1
|
Prithvisagar KS, Gollapalli P, D’Souza C, Rai P, Karunasagar I, Karunasagar I, Ballamoole KK. Genome analysis of clinical genotype Vibrio vulnificus isolated from seafood in Mangaluru Coast, India provides insights into its pathogenicity. Vet Q 2023; 43:1-17. [PMID: 37478018 PMCID: PMC10438861 DOI: 10.1080/01652176.2023.2240389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/23/2023] Open
Abstract
Vibrio vulnificus an opportunistic human pathogen native to marine/estuarine environment, is one of the leading causes of death due to seafood consumption and exposure of wounds to seawater worldwide. The present study involves the whole genome sequence analysis of an environmental strain of V. vulnificus (clinical genotype) isolated from seafood along the Mangaluru coast of India. The sequenced genome data was subjected to in-silico analysis of phylogeny, virulence genes, antimicrobial resistance determinants, and secretary proteins using suitable bioinformatics tools. The sequenced isolate had an overall genome length of 4.8 Mb and GC content of 46% with 4400 coding DNA sequences. The sequenced strain belongs to a new sequence type (Multilocus sequence typing) and was also found to branch with a phylogenetic lineage that groups the most infectious strains of V. vulnificus. The seafood isolate had complete genes involved in conferring serum resistance yet showed limited serum resistance. The study identified several genes against the antibiotics that are commonly used in their treatment, highlighting the need for alternative treatments. Also, the secretory protein analysis revealed genes associated with major pathways like ABC transporters, two-component systems, quorum sensing, biofilm formation, cationic antimicrobial peptide (CAMP) resistance, and others that play a critical role in the pathogenesis of the V. vulnificus. To the best of our knowledge, this is the first report of a detailed analysis of the genomic information of a V. vulnificus isolated from the Indian subcontinent and provides evidence that raises public health concerns about the safety of seafood.
Collapse
Affiliation(s)
- Kattapuni Suresh Prithvisagar
- Department of Infectious Diseases and Microbial Genomics, Nitte University Centre for Science Education and Research, Nitte (Deemed to be University), Mangaluru, India
| | - Pavan Gollapalli
- Center for Bioinformatics and Biostatistics, Nitte (Deemed to be University), Mangaluru, India
| | - Caroline D’Souza
- Department of Infectious Diseases and Microbial Genomics, Nitte University Centre for Science Education and Research, Nitte (Deemed to be University), Mangaluru, India
| | - Praveen Rai
- Department of Infectious Diseases and Microbial Genomics, Nitte University Centre for Science Education and Research, Nitte (Deemed to be University), Mangaluru, India
| | - Iddya Karunasagar
- Department of Infectious Diseases and Microbial Genomics, Nitte University Centre for Science Education and Research, Nitte (Deemed to be University), Mangaluru, India
| | - Indrani Karunasagar
- Department of Infectious Diseases and Microbial Genomics, Nitte University Centre for Science Education and Research, Nitte (Deemed to be University), Mangaluru, India
| | - Krishna Kumar Ballamoole
- Department of Infectious Diseases and Microbial Genomics, Nitte University Centre for Science Education and Research, Nitte (Deemed to be University), Mangaluru, India
| |
Collapse
|
2
|
Abstract
Bloodstream infections (BSI) are a major public health burden due to high mortality rates and the cost of treatment. The impact of BSI is further compounded by a rise in antibiotic resistance among Gram-negative species associated with these infections. Escherichia coli, Serratia marcescens, Klebsiella pneumoniae, Enterobacter hormaechei, Citrobacter freundii, and Acinetobacter baumannii are all common causes of BSI, which can be recapitulated in a murine model. The objective of this study was to characterize infection kinetics and bacterial replication rates during bacteremia for these six pathogens to gain a better understanding of bacterial physiology during infection. Temporal observations of bacterial burdens of the tested species demonstrated varied abilities to establish colonization in the spleen, liver, or kidney. K. pneumoniae and S. marcescens expanded rapidly in the liver and kidney, respectively. Other organisms, such as C. freundii and E. hormaechei, were steadily cleared from all three target organs throughout the infection. In situ replication rates measured by whole-genome sequencing of bacterial DNA recovered from murine spleens demonstrated that each species was capable of sustained replication at 24 h postinfection, and several species demonstrated <60-min generation times. The relatively short generation times observed in the spleen were in contrast to an overall decrease in bacterial burden for some species, suggesting that the rate of immune-mediated clearance exceeded replication. Furthermore, bacterial generation times measured in the murine spleen approximated those measured during growth in human serum cultures. Together, these findings provide insight into the infection kinetics of six medically important species during bacteremia.
