced upon exposure to hydrogen peroxide. The rho1(ts) mutants also exhibit hypersensitivity to cadmium, while cells carrying a deletion of YCF1 or mutations in a component of the Pkc1-MAP kinase pathway exhibit little or minor sensitivity to oxidants. We thus propose that Rho1 protects yeast cells from oxidative stress by regulating multiple downstream targets including Ycf1. Since both Rho1 and Ycf1 belong to highly conserved families of proteins, similar mechanisms may exist in other eukaryotes.
Collapse
|
40
|
Hanlon SE, Rizzo JM, Tatomer DC, Lieb JD, Buck MJ. The stress response factors Yap6, Cin5, Phd1, and Skn7 direct targeting of the conserved co-repressor Tup1-Ssn6 in S. cerevisiae. PLoS One 2011; 6:e19060. [PMID: 21552514 PMCID: PMC3084262 DOI: 10.1371/journal.pone.0019060] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 03/23/2011] [Indexed: 11/19/2022] Open
Abstract
Maintaining the proper expression of the transcriptome during development or in response to a changing environment requires a delicate balance between transcriptional regulators with activating and repressing functions. The budding yeast transcriptional co-repressor Tup1-Ssn6 is a model for studying similar repressor complexes in multicellular eukaryotes. Tup1-Ssn6 does not bind DNA directly, but is directed to individual promoters by one or more DNA-binding proteins, referred to as Tup1 recruiters. This functional architecture allows the Tup1-Ssn6 to modulate the expression of genes required for the response to a variety of cellular stresses. To understand the targeting or the Tup1-Ssn6 complex, we determined the genomic distribution of Tup1 and Ssn6 by ChIP-chip. We found that most loci bound by Tup1-Ssn6 could not be explained by co-occupancy with a known recruiting cofactor and that deletion of individual known Tup1 recruiters did not significantly alter the Tup1 binding profile. These observations suggest that new Tup1 recruiting proteins remain to be discovered and that Tup1 recruitment typically depends on multiple recruiting cofactors. To identify new recruiting proteins, we computationally screened for factors with binding patterns similar to the observed Tup1-Ssn6 genomic distribution. Four top candidates, Cin5, Skn7, Phd1, and Yap6, all known to be associated with stress response gene regulation, were experimentally confirmed to physically interact with Tup1 and/or Ssn6. Incorporating these new recruitment cofactors with previously characterized cofactors now explains the majority of Tup1 targeting across the genome, and expands our understanding of the mechanism by which Tup1-Ssn6 is directed to its targets.
Collapse
Affiliation(s)
- Sean E. Hanlon
- Department of Biology, Carolina Center for Genome Sciences and the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jason M. Rizzo
- Department of Biochemistry and the Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Deirdre C. Tatomer
- Department of Biology, Carolina Center for Genome Sciences and the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jason D. Lieb
- Department of Biology, Carolina Center for Genome Sciences and the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail: (JDL); (MJB)
| | - Michael J. Buck
- Department of Biochemistry and the Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- * E-mail: (JDL); (MJB)
| |
Collapse
|
41
|
Murray DB, Haynes K, Tomita M. Redox regulation in respiring Saccharomyces cerevisiae. Biochim Biophys Acta Gen Subj 2011; 1810:945-58. [PMID: 21549177 DOI: 10.1016/j.bbagen.2011.04.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 03/16/2011] [Accepted: 04/17/2011] [Indexed: 11/30/2022]
Abstract
BACKGROUND In biological systems, redox reactions are central to most cellular processes and the redox potential of the intracellular compartment dictates whether a particular reaction can or cannot occur. Indeed the widespread use of redox reactions in biological systems makes their detailed description outside the scope of one review. SCOPE OF THE REVIEW Here we will focus on how system-wide redox changes can alter the reaction and transcriptional landscape of Saccharomyces cerevisiae. To understand this we explore the major determinants of cellular redox potential, how these are sensed by the cell and the dynamic responses elicited. MAJOR CONCLUSIONS Redox regulation is a large and complex system that has the potential to rapidly and globally alter both the reaction and transcription landscapes. Although we have a basic understanding of many of the sub-systems and a partial understanding of the transcriptional control, we are far from understanding how these systems integrate to produce coherent responses. We argue that this non-linear system self-organises, and that the output in many cases is temperature-compensated oscillations that may temporally partition incompatible reactions in vivo. GENERAL SIGNIFICANCE Redox biochemistry impinges on most of cellular processes and has been shown to underpin ageing and many human diseases. Integrating the complexity of redox signalling and regulation is perhaps one of the most challenging areas of biology. This article is part of a Special Issue entitled Systems Biology of Microorganisms.
Collapse
Affiliation(s)
- Douglas B Murray
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.
| | | | | |
Collapse
|
42
|
Association of the Skn7 and Yap1 transcription factors in the Saccharomyces cerevisiae oxidative stress response. EUKARYOTIC CELL 2011; 10:761-9. [PMID: 21478431 DOI: 10.1128/ec.00328-10] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Saccharomyces cerevisiae Skn7p is a stress response transcription factor that undergoes aspartyl phosphorylation by the Sln1p histidine kinase. Aspartyl phosphorylation of Skn7p is required for activation of genes required in response to wall stress, but Skn7p also activates oxidative stress response genes in an aspartyl phosphorylation-independent manner. The presence of binding sites for the Yap1p and Skn7p transcription factors in oxidative stress response promoters and the oxidative stress-sensitive phenotypes of SKN7 and YAP1 mutants suggest that these two factors work together. We present here evidence for a DNA-independent interaction between the Skn7 and Yap1 proteins that involves the receiver domain of Skn7p and the cysteine-rich domains of Yap1p. The interaction with Yap1p may help partition the Skn7 protein to oxidative stress response promoters when the Yap1 protein accumulates in the nucleus.
Collapse
|
43
|
Yang J, Bae JY, Lee YM, Kwon H, Moon HY, Kang HA, Yee SB, Kim W, Choi W. Construction of Saccharomyces cerevisiae strains with enhanced ethanol tolerance by mutagenesis of the TATA-binding protein gene and identification of novel genes associated with ethanol tolerance. Biotechnol Bioeng 2011; 108:1776-87. [PMID: 21437883 DOI: 10.1002/bit.23141] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 02/28/2011] [Accepted: 03/07/2011] [Indexed: 11/09/2022]
Abstract
Since elevated ethanol is a major stress during ethanol fermentation, yeast strains tolerant to ethanol are highly desirable for the industrial scale ethanol production. A technology called global transcriptional machinery engineering (gTME), which exploits a mutant library of SPT15 encoding the TATA-binding protein of Saccharomyces cerevisiae (Alper et al., 2006; Science 314: 1565-1568), seems to a powerful tool for creating ethanol-tolerant strains. However, the ability of created strains to tolerate high ethanol on rich media remains unproven. In this study, a similar strategy was used to obtain five strains with enhanced ethanol tolerance (ETS1-5) of S. cerevisiae. Comparing global transcriptional profiles of two selected strains ETS2 and ETS3 with that of the control identified 42 genes that were commonly regulated with twofold change. Out of 34 deletion mutants available from a gene knockout library, 18 were ethanol sensitive, suggesting that these genes were closely associated with ethanol tolerance. Eight of them were novel with most being functionally unknown. To establish a basis for future industrial applications, strains iETS2 and iETS3 were created by integrating the SPT15 mutant alleles of ETS2 and ETS3 into the chromosomes, which also exhibited enhanced ethanol tolerance and survival upon ethanol shock on a rich medium. Fermentation with 20% glucose for 24 h in a bioreactor revealed that iETS2 and iETS3 grew better and produced approximately 25% more ethanol than a control strain. The ethanol yield and productivity were also substantially enhanced: 0.31 g/g and 2.6 g/L/h, respectively, for control and 0.39 g/g and 3.2 g/L/h, respectively, for iETS2 and iETS3. Thus, our study demonstrates the utility of gTME in generating strains with enhanced ethanol tolerance that resulted in increase of ethanol production. Strains with enhanced tolerance to other stresses such as heat, fermentation inhibitors, osmotic pressure, and so on, may be further created by using gTME.
Collapse
Affiliation(s)
- Jungwoo Yang
- Microbial Resources Research Center, College of Natural Sciences, Ewha Womans,University, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Wysocki R, Tamás MJ. How Saccharomyces cerevisiae copes with toxic metals and metalloids. FEMS Microbiol Rev 2011; 34:925-51. [PMID: 20374295 DOI: 10.1111/j.1574-6976.2010.00217.x] [Citation(s) in RCA: 206] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Toxic metals and metalloids are widespread in nature and can locally reach fairly high concentrations. To ensure cellular protection and survival in such environments, all organisms possess systems to evade toxicity and acquire tolerance. This review provides an overview of the molecular mechanisms that contribute to metal toxicity, detoxification and tolerance acquisition in budding yeast Saccharomyces cerevisiae. We mainly focus on the metals/metalloids arsenic, cadmium, antimony, mercury, chromium and selenium, and emphasize recent findings on sensing and signalling mechanisms and on the regulation of tolerance and detoxification systems that safeguard cellular and genetic integrity.
Collapse
Affiliation(s)
- Robert Wysocki
- Institute of Genetics and Microbiology, University of Wroclaw, Wroclaw, Poland
| | | |
Collapse
|
45
|
Hagiwara D, Mizuno T, Abe K. Characterization of the conserved phosphorylation site in the Aspergillus nidulans response regulator SrrA. Curr Genet 2011; 57:103-14. [PMID: 21229249 DOI: 10.1007/s00294-010-0330-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 12/19/2010] [Accepted: 12/20/2010] [Indexed: 01/11/2023]
Abstract
Ssk1- and Skn7-type response regulators are widely conserved in fungal His-Asp phosphorelay (two-component) signaling systems. SrrA, a Skn7-type RR of Aspergillus nidulans, is implicated not only in oxidative stress responses but also in osmotic adaptation, conidia production (asexual development), inhibition by fungicides, and cell wall stress resistance. Here, we characterized SrrA, focusing on the role of the conserved aspartate residue in the receiver domain, which is essential for phosphorelay function. We constructed strains carrying an SrrA protein in which aspartate residue D385 was replaced with either asparagine (N) or alanine (A). These mutants exhibited normal conidiation and partial oxidative stress resistance. In osmotic adaptation, mutants with substitution at SrrA D385 showed as much sensitivity as ΔsrrA strains, suggesting that SrrA plays a role in osmotic stress adaptation in a phosphorelay-dependent manner. The SrrA D385 substitution mutants showed significant resistance to fungicides and cell wall stresses. These results together led us to conclude that the conserved aspartate residue has a substantial impact on SrrA function, and that SrrA plays a role in several aspects of cellular function via His-Asp phosphorelay circuitry in Aspergillus nidulans.
Collapse
Affiliation(s)
- Daisuke Hagiwara
- Department of Biological Sciences, Chuo University, Bunkyo-ku, Tokyo 112-8551, Japan.
| | | | | |
Collapse
|
46
|
Ouyang X, Tran QT, Goodwin S, Wible RS, Sutter CH, Sutter TR. Yap1 activation by H2O2 or thiol-reactive chemicals elicits distinct adaptive gene responses. Free Radic Biol Med 2011; 50:1-13. [PMID: 20971184 DOI: 10.1016/j.freeradbiomed.2010.10.697] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 10/06/2010] [Accepted: 10/15/2010] [Indexed: 10/18/2022]
Abstract
The yeast Saccharomyces cerevisiae transcription factor Yap1 mediates an adaptive response to oxidative stress by regulating protective genes. H(2)O(2) activates Yap1 through the Gpx3-mediated formation of a Yap1 Cys303-Cys598 intramolecular disulfide bond. Thiol-reactive electrophiles can activate Yap1 directly by adduction to cysteine residues in the C-terminal domain containing Cys598, Cys620, and Cys629. H(2)O(2) and N-ethylmaleimide (NEM) showed no cross-protection against each other, whereas another thiol-reactive chemical, acrolein, elicited Yap1-dependent cross-protection against NEM, but not H(2)O(2). Either Cys620 or Cys629 was sufficient for activation of Yap1 by NEM or acrolein; Cys598 was dispensable for this activation mechanism. To determine whether Yap1 activated by H(2)O(2) or thiol-reactive chemicals elicits distinct adaptive gene responses, microarray analysis was performed on the wild-type strain or its isogenic single-deletion strain Δyap1 treated with control buffer, H(2)O(2), NEM, or acrolein. Sixty-five unique H(2)O(2) and 327 NEM and acrolein Yap1-dependent responsive genes were identified. Functional analysis using single-gene-deletion yeast strains demonstrated that protection was conferred by CTA1 and CTT1 in the H(2)O(2)-responsive subset and YDR042C in the NEM- and acrolein-responsive subset. These findings demonstrate that the distinct mechanisms of Yap1 activation by H(2)O(2) or thiol-reactive chemicals result in selective expression of protective genes.
Collapse
Affiliation(s)
- Xiaoguang Ouyang
- Department of Biological Sciences and W. Harry Feinstone Center for Genomic Research, University of Memphis, Memphis, TN 38152-3560, USA
| | | | | | | | | | | |
Collapse
|
47
|
Roetzer A, Klopf E, Gratz N, Marcet-Houben M, Hiller E, Rupp S, Gabaldón T, Kovarik P, Schüller C. Regulation of Candida glabrata oxidative stress resistance is adapted to host environment. FEBS Lett 2010; 585:319-27. [PMID: 21156173 PMCID: PMC3022126 DOI: 10.1016/j.febslet.2010.12.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 12/04/2010] [Accepted: 12/07/2010] [Indexed: 01/07/2023]
Abstract
The human fungal pathogen Candida glabrata is related to Saccharomyces cerevisiae but has developed high resistance against reactive oxygen species. We find that induction of conserved genes encoding antioxidant functions is dependent on the transcription factors CgYap1 and CgSkn7 which cooperate for promoter recognition. Superoxide stress resistance of C. glabrata is provided by superoxide dismutase CgSod1, which is not dependent on CgYap1/Skn7. Only double mutants lacking both CgSod1 and CgYap1 were efficiently killed by primary mouse macrophages. Our results suggest that in C. glabrata the regulation of key genes providing stress protection is adopted to meet a host-pathogen situation.
