1
|
Benyamini P. Beyond Antibiotics: What the Future Holds. Antibiotics (Basel) 2024; 13:919. [PMID: 39452186 PMCID: PMC11504868 DOI: 10.3390/antibiotics13100919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
The prevalence of multidrug resistance (MDR) and stagnant drug-development pipelines have led to the rapid rise of hard-to-treat antibiotic-resistant bacterial infections. These infectious diseases are no longer just nosocomial but are also becoming community-acquired. The spread of MDR has reached a crisis level that needs immediate attention. The landmark O'Neill report projects that by 2050, mortality rates associated with MDR bacterial infections will surpass mortality rates associated with individuals afflicted with cancer. Since conventional antimicrobials are no longer very reliable, it is of great importance to investigate different strategies to combat these life-threatening infectious diseases. Here, we provide an overview of recent advances in viable alternative treatment strategies mainly targeting a pathogen's virulence capability rather than viability. Topics include small molecule and immune inhibition of virulence factors, quorum sensing (QS) quenching, inhibition of biofilm development, bacteriophage-mediated therapy, and manipulation of an individual's macroflora to combat MDR bacterial infections.
Collapse
Affiliation(s)
- Payam Benyamini
- Department of Health Sciences at Extension, University of California Los Angeles, 1145 Gayley Ave., Los Angeles, CA 90024, USA
| |
Collapse
|
2
|
Abstract
Type III secretion systems (T3SSs) are utilized by Gram-negative pathogens to enhance their pathogenesis. This secretion system is associated with the delivery of effectors through a needle-like structure from the bacterial cytosol directly into a target eukaryotic cell. These effector proteins then manipulate specific eukaryotic cell functions to benefit pathogen survival within the host. The obligate intracellular pathogens of the family Chlamydiaceae have a highly evolutionarily conserved nonflagellar T3SS that is an absolute requirement for their survival and propagation within the host with about one-seventh of the genome dedicated to genes associated with the T3SS apparatus, chaperones, and effectors. Chlamydiae also have a unique biphasic developmental cycle where the organism alternates between an infectious elementary body (EB) and replicative reticulate body (RB). T3SS structures have been visualized on both EBs and RBs. And there are effector proteins that function at each stage of the chlamydial developmental cycle, including entry and egress. This review will discuss the history of the discovery of chlamydial T3SS and the biochemical characterization of components of the T3SS apparatus and associated chaperones in the absence of chlamydial genetic tools. These data will be contextualized into how the T3SS apparatus functions throughout the chlamydial developmental cycle and the utility of heterologous/surrogate models to study chlamydial T3SS. Finally, there will be a targeted discussion on the history of chlamydial effectors and recent advances in the field.
Collapse
Affiliation(s)
- Elizabeth A. Rucks
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Durham Research Center II, Omaha, Nebraska, USA
| |
Collapse
|
3
|
Blasey N, Rehrmann D, Riebisch AK, Mühlen S. Targeting bacterial pathogenesis by inhibiting virulence-associated Type III and Type IV secretion systems. Front Cell Infect Microbiol 2023; 12:1065561. [PMID: 36704108 PMCID: PMC9872159 DOI: 10.3389/fcimb.2022.1065561] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Infections caused by Gram-negative pathogens pose a major health burden. Both respiratory and gastrointestinal infections are commonly associated with these pathogens. With the increase in antimicrobial resistance (AMR) over the last decades, bacterial infections may soon become the threat they have been before the discovery of antibiotics. Many Gram-negative pathogens encode virulence-associated Type III and Type IV secretion systems, which they use to inject bacterial effector proteins across bacterial and host cell membranes into the host cell cytosol, where they subvert host cell functions in favor of bacterial replication and survival. These secretion systems are essential for the pathogens to cause disease, and secretion system mutants are commonly avirulent in infection models. Hence, these structures present attractive targets for anti-virulence therapies. Here, we review previously and recently identified inhibitors of virulence-associated bacterial secretions systems and discuss their potential as therapeutics.
Collapse
|
4
|
Hou C, Jin Y, Wu H, Li P, Liu L, Zheng K, Wang C. Alternative strategies for Chlamydia treatment: Promising non-antibiotic approaches. Front Microbiol 2022; 13:987662. [PMID: 36504792 PMCID: PMC9727249 DOI: 10.3389/fmicb.2022.987662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/04/2022] [Indexed: 11/24/2022] Open
Abstract
Chlamydia is an obligate intracellular bacterium where most species are pathogenic and infectious, causing various infectious diseases and complications in humans and animals. Antibiotics are often recommended for the clinical treatment of chlamydial infections. However, extensive research has shown that antibiotics may not be sufficient to eliminate or inhibit infection entirely and have some potential risks, including antibiotic resistance. The impact of chlamydial infection and antibiotic misuse should not be underestimated in public health. This study explores the possibility of new therapeutic techniques, including a review of recent studies on preventing and suppressing chlamydial infection by non-antibiotic compounds.
Collapse
Affiliation(s)
- Chen Hou
- School of Basic Medicine, Hengyang Medical College, Institute of Pathogenic Biology, University of South China, Hengyang, China
| | - Yingqi Jin
- School of Basic Medicine, Hengyang Medical College, Institute of Pathogenic Biology, University of South China, Hengyang, China
| | - Hua Wu
- Department of Clinical Laboratory, Affiliated Hengyang Hospital of Southern Medical University, Hengyang Central Hospital, Hengyang, China
| | - Pengyi Li
- School of Basic Medicine, Hengyang Medical College, Institute of Pathogenic Biology, University of South China, Hengyang, China
| | - Longyun Liu
- School of Basic Medicine, Hengyang Medical College, Institute of Pathogenic Biology, University of South China, Hengyang, China
| | - Kang Zheng
- Department of Clinical Laboratory, Affiliated Hengyang Hospital of Southern Medical University, Hengyang Central Hospital, Hengyang, China,*Correspondence: Kang Zheng
| | - Chuan Wang
- School of Basic Medicine, Hengyang Medical College, Institute of Pathogenic Biology, University of South China, Hengyang, China,Chuan Wang
| |
Collapse
|
5
|
Zambelloni R, Beckham KSH, Wu HJ, