1
|
Wang Y, Xiao J. Recent advances in the molecular understanding of immunoglobulin A. FEBS J 2024; 291:3597-3603. [PMID: 38329005 DOI: 10.1111/febs.17089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/11/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Immunoglobulin A (IgA) plays a crucial role in the human immune system, particularly in mucosal immunity. IgA antibodies that target the mucosal surface are made up of two to five IgA monomers linked together by the joining chain, forming polymeric molecules. These IgA polymers are transported across mucosal epithelial cells by the polymeric immunoglobulin receptor pIgR, resulting in the formation of secretory IgA (SIgA). This review aims to explore recent advancements in our molecular understanding of IgA, with a specific focus on SIgA, and the interaction between IgA and pathogen molecules.
Collapse
Affiliation(s)
- Yuxin Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Junyu Xiao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
2
|
Redzic JS, Rahkola J, Tran N, Holyoak T, Lee E, Martín-Galiano AJ, Meyer N, Zheng H, Eisenmesser E. A substrate-induced gating mechanism is conserved among Gram-positive IgA1 metalloproteases. Commun Biol 2022; 5:1190. [PMID: 36336763 PMCID: PMC9637739 DOI: 10.1038/s42003-022-04173-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022] Open
Abstract
The mucosal adaptive immune response is dependent on the production of IgA antibodies and particularly IgA1, yet opportunistic bacteria have evolved mechanisms to specifically block this response by producing IgA1 proteases (IgA1Ps). Our lab was the first to describe the structures of a metal-dependent IgA1P (metallo-IgA1P) produced from Gram-positive Streptococcus pneumoniae both in the absence and presence of its IgA1 substrate through cryo-EM single particle reconstructions. This prior study revealed an active-site gating mechanism reliant on substrate-induced conformational changes to the enzyme that begged the question of whether such a mechanism is conserved among the wider Gram-positive metallo-IgA1P subfamily of virulence factors. Here, we used cryo-EM to characterize the metallo-IgA1P of a more distantly related family member from Gemella haemolysans, an emerging opportunistic pathogen implicated in meningitis, endocarditis, and more recently bacteremia in the elderly. While the substrate-free structures of these two metallo-IgA1Ps exhibit differences in the relative starting positions of the domain responsible for gating substrate, the enzymes have similar domain orientations when bound to IgA1. Together with biochemical studies that indicate these metallo-IgA1Ps have similar binding affinities and activities, these data indicate that metallo-IgA1P binding requires the specific IgA1 substrate to open the enzymes for access to their active site and thus, largely conform to an "induced fit" model.
Collapse
Affiliation(s)
- Jasmina S Redzic
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO, 80045, USA
| | - Jeremy Rahkola
- Mucosal and Vaccine Research Program Colorado, Division of Infectious Disease, University of Colorado Denver School of Medicine and Denver Veterans Affairs Medical Center, Aurora, CO, 80045, USA
| | - Norman Tran
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Todd Holyoak
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Eunjeong Lee
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO, 80045, USA
| | | | - Nancy Meyer
- Pacific Northwest Cryo-EM Center, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Hongjin Zheng
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO, 80045, USA
| | - Elan Eisenmesser
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
3
|
Wang Z, Rahkola J, Redzic JS, Chi YC, Tran N, Holyoak T, Zheng H, Janoff E, Eisenmesser E. Mechanism and inhibition of Streptococcus pneumoniae IgA1 protease. Nat Commun 2020; 11:6063. [PMID: 33247098 PMCID: PMC7695701 DOI: 10.1038/s41467-020-19887-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/30/2020] [Indexed: 01/27/2023] Open
Abstract
Opportunistic pathogens such as Streptococcus pneumoniae secrete a giant metalloprotease virulence factor responsible for cleaving host IgA1, yet the molecular mechanism has remained unknown since their discovery nearly 30 years ago despite the potential for developing vaccines that target these enzymes to block infection. Here we show through a series of cryo-electron microscopy single particle reconstructions how the Streptococcus pneumoniae IgA1 protease facilitates IgA1 substrate recognition and how this can be inhibited. Specifically, the Streptococcus pneumoniae IgA1 protease subscribes to an active-site-gated mechanism where a domain undergoes a 10.0 Å movement to facilitate cleavage. Monoclonal antibody binding inhibits this conformational change, providing a direct means to block infection at the host interface. These structural studies explain decades of biological and biochemical studies and provides a general strategy to block Streptococcus pneumoniae IgA1 protease activity to potentially prevent infection.
Collapse
Affiliation(s)
- Zhiming Wang
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO, 80045, USA
| | - Jeremy Rahkola
- Mucosal and Vaccine Research Program Colorado, Division of Infectious Disease, University of Colorado Denver School of Medicine and Denver Veterans Affairs Medical Center, Aurora, CO, 80045, USA
| | - Jasmina S Redzic
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO, 80045, USA
| | - Ying-Chih Chi
- Cryo-EM Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Norman Tran
- Department of Biology, University of Waterloo, Waterloo, ON, Canada, N2L 3G1
| | - Todd Holyoak
- Department of Biology, University of Waterloo, Waterloo, ON, Canada, N2L 3G1
| | - Hongjin Zheng
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO, 80045, USA.
| | - Edward Janoff
- Mucosal and Vaccine Research Program Colorado, Division of Infectious Disease, University of Colorado Denver School of Medicine and Denver Veterans Affairs Medical Center, Aurora, CO, 80045, USA.
| | - Elan Eisenmesser
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
4
|
Binsker U, Lees JA, Hammond AJ, Weiser JN. Immune exclusion by naturally acquired secretory IgA against pneumococcal pilus-1. J Clin Invest 2020; 130:927-941. [PMID: 31687974 DOI: 10.1172/jci132005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023] Open
Abstract
Successful infection by mucosal pathogens requires overcoming the mucus barrier. To better understand this key step, we performed a survey of the interactions between human respiratory mucus and the human pathogen Streptococcus pneumoniae. Pneumococcal adherence to adult human nasal fluid was seen only by isolates expressing pilus-1. Robust binding was independent of pilus-1 adhesive properties but required Fab-dependent recognition of RrgB, the pilus shaft protein, by naturally acquired secretory IgA (sIgA). Pilus-1 binding by specific sIgA led to bacterial agglutination, but adherence required interaction of agglutinated pneumococci and entrapment in mucus particles. To test the effect of these interactions in vivo, pneumococci were preincubated with human sIgA before intranasal challenge in a mouse model of colonization. sIgA treatment resulted in rapid immune exclusion of pilus-expressing pneumococci. Our findings predict that immune exclusion would select for nonpiliated isolates in individuals who acquired RrgB-specific sIgA from prior episodes of colonization with piliated strains. Accordingly, genomic data comparing isolates carried by mothers and their children showed that mothers are less likely to be colonized with pilus-expressing strains. Our study provides a specific example of immune exclusion involving naturally acquired antibody in the human host, a major factor driving pneumococcal adaptation.