Collapse
Affiliation(s)
- Andreas Roetzer
- Max F. Perutz Laboratories, University of Vienna, Department of Biochemistry, Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Fungal Skn7 stress responses and their relationship to virulence. EUKARYOTIC CELL 2010; 10:156-67. [PMID: 21131436 DOI: 10.1128/ec.00245-10] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The histidine kinase-based phosphorelay has emerged as a common strategy among bacteria, fungi, protozoa, and plants for triggering important stress responses and interpreting developmental cues in response to environmental as well as chemical, nutritional, and hormone signals. The absence of this type of signaling mechanism in animals makes the so-called "two-component" pathway an attractive target for development of antimicrobial agents. The best-studied eukaryotic example of a two-component pathway is the SLN1 pathway in Saccharomyces cerevisiae, which responds to turgor and other physical properties associated with the fungal cell wall. One of the two phosphoreceiver proteins known as response regulators in this pathway is Skn7, a highly conserved stress-responsive transcription factor with a subset of activities that are dependent on SLN1 pathway phosphorylation and another subset that are independent. Interest in Skn7as a determinant in fungal virulence stems primarily from its well-established role in the oxidative stress response; however, the involvement of Skn7 in maintenance of cell wall integrity may also be relevant. Since the cell wall is crucial for fungal survival, structural and biosynthetic proteins affecting wall composition and signaling pathways that respond to wall stress are likely to play key roles in virulence. Here we review the molecular and phenotypic characteristics of different fungal Skn7 proteins and consider how each of these properties may contribute to fungal virulence.
Collapse
|
49
|
Abstract
The mechanisms of production and elimination of reactive oxygen species in the cells of the budding yeast Saccharomyces cerevisiae are analyzed. Coordinative role of special regulatory proteins including Yap1p, Msn2/4p, and Skn7p (Pos9p) in regulation of defense mechanisms in S. cerevisiae is described. A special section is devoted to two other well-studied species from the point of view of oxidative stress -- Schizosaccharomyces pombe and Candida albicans. Some examples demonstrating the use of yeast for investigation of apoptosis, aging, and some human diseases are given in the conclusion part.
Collapse
Affiliation(s)
- V I Lushchak
- Department of Biochemistry, Vassyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, Ukraine.
| |
Collapse
|
50
|
Regulatory factors controlling transcription of Saccharomyces cerevisiae IXR1 by oxygen levels: a model of transcriptional adaptation from aerobiosis to hypoxia implicating ROX1 and IXR1 cross-regulation. Biochem J 2009; 425:235-43. [PMID: 19807692 DOI: 10.1042/bj20091500] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ixr1p from Saccharomyces cerevisiae has been previously studied because it binds to DNA containing intrastrand cross-links formed by the anticancer drug cisplatin. Ixr1p is also a transcriptional regulator of anaerobic/hypoxic genes, such as SRP1/TIR1, which encodes a stress-response cell wall manoprotein, and COX5B, which encodes the Vb subunit of the mitochondrial complex cytochrome c oxidase. However, factors controlling IXR1 expression remained unexplored. In the present study we show that IXR1 mRNA levels are controlled by oxygen availability and increase during hypoxia. In aerobiosis, low levels of IXR1 expression are maintained by Rox1p repression through the general co-repressor complex Tup1-Ssn6. Ixr1p itself is necessary for full IXR1 expression under hypoxic conditions. Deletion analyses have identified the region in the IXR1 promoter responsible for this positive auto-control (nucleotides -557 to -376). EMSA (electrophoretic mobility-shift assay) and ChIP (chromatin immunoprecipitation) assays show that Ixr1p binds to the IXR1 promoter both in vitro and in vivo. Ixr1p is also required for hypoxic repression of ROX1 and binds to its promoter. UPC2 deletion has opposite effects on IXR1 and ROX1 transcription during hypoxia. Ixr1p is also necessary for resistance to oxidative stress generated by H2O2. IXR1 expression is moderately activated by H2O2 and this induction is Yap1p-dependent. A model of IXR1 regulation as a relay for sensing different signals related to change in oxygen availability is proposed. In this model, transcriptional adaptation from aerobiosis to hypoxia depends on ROX1 and IXR1 cross-regulation.
Collapse
|