1
|
Campbell MJ, Beenken KE, Ramirez AM, Smeltzer MS. The major role of sarA in limiting Staphylococcus aureus extracellular protease production in vitro is correlated with decreased virulence in diverse clinical isolates in osteomyelitis. Virulence 2023; 14:2175496. [PMID: 36748843 PMCID: PMC9928472 DOI: 10.1080/21505594.2023.2175496] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We previously demonstrated that MgrA, SarA, SarR, SarS, SarZ, and Rot bind at least three of the four promoters associated with genes encoding primary extracellular proteases in Staphylococcus aureus (Aur, ScpA, SspA/SspB, SplA-F). We also showed that mutation of sarA results in a greater increase in protease production, and decrease in biofilm formation, than mutation of the loci encoding any of these other proteins. However, these conclusions were based on in vitro studies. Thus, the goal of the experiments reported here was to determine the relative impact of the regulatory loci encoding these proteins in vivo. To this end, we compared the virulence of mgrA, sarA, sarR, sarS, sarZ, and rot mutants in a murine osteomyelitis model. Mutants were generated in the methicillin-resistant USA300 strain LAC and the methicillin-sensitive USA200 strain UAMS-1, which was isolated directly from the bone of an osteomyelitis patient during surgical debridement. Mutation of mgrA and rot limited virulence to a statistically significant extent in UAMS-1, but not in LAC, while the sarA mutant exhibited reduced virulence in both strains. The reduced virulence of the sarA mutant was correlated with reduced cytotoxicity for osteoblasts and osteoclasts, reduced biofilm formation, and reduced sensitivity to the antimicrobial peptide indolicidin, all of which were directly attributable to increased protease production in both LAC and UAMS-1. These results illustrate the importance of considering diverse clinical isolates when evaluating the impact of regulatory mutations on virulence and demonstrate the significance of SarA in limiting protease production in vivo in S. aureus.
Collapse
Affiliation(s)
- Mara J. Campbell
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Karen E. Beenken
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Aura M. Ramirez
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | |
Collapse
|
2
|
Study of SarA by DNA Affinity Capture Assay (DACA) Employing Three Promoters of Key Virulence and Resistance Genes in Methicillin-Resistant Staphylococcus aureus. Antibiotics (Basel) 2022; 11:antibiotics11121714. [PMID: 36551372 PMCID: PMC9774152 DOI: 10.3390/antibiotics11121714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), one of the most well-known human pathogens, houses many virulence factors and regulatory proteins that confer resistance to diverse antibiotics. Although they have been investigated intensively, the correlations among virulence factors, regulatory proteins and antibiotic resistance are still elusive. We aimed to identify the most significant global MRSA regulator by concurrently analyzing protein-binding and several promoters under same conditions and at the same time point. DNA affinity capture assay (DACA) was performed with the promoters of mecA, sarA, and sarR, all of which significantly impact survival of MRSA. Here, we show that SarA protein binds to all three promoters. Consistent with the previous reports, ΔsarA mutant exhibited weakened antibiotic resistance to oxacillin and reduced biofilm formation. Additionally, production and activity of many virulence factors such as phenol-soluble modulins (PSM), α-hemolysin, motility, staphyloxanthin, and other related proteins were decreased. Comparing the sequence of SarA with that of clinical strains of various lineages showed that all sequences were highly conserved, in contrast to that observed for AgrA, another major regulator of virulence and resistance in MRSA. We have demonstrated that SarA regulates antibiotic resistance and the expression of various virulence factors. Our results warrant that SarA could be a leading target for developing therapeutic agents against MRSA infections.
Collapse
|
3
|
Comparative Transcriptomic Analysis of Staphylococcus aureus Reveals the Genes Involved in Survival at Low Temperature. Foods 2022; 11:foods11070996. [PMID: 35407083 PMCID: PMC8997709 DOI: 10.3390/foods11070996] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 02/05/2023] Open
Abstract
In food processing, the temperature is usually reduced to limit bacterial reproduction and maintain food safety. However, Staphylococcus aureus can adapt to low temperatures by controlling gene expression and protein activity, although its survival strategies normally vary between different strains. The present study investigated the molecular mechanisms of S. aureus with different survival strategies in response to low temperatures (4 °C). The survival curve showed that strain BA-26 was inactivated by 6.0 logCFU/mL after 4 weeks of low-temperature treatment, while strain BB-11 only decreased by 1.8 logCFU/mL. Intracellular nucleic acid leakage, transmission electron microscopy, and confocal laser scanning microscopy analyses revealed better cell membrane integrity of strain BB-11 than that of strain BA-26 after low-temperature treatment. Regarding oxidative stress, the superoxide dismutase activity and the reduced glutathione content in BB-11 were higher than those in BA-26; thus, BB-11 contained less malondialdehyde than BA-26. RNA-seq showed a significantly upregulated expression of the fatty acid biosynthesis in membrane gene (fabG) in BB-11 compared with BA-26 because of the damaged cell membrane. Then, catalase (katA), reduced glutathione (grxC), and peroxidase (ahpC) were found to be significantly upregulated in BB-11, leading to an increase in the oxidative stress response, but BA-26-related genes were downregulated. NADH dehydrogenase (nadE) and α-glucosidase (malA) were upregulated in the cold-tolerant strain BB-11 but were downregulated in the cold-sensitive strain BA-26, suggesting that energy metabolism might play a role in S. aureus under low-temperature stress. Furthermore, defense mechanisms, such as those involving asp23, greA, and yafY, played a pivotal role in the response of BB-11 to stress. The study provided a new perspective for understanding the survival mechanism of S. aureus at low temperatures.
Collapse
|
4
|
Abstract
SarA, a transcriptional regulator of Staphylococcus aureus, is a major global regulatory system that coordinates the expression of target genes involved in its pathogenicity. Various studies have identified a large number of SarA target genes, but an in-depth characterization of the sarA regulon, including small regulatory RNAs (sRNAs), has not yet been done. In this study, we utilized transcriptome sequencing (RNA-Seq) and chromatin immunoprecipitation sequencing (ChIP-Seq) to determine a comprehensive list of SarA-regulated targets, including both mRNAs and sRNAs. RNA-Seq analysis indicated 390 mRNAs and 51 sRNAs differentially expressed in a ΔsarA mutant, while ChIP-Seq revealed 354 mRNAs and 55 sRNA targets in the S. aureus genome. We confirmed the authenticity of several novel SarA targets by Northern blotting and electrophoretic mobility shift assays. Among them, we characterized repression of sprG2, a gene that encodes the toxin of a type I toxin-antitoxin system, indicating a multilayer lockdown of toxin expression by both SarA and its cognate antitoxin, SprF2. Finally, a novel SarA consensus DNA binding sequence was generated using the upstream promoter sequences of 15 novel SarA-regulated sRNA targets. A genome-wide scan with a deduced SarA motif enabled the discovery of new potential SarA target genes which were not identified in our RNA-Seq and ChIP-Seq analyses. The strength of this new consensus was confirmed with one predicted sRNA target. The RNA-Seq and ChIP-Seq combinatory analysis gives a snapshot of the regulation, whereas bioinformatic analysis reveals a permanent view of targets based on sequence. Altogether these experimental and in silico methodologies are effective to characterize transcriptional factor (TF) regulons and functions. IMPORTANCEStaphylococcus aureus, a commensal and opportunist pathogen, is responsible for a large number of human and animal infections, from benign to severe. Gene expression adaptation during infection requires a complex network of regulators, including transcriptional factors (TF) and sRNAs. TF SarA influences virulence, metabolism, biofilm formation, and resistance to some antibiotics. SarA directly regulates expression of around 20 mRNAs and a few sRNAs. Here, we combined high-throughput expression screening methods combined with binding assays and bioinformatics for an in-depth investigation of the SarA regulon. This combinatory approach allowed the identification of 85 unprecedented mRNAs and sRNAs targets, with at least 14 being primary. Among novel SarA direct targets, we characterized repression of sprG2, a gene that encodes the toxin of a toxin-antitoxin system, indicating a multilayer lockdown of toxin expression by both SarA and its cognate antitoxin, SprF2.