Collapse
|
5
|
Briles DE, Paton JC, Mukerji R, Swiatlo E, Crain MJ. Pneumococcal Vaccines. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0028-2018. [PMID: 31858954 PMCID: PMC10921951 DOI: 10.1128/microbiolspec.gpp3-0028-2018] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Indexed: 01/14/2023] Open
Abstract
Streptococcus pneumoniae is a Gram-Positive pathogen that is a major causative agent of pneumonia, otitis media, sepsis and meningitis across the world. The World Health Organization estimates that globally over 500,000 children are killed each year by this pathogen. Vaccines offer the best protection against S. pneumoniae infections. The current polysaccharide conjugate vaccines have been very effective in reducing rates of invasive pneumococcal disease caused by vaccine type strains. However, the effectiveness of these vaccines have been somewhat diminished by the increasing numbers of cases of invasive disease caused by non-vaccine type strains, a phenomenon known as serotype replacement. Since, there are currently at least 98 known serotypes of S. pneumoniae, it may become cumbersome and expensive to add many additional serotypes to the current 13-valent vaccine, to circumvent the effect of serotype replacement. Hence, alternative serotype independent strategies, such as vaccination with highly cross-reactive pneumococcal protein antigens, should continue to be investigated to address this problem. This chapter provides a comprehensive discussion of pneumococcal vaccines past and present, protein antigens that are currently under investigation as vaccine candidates, and other alternatives, such as the pneumococcal whole cell vaccine, that may be successful in reducing current rates of disease caused by S. pneumoniae.
Collapse
Affiliation(s)
- D E Briles
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - J C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, 5005, Australia
| | - R Mukerji
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - E Swiatlo
- Section of Infectious Diseases, Southeast Louisiana Veterans Health Care System, New Orleans, LA
| | - M J Crain
- Department of Pediatrics and Microbiology, University of Alabama at Birmingham
| |
Collapse
|
6
|
Dorosti H, Eslami M, Negahdaripour M, Ghoshoon MB, Gholami A, Heidari R, Dehshahri A, Erfani N, Nezafat N, Ghasemi Y. Vaccinomics approach for developing multi-epitope peptide pneumococcal vaccine. J Biomol Struct Dyn 2019; 37:3524-3535. [DOI: 10.1080/07391102.2018.1519460] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hesam Dorosti
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboobeh Eslami
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Bagher Ghoshoon
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Gholami
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Dehshahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasrollah Erfani
- Cancer Immunology Group, Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Nezafat
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Chi Y, Rahkola JT, Kendrick AA, Holliday MJ, Paukovich N, Roberts TS, Janoff EN, Eisenmesser EZ. Streptococcus pneumoniae IgA1 protease: A metalloprotease that can catalyze in a split manner in vitro. Protein Sci 2017; 26:600-610. [PMID: 28028839 PMCID: PMC5326571 DOI: 10.1002/pro.3110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 12/01/2016] [Accepted: 12/21/2016] [Indexed: 01/07/2023]
Abstract
IgA1 proteases (IgA1P) from diverse pathogenic bacteria specifically cleave human immunoglobulin A1 (IgA1) at the hinge region, thereby thwarting protective host immune responses. Streptococcus pneumoniae (S. pneumoniae) IgA1P shares no sequence conservation with serine or cysteine types of IgA1Ps or other known proteins, other than a conserved HExxH Zn-binding motif (1604-1608) found in metalloproteases. We have developed a novel expression system to produce the mature S. pneumoniae IgA1P and we have discovered that this form is both attached to the bacterial cell surface and released in its full form. Our data demonstrate that the S. pneumoniae IgA1P comprises two distinct regions that associate to form an active metalloprotease, the first such example of a metalloprotease that can be split in vitro and recombined to form an active enzyme. By capitalizing on this novel domain architecture, we show that the N-terminal region of S. pneumoniae IgA1P comprises the primary binding region for IgA1, although the C-terminal region of S. pneumoniae IgA1P is necessary for cleavage of IgA1. Our findings lend insight into the protein domain architecture of the S. pneumoniae IgA1P and function of this important virulence factor for S. pneumoniae infection.
Collapse
Affiliation(s)
- Ying‐Chih Chi
- Departments of Biochemistry and Molecular GeneticsUniversity of Colorado DenverAuroraCO
| | - Jeremy T. Rahkola
- Mucosal and Vaccine Research Program Colorado (MAVRC), University of Colorado DenverAuroraCO
- Denver Veterans Affairs Medical CenterDenverCO
| | - Agnieszka A. Kendrick
- Departments of Biochemistry and Molecular GeneticsUniversity of Colorado DenverAuroraCO
| | - Michael J. Holliday
- Departments of Biochemistry and Molecular GeneticsUniversity of Colorado DenverAuroraCO
| | - Natasia Paukovich
- Departments of Biochemistry and Molecular GeneticsUniversity of Colorado DenverAuroraCO
| | - Thomas S. Roberts
- Departments of Biochemistry and Molecular GeneticsUniversity of Colorado DenverAuroraCO
| | - Edward N. Janoff
- Mucosal and Vaccine Research Program Colorado (MAVRC), University of Colorado DenverAuroraCO
- Denver Veterans Affairs Medical CenterDenverCO
| | - Elan Z. Eisenmesser
- Departments of Biochemistry and Molecular GeneticsUniversity of Colorado DenverAuroraCO
| |
Collapse
|
8
|
Barnett TC, Cole JN, Rivera-Hernandez T, Henningham A, Paton JC, Nizet V, Walker MJ. Streptococcal toxins: role in pathogenesis and disease. Cell Microbiol 2015; 17:1721-41. [PMID: 26433203 DOI: 10.1111/cmi.12531] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/13/2015] [Accepted: 09/02/2015] [Indexed: 12/15/2022]
Abstract
Group A Streptococcus (Streptococcus pyogenes), group B Streptococcus (Streptococcus agalactiae) and Streptococcus pneumoniae (pneumococcus) are host-adapted bacterial pathogens among the leading infectious causes of human morbidity and mortality. These microbes and related members of the genus Streptococcus produce an array of toxins that act against human cells or tissues, resulting in impaired immune responses and subversion of host physiological processes to benefit the invading microorganism. This toxin repertoire includes haemolysins, proteases, superantigens and other agents that ultimately enhance colonization and survival within the host and promote dissemination of the pathogen.