Collapse
|
3
|
Lydon KA, Kinsey T, Le C, Gulig PA, Jones JL. Biochemical and Virulence Characterization of Vibrio vulnificus Isolates From Clinical and Environmental Sources. Front Cell Infect Microbiol 2021; 11:637019. [PMID: 33718284 PMCID: PMC7952748 DOI: 10.3389/fcimb.2021.637019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/19/2021] [Indexed: 11/25/2022] Open
Abstract
Vibrio vulnificus is a deadly human pathogen for which infections occur via seafood consumption (foodborne) or direct contact with wounds. Virulence is not fully characterized for this organism; however, there is evidence of biochemical and genotypic correlations with virulence potential. In this study, biochemical profiles and virulence genotype, based on 16S rRNA gene (rrn) and virulence correlated gene (vcg) types, were determined for 30 clinical and 39 oyster isolates. Oyster isolates were more biochemically diverse than the clinical isolates, with four of the 20 tests producing variable (defined as 20–80% of isolates) results. Whereas, for clinical isolates only mannitol fermentation, which has previously been associated with virulence potential, varied among the isolates. Nearly half (43%) of clinical isolates were the more virulent genotype (rrnB/vcgC); this trend was consistent when only looking at clinical isolates from blood. The majority (64%) of oyster isolates were the less virulent genotype (rrnA or AB/vcgE). These data were used to select a sub-set of 27 isolates for virulence testing with a subcutaneously inoculated, iron-dextran treated mouse model. Based on the mouse model data, 11 isolates were non-lethal, whereas 16 isolates were lethal, indicating a potential for human infection. Within the non-lethal group there were eight oyster and three clinical isolates. Six of the non-lethal isolates were the less virulent genotype (rrnA/vcgE or rrnAB/vcgE) and two were rrnB/vcgC with the remaining two of mixed genotype (rrnAB/vcgC and rrnB/vcgE). Of the lethal isolates, five were oysters and 11 were clinical. Eight of the lethal isolates were the less virulent genotype and seven the more virulent genotype, with the remaining isolate a mixed genotype (rrnA/vcgC). A discordance between virulence genotype and individual mouse virulence parameters (liver infection, skin infection, skin lesion score, and body temperature) was observed; the variable most strongly associated with mouse virulence parameters was season (warm or cold conditions at time of strain isolation), with more virulent strains isolated from cold conditions. These results indicate that biochemical profiles and genotype are not significantly associated with virulence potential, as determined by a mouse model. However, a relationship with virulence potential and seasonality was observed.