Collapse
|
5
|
Dong Y, Miao X, Zheng YD, Liu J, He QY, Ge R, Sun X. Ciprofloxacin-Resistant Staphylococcus aureus Displays Enhanced Resistance and Virulence in Iron-Restricted Conditions. J Proteome Res 2021; 20:2839-2850. [PMID: 33872026 DOI: 10.1021/acs.jproteome.1c00077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The unreasonable misuse of antibiotics has led to the emergence of large-scale drug-resistant bacteria, seriously threatening human health. Compared with drug-sensitive bacteria, resistant bacteria are difficult to clear by host immunity. To fully explore the adaptive mechanism of resistant bacteria to the iron-restricted environment, we performed data-independent acquisition-based quantitative proteomics on ciprofloxacin (CIP)-resistant (CIP-R) Staphylococcus aureus in the presence or absence of iron. On bioinformatics analysis, CIP-R bacteria showed stronger amino acid synthesis and energy storage ability. Notably, CIP-R bacteria increased virulence by upregulating the expression of many virulence-related proteins and enhancing the synthesis of virulence-related amino acids under iron-restricted stress. This study will help us to further explain the adaptive mechanisms that lead to bacterial resistance to antibiotics depending on the host environment and provide insights into the development of novel drugs for the treatment of drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Yingshan Dong
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Xinyu Miao
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Yun-Dan Zheng
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Jiajia Liu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Qing-Yu He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Ruiguang Ge
- State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xuesong Sun
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
6
|
Liu YC, Lu JJ, Lin LC, Lin HC, Chen CJ. Protein Biomarker Discovery for Methicillin-Sensitive, Heterogeneous Vancomycin-Intermediate and Vancomycin-Intermediate Staphylococcus aureus Strains Using Label-Free Data-Independent Acquisition Proteomics. J Proteome Res 2020; 20:164-171. [PMID: 33058664 DOI: 10.1021/acs.jproteome.0c00134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rapid identification of methicillin-sensitive Staphylococcus aureus (MSSA), heterogeneous vancomycin-intermediate S. aureus (hVISA), and vancomycin-intermediate S. aureus (VISA) is important for accurate treatment, timely intervention, and prevention of outbreaks. Here, 90 S. aureus isolates were analyzed for protein biomarker discovery, including MSSA, vancomycin-susceptible S. aureus (VSSA), hVISA, and VISA strains. Label-free data-independent acquisition proteomics was used to identify protein biomarkers that allow for discrimination among MSSA, hVISA, and VISA strains. There were 8786 nonredundant peptides identified, corresponding to 418 different annotated nonredundant proteins. Two VISA protein biomarkers, two hVISA protein biomarkers, and one MSSA protein biomarker with high sensitivities and specificities were discovered and verified. Data are available via MassIVE with identifier MSV000085776.
Collapse
Affiliation(s)
- Yu-Ching Liu
- Graduate Institute of Integrated Medicine, China Medical University, 91, Hsueh-Shih Rd, Taichung 40402, Taiwan
| | - Jang-Jih Lu
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Lee-Chung Lin
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
| | - Hsiao-Chuan Lin
- School of Medicine, China Medical University, 91, Hsueh-Shih Rd, Taichung 40402, Taiwan.,Department of Pediatric Infectious Diseases, China Medical University Children's Hospital, Taichung 40447, Taiwan
| | - Chao-Jung Chen
- Graduate Institute of Integrated Medicine, China Medical University, 91, Hsueh-Shih Rd, Taichung 40402, Taiwan.,Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan
| |
Collapse
|
7
|
Kang S, Kong F, Liang X, Li M, Yang N, Cao X, Yang M, Tao D, Yue X, Zheng Y. Label-Free Quantitative Proteomics Reveals the Multitargeted Antibacterial Mechanisms of Lactobionic Acid against Methicillin-Resistant Staphylococcus aureus (MRSA) using SWATH-MS Technology. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12322-12332. [PMID: 31638792 DOI: 10.1021/acs.jafc.9b06364] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The objective of the present study was to reveal the antibacterial mechanism of lactobionic acid (LBA) against methicillin-resistant Staphylococcus aureus (MRSA) using quantitative proteomics by sequential window acquisition of all theoretical mass spectra (SWATH-MS) to analyze 100 differentially expressed proteins after LBA treatment. Furthermore, multiple experiments were conducted to validate the results of the proteomic analysis including reactive oxygen species (ROS), virulence-associated gene expression, and the relative quantification of target proteins and genes by parallel reaction monitoring and quantitative real-time PCR. Combining the ultrastructure observations, proteomic analysis, and our previous research, the mode of LBA action against MRSA was speculated as cell wall damage and loss of membrane integrity; inhibition of DNA repair and protein synthesis; inhibition of virulence factors and biofilm production; induction of oxidative stress; and inhibition of metabolic pathways. These results suggest potential applications for LBA in food safety and pharmaceuticals, considering its multitarget effects against MRSA.
Collapse
Affiliation(s)
- Shimo Kang
- College of Food Science , Shenyang Agricultural University , No. 120 Dongling Road , Shenyang , Liaoning 110161 , P.R. China
| | - Fanhua Kong
- College of Food Science , Shenyang Agricultural University , No. 120 Dongling Road , Shenyang , Liaoning 110161 , P.R. China
| | - Xiaona Liang
- College of Food Science , Shenyang Agricultural University , No. 120 Dongling Road , Shenyang , Liaoning 110161 , P.R. China
| | - Mohan Li
- College of Food Science , Shenyang Agricultural University , No. 120 Dongling Road , Shenyang , Liaoning 110161 , P.R. China
| | - Ning Yang
- College of Food Science , Shenyang Agricultural University , No. 120 Dongling Road , Shenyang , Liaoning 110161 , P.R. China
| | - Xueyan Cao
- College of Food Science , Shenyang Agricultural University , No. 120 Dongling Road , Shenyang , Liaoning 110161 , P.R. China
| | - Mei Yang
- College of Food Science , Shenyang Agricultural University , No. 120 Dongling Road , Shenyang , Liaoning 110161 , P.R. China
| | - Dongbing Tao
- College of Food Science , Shenyang Agricultural University , No. 120 Dongling Road , Shenyang , Liaoning 110161 , P.R. China
| | - Xiqing Yue
- College of Food Science , Shenyang Agricultural University , No. 120 Dongling Road , Shenyang , Liaoning 110161 , P.R. China
| | - Yan Zheng
- College of Food Science , Shenyang Agricultural University , No. 120 Dongling Road , Shenyang , Liaoning 110161 , P.R. China
| |
Collapse
|
8
|
Abstract
The complex regulatory role of the proteases necessitates very tight coordination and control of their expression. While this process has been well studied, a major oversight has been the consideration of proteases as a single entity rather than as 10 enzymes produced from four different promoters. As such, in this study, we comprehensively characterized the regulation of each protease promoter, discovering vast differences in the way each protease operon is controlled. Additionally, we broaden the picture of protease regulation using a global screen to identify novel loci controlling protease activity, uncovering a cadre of new effectors of protease expression. The impact of these elements on the activity of proteases and known regulators was characterized by producing a comprehensive regulatory circuit that emphasizes the complexity of protease regulation in Staphylococcus aureus. A primary function of the extracellular proteases of Staphylococcus aureus is to control the progression of infection by selectively modulating the stability of virulence factors. Consequently, a regulatory network exists to titrate protease abundance/activity to influence the accumulation, or lack thereof, of individual virulence factors. Herein, we comprehensively map this system, exploring the regulation of the four protease loci by known and novel factors. In so doing, we determined that seven major elements (SarS, SarR, Rot, MgrA, CodY, SaeR, and SarA) form the primary network of control, with the latter three being the most powerful. We note that expression of aureolysin is largely repressed by these factors, while the spl operon is subject to the strongest upregulation of any protease loci, particularly by SarR and SaeR. Furthermore, when exploring scpA expression, we find it to be profoundly influenced in opposing fashions by SarA (repressor) and SarR (activator). We also present the screening of >100 regulator mutants of S. aureus, identifying 7 additional factors (ArgR2, AtlR, MntR, Rex, XdrA, Rbf, and SarU) that form a secondary circuit of protease control. Primarily, these elements serve as activators, although we reveal XdrA as a new repressor of protease expression. With the exception or ArgR2, each of the new effectors appears to work through the primary network of regulation to influence protease production. Collectively, we present a comprehensive regulatory circuit that emphasizes the complexity of protease regulation and suggest that its existence speaks to the importance of these enzymes to S. aureus physiology and pathogenic potential. IMPORTANCE The complex regulatory role of the proteases necessitates very tight coordination and control of their expression. While this process has been well studied, a major oversight has been the consideration of proteases as a single entity rather than as 10 enzymes produced from four different promoters. As such, in this study, we comprehensively characterized the regulation of each protease promoter, discovering vast differences in the way each protease operon is controlled. Additionally, we broaden the picture of protease regulation using a global screen to identify novel loci controlling protease activity, uncovering a cadre of new effectors of protease expression. The impact of these elements on the activity of proteases and known regulators was characterized by producing a comprehensive regulatory circuit that emphasizes the complexity of protease regulation in Staphylococcus aureus.
Collapse
|
9
|
Analysis of the influence of cyclo (L-phenylalanine-L-proline) on the proteome of Staphylococcus aureus using iTRAQ. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01508-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
10
|
Opoku-Temeng C, Onyedibe KI, Aryal UK, Sintim HO. Proteomic analysis of bacterial response to a 4-hydroxybenzylidene indolinone compound, which re-sensitizes bacteria to traditional antibiotics. J Proteomics 2019; 202:103368. [PMID: 31028946 DOI: 10.1016/j.jprot.2019.04.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/21/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023]
Abstract
Halogenated 4-hydroxybenzylidene indolinones have been shown to re-sensitize methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecalis (VRE) to methicillin and vancomycin respectively. The mechanism of antibiotic re-sensitization was however not previously studied. Here, we probe the scope of antibiotic re-sensitization and present the global proteomics analysis of S. aureus treated with GW5074, a 4-hydroxybenzylidene indolinone compound. With a minimum inhibitory concentration (MIC) of 8 μg/mL against S. aureus, GW5074 synergized with beta-lactam antibiotics like ampicillin, carbenicillin and cloxacillin, the DNA synthesis inhibitor, ciprofloxacin, the protein synthesis inhibitor, gentamicin and the folate acid synthesis inhibitor, trimethoprim. Global proteomics analysis revealed that GW5074 treatment resulted in significant downregulation of enzymes involved in the purine biosynthesis. S. aureus proteins involved in amino acid metabolism and peptide transport were also observed to be downregulated. Interestingly, anti-virulence targets such as AgrC (a quorum sensing-related histidine kinase), AgrA (a quorum sensing-related response regulator) as well as downstream targets, such as hemolysins, lipases and proteases in S. aureus were also downregulated by GW5074. We observed that the peptidoglycan hydrolase, SceD was significantly upregulated. The activity of GW5074 on S. aureus suggests that the compound primes bacteria for the antibacterial action of ineffective antibiotics. SIGNIFICANCE: Antibiotic resistance continues to present significant challenges to the treatment of bacterial infections. Given that antibiotic resistance is a natural phenomenon and that it has become increasingly difficult to discover novel antibiotics, efforts to improve the activity of existing agents are worth pursuing. A few small molecules that re-sensitize resistant bacteria to traditional antibiotics have been described but the molecular details that underpin how these compounds work to re-sensitize bacteria remain largely unknown. In this report, global label-free quantitative proteomics was used to identify changes in the proteome that occurs when GW5074, a compound that re-sensitize MRSA to methicillin, is administered to S. aureus. The identification of pathways that are impacted by GW5074 could help identify novel targets for antibiotic re-sensitization.
Collapse
Affiliation(s)
- Clement Opoku-Temeng
- Graduate Program in Biochemistry, University of Maryland, College Park, MD 20742, USA; Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Kenneth Ikenna Onyedibe
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Uma K Aryal
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| | - Herman O Sintim
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
11
|
VraR Binding to the Promoter Region of agr Inhibits Its Function in Vancomycin-Intermediate Staphylococcus aureus (VISA) and Heterogeneous VISA. Antimicrob Agents Chemother 2017; 61:AAC.02740-16. [PMID: 28289032 DOI: 10.1128/aac.02740-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 03/04/2017] [Indexed: 11/20/2022] Open
Abstract
Acquisition of vancomycin resistance in Staphylococcus aureus is often accompanied by a reduction in virulence, but the mechanisms underlying this change remain unclear. The present study was undertaken to investigate this process in a clinical heterogeneous vancomycin-intermediate S. aureus (hVISA) strain, 10827; an hVISA reference strain, Mu3; and a VISA reference strain, Mu50, along with their respective series of vancomycin-induced resistant strains. In these strains, increasing MICs of vancomycin were associated with increased expression of the vancomycin resistance-associated regulator gene (vraR) and decreased expression of virulence genes (hla, hlb, and coa) and virulence-regulated genes (RNAIII, agrA, and saeR). These results suggested that VraR might have a direct or indirect effect on virulence in S. aureus In electrophoretic mobility shift assays, VraR did not bind to promoter sequences of hla, hlb, and coa genes, but it did bind to the agr promoter region. In DNase I footprinting assays, VraR protected a 15-nucleotide (nt) sequence in the intergenic region between the agr P2 and P3 promoters. These results indicated that when S. aureus is subject to induction by vancomycin, expression of vraR is upregulated, and VraR binding inhibits the function of the Agr quorum-sensing system, causing reductions in the virulence of VISA/hVISA strains. Our results suggested that VraR in S. aureus is involved not only in the regulation of vancomycin resistance but also in the regulation of virulence.
Collapse
|
12
|
AraC-Type Regulator Rbf Controls the Staphylococcus epidermidis Biofilm Phenotype by Negatively Regulating the icaADBC Repressor SarR. J Bacteriol 2016; 198:2914-2924. [PMID: 27501984 DOI: 10.1128/jb.00374-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 08/04/2016] [Indexed: 11/20/2022] Open
Abstract
Regulation of icaADBC-encoded polysaccharide intercellular adhesin (PIA)/poly-N-acetylglucosasmine (PNAG) production in staphylococci plays an important role in biofilm-associated medical-device-related infections. Here, we report that the AraC-type transcriptional regulator Rbf activates icaADBC operon transcription and PIA production in Staphylococcus epidermidis Purified recombinant Rbf did not bind to the ica operon promoter region in electrophoretic mobility shift assays (EMSAs), indicating that Rbf regulates ica transcription indirectly. To identify the putative transcription factor(s) involved in Rbf-mediated icaADBC regulation, the ability of recombinant Rbf to interact with the promoter sequences of known icaADBC regulators was investigated. Recombinant Rbf bound to the sarR promoter and not the sarX, sarA, sarZ, spx, and srrA promoters. Reverse transcription (RT)-PCR demonstrated that Rbf acts as a repressor of sarR transcription. PIA expression and biofilm production were restored to wild-type levels in an rbf sarR double mutant grown in brain heart infusion (BHI) medium supplemented with NaCl, which is known to activate the ica locus, but not in BHI medium alone. RT-PCR further demonstrated that although Rbf does not bind the sarX promoter, it nevertheless exerted a negative effect on sarX expression. Apparently, direct downregulation of the SarR repressor by Rbf has a dominant effect over indirect repression of the SarX activator by Rbf in the control of S. epidermidis PIA production and biofilm formation. IMPORTANCE The importance of Staphylococcus epidermidis as an opportunistic pathogen in hospital patients with implanted medical devices derives largely from its capacity to form biofilm. Expression of the icaADBC-encoded extracellular polysaccharide is the predominant biofilm mechanism in S. epidermidis clinical isolates and is tightly regulated. Here, we report that the transcriptional regulator Rbf promotes icaADBC expression by negatively regulating expression of sarR, which encodes an ica operon repressor. Furthermore, Rbf indirectly represses the ica operon activator, SarX. The data reveal complicated interplay between Rbf and two Sar family proteins in fine-tuning regulation of the biofilm phenotype and indicate that in the hierarchy of biofilm regulators, IcaR is dominant over the Rbf-SarR-SarX axis.
Collapse
|
13
|
Mauro T, Rouillon A, Felden B. Insights into the regulation of small RNA expression: SarA represses the expression of two sRNAs in Staphylococcus aureus. Nucleic Acids Res 2016; 44:10186-10200. [PMID: 27596601 PMCID: PMC5137438 DOI: 10.1093/nar/gkw777] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 08/09/2016] [Accepted: 08/24/2016] [Indexed: 11/14/2022] Open
Abstract
The opportunistic pathogen Staphylococcus aureus expresses transcription factors (TFs) and regulatory small RNAs (sRNAs) which are essential for bacterial adaptation and infectivity. Until recently, the study of S. aureus sRNA gene expression regulation was under investigated, but it is now an expanding field. Here we address the regulation of Srn_3610_SprC sRNA, an attenuator of S. aureus virulence. We demonstrate that SarA TF represses srn_3610_sprC transcription. DNase I footprinting and deletion analyses show that the SarA binding site on srn_3610_sprC belongs to an essential 22 bp DNA region. Comparative analysis also revealed another possible site, this time in the srn_9340 promoter. SarA specifically binds these two sRNA promoters with high affinity in vitro and also represses their transcription in vivo. Chromatin immunoprecipitation (ChIP) assays confirmed SarA attachment to both promoters. ChIP and electrophoretic mobility shift assays targeting σA RNA polymerase subunit or using bacterial RNA polymerase holoenzyme suggested that SarA and the σA bind srn_3610_sprC and srn_9340 promoters in a mutually exclusive way. Beyond the mechanistic study of SarA repression of these two sRNAs, this work also suggests that some S. aureus sRNAs belong to the same regulon and act jointly in responding to environmental changes.
Collapse
Affiliation(s)
- Tony Mauro
- Inserm U835, Biochimie Pharmaceutique, University of Rennes 1, 35000 Rennes, France
| | - Astrid Rouillon
- Inserm U835, Biochimie Pharmaceutique, University of Rennes 1, 35000 Rennes, France
| | - Brice Felden
- Inserm U835, Biochimie Pharmaceutique, University of Rennes 1, 35000 Rennes, France
| |
Collapse
|
14
|
Kavanaugh JS, Horswill AR. Impact of Environmental Cues on Staphylococcal Quorum Sensing and Biofilm Development. J Biol Chem 2016; 291:12556-12564. [PMID: 27129223 DOI: 10.1074/jbc.r116.722710] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Staphylococci are commensal bacteria that colonize the epithelial surfaces of humans and many other mammals. These bacteria can also attach to implanted medical devices and develop surface-associated biofilm communities that resist clearance by host defenses and available chemotherapies. These communities are often associated with persistent staphylococcal infections that place a tremendous burden on the healthcare system. Understanding the regulatory program that controls staphylococcal biofilm development, as well as the environmental conditions that modulate this program, has been a focal point of research in recent years. A central regulator controlling biofilm development is a peptide quorum-sensing system, also called the accessory gene regulator or agr system. In the opportunistic pathogen Staphylococcus aureus, the agr system controls production of exo-toxins and exo-enzymes essential for causing infections, and simultaneously, it modulates the ability of this pathogen to attach to surfaces and develop a biofilm, or to disperse from the biofilm state. In this review, we explore advances on the interconnections between the agr quorum-sensing system and biofilm mechanisms, and topics covered include recent findings on how different environmental conditions influence quorum sensing, the impact on biofilm development, and ongoing questions and challenges in the field. As our understanding of the quorum sensing and biofilm interconnection advances, there are growing opportunities to take advantage of this knowledge and develop therapeutic approaches to control staphylococcal infections.