Collapse
Affiliation(s)
- Timothy C Barnett
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Jason N Cole
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia.,Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Tania Rivera-Hernandez
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Anna Henningham
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia.,Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - James C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Victor Nizet
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Mark J Walker
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
9
|
Roche AM, Richard AL, Rahkola JT, Janoff EN, Weiser JN. Antibody blocks acquisition of bacterial colonization through agglutination. Mucosal Immunol 2015; 8:176-85. [PMID: 24962092 PMCID: PMC4268183 DOI: 10.1038/mi.2014.55] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/25/2014] [Indexed: 02/04/2023]
Abstract
Invasive infection often begins with asymptomatic colonization of mucosal surfaces. A murine model of bacterial colonization with Streptococcus pneumoniae was used to study the mechanism for mucosal protection by immunoglobulin. In previously colonized immune mice, bacteria were rapidly sequestered within large aggregates in the nasal lumen. To further examine the role of bacterial agglutination in protection by specific antibodies, mice were passively immunized with immunoglobulin G (IgG) purified from antipneumococcal sera or pneumococcal type-specific monoclonal human IgA (hIgA1 or hIgA2). Systemically delivered IgG accessed the mucosal surface and blocked acquisition of colonization and transmission between littermates. Optimal protection by IgG was independent of Fc fragment and complement and, therefore, did not involve an opsonophagocytic mechanism. Enzymatic digestion or reduction of IgG before administration showed that protection required divalent binding that maintained its agglutinating effect. Divalent hIgA1 is cleaved by the pneumococcal member of a family of bacterial proteases that generate monovalent Fabα fragments. Thus, passive immunization with hIgA1 blocked colonization by an IgA1-protease-deficient mutant (agglutinated) but not the protease-producing wild-type parent (not agglutinated), whereas protease-resistant hIgA2 agglutinated and blocked colonization by both. Our findings highlight the importance of agglutinating antibodies in mucosal defense and reveal how successful pathogens evade this effect.
Collapse
Affiliation(s)
- A. M. Roche
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA
| | - A. L. Richard
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA
| | - J. T. Rahkola
- Mucosal and Vaccine Research Program Colorado (MAVRC), Division of Infectious Disease, University of Colorado Denver, Aurora, CO; Denver Veterans Affairs Medical Center, Denver, CO
| | - E. N. Janoff
- Mucosal and Vaccine Research Program Colorado (MAVRC), Division of Infectious Disease, University of Colorado Denver, Aurora, CO; Denver Veterans Affairs Medical Center, Denver, CO
| | - J. N. Weiser
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
10
|
Duran-Pinedo AE, Chen T, Teles R, Starr JR, Wang X, Krishnan K, Frias-Lopez J. Community-wide transcriptome of the oral microbiome in subjects with and without periodontitis. ISME JOURNAL 2014; 8:1659-72. [PMID: 24599074 DOI: 10.1038/ismej.2014.23] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 01/10/2014] [Accepted: 01/20/2014] [Indexed: 01/05/2023]
Abstract
Despite increasing knowledge on phylogenetic composition of the human microbiome, our understanding of the in situ activities of the organisms in the community and their interactions with each other and with the environment remains limited. Characterizing gene expression profiles of the human microbiome is essential for linking the role of different members of the bacterial communities in health and disease. The oral microbiome is one of the most complex microbial communities in the human body and under certain circumstances, not completely understood, the healthy microbial community undergoes a transformation toward a pathogenic state that gives rise to periodontitis, a polymicrobial inflammatory disease. We report here the in situ genome-wide transcriptome of the subgingival microbiome in six periodontally healthy individuals and seven individuals with periodontitis. The overall picture of metabolic activities showed that iron acquisition, lipopolysaccharide synthesis and flagellar synthesis were major activities defining disease. Unexpectedly, the vast majority of virulence factors upregulated in subjects with periodontitis came from organisms that are not considered major periodontal pathogens. One of the organisms whose gene expression profile was characterized was the uncultured candidate division TM7, showing an upregulation of putative virulence factors in the diseased community. These data enhance understanding of the core activities that are characteristic of periodontal disease as well as the role that individual organisms in the subgingival community play in periodontitis.
Collapse
Affiliation(s)
| | - Tsute Chen
- 1] Department of Microbiology, Forsyth Institute, Cambridge, MA, USA [2] Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, MA, USA
| | - Ricardo Teles
- 1] Department of Microbiology, Forsyth Institute, Cambridge, MA, USA [2] Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, MA, USA
| | - Jacqueline R Starr
- 1] Department of Microbiology, Forsyth Institute, Cambridge, MA, USA [2] Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, MA, USA
| | - Xiaoshan Wang
- 1] Department of Microbiology, Forsyth Institute, Cambridge, MA, USA [2] Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, MA, USA
| | | | - Jorge Frias-Lopez
- 1] Department of Microbiology, Forsyth Institute, Cambridge, MA, USA [2] Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, MA, USA
| |
Collapse
|
11
|
Janoff EN, Rubins JB, Fasching C, Charboneau D, Rahkola JT, Plaut AG, Weiser JN. Pneumococcal IgA1 protease subverts specific protection by human IgA1. Mucosal Immunol 2014; 7:249-56. [PMID: 23820749 PMCID: PMC4456019 DOI: 10.1038/mi.2013.41] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 05/17/2013] [Indexed: 02/04/2023]
Abstract
Bacterial immunoglobulin A1 (IgA1) proteases may sabotage the protective effects of IgA. In vitro, both exogenous and endogenously produced IgA1 protease inhibited phagocytic killing of Streptococcus pneumoniae by capsule-specific IgA1 human monoclonal antibodies (hMAbs) but not IgA2. These IgA1 proteases cleaved and reduced binding of the the effector Fcα1 heavy chain but not the antigen-binding F(ab)/light chain to pneumococcal surfaces. In vivo, IgA1 protease-resistant IgA2, but not IgA1 protease-sensitive IgA1, supported 60% survival in mice infected with wild-type S. pneumoniae. IgA1 hMAbs protected mice against IgA1 protease-deficient but not -producing pneumococci. Parallel mouse sera with human IgA2 showed more efficient complement-mediated reductions in pneumococci with neutrophils than did IgA1, particularly with protease-producing organisms. After natural human pneumococcal bacteremia, purified serum IgG inhibited IgA1 protease activity in 7 of 11 patients (64%). These observations provide the first evidence in vivo that IgA1 protease can circumvent killing of S. pneumoniae by human IgA. Acquisition of IgA1 protease-neutralizing IgG after infection directs attention to IgA1 protease both as a determinant of successful colonization and infection and as a potential vaccine candidate.