Collapse
Affiliation(s)
- Keri A Lydon
- Division of Seafood Science and Technology, Gulf Coast Seafood Laboratory, U.S. Food and Drug Administration, Dauphin Island, AL, United States
| | - Thomas Kinsey
- Division of Seafood Science and Technology, Gulf Coast Seafood Laboratory, U.S. Food and Drug Administration, Dauphin Island, AL, United States
| | - Chinh Le
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States
| | - Paul A Gulig
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States
| | - Jessica L Jones
- Division of Seafood Science and Technology, Gulf Coast Seafood Laboratory, U.S. Food and Drug Administration, Dauphin Island, AL, United States
| |
Collapse
|
4
|
Chok AY, Sri Murali K, Wong HM, Leow WQ, Kalimuddin S, Wong TH. Rare case of enterocolitis. ANZ J Surg 2019; 89:1525. [PMID: 31760692 DOI: 10.1111/ans.15442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 08/12/2019] [Indexed: 12/01/2022]
Affiliation(s)
- Aik Yong Chok
- Department of Colorectal Surgery, Singapore General Hospital, Singapore
| | | | - Hei Man Wong
- Department of Infectious Diseases, Singapore General Hospital, Singapore
| | - Wei Qiang Leow
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
| | - Shirin Kalimuddin
- Department of Infectious Diseases, Singapore General Hospital, Singapore
| | - Ting Hway Wong
- Department of General Surgery, Singapore General Hospital, Singapore
| |
Collapse
|
5
|
Abstract
Uropathogenic Escherichia coli (UPEC) strains cause most uncomplicated urinary tract infections (UTIs). These strains are a subgroup of extraintestinal pathogenic E. coli (ExPEC) strains that infect extraintestinal sites, including urinary tract, meninges, bloodstream, lungs, and surgical sites. Here, we hypothesize that UPEC isolates adapt to and grow more rapidly within the urinary tract than other E. coli isolates and survive in that niche. To date, there has not been a reliable method available to measure their growth rate in vivo. Here we used two methods: segregation of nonreplicating plasmid pGTR902, and peak-to-trough ratio (PTR), a sequencing-based method that enumerates bacterial chromosomal replication forks present during cell division. In the murine model of UTI, UPEC strain growth was robust in vivo, matching or exceeding in vitro growth rates and only slowing after reaching high CFU counts at 24 and 30 h postinoculation (hpi). In contrast, asymptomatic bacteriuria (ABU) strains tended to maintain high growth rates in vivo at 6, 24, and 30 hpi, and population densities did not increase, suggesting that host responses or elimination limited population growth. Fecal strains displayed moderate growth rates at 6 hpi but did not survive to later times. By PTR, E. coli in urine of human patients with UTIs displayed extraordinarily rapid growth during active infection, with a mean doubling time of 22.4 min. Thus, in addition to traditional virulence determinants, including adhesins, toxins, iron acquisition, and motility, very high growth rates in vivo and resistance to the innate immune response appear to be critical phenotypes of UPEC strains. Uropathogenic Escherichia coli (UPEC) strains cause most urinary tract infections in otherwise healthy women. While we understand numerous virulence factors are utilized by E. coli to colonize and persist within the urinary tract, these properties are inconsequential unless bacteria can divide rapidly and survive the host immune response. To determine the contribution of growth rate to successful colonization and persistence, we employed two methods: one involving the segregation of a nonreplicating plasmid in bacteria as they divide and the peak-to-trough ratio, a sequencing-based method that enumerates chromosomal replication forks present during cell division. We found that UPEC strains divide extraordinarily rapidly during human UTIs. These techniques will be broadly applicable to measure in vivo growth rates of other bacterial pathogens during host colonization.
Collapse
|
6
|
Hepcidin-induced hypoferremia is a critical host defense mechanism against the siderophilic bacterium Vibrio vulnificus. Cell Host Microbe 2015; 17:47-57. [PMID: 25590758 DOI: 10.1016/j.chom.2014.12.001] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/13/2014] [Accepted: 11/06/2014] [Indexed: 12/21/2022]
Abstract
Hereditary hemochromatosis, an iron overload disease caused by a deficiency in the iron-regulatory hormone hepcidin, is associated with lethal infections by siderophilic bacteria. To elucidate the mechanisms of this susceptibility, we infected wild-type and hepcidin-deficient mice with the siderophilic bacterium Vibrio vulnificus and found that hepcidin deficiency results in increased bacteremia and decreased survival of infected mice, which can be partially ameliorated by dietary iron depletion. Additionally, timely administration of hepcidin agonists to hepcidin-deficient mice induces hypoferremia that decreases bacterial loads and rescues these mice from death, regardless of initial iron levels. Studies of Vibrio vulnificus growth ex vivo show that high iron sera from hepcidin-deficient mice support extraordinarily rapid bacterial growth and that this is inhibited in hypoferremic sera. Our findings demonstrate that hepcidin-mediated hypoferremia is a host defense mechanism against siderophilic pathogens and suggest that hepcidin agonists may improve infection outcomes in patients with hereditary hemochromatosis or thalassemia.
Collapse
|
7
|
Distinct roles of the repeat-containing regions and effector domains of the Vibrio vulnificus multifunctional-autoprocessing repeats-in-toxin (MARTX) toxin. mBio 2015; 6:mBio.00324-15. [PMID: 25827415 PMCID: PMC4453568 DOI: 10.1128/mbio.00324-15] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Vibrio vulnificus is a seafood-borne pathogen that destroys the intestinal epithelium, leading to rapid bacterial dissemination and death. The most important virulence factor is the multifunctional-autoprocessing repeats-in-toxin (MARTX) toxin comprised of effector domains in the center region flanked by long repeat-containing regions which are well conserved among MARTX toxins and predicted to translocate effector domains. Here, we examined the role of the repeat-containing regions using a modified V. vulnificus MARTX (MARTXVv) toxin generated by replacing all the internal effector domains with β-lactamase (Bla). Bla activity was detected in secretions from the bacterium and also in the cytosol of intoxicated epithelial cells. The modified MARTXVv toxin without effector domains retained its necrotic activity but lost its cell-rounding activity. Further, deletion of the carboxyl-terminal repeat-containing region blocked toxin secretion from the bacterium. Deletion of the amino-terminal repeat-containing region had no effect on secretion but completely abolished translocation and necrosis. Neither secretion nor translocation was affected by enzymatically inactivating the cysteine protease domain of the toxin. These data demonstrate that the amino-terminal and carboxyl-terminal repeat-containing regions of the MARTXVv toxin are necessary and sufficient for the delivery of effector domains and epithelial cell lysis in vitro but that effector domains are required for other cytopathic functions. Furthermore, Ca2+-dependent secretion of the modified MARTXVv toxin suggests that nonclassical RTX-like repeats found in the carboxyl-terminal repeat-containing region are functionally similar to classical RTX repeats found in other RTX proteins. Up to 95% of deaths from seafood-borne infections in the United States are due solely to one pathogen, V. vulnificus. Among its various virulence factors, the MARTXVv toxin has been characterized as a critical exotoxin for successful pathogenesis of V. vulnificus in mouse infection models. Similarly to MARTX toxins of other pathogens, MARTXVv toxin is comprised of repeat-containing regions, central effector domains, and an autoprocessing cysteine protease domain. Yet how each of these regions contributes to essential activities of the toxins has not been fully identified for any of MARTX toxins. Using modified MARTXVv toxin fused with β-lactamase as a reporter enzyme, the portion(s) responsible for toxin secretion from bacteria, effector domain translocation into host cells, rapid host cell rounding, and necrotic host cell death was identified. The results are relevant for understanding how MARTXVv toxin serves as both a necrotic pore-forming toxin and an effector delivery platform.