Collapse
Affiliation(s)
- Jeffrey S Kavanaugh
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Alexander R Horswill
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242.
| |
Collapse
|
15
|
Pagliai FA, Gonzalez CF, Lorca GL. Identification of a Ligand Binding Pocket in LdtR from Liberibacter asiaticus. Front Microbiol 2015; 6:1314. [PMID: 26635775 PMCID: PMC4658428 DOI: 10.3389/fmicb.2015.01314] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/09/2015] [Indexed: 11/13/2022] Open
Abstract
LdtR is a transcriptional activator involved in the regulation of a putative L,D transpeptidase in Liberibacter asiaticus, an unculturable pathogen and one of the causative agents of Huanglongbing disease. Using small molecule screens we identified benzbromarone as an inhibitor of LdtR activity, which was confirmed using in vivo and in vitro assays. Based on these previous results, the objective of this work was to identify the LdtR ligand binding pocket and characterize its interactions with benzbromarone. A structural model of LdtR was constructed and the molecular interactions with the ligand were predicted using the SwissDock interface. Using site-directed mutagenesis, these residues were changed to alanine. Electrophoretic mobility shift assays, thermal denaturation, isothermal titration calorimetry experiments, and in vivo assays were used to identify residues T43, L61, and F64 in the Benz1 pocket of LdtR as the amino acids most likely involved in the binding to benzbromarone. These results provide new information on the binding mechanism of LdtR to a modulatory molecule and provide a blue print for the design of therapeutics for other members of the MarR family of transcriptional regulators involved in pathogenicity.
Collapse
Affiliation(s)
- Fernando A Pagliai
- Department of Microbiology and Cell Science, Genetics Institute and Institute of Food and Agricultural Sciences, University of Florida, Gainesville FL, USA
| | - Claudio F Gonzalez
- Department of Microbiology and Cell Science, Genetics Institute and Institute of Food and Agricultural Sciences, University of Florida, Gainesville FL, USA
| | - Graciela L Lorca
- Department of Microbiology and Cell Science, Genetics Institute and Institute of Food and Agricultural Sciences, University of Florida, Gainesville FL, USA
| |
Collapse
|
16
|
Moche M, Schlüter R, Bernhardt J, Plate K, Riedel K, Hecker M, Becher D. Time-Resolved Analysis of Cytosolic and Surface-Associated Proteins of Staphylococcus aureus HG001 under Planktonic and Biofilm Conditions. J Proteome Res 2015; 14:3804-22. [DOI: 10.1021/acs.jproteome.5b00148] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Martin Moche
- Institute for Microbiology, Ernst-Moritz-Arndt-University, Friedrich-Ludwig-Jahn-Straße
15, 17487 Greifswald, Germany
| | - Rabea Schlüter
- Institute for Microbiology, Ernst-Moritz-Arndt-University, Friedrich-Ludwig-Jahn-Straße
15, 17487 Greifswald, Germany
| | - Jörg Bernhardt
- Institute for Microbiology, Ernst-Moritz-Arndt-University, Friedrich-Ludwig-Jahn-Straße
15, 17487 Greifswald, Germany
| | - Kristina Plate
- Institute for Microbiology, Ernst-Moritz-Arndt-University, Friedrich-Ludwig-Jahn-Straße
15, 17487 Greifswald, Germany
| | - Katharina Riedel
- Institute for Microbiology, Ernst-Moritz-Arndt-University, Friedrich-Ludwig-Jahn-Straße
15, 17487 Greifswald, Germany
| | - Michael Hecker
- Institute for Microbiology, Ernst-Moritz-Arndt-University, Friedrich-Ludwig-Jahn-Straße
15, 17487 Greifswald, Germany
| | - Dörte Becher
- Institute for Microbiology, Ernst-Moritz-Arndt-University, Friedrich-Ludwig-Jahn-Straße
15, 17487 Greifswald, Germany
| |
Collapse
|
17
|
Kunzmann MH, Bach NC, Bauer B, Sieber SA. α-Methylene-γ-butyrolactones attenuate Staphylococcus aureus virulence by inhibition of transcriptional regulation. Chem Sci 2014. [DOI: 10.1039/c3sc52228h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
18
|
|
19
|
The essential yhcSR two-component signal transduction system directly regulates the lac and opuCABCD operons of Staphylococcus aureus. PLoS One 2012; 7:e50608. [PMID: 23226327 PMCID: PMC3511567 DOI: 10.1371/journal.pone.0050608] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 10/26/2012] [Indexed: 01/27/2023] Open
Abstract
Our previous studies suggested that the essential two-component signal transduction system, YhcSR, regulates the opuCABCD operon at the transcriptional level, and the Pspac-driven opuCABCD partially complements the lethal effects of yhcS antisense RNA expression in Staphylococcus aureus. However, the reason why yhcSR regulon is required for growth is still unclear. In this report, we present that the lac and opuC operons are directly transcriptionally regulated by YhcSR. Using real-time RT-PCR we showed that the down-regulation of yhcSR expression affected the transcription of lacA encoding galactose-6-phosphotase isomerase subunit LacA, and opuCA encoding a subunit of a glycine betaine/carnitine/choline ABC transporter. Promoter-lux reporter fusion studies further confirmed the transcriptional regulation of lac by YhcSR. Gel shift assays revealed that YhcR binds to the promoter regions of the lac and opuC operons. Moreover, the Pspac-driven lacABC expression in trans was able to partially complement the lethal effect of induced yhcS antisense RNA. Likewise, the Pspac-driven opuCABCD expression in trans complemented the growth defect of S. aureus in a high osmotic strength medium during the depletion of YhcSR. Taken together, the above data indicate that the yhcSR system directly regulates the expression of lac and opuC operons, which, in turn, may be partially associated with the essentiality of yhcSR in S. aureus. These results provide a new insight into the biological functions of the yhcSR, a global regulator.
Collapse
|
20
|
Rutherford ST, Bassler BL. Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med 2012; 2:2/11/a012427. [PMID: 23125205 DOI: 10.1101/cshperspect.a012427] [Citation(s) in RCA: 1199] [Impact Index Per Article: 92.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Quorum sensing is a process of cell-cell communication that allows bacteria to share information about cell density and adjust gene expression accordingly. This process enables bacteria to express energetically expensive processes as a collective only when the impact of those processes on the environment or on a host will be maximized. Among the many traits controlled by quorum sensing is the expression of virulence factors by pathogenic bacteria. Here we review the quorum-sensing circuits of Staphylococcus aureus, Bacillus cereus, Pseudomonas aeruginosa, and Vibrio cholerae. We outline these canonical quorum-sensing mechanisms and how each uniquely controls virulence factor production. Additionally, we examine recent efforts to inhibit quorum sensing in these pathogens with the goal of designing novel antimicrobial therapeutics.
Collapse
Affiliation(s)
- Steven T Rutherford
- Department of Molecular Biology, Princeton University, New Jersey 08544, USA
| | | |
Collapse
|
21
|
Junecko JM, Zielinska AK, Mrak LN, Ryan DC, Graham JW, Smeltzer MS, Lee CY. Transcribing virulence in Staphylococcus aureus. World J Clin Infect Dis 2012; 2:63-76. [DOI: 10.5495/wjcid.v2.i4.63] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is an important human pathogen capable of causing a diverse range of infections. Once regarded as an opportunistic pathogen causing primarily nosocomial infections, recent years have seen the emergence of S. aureus strains capable of causing serious infection even in otherwise healthy human hosts. There has been much debate about whether this transition is a function of unique genotypic characteristics or differences in the expression of conserved virulence factors, but irrespective of this debate it is clear that the ability of S. aureus to cause infection in all of its diverse forms is heavily influenced by its ability to modulate gene expression in response to changing conditions within the human host. Indeed, the S. aureus genome encodes more than 100 transcriptional regulators that modulate the production of virulence factors either directly via interactions with cis elements associated with genes encoding virulence factors or indirectly through their complex interactions with each other. The goal of this review is to summarize recent work describing these regulators and their contribution to defining S. aureus as a human pathogen.
Collapse
|
22
|
Allele-dependent differences in quorum-sensing dynamics result in variant expression of virulence genes in Staphylococcus aureus. J Bacteriol 2012; 194:2854-64. [PMID: 22467783 DOI: 10.1128/jb.06685-11] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Agr is an autoinducing, quorum-sensing system that functions in many Gram-positive species and is best characterized in the pathogen Staphylococcus aureus, in which it is a global regulator of virulence gene expression. Allelic variations in the agr genes have resulted in the emergence of four quorum-sensing specificity groups in S. aureus, which correlate with different strain pathotypes. The basis for these predilections is unclear but is hypothesized to involve the phenomenon of quorum-sensing interference between strains of different agr groups, which may drive S. aureus strain isolation and divergence. Whether properties intrinsic to each agr allele directly influence virulence phenotypes within S. aureus is unknown. In this study, we examined group-specific differences in agr autoinduction and virulence gene regulation by utilizing congenic strains, each harboring a unique S. aureus agr allele, enabling a dissection of agr locus-dependent versus genotype-dependent effects on quorum-sensing dynamics and virulence factor production. Employing a reporter fusion to the principal agr promoter, P3, we observed allele-dependent differences in the timing and magnitude of agr activation. These differences were mediated by polymorphisms within the agrBDCA genes and translated to significant variations in the expression of a key transcriptional regulator, Rot, and of several important exoproteins and surface factors involved in pathogenesis. This work uncovers the contribution of divergent quorum-sensing alleles to variant expression of virulence determinants within a bacterial species.
Collapse
|
23
|
Thurlow LR, Joshi GS, Richardson AR. Virulence strategies of the dominant USA300 lineage of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA). ACTA ACUST UNITED AC 2012; 65:5-22. [PMID: 22309135 DOI: 10.1111/j.1574-695x.2012.00937.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/19/2012] [Accepted: 01/26/2012] [Indexed: 11/28/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) poses a serious threat to worldwide health. Historically, MRSA clones have strictly been associated with hospital settings, and most hospital-associated MRSA (HA-MRSA) disease resulted from a limited number of virulent clones. Recently, MRSA has spread into the community causing disease in otherwise healthy people with no discernible contact with healthcare environments. These community-associated MRSA clones (CA-MRSA) are phylogenetically distinct from traditional HA-MRSA clones, and CA-MRSA strains seem to exhibit hypervirulence and more efficient host : host transmission. Consequently, CA-MRSA clones belonging to the USA300 lineage have become dominant sources of MRSA infections in North America. The rise of this successful USA300 lineage represents an important step in the evolution of emerging pathogens and a great deal of effort has been exerted to understand how these clones evolved. Here, we review much of the recent literature aimed at illuminating the source of USA300 success and broadly categorize these findings into three main categories: newly acquired virulence genes, altered expression of common virulence determinants and alterations in protein sequence that increase fitness. We argue that none of these evolutionary events alone account for the success of USA300, but rather their combination may be responsible for the rise and spread of CA-MRSA.
Collapse
Affiliation(s)
- Lance R Thurlow
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
24
|
Coordinated regulation by AgrA, SarA, and SarR to control agr expression in Staphylococcus aureus. J Bacteriol 2011; 193:6020-31. [PMID: 21908676 DOI: 10.1128/jb.05436-11] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The agr locus of Staphylococcus aureus is composed of two divergent transcripts (RNAII and RNAIII) driven by the P2 and P3 promoters. The P2-P3 intergenic region comprises the SarA/SarR binding sites and the four AgrA boxes to which AgrA binds. We reported here the role of AgrA, SarA, and SarR on agr P2 and P3 transcription. Using real-time reverse transcription (RT)-PCR and promoter fusion studies with selected single, double, triple, and complemented mutants, we showed that AgrA is indispensable to agr P2 and P3 transcription, whereas SarA activates and SarR represses P2 transcription. In vitro runoff transcription assays revealed that AgrA alone promoted transcription from the agr P2 promoter, with SarA enhancing it and SarR inhibiting agr P2 transcription in the presence of AgrA or with SarA and AgrA. Electrophoretic mobility shift assay (EMSA) analysis disclosed that SarR binds more avidly to the agr promoter than SarA and displaces SarA from the agr promoter. Additionally, SarA and AgrA bend the agr P2 promoter, whereas SarR does not. Collectively, these data indicated that AgrA activates agr P2 and P3 promoters while SarA activates the P2 promoter, presumably via bending of promoter DNA to bring together AgrA dimers to facilitate engagement of RNA polymerase (RNAP) to initiate transcription.
Collapse
|
25
|
The essential two-component system YhcSR is involved in regulation of the nitrate respiratory pathway of Staphylococcus aureus. J Bacteriol 2011; 193:1799-805. [PMID: 21335452 DOI: 10.1128/jb.01511-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our previous studies revealed that a novel two-component signal transduction system, YhcSR, is essential for the survival of Staphylococcus aureus; however, the biological function of YhcSR remains unknown. In this study, we demonstrated that YhcSR plays an important role in the modulation of the nitrate respiratory pathway under anaerobic conditions. Specifically, we determined that nitrate induces yhcS transcription in the early log phase of growth under anaerobic conditions and that the downregulation of yhcSR expression eliminates the stimulatory effect of nitrate on bacterial growth. Using semiquantitative real-time reverse transcription-PCR (qPCR) and promoter-lux reporter fusions, we established that YhcSR positively modulates the transcription of the narG operon, which is involved in the nitrate respiratory pathway. Our gel shift assays revealed that YhcR binds to the promoter regions of narG and nreABC. Collectively, the above data indicate that the yhcSR system directly regulates the expression of both narG and nreABC operons, which in turn positively modulate the nitrate respiratory pathway of S. aureus under anaerobic conditions. These results provide a new insight into the biological functions of the essential two-component YhcSR system.
Collapse
|
26
|
The staphylococcus-specific gene rsr represses agr and virulence in Staphylococcus aureus. Infect Immun 2010; 78:4384-91. [PMID: 20696829 DOI: 10.1128/iai.00401-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression of virulence factors in Staphylococcus aureus is tightly coordinated by a vast network of regulatory molecules. In this report, we characterize a genetic locus unique to staphylococci called rsr that has a role in repressing two key virulence regulators, sarR and agr. Using strain SH1000, we showed that the transcription of virulence effectors, such as hla, sspA, and spa, is altered in an rsr mutant in a way consistent with agr upregulation. Analysis of RNAIII expression of the agr locus in rsr and rsr-sarR mutants indicated that rsr likely contributes to agr expression independently of SarR. We also provide evidence using a murine model of S. aureus skin infection that the effects mediated by rsr reduce disease progression.
Collapse
|
27
|
Transcriptional profiling of XdrA, a new regulator of spa transcription in Staphylococcus aureus. J Bacteriol 2010; 192:5151-64. [PMID: 20675497 DOI: 10.1128/jb.00491-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription of spa, encoding the virulence factor protein A in Staphylococcus aureus, is tightly controlled by a complex regulatory network, ensuring its temporal expression over growth and at appropriate stages of the infection process. Transcriptomic profiling of XdrA, a DNA-binding protein that is conserved in all S. aureus genomes and shares similarity with the XRE family of helix-turn-helix, antitoxin-like proteins, revealed it to be a previously unidentified activator of spa transcription. To assess how XdrA fits into the complex web of spa regulation, a series of regulatory mutants were constructed; consisting of single, double, triple, and quadruple mutants lacking XdrA and/or the three key regulators previously shown to influence spa transcription directly (SarS, SarA, and RNAIII). A series of lacZ reporter gene fusions containing nested deletions of the spa promoter identified regions influenced by XdrA and the other three regulators. XdrA had almost as strong an activating effect on spa as SarS and acted on the same spa operator regions as SarS, or closely overlapping regions. All data from microarrays, Northern and Western blot analyses, and reporter gene fusion experiments indicated that XdrA is a major activator of spa expression that appears to act directly on the spa promoter and not through previously characterized regulators.
Collapse
|
28
|
Control of thioredoxin reductase gene (trxB) transcription by SarA in Staphylococcus aureus. J Bacteriol 2010; 192:336-45. [PMID: 19854896 DOI: 10.1128/jb.01202-09] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thioredoxin reductase (encoded by trxB) protects Staphylococcus aureus against oxygen or disulfide stress and is indispensable for growth. Among the different sarA family mutants analyzed, transcription of trxB was markedly elevated in the sarA mutant under conditions of aerobic as well as microaerophilic growth, indicating that SarA acts as a negative regulator of trxB expression. Gel shift analysis showed that purified SarA protein binds directly to the trxB promoter region DNA in vitro. DNA binding of SarA was essential for repression of trxB transcription in vivo in S. aureus. Northern blot analysis and DNA binding studies of the purified wild-type SarA and the mutant SarAC9G with oxidizing agents indicated that oxidation of Cys-9 reduced the binding of SarA to the trxB promoter DNA. Oxidizing agents, in particular diamide, could further enhance transcription of the trxB gene in the sarA mutant, suggesting the presence of a SarA-independent mode of trxB induction. Analysis of two oxidative stress-responsive sarA regulatory target genes, trxB and sodM, with various mutant sarA constructs showed a differential ability of the SarA to regulate expression of the two above-mentioned genes in vivo. The overall data demonstrate the important role played by SarA in modulating expression of genes involved in oxidative stress resistance in S. aureus.
Collapse
|
29
|
Ballal A, Manna AC. Expression of the sarA family of genes in different strains of Staphylococcus aureus. MICROBIOLOGY-SGM 2009; 155:2342-2352. [PMID: 19389785 DOI: 10.1099/mic.0.027417-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Expression of genes involved in the pathogenesis of Staphylococcus aureus is controlled by global regulatory loci, including two-component regulatory systems and transcriptional regulators. The staphylococcal-specific SarA family of transcription regulators control large numbers of target genes involved in virulence, autolysis, biofilm formation, stress responses and metabolic processes, and are recognized as potential therapeutic targets. Expression of some of these important regulators has been examined, mostly in laboratory strains, while the pattern of expression of these genes in other strains, especially clinical isolates, is largely unknown. In this report, a comparative analysis of 10 sarA-family genes was conducted in six different S. aureus strains, including two laboratory (RN6390, SH1000) and four clinical (MW2, Newman, COL and UAMS-1) strains, by Northern and Western blot analyses. Transcription of most of the sarA-family genes showed a strong growth phase-dependence in all strains tested. Among these genes, no difference was observed in expression of the sarA, sarV, sarT and sarU genes, while a major difference was observed in expression of the sarX gene only in strain RN6390. Expression of mgrA, rot, sarZ, sarR and sarS was observed in all strains, but the level of expression varied from strain to strain.
Collapse
Affiliation(s)
- Anand Ballal
- Center for Infectious Disease Research and Vaccinology, South Dakota State University, Brookings, SD 57007, USA.,Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, SD 57069, USA
| | - Adhar C Manna
- Center for Infectious Disease Research and Vaccinology, South Dakota State University, Brookings, SD 57007, USA.,Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, SD 57069, USA
| |
Collapse
|
30
|
Regulation of superoxide dismutase (sod) genes by SarA in Staphylococcus aureus. J Bacteriol 2009; 191:3301-10. [PMID: 19286803 DOI: 10.1128/jb.01496-08] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The scavenging of reactive oxygen species (ROS) within cells is regulated by several interacting factors, including transcriptional regulators. Involvement of sarA family genes in the regulation of proteins involved in the scavenging of ROS is largely unknown. In this report, we show that under aerobic conditions, the levels of sodM and sodA transcription, in particular the sodM transcript, are markedly enhanced in the sarA mutant among the tested sarA family mutants. Increased levels of sod expression returned to near the parental level in a single-copy sarA complemented strain. Under microaerophilc conditions, transcription of both sodM and sodA was considerably enhanced in the sarA mutant compared to the wild-type strain. Various genotypic, phenotypic, and DNA binding studies confirmed the involvement of SarA in the regulation of sod transcripts in different strains of Staphylococcus aureus. The sodA mutant was sensitive to an oxidative stress-inducing agent, methyl viologen, but the sarA sodA double mutant was more resistant to the same stressor than the single sodA mutant. These results suggest that overexpression of SodM, which occurs in the sarA background, can rescue the methyl viologen-sensitive phenotype observed in the absence of the sodA gene. Analysis with various oxidative stress-inducing agents indicates that SarA may play a greater role in modulating oxidative stress resistance in S. aureus. This is the first report that demonstrates the direct involvement of a regulatory protein (SarA) in control of sod expression in S. aureus.