Collapse
Affiliation(s)
- Edward N. Janoff
- Mucosal and Vaccine Research Colorado (MAVRC), University of Colorado Denver, Infectious Diseases, Aurora, CO 80045
| | - Jeffrey B. Rubins
- University of Minnesota School of Medicine, Minneapolis, Minnesota Denver Veterans Affairs Medical Center, Denver, CO 80220
| | - Claudine Fasching
- Veterans Affairs Medical Center Denver Veterans Affairs Medical Center, Denver, CO 80220
| | - Darlene Charboneau
- University of Minnesota School of Medicine, Minneapolis, Minnesota Denver Veterans Affairs Medical Center, Denver, CO 80220
| | - Jeremy T. Rahkola
- Mucosal and Vaccine Research Colorado (MAVRC), University of Colorado Denver, Infectious Diseases, Aurora, CO 80045
| | - Andrew G. Plaut
- Department of Medicine and Division of Gastroenterology, Tufts-New England Medical Center, Boston, Massachusetts
| | - Jeffrey N. Weiser
- Departments of Microbiology and Pediatrics University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
12
|
Garner AL, Fullagar JL, Day JA, Cohen SM, Janda KD. Development of a high-throughput screen and its use in the discovery of Streptococcus pneumoniae immunoglobulin A1 protease inhibitors. J Am Chem Soc 2013; 135:10014-7. [PMID: 23808771 DOI: 10.1021/ja404180x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Streptococcus pneumoniae relies on a number of virulence factors, including immunoglobulin A1 protease (IgA1P), a Zn(2+) metalloprotease produced on the extracellular surface of the bacteria, to promote pathogenic colonization. IgA1P exhibits a unique function, in that it catalyzes the proteolysis of human IgA1 at its hinge region to leave the bacterial cell surface masked by IgA1 Fab, enabling the bacteria to evade the host's immune system and adhere to host epithelial cells to promote colonization. Thus, S. pneumoniae IgA1P has emerged as a promising antibacterial target; however, the lack of an appropriate screening assay has limited the investigation of this metalloprotease virulence factor. Relying on electrostatics-mediated AuNP aggregation, we have designed a promising high-throughput colorimetric assay for IgA1P. By using this assay, we have uncovered inhibitors of the enzyme that should be useful in deciphering its role in pneumococcal colonization and virulence.
Collapse
Affiliation(s)
- Amanda L Garner
- Department of Chemistry, The Skaggs Institute for Chemical Biology, and The Worm Institute for Research and Medicine, The Scripps Research Institute, University of California, San Diego, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
13
|
Surewaard BGJ, Trzciński K, Jacobino SR, Hansen IS, Vughs MM, Sanders EAM, van der Ende A, van Strijp JAG, de Haas CJC. Pneumococcal immune evasion: ZmpC inhibits neutrophil influx. Cell Microbiol 2013; 15:1753-65. [PMID: 23601501 DOI: 10.1111/cmi.12147] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/21/2013] [Accepted: 04/04/2013] [Indexed: 12/24/2022]
Abstract
Neutrophil recruitment is essential in clearing pneumococcal infections. The first step in neutrophil extravasation involves the interaction between P-selectin on activated endothelium and P-Selectin Glycoprotein 1 (PSGL-1) on neutrophils. Here, we identify pneumococcal Zinc metalloproteinase C as a potent inhibitor of PSGL-1. ZmpC degrades the N-terminal domain of PSGL-1, thereby disrupting the initial rolling of neutrophils on activated human umbilical vein endothelial cells. Furthermore, mice infected with wild-type strain in the model of pneumococcal pneumonia showed lower lungs neutrophil infiltration compare to animals infected with ZmpC mutant. In addition, we confirmed the association of zmpC with serotype 8 and 11A and found it to be associated with serotype 33F as well. In conclusion, wereport PSGL-1 as a novel target for ZmpC and show that ZmpC inhibits neutrophil extravasation during pneumococcal pneumonia.
Collapse
Affiliation(s)
- Bas G J Surewaard
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Weiser JN. The battle with the host over microbial size. Curr Opin Microbiol 2013; 16:59-62. [PMID: 23395472 DOI: 10.1016/j.mib.2013.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 11/01/2012] [Accepted: 01/08/2013] [Indexed: 11/29/2022]
Abstract
An eponymous feature of microbes is their small size, and size affects their pathogenesis. The recognition of microbes by host factors, for example, is often dependent on the density and number of molecular interactions occurring over a limited surface area. As a consequence, certain antimicrobial substances, such as complement, appear to target particles with a larger surface area more effectively. Although microbes may inhibit these antimicrobial activities by minimizing their effective size, the host uses defenses such as agglutination by immunoglobulin to counteract this microbial evasion strategy. Some successful pathogens in turn are able to prevent immune mediated clearance by expressing virulence factors that block agglutination. Thus, microbial size is one of the battlegrounds between microbial survival and host defense.
Collapse
Affiliation(s)
- Jeffrey N Weiser
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, United States.
| |
Collapse
|
15
|
The ABC transporter encoded at the pneumococcal fructooligosaccharide utilization locus determines the ability to utilize long- and short-chain fructooligosaccharides. J Bacteriol 2012; 195:1031-41. [PMID: 23264576 DOI: 10.1128/jb.01560-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Streptococcus pneumoniae is an important human pathogen that requires carbohydrates for growth. The significance of carbohydrate acquisition is highlighted by the genome encoding more than 27 predicted carbohydrate transporters. It has long been known that about 60% of pneumococci could utilize the fructooligosaccharide inulin as a carbohydrate source, but the mechanism of utilization was unknown. Here we demonstrate that a predicted sucrose utilization locus is actually a fructooligosaccharide utilization locus and imparts the ability of pneumococci to utilize inulin. Genes in strain TIGR4 predicted to encode an ABC transporter (SP_1796-8) and a β-fructosidase (SP_1795) are required for utilization of several fructooligosaccharides longer than kestose, which consists of two β(2-1)-linked fructose molecules with a terminal α(1-2)-linked glucose molecule. Similar to other characterized pneumococcal carbohydrate utilization transporter family 1 transporters, growth is dependent on the gene encoding the ATPase MsmK. While the majority of pneumococcal strains encode SP_1796-8 at this genomic location, 19% encode an alternative transporter. Although strains encoding either transporter can utilize short-chain fructooligosaccharides for growth, only strains encoding SP_1796-8 can utilize inulin. Exchange of genes encoding the SP_1796-8 transporter for those encoding the alternative transporter resulted in a TIGR4 strain that could utilize short-chain fructooligosaccharide but not inulin. These data demonstrate that the transporter encoded at this locus determines the ability of the bacteria to utilize long-chain fructooligosaccharides and explains the variation in inulin utilization between pneumococcal strains.
Collapse
|
16
|
Menon BB, Govindarajan B. Identification of an atypical zinc metalloproteinase, ZmpC, from an epidemic conjunctivitis-causing strain of Streptococcus pneumoniae. Microb Pathog 2012; 56:40-6. [PMID: 23168398 DOI: 10.1016/j.micpath.2012.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/08/2012] [Indexed: 11/26/2022]
Abstract
Streptococcus pneumoniae is a pathogen associated with a range of invasive and noninvasive infections. Despite the identification of the majority of virulence factors expressed by S. pneumoniae, knowledge of the strategies used by this bacterium to trigger infections, especially those originating at wet-surfaced epithelia, remains limited. In this regard, we recently reported a mechanism used by a nonencapsulated, epidemic conjunctivitis-causing strain of S. pneumoniae (strain SP168) to gain access into ocular surface epithelial cells. Mechanistically, strain SP168 secretes a zinc metalloproteinase, encoded by a truncated zmpC gene, to cleave off the ectodomain of a vital defense component - the membrane mucin MUC16 - from the apical glycocalyx barrier of ocular surface epithelial cells and, thereby invades underlying epithelial cells. Here, we compare the truncated SP168 ZmpC to its highly conserved archetype from S. pneumoniae serotype 4 (TIGR4), which has been linked to pneumococcal virulence in previous studies. Comparative nucleotide sequence analyses revealed that the zmpC gene corresponding to strain SP168 has two stretches of DNA deleted near its 5' end. A third 3 bp in-frame deletion, resulting in the elimination of an alanine residue, was found towards the middle segment of the SP168 zmpC. Closer examination of the primary structure revealed that the SP168 ZmpC lacks the canonical LPXTG motif - a signature typical of several surface proteins of gram-positive bacteria and of other pneumococcal zinc metalloproteinases. Surprisingly, in vitro assays performed using recombinant forms of ZmpC indicated that the truncated SP168 ZmpC induces more cleavage of the MUC16 ectodomain than its TIGR4 counterpart. This feature may help explain, in part, why S. pneumoniae strain SP168 is better equipped at abrogating the MUC16 glycocalyx barrier en route to causing epidemic conjunctivitis.
Collapse
Affiliation(s)
- Balaraj B Menon
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford St., Boston, MA 02114, USA.
| | | |
Collapse
|
17
|
Occurrence and evolution of the paralogous zinc metalloproteases IgA1 protease, ZmpB, ZmpC, and ZmpD in Streptococcus pneumoniae and related commensal species. mBio 2012; 3:mBio.00303-12. [PMID: 23033471 PMCID: PMC3518915 DOI: 10.1128/mbio.00303-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The distribution, genome location, and evolution of the four paralogous zinc metalloproteases, IgA1 protease, ZmpB, ZmpC, and ZmpD, in Streptococcus pneumoniae and related commensal species were studied by in silico analysis of whole genomes and by activity screening of 154 representatives of 20 species. ZmpB was ubiquitous in the Mitis and Salivarius groups of the genus Streptococcus and in the genera Gemella and Granulicatella, with the exception of a fragmented gene in Streptococcus thermophilus, the only species with a nonhuman habitat. IgA1 protease activity was observed in all members of S. pneumoniae, S. pseudopneumoniae, S. oralis, S. sanguinis, and Gemella haemolysans, was variably present in S. mitis and S. infantis, and absent in S. gordonii, S. parasanguinis, S. cristatus, S. oligofermentans, S. australis, S. peroris, and S. suis. Phylogenetic analysis of 297 zmp sequences and representative housekeeping genes provided evidence for an unprecedented selection for genetic diversification of the iga, zmpB, and zmpD genes in S. pneumoniae and evidence of very frequent intraspecies transfer of entire genes and combination of genes. Presumably due to their adaptation to a commensal lifestyle, largely unaffected by adaptive mucosal immune factors, the corresponding genes in commensal streptococci have remained conserved. The widespread distribution and significant sequence diversity indicate an ancient origin of the zinc metalloproteases predating the emergence of the humanoid species. zmpB, which appears to be the ancestral gene, subsequently duplicated and successfully diversified into distinct functions, is likely to serve an important but yet unknown housekeeping function associated with the human host. The paralogous zinc metalloproteases IgA1 protease, ZmpB, ZmpC, and ZmpD have been identified as crucial for virulence of the human pathogen Streptococcus pneumoniae. This study maps the presence of the corresponding genes and enzyme activities in S. pneumoniae and in related commensal species of the genera Streptococcus, Gemella, and Granulicatella. The distribution, genome location, and sequence diversification indicate that zmpB is the ancestral gene predating the evolution of today’s humanoid species. The ZmpB protease may play an important but yet unidentified role in the association of streptococci of the Mitis and Salivarius groups with their human host, as it is ubiquitous in these two groups, except for a fragmented gene in Streptococcus thermophilus, the only species not associated with humans. The relative sequence diversification of the IgA1 protease, ZmpB, and ZmpD is striking evidence of differences in selection for diversification of these surface-exposed proteins in the pathogen S. pneumoniae compared to the closely related commensal streptococci.