Collapse
|
8
|
Jeong HG, Satchell KJF. Additive function of Vibrio vulnificus MARTX(Vv) and VvhA cytolysins promotes rapid growth and epithelial tissue necrosis during intestinal infection. PLoS Pathog 2012; 8:e1002581. [PMID: 22457618 PMCID: PMC3310748 DOI: 10.1371/journal.ppat.1002581] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 01/26/2012] [Indexed: 12/18/2022] Open
Abstract
Vibrio vulnificus is a pathogen that causes both severe necrotizing wound infections and life-threatening food-borne infections. Food-borne infection is particularly lethal as the infection can progress rapidly to primary septicemia resulting in death from septic shock and multiorgan failure. In this study, we use both bioluminescence whole animal imaging and V. vulnificus bacterial colonization of orally infected mice to demonstrate that the secreted multifunctional-autoprocessing RTX toxin (MARTXVv) and the cytolysin/hemolysin VvhA of clinical isolate CMCP6 have an important function in the gut to promote early in vivo growth and dissemination of this pathogen from the small intestine to other organs. Using histopathology, we find that both cytotoxins can cause villi disruption, epithelial necrosis, and inflammation in the mouse small intestine. A double mutant deleted of genes for both cytotoxins was essentially avirulent, did not cause intestinal epithelial tissue damage, and was cleared from infected mice by 36 hours by an effective immune response. Therefore, MARTXVv and VvhA seem to play an additive role for pathogenesis of CMCP6 causing intestinal tissue damage and inflammation that then promotes dissemination of the infecting bacteria to the bloodstream and other organs. In the absence of these two secreted factors, we propose that this bacterium is unable to cause intestinal infection in humans. Vibrio vulnificus causes disease both by infection of wounds from seawater and by consumption of contaminated foods, especially oysters. Wound infection results in necrotizing fasciitis and edema in extremities with mortality of ∼25% as the incidence of septicemia is low. Contaminated food consumption by contrast can lead to highly invasive infections that progress rapidly from an intestinal infection to primary septicemia. Case-fatality rates are ≥50%, with rates as high as 100% in individuals who receive no antibiotic therapy. The aim of this study is to elucidate virulence mechanisms of food-borne infection of the most highly virulent strains of V. vulnificus. We developed a novel intragastric infection model for a highly virulent clinical isolate from Korea in which we can observe the bacterial load in live mice and applied this to study of wild type and strains genetically altered to delete genes for two secreted cytotoxins. Using this model, we show that both the multifunctional-autoprocessing RTX toxin (MARTXVv) and the cytolysin VvhA contribute to rapid in vivo growth of bacteria and that the presence of these factors directly correlates with mouse mortality. These exotoxins are then directly linked to intestinal damage and inflammation.
Collapse
Affiliation(s)
| | - Karla J. F. Satchell
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
9
|
Satchell KJ. Structure and Function of MARTX Toxins and Other Large Repetitive RTX Proteins. Annu Rev Microbiol 2011; 65:71-90. [DOI: 10.1146/annurev-micro-090110-102943] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Karla J.F. Satchell
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611;
| |
Collapse
|
10
|
Genotype is correlated with but does not predict virulence of Vibrio vulnificus biotype 1 in subcutaneously inoculated, iron dextran-treated mice. Infect Immun 2011; 79:1194-207. [PMID: 21199909 DOI: 10.1128/iai.01031-10] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Vibrio vulnificus is the leading cause of reported deaths from infections related to consumption of seafood in the United States. Affected predisposed individuals frequently die rapidly from sepsis. Otherwise healthy people can experience severe wound infection, which can lead to sepsis and death. A question is why, with so many people consuming contaminated raw oysters, the incidence of severe V. vulnificus disease is low. Molecular typing systems have shown associations of V. vulnificus genotypes and the environmental or clinical source of the strains, suggesting that different genotypes possess different virulence potentials. We examined 69 V. vulnificus biotype 1 strains that were genotyped by several methods and evaluated them for virulence in a subcutaneously inoculated iron dextran-treated mouse model. By examining the relationships between skin infection, systemic liver infection, and presumptive death (a decrease in body temperature), we determined that liver infection is predicated on severe skin infection and that death requires significant liver infection. Although most strains caused severe skin infection, not every strain caused systemic infection and death. Strains with polymorphisms at multiple loci (rrn, vcg, housekeeping genes, and repetitive DNA) designated profile 2 were more likely to cause lethal systemic infection with more severe indicators of virulence than were profile 1 strains with different polymorphisms at these loci. However, some profile 1 strains were lethal and some profile 2 strains did not cause systemic infection. Therefore, current genotyping schemes cannot strictly predict the virulence of V. vulnificus strains and further investigation is needed to identify virulence genes as markers of virulence.
Collapse
|
11
|
Gulig PA, Crécy-Lagard VD, Wright AC, Walts B, Telonis-Scott M, McIntyre LM. SOLiD sequencing of four Vibrio vulnificus genomes enables comparative genomic analysis and identification of candidate clade-specific virulence genes. BMC Genomics 2010; 11:512. [PMID: 20863407 PMCID: PMC3091676 DOI: 10.1186/1471-2164-11-512] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 09/24/2010] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Vibrio vulnificus is the leading cause of reported death from consumption of seafood in the United States. Despite several decades of research on molecular pathogenesis, much remains to be learned about the mechanisms of virulence of this opportunistic bacterial pathogen. The two complete and annotated genomic DNA sequences of V. vulnificus belong to strains of clade 2, which is the predominant clade among clinical strains. Clade 2 strains generally possess higher virulence potential in animal models of disease compared with clade 1, which predominates among environmental strains. SOLiD sequencing of four V. vulnificus strains representing different clades (1 and 2) and biotypes (1 and 2) was used for comparative genomic analysis. RESULTS Greater than 4,100,000 bases were sequenced of each strain, yielding approximately 100-fold coverage for each of the four genomes. Although the read lengths of SOLiD genomic sequencing were only 35 nt, we were able to make significant conclusions about the unique and shared sequences among the genomes, including identification of single nucleotide polymorphisms. Comparative analysis of the newly sequenced genomes to the existing reference genomes enabled the identification of 3,459 core V. vulnificus genes shared among all six strains and 80 clade 2-specific genes. We identified 523,161 SNPs among the six genomes. CONCLUSIONS We were able to glean much information about the genomic content of each strain using next generation sequencing. Flp pili, GGDEF proteins, and genomic island XII were identified as possible virulence factors because of their presence in virulent sequenced strains. Genomic comparisons also point toward the involvement of sialic acid catabolism in pathogenesis.
Collapse
Affiliation(s)
- Paul A Gulig
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Anita C Wright
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, Florida, USA
| | - Brandon Walts
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| | - Marina Telonis-Scott
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
- Department of Genetics, University of Melbourne, 3010 Australia
| | - Lauren M McIntyre
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
12
|
Froelich B, Ringwood A, Sokolova I, Oliver J. Uptake and depuration of the C- and E-genotypes of Vibrio vulnificus by the Eastern Oyster (Crassostrea virginica). ENVIRONMENTAL MICROBIOLOGY REPORTS 2010; 2:112-115. [PMID: 23766004 DOI: 10.1111/j.1758-2229.2009.00112.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The human pathogen Vibrio vulnificus is a Gram-negative estuarine bacterium that infect via wounds and ingestion, and is the leading cause of seafood-borne death in the United States. Vibrio vulnificus is part of the naturally occurring flora of both estuaries and estuarine mollusks (especially oysters). Vibrio vulnificus is divided into two genotypes, including a clinically associated C-type, and an environmentally associated E-type that is more rarely involved in septicemia. These two genotypes are found in a nearly even ratio in the aquatic environment, but oysters harvested from those very environments show a V. vulnificus genotype ratio disparity, with 87% of the species being that of the E-genotype. To determine if oysters selectively incorporate E-types over C-types, we placed oysters in water inoculated with either C- or E-type V. vulnificus strains that were phenotypically different from the normal flora and measured the uptake and depuration over a course of 6 days. We found significantly greater uptake, but equally effective depuration, of C-type V. vulnificus in oyster gill tissue, mantle tissue and whole oyster homogenates. Because uptake of the C-genotype was generally greater than the E-genotype, it appears unlikely that simple selective uptake is the cause of E-type V. vulnificus predominating in oysters.