Collapse
|
31
|
sarZ, a sarA family gene, is transcriptionally activated by MgrA and is involved in the regulation of genes encoding exoproteins in Staphylococcus aureus. J Bacteriol 2008; 191:1656-65. [PMID: 19103928 DOI: 10.1128/jb.01555-08] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The expression of genes involved in the pathogenesis of Staphylococcus aureus is controlled by global regulatory loci, including two-component regulatory systems and transcriptional regulators (e.g., sar family genes). Most members of the SarA family have been partially characterized and shown to regulate a large numbers of target genes. Here, we describe the characterization of sarZ, a sarA paralog from S. aureus, and its regulatory relationship with other members of its family. Expression of sarZ was growth phase dependent with maximal expression in the early exponential phase of growth. Transcription of sarZ was reduced in an mgrA mutant and returned to a normal level in a complemented mgrA mutant strain, which suggests that mgrA acts as an activator of sarZ transcription. Purified MgrA protein bound to the sarZ promoter region, as determined by gel shift assays. Among the sarA family of genes analyzed, inactivation of sarZ increased sarS transcription, while it decreased agr transcription. The expression of potential target genes involved in virulence was evaluated in single and double mutants of sarZ with mgrA, sarX, and agr. Northern and zymogram analyses indicated that the sarZ gene product played a role in regulating several virulence genes, particularly those encoding exoproteins. Gel shift assays demonstrated nonspecific binding of purified SarZ protein to the promoter regions of the sarZ-regulated target genes. These results demonstrate the important role played by SarZ in controlling regulatory and virulence gene expression in S. aureus.
Collapse
|
32
|
SarZ promotes the expression of virulence factors and represses biofilm formation by modulating SarA and agr in Staphylococcus aureus. Infect Immun 2008; 77:419-28. [PMID: 18955469 DOI: 10.1128/iai.00859-08] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Staphylococcus aureus is a remarkably adaptable organism capable of multiple modes of growth in the human host, as a part of the normal flora, as a pathogen, or as a biofilm. Many of the regulatory pathways governing these modes of growth are centered on the activities of two regulatory molecules, the DNA binding protein SarA and the regulatory RNAIII effector molecule of the agr system. Here, we describe the modulation of these regulators and their downstream target genes by SarZ, a member of the SarA/MarR family of transcriptional regulators. Transcriptional and phenotypic analyses of a sarZ mutant demonstrated that the decreased transcription of mgrA and the agr RNAIII molecule was accompanied by increased transcription of spa (protein A) and downregulation of hla (alpha-hemolysin) and sspA (V8 protease) transcripts when compared to its isogenic parent. The decrease in protease activity was also associated with an increase in SarA expression. Consistent with an increase in SarA levels, the sarZ mutant displayed an enhanced ability to form biofilms. Together, our results indicate that SarZ may be an important regulator governing the dissemination phase of S. aureus infections, as it promotes toxin expression while repressing factors required for biofilm formation.
Collapse
|
33
|
Manna AC, Ray B. Regulation and characterization of rot transcription in Staphylococcus aureus. MICROBIOLOGY-SGM 2007; 153:1538-1545. [PMID: 17464068 DOI: 10.1099/mic.0.2006/004309-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The pathogenesis of Staphylococcus aureus infections is dependent upon expression of various virulence factors, which are under the control of multiple regulatory systems, including two-component regulatory systems and transcriptional regulators such as the SarA family of proteins. As a part of a continuing effort to understand the regulatory mechanisms that involve the SarA protein family, the regulation and physical characterization of rot transcription is described here. The rot gene, a member of the sarA family of genes, was previously characterized and has been shown to regulate a large number of genes. The rot locus is composed of multiple overlapping transcripts as determined by primer extension and was proposed to encode an open reading frame of 133 residues. Transcription of rot was significantly increased in the sarA mutant. Gel shift and transcriptional studies revealed that SarA could bind to the rot promoter region, probably acting as a repressor for rot transcription. The data indicate that the expression of rot transcription is significantly repressed only by SarA among the sarA family of mutants tested at the post-exponential phase of growth.
Collapse
Affiliation(s)
- Adhar C Manna
- Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, SD 57069, USA, and Center for Infectious Disease Research and Vaccinology, South Dakota State University, Brookings, SD 57007, USA
| | - Binata Ray
- Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, SD 57069, USA, and Center for Infectious Disease Research and Vaccinology, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
34
|
The SarA protein family of Staphylococcus aureus. Int J Biochem Cell Biol 2007; 40:355-61. [PMID: 18083623 DOI: 10.1016/j.biocel.2007.10.032] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 10/20/2007] [Accepted: 10/29/2007] [Indexed: 12/20/2022]
Abstract
Staphylococcus aureus is widely appreciated as an opportunistic pathogen, primarily in hospital-related infections. However, recent reports indicate that S. aureus infections can now occur in other wise healthy individuals in the community setting. The success of this organism can be attributed to the large array of regulatory proteins, including the SarA protein family, used to respond to changing microenvironments. Sequence alignment and structural data reveal that the SarA protein family can be divided into three subfamilies: (1) single domain proteins; (2) double domain proteins; (3) MarR homologs. Structural studies have also demonstrated that SarA, SarR, SarS, MgrA and thus possibly all members of this protein family are winged helix proteins with minor variations. Mutagenesis studies of SarA disclose that the winged helix motifs are important for DNA binding and function. Recent progress concerning the functions and plausible mechanisms of regulation of SarA and its homologs are discussed.
Collapse
|
35
|
Affiliation(s)
- Elizabeth A George
- Rockefeller University, Tri-Institutional Training Program in Chemical Biology, NY 10021, USA
| | | |
Collapse
|
36
|
Manna AC, Cheung AL. Expression of SarX, a negative regulator of agr and exoprotein synthesis, is activated by MgrA in Staphylococcus aureus. J Bacteriol 2006; 188:4288-99. [PMID: 16740935 PMCID: PMC1482969 DOI: 10.1128/jb.00297-06] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The expression of genes involved in the pathogenesis of Staphylococcus aureus is known to be controlled by global regulatory loci, including agr, sarA, saeRS, arlRS, and sarA-like genes. As part of our continuing efforts to understand the regulatory mechanisms that involve sarA-like genes, we describe here the characterization of a novel transcriptional regulator called SarX, a member of the SarA protein family. The transcription of sarX was growth phase dependent and was expressed maximally during the stationary phase of growth, which was significantly decreased in the mgrA mutant. MgrA acted as an activator of sarX expression as confirmed by transcriptional fusion and Northern blot analyses. Purified MgrA protein bound to the upstream region of the sarX promoter as demonstrated by gel shift assay. The expression levels of various potential target genes involved in virulence and regulation, specifically those affected by sarA and mgrA, were analyzed with isogenic sarX mutant strains. Our data indicated that SarX acted as a repressor of the agr locus and consequently target genes regulated by the agr system. We propose that SarX is an important regulator in the SarA protein family and may be part of the common pathway by which agr and members of the sarA gene family control virulence in S. aureus.
Collapse
Affiliation(s)
- Adhar C Manna
- Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, 414 E. Clark Street, Vermillion, SD 57069, USA.
| | | |
Collapse
|