Collapse
|
18
|
Maddocks SE, Wright CJ, Nobbs AH, Brittan JL, Franklin L, Strömberg N, Kadioglu A, Jepson MA, Jenkinson HF. Streptococcus pyogenes antigen I/II-family polypeptide AspA shows differential ligand-binding properties and mediates biofilm formation. Mol Microbiol 2011; 81:1034-49. [PMID: 21736640 PMCID: PMC3178794 DOI: 10.1111/j.1365-2958.2011.07749.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2011] [Indexed: 12/19/2022]
Abstract
The streptococcal antigen I/II (AgI/II)-family polypeptides are cell wall-anchored adhesins expressed by most indigenous oral streptococci. Proteins sharing 30-40% overall amino acid sequence similarities with AgI/II-family proteins are also expressed by Streptococcus pyogenes. The S. pyogenes M28_Spy1325 polypeptide (designated AspA) displays an AgI/II primary structure, with alanine-rich (A) and proline-rich (P) repeats flanking a V region that is projected distal from the cell. In this study it is shown that AspA from serotype M28 S. pyogenes, when expressed on surrogate host Lactococcus lactis, confers binding to immobilized salivary agglutinin gp-340. This binding was blocked by antibodies to the AspA-VP region. In contrast, the N-terminal region of AspA was deficient in binding fluid-phase gp-340, and L. lactis cells expressing AspA were not agglutinated by gp-340. Deletion of the aspA gene from two different M28 strains of S. pyogenes abrogated their abilities to form biofilms on saliva-coated surfaces. In each mutant strain, biofilm formation was restored by trans complementation of the aspA deletion. In addition, expression of AspA protein on the surface of L. lactis conferred biofilm-forming ability. Taken collectively, the results provide evidence that AspA is a biofilm-associated adhesin that may function in host colonization by S. pyogenes.
Collapse
Affiliation(s)
- Sarah E Maddocks
- School of Oral and Dental Sciences, University of BristolBristol BS1 2LY, UK.
| | | | - Angela H Nobbs
- School of Oral and Dental Sciences, University of BristolBristol BS1 2LY, UK.
| | - Jane L Brittan
- School of Oral and Dental Sciences, University of BristolBristol BS1 2LY, UK.
| | - Linda Franklin
- School of Oral and Dental Sciences, University of BristolBristol BS1 2LY, UK.
| | | | - Aras Kadioglu
- Department of Infection, Immunity and Inflammation, University of LeicesterLeicester LE1 9HN, UK.
| | - Mark A Jepson
- Wolfson Bioimaging Facility, and School of Biochemistry, University of BristolBristol BS8 1TD, UK.
| | - Howard F Jenkinson
- School of Oral and Dental Sciences, University of BristolBristol BS1 2LY, UK.
| |
Collapse
|
19
|
Abstract
Streptococcus pneumoniae is a major cause of pneumonia and meningitis. Airway colonization is a necessary precursor to disease, but little is known about how the bacteria establish and maintain colonization. Carbohydrates are required as a carbon source for pneumococcal growth and, therefore, for colonization. Free carbohydrates are not readily available in the naso-oropharynx; however, N- and O-linked glycans are common in the airway. Sialic acid is the most common terminal modification on N- and O-linked glycans and is likely encountered frequently by S. pneumoniae in the airway. Here we demonstrate that sialic acid supports pneumococcal growth when provided as a sole carbon source. Growth on sialic acid requires import into the bacterium. Three genetic regions have been proposed to encode pneumococcal sialic acid transporters: one sodium solute symporter and two ATP binding cassette (ABC) transporters. Data demonstrate that one of these, satABC, is required for transport of sialic acid. A satABC mutant displayed significantly reduced growth on both sialic acid and the human glycoprotein alpha-1. The importance of satABC for growth on human glycoprotein suggests that sialic acid transport may be important in vivo. Indeed, the satABC mutant was significantly reduced in colonization of the murine upper respiratory tract. This work demonstrates that S. pneumoniae is able to use sialic acid as a sole carbon source and that utilization of sialic acid is likely important during pneumococcal colonization.
Collapse
|
20
|
The expression of soluble and active recombinant Haemophilus influenzae IgA1 protease in E. coli. J Biomed Biotechnol 2010; 2010:253983. [PMID: 21151648 PMCID: PMC2995913 DOI: 10.1155/2010/253983] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 10/04/2010] [Indexed: 01/08/2023] Open
Abstract
Immunoglobulin A1 (IgA1) proteases from Haemophilus influenzae are extracellular proteases that specifically cleave the hinge region of human IgA1, the predominant class of immunoglobulin present on mucosal membranes. The IgA1 proteases may have the potential to cleave IgA1 complexes in the kidney and be a therapeutic agent for IgA1 nephropathy (IgAN), a disease characterized by deposition of the IgA1 antibody in the glomerulus. We have screened for the expression of recombinant H. influenzae IgA1 protease by combining various expression plasmids, IgA1 protease constructs, and E. coli strains under multiple conditions. Using the method we have developed, approximately 20–40 mg/L of soluble and active H. influenzae IgA1 protease can be produced from E. coli strain C41(DE3), a significant increase in yield compared to the yield upon expression in H. influenzae or other related bacteria.
Collapse
|
21
|
Khare B, Samal A, Vengadesan K, Rajashankar KR, Ma X, Huang IH, Ton-That H, Narayana SVL. Preliminary crystallographic study of the Streptococcus agalactiae sortases, sortase A and sortase C1. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:1096-100. [PMID: 20823536 DOI: 10.1107/s1744309110031106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Accepted: 08/03/2010] [Indexed: 11/10/2022]
Abstract
Sortases are cysteine transpeptidases that are essential for the assembly and anchoring of cell-surface adhesins in Gram-positive bacteria. In Streptococcus agalactiae (GBS), the pilin-specific sortase SrtC1 catalyzes the polymerization of pilins encoded by pilus island 1 (PI-1) and the housekeeping sortase SrtA is necessary for cell-wall anchoring of the resulting pilus polymers. These sortases are known to utilize different substrates for pilus polymerization and cell-wall anchoring; however, the structural correlates that dictate their substrate specificity have not yet been clearly defined. This report presents the expression, purification and crystallization of SrtC1 (SAG0647) and SrtA (SAG0961) from S. agalactiae strain 2603V/R. The GBS SrtC1 has been crystallized in three crystal forms and the GBS SrtA has been crystallized in one crystal form.
Collapse
Affiliation(s)
- Baldeep Khare
- Center for Biophysical Sciences and Engineering, School of Optometry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Egan SA, Kurian D, Ward PN, Hunt L, Leigh JA. Identification of sortase A (SrtA) substrates in Streptococcus uberis: evidence for an additional hexapeptide (LPXXXD) sorting motif. J Proteome Res 2010; 9:1088-95. [PMID: 20038184 DOI: 10.1021/pr901025w] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Sortase (a transamidase) has been shown to be responsible for the covalent attachment of proteins to the bacterial cell wall. Anchoring is effected on secreted proteins containing a specific cell wall motif toward their C-terminus; that for sortase A (SrtA) in Gram-positive bacteria often incorporates the sequence LPXTG. Such surface proteins are often characterized as virulence determinants and play important roles during the establishment and persistence of infection. Intramammary infection with Streptococcus uberis is a common cause of bovine mastitis, which impacts on animal health and welfare and the economics of milk production. Comparison of stringently produced cell wall fractions from S. uberis and an isogenic mutant strain lacking SrtA permitted identification of 9 proteins likely to be covalently anchored at the cell surface. Analysis of these sequences implied the presence of two anchoring motifs for S. uberis, the classical LPXTG motif and an additional LPXXXD motif.
Collapse
Affiliation(s)
- Sharon A Egan
- The School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire LE12 5RD, United Kingdom
| | | | | | | | | |
Collapse
|
24
|
Weiser JN. The pneumococcus: why a commensal misbehaves. J Mol Med (Berl) 2009; 88:97-102. [PMID: 19898768 DOI: 10.1007/s00109-009-0557-x] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 10/14/2009] [Accepted: 10/19/2009] [Indexed: 10/20/2022]
Abstract
Several characteristics of Streptococcus pneumoniae (pneumococcus) combine to make it a particularly problematic pathogen. Firstly, the pneumococcus has the capacity to cause disease through the expression of virulence factors such as its polysaccharide capsule and pore-forming toxin. In addition, the pneumococcus is highly adaptable as demonstrated by its ability to acquire and disseminate resistance to multiple antibiotics. Although the pneumococcus is a major cause of disease, the organism is most commonly an "asymptomatic" colonizer of its human host (the carrier state), with transmission occurring exclusively from this reservoir of commensal organisms. Thus, it is unclear how the organism's virulence and adaptability promote its persistence or host to host spread during its carrier state. This review summarizes current understanding of how these characteristics may contribute to the commensal lifestyle of the pneumococcus.
Collapse
Affiliation(s)
- Jeffrey N Weiser
- Department of Microbiology and Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
25
|
Abstract
It has previously been shown that a approximately 27 kDa serine protease of Schistosoma mansoni larvae, the cercarial elastase (CE), was a poor immunogen in as much as it failed to induce an antibody response. The CE has a critical role in enabling schistosome larvae to penetrate the skin of their definitive hosts, so the apparently poor immunogenicity of this enzyme is clearly of interest. To understand its lack of immunogenicity better and in particular to determine whether it is related to its proteolytic activity, we have measured antibody responses of mice to three different serine proteases. Groups of mice were immunized with porcine pancreatic trypsin (TRY), chymotrypsin (CHY) or elastase (ELA) and the resulting antibody response compared with antibody responses to two non-protease antigens, chicken egg albumin (OVA) and Schistosoma japonicum glutathione S-transferase (GST), all being administered with alum as an adjuvant. Of 12 mice that were injected five times at 14 day intervals with TRY, only one produced antibody reactive with this enzyme in ELISA. Immunizations with CHY or ELA induced somewhat better antibody responses than TRY, but the responses to the first and second injections of these two proteases nevertheless seemed comparatively lower than the responses to GST. Induction of antibody responses by OVA and GST was not affected when TRY was injected concomitantly. Thus, the antibody response to one of the serine proteases used in this study, mammalian trypsin, was anomalous.
Collapse
Affiliation(s)
- H Y Darani
- Department of Parasitology, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | | |
Collapse
|
26
|
Abstract
Colonization of the airway by Streptococcus pneumoniae is typically asymptomatic; however, progression of bacteria beyond the oronasopharynx can cause diseases including otitis media and pneumonia. The mechanisms by which S. pneumoniae establishes and maintains colonization remain poorly understood. Both N-linked and O-linked glycans are abundant in the airway. Our previous research demonstrated that S. pneumoniae can sequentially deglycosylate N-linked glycans and suggested that this modification of sugar structures may aid in colonization. There is published evidence that S. pneumoniae expresses a secreted O-glycosidase that cleaves galactose beta1-3 N-acetylgalactosamine (Galbeta1-3GalNAc) from core-1 O-linked glycans; however, the biological function of this enzyme has not previously been determined. We established that the activity is not secreted but is instead surface associated in a sortase-dependent manner. Genome analysis revealed an open reading frame predicted to encode a sortase-dependent surface protein with sequence similarity to the O-glycosidase of Bifidobacterium longum. Deletion of this pneumococcal open reading frame confirmed that this gene encodes an O-glycosidase. Experiments using a model glycoconjugate demonstrated that this O-glycosidase, together with the neuraminidase NanA, is required for S. pneumoniae to cleave sialylated core-1 O-linked glycans. The ability of the O-glycosidase mutant to cleave this glycan structure was restored by both genetic complementation and the addition of O-glycosidase. The mutant showed a reduction in adherence to human airway epithelial cells and a significantly decreased ability to colonize the upper respiratory tract, suggesting that cleavage of core-1 O-linked glycans enhances the ability of S. pneumoniae to colonize the human airway.