Collapse
Affiliation(s)
- Brett Froelich
- The University of North Carolina at Charlotte; Charlotte, NC, USA
| | | | | | | |
Collapse
|
13
|
Srivastava M, Tucker MS, Gulig PA, Wright AC. Phase variation, capsular polysaccharide, pilus and flagella contribute to uptake ofVibrio vulnificusby the Eastern oyster (Crassostrea virginica). Environ Microbiol 2009; 11:1934-44. [DOI: 10.1111/j.1462-2920.2009.01916.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Roles of RseB, sigmaE, and DegP in virulence and phase variation of colony morphotype of Vibrio vulnificus. Infect Immun 2009; 77:3768-81. [PMID: 19564391 DOI: 10.1128/iai.00205-09] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio vulnificus is an estuarine bacterium capable of causing serious and often fatal wound infections and primary septicemia. We used alkaline phosphatase insertion mutagenesis to identify genes necessary for the virulence of this pathogen. One mutant had an in-frame fusion of 'phoA to the gene encoding RseB, a periplasmic negative regulator of the alternative sigma factor sigma(E). sigma(E) controls an extensive regulon involved in responding to cell envelope stresses. Colonies of the rseB mutant were less opaque than wild-type colonies and underwent phase variation between translucent and opaque morphologies. rseB mutants were attenuated for virulence in subcutaneously inoculated iron-dextran-treated mice. To obtain insight into the role of rseB and the extracytoplasmic stress response in V. vulnificus, mutants with defined mutations in rseB and two important members of the extracytoplasmic stress regulon, rpoE and degP, were constructed for analysis of virulence, colony morphology, and stress-associated phenotypes. Deletion of rseB caused reversible phase variation in the colony morphotype that was associated with extracellular polysaccharides. Translucent and transparent morphotype strains were attenuated for virulence. rpoE and degP deletion mutants were sensitive to membrane-perturbing agents and heat but were not significantly attenuated for V. vulnificus virulence in mice. These results reveal complex relationships between regulation of the extracytoplasmic stress response, exopolysaccharides, and the virulence of V. vulnificus.
Collapse
|
15
|
USER friendly cloning coupled with chitin-based natural transformation enables rapid mutagenesis of Vibrio vulnificus. Appl Environ Microbiol 2009; 75:4936-49. [PMID: 19502446 DOI: 10.1128/aem.02564-08] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio vulnificus is a bacterial contaminant of shellfish and causes highly lethal sepsis and destructive wound infections. A definitive identification of virulence factors using the molecular version of Koch's postulates has been hindered because of difficulties in performing molecular genetic analysis of this opportunistic pathogen. For example, conjugation is required to introduce plasmid DNA, and allelic exchange suicide vectors that rely on sucrose sensitivity for counterselection are not efficient. We therefore incorporated USER friendly cloning techniques into pCVD442-based allelic exchange suicide vectors and other expression vectors to enable the rapid and efficient capture of PCR amplicons. Upstream and downstream DNA sequences flanking genes targeted for deletion were cloned together in a single step. Based on results from Vibrio cholerae, we determined that V. vulnificus becomes naturally transformable with linear DNA during growth on chitin in the form of crab shells. By combining USER friendly cloning and chitin-based transformation, we rapidly and efficiently produced targeted deletions in V. vulnificus, bypassing the need for two-step, suicide vector-mediated allelic exchange. These methods were used to examine the roles of two flagellin loci (flaCDE and flaFBA), the motAB genes, and the cheY-3 gene in motility and to create deletions of rtxC, rtxA1, and fadR. Additionally, chitin-based transformation was useful in moving antibiotic resistance-labeled mutations between V. vulnificus strains by simply coculturing the strains on crab shells. The methods and genetic tools that we developed should be of general use to those performing molecular genetic analysis and manipulation of other gram-negative bacteria.
Collapse
|
16
|
|
17
|
Regulation of fatty acid metabolism by FadR is essential for Vibrio vulnificus to cause infection of mice. J Bacteriol 2008; 190:7633-44. [PMID: 18835990 DOI: 10.1128/jb.01016-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The opportunistic bacterial pathogen Vibrio vulnificus causes severe wound infection and fatal septicemia. We used alkaline phosphatase insertion mutagenesis in a clinical isolate of V. vulnificus to find genes necessary for virulence, and we identified fadR, which encodes a regulator of fatty acid metabolism. The fadR::mini-Tn5Km2phoA mutant was highly attenuated in a subcutaneously inoculated iron dextran-treated mouse model of V. vulnificus disease, was hypersensitive to the fatty acid synthase inhibitor cerulenin, showed aberrant expression of fatty acid biosynthetic (fab) genes and fatty acid oxidative (fad) genes, produced smaller colonies on agar media, and grew slower in rich broth than did the wild-type parent. Deletion of fadR essentially recapitulated the phenotypes of the insertion mutant, and the DeltafadR mutation was complemented in trans with the wild-type gene. Further characterization of the DeltafadR mutant showed that it was not generally hypersensitive to envelope stresses but had decreased motility and showed an altered membrane lipid profile compared to that of the wild type. Supplementation of broth with the unsaturated fatty acid oleate restored wild-type growth in vitro, and infection with oleate in the inoculum increased the ability of the DeltafadR mutant to infect mice. We conclude that fadR and regulation of fatty acid metabolism are essential for V. vulnificus to be able to cause disease in mammalian hosts.
Collapse
|
18
|
Global gene expression as a function of the iron status of the bacterial cell: influence of differentially expressed genes in the virulence of the human pathogen Vibrio vulnificus. Infect Immun 2008; 76:4019-37. [PMID: 18573903 DOI: 10.1128/iai.00208-08] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio vulnificus multiplies rapidly in host tissues under iron-overloaded conditions. To understand the effects of iron in the physiology of this pathogen, we performed a genome-wide transcriptional analysis of V. vulnificus growing at three different iron concentrations, i.e., iron-limiting [Trypticase soy broth with 1.5% NaCl (TSBS) plus ethylenediamine-di-(o-hydroxyphenylacetic) acid (EDDA)], low-iron (1 microg Fe/ml; TSBS), and iron-rich (38 microg Fe/ml; TSBS plus ferric ammonium citrate) concentrations. A few genes were upregulated under the last two conditions, while several genes were expressed differentially under only one of them. A gene upregulated under both conditions encodes the outer membrane porin, OmpH, while others are related to the biosynthesis of amino sugars. An ompH mutant showed sensitivity to sodium dodecyl sulfate (SDS) and polymyxin B and also had a reduced competitive index compared with the wild type in the iron-overloaded mice. Under iron-limiting conditions, two of the TonB systems involved in vulnibactin transport were induced. These genes were essential for virulence in the iron-overloaded mice inoculated subcutaneously, underscoring the importance of active iron transport in infection, even under the high-iron conditions of this animal model. Furthermore, we demonstrated that a RyhB homologue is also essential for virulence in the iron-overloaded mouse. This novel information on the role of genes induced under iron limitation in the iron-overloaded mouse model and the finding of new genes with putative roles in virulence that are expressed only under iron-rich conditions shed light on the many strategies used by this pathogen to multiply rapidly in the susceptible host.
Collapse
|
19
|
Further characterization of Vibrio vulnificus rugose variants and identification of a capsular and rugose exopolysaccharide gene cluster. Infect Immun 2008; 76:1485-97. [PMID: 18212074 DOI: 10.1128/iai.01289-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Capsular polysaccharide (CPS) is a major virulence factor in Vibrio vulnificus, and encapsulated strains have an opaque, smooth (OpS) colony morphology, while nonencapsulated strains have a translucent, smooth (TrS) colony morphology. Previously, we showed that OpS and TrS parental strains can yield a third colony type, rugose (R), and that the resulting strains, with the OpR and TrR phenotypes, respectively, form copious biofilms. Here we show that while OpR and TrR strains both produce three-dimensional biofilm structures that are indicative of rugose extracellular polysaccharide (rEPS) production, OpR strains also retain expression of CPS and are virulent in an iron-supplemented mouse model, while TrR strains lack CPS and are avirulent. Chlorine resistance assays further distinguished OpR and TrR isolates as exposure to 3 microg/ml NaOCl eradicated both OpS and OpR strains, while both TrS and TrR strains survived, but at rates which were significantly different from one another. Taken together, these results further emphasize the importance of CPS for virulence of V. vulnificus and establish a correlation between CPS expression and chlorine sensitivity in this organism. Using reverse transcriptase PCR, we also identified a nine-gene cluster associated with both CPS and rEPS expression in V. vulnificus, designated the wcr (capsular and rugose polysaccharide) locus, with expression occurring primarily in R variants. The latter results set the stage for characterization of functional determinants which individually or collectively contribute to expression of multiple EPS forms in this pathogen.
Collapse
|