Collapse
|
27
|
Dramsi S, Magnet S, Davison S, Arthur M. Covalent attachment of proteins to peptidoglycan. FEMS Microbiol Rev 2008; 32:307-20. [PMID: 18266854 DOI: 10.1111/j.1574-6976.2008.00102.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Bacterial surface proteins are key players in host-symbiont or host-pathogen interactions. How these proteins are targeted and displayed at the cell surface are challenging issues of both fundamental and clinical relevance. While surface proteins of Gram-negative bacteria are assembled in the outer membrane, Gram-positive bacteria predominantly utilize their thick cell wall as a platform to anchor their surface proteins. This surface display involves both covalent and noncovalent interactions with either the peptidoglycan or secondary wall polymers such as teichoic acid or lipoteichoic acid. This review focuses on the role of enzymes that covalently link surface proteins to the peptidoglycan, the well-known sortases in Gram-positive bacteria, and the recently characterized l,d-transpeptidases in Gram-negative bacteria.
Collapse
Affiliation(s)
- Shaynoor Dramsi
- Unité de Biologie des Bactéries Pathogènes à Gram-positif, Institut Pasteur, Paris, France.
| | | | | | | |
Collapse
|
28
|
De Paolis F, Beghetto E, Spadoni A, Montagnani F, Felici F, Oggioni MR, Gargano N. Identification of a human immunodominant B-cell epitope within the immunoglobulin A1 protease of Streptococcus pneumoniae. BMC Microbiol 2007; 7:113. [PMID: 18088426 PMCID: PMC2225412 DOI: 10.1186/1471-2180-7-113] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 12/18/2007] [Indexed: 11/16/2022] Open
Abstract
Background The IgA1 protease of Streptococcus pneumoniae is a proteolytic enzyme that specifically cleaves the hinge regions of human IgA1, which dominates most mucosal surfaces and is the major IgA isotype in serum. This protease is expressed in all of the known pneumococcal strains and plays a major role in pathogen's resistance to the host immune response. The present work was focused at identifying the immunodominant regions of pneumococcal IgA1 protease recognized by the human antibody response. Results An antigenic sequence corresponding to amino acids 420–457 (epiA) of the iga gene product was identified by screening a pneumococcal phage display library with patients' sera. The epiA peptide is conserved in all pneumococci and in two out of three S. mitis strains, while it is not present in other oral streptococci so far sequenced. This epitope was specifically recognized by antibodies present in sera from 90% of healthy adults, thus representing an important target of the humoral response to S. pneumoniae and S. mitis infection. Moreover, sera from 68% of children less than 4 years old reacted with the epiA peptide, indicating that the human immune response against streptococcal antigens occurs during childhood. Conclusion The broad and specific recognition of the epiA polypeptide by human sera demonstrate that the pneumococcal IgA1 protease contains an immunodominant B-cell epitope. The use of phage display libraries to identify microbe or disease-specific antigens recognized by human sera is a valuable approach to epitope discovery.
Collapse
|
29
|
Growth of Streptococcus pneumoniae on human glycoconjugates is dependent upon the sequential activity of bacterial exoglycosidases. J Bacteriol 2007; 190:221-30. [PMID: 17981977 DOI: 10.1128/jb.01251-07] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the human host, Streptococcus pneumoniae encounters a variety of glycoconjugates, including mucin, host defense molecules, and glycans associated with the epithelial surface. S. pneumoniae is known to encode a number of glycosidases that may modify these glycoconjugates in vivo. Three exoglycosidases, a neuraminidase (NanA), beta-galactosidase (BgaA), and N-acetylglucosaminidase (StrH), have been previously demonstrated to sequentially deglycosylate N-linked glycans on host defense molecules, which coat the pneumococcal surface in vivo. This cleavage is proposed to alter the clearance function of these molecules, allowing pneumococci to persist in the airway. However, we propose that the exoglycosidase-dependent liberation of monosaccharides from these glycoconjugates in close proximity to the pneumococcal surface provides S. pneumoniae with a convenient source of fermentable carbohydrate in vivo. In this study, we demonstrate that S. pneumoniae is able to utilize complex N-linked human glycoconjugates as a sole source of carbon to sustain growth and that efficient growth is dependent upon the sequential deglycosylation of the glycoconjugate substrate by pneumococcal exoglycosidases. In addition to demonstrating a role for NanA, BgaA, and StrH, we have identified a function for the second pneumococcal neuraminidase, NanB, in the deglycosylation of host glycoconjugates and have demonstrated that NanB activity can partially compensate for the loss or dysfunction of NanA. To date, all known functions of pneumococcal neuraminidase have been attributed to NanA. Thus, this study describes the first proposed role for NanB by which it may contribute to S. pneumoniae colonization and pathogenesis.
Collapse
|
30
|
Chen Y, Hayashida A, Bennett AE, Hollingshead SK, Park PW. Streptococcus pneumoniae sheds syndecan-1 ectodomains through ZmpC, a metalloproteinase virulence factor. J Biol Chem 2006; 282:159-67. [PMID: 17098735 DOI: 10.1074/jbc.m608542200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several microbial pathogens stimulate the ectodomain shedding of host cell surface proteins to promote their pathogenesis. We reported previously that Pseudomonas aeruginosa and Staphylococcus aureus activate the ectodomain shedding of syndecan-1 and that syndecan-1 shedding promotes P. aeruginosa pathogenesis in mouse models of lung and burned skin infections. However, it remains to be determined whether activation of syndecan-1 shedding is a virulence mechanism broadly used by pathogens. Here we show that Streptococcus pneumoniae stimulates syndecan-1 shedding in cell culture-based assays. S. pneumoniae-induced syndecan-1 shedding was repressed by peptide hydroxamate inhibitors of metalloproteinases but not by inhibitors of intracellular signaling pathways previously found to be essential for syndecan-1 shedding caused by P. aeruginosa, S. aureus, or other shedding agonists. A 170-kDa protein fraction with a peptide hydroxamate-sensitive shedding activity was purified by ammonium sulfate precipitation, DEAE chromatography, and size exclusion chromatography. Mass spectrometry analyses revealed that the 170-kDa fraction is composed of ZmpB and ZmpC, two metalloproteinase virulence factors of S. pneumoniae. Both the purified 170-kDa ZmpB/ZmpC fraction and unfractionated S. pneumoniae culture supernatant generated syndecan-1 ectodomains that are smaller than those released by endogenous shedding. Further, a mutant S. pneumoniae strain deficient in zmpC, but not zmpB, lost its capacity to stimulate syndecan-1 shedding. These data demonstrate that S. pneumoniae directly sheds syndecan-1 ectodomains through the action of ZmpC.
Collapse
Affiliation(s)
- Ye Chen
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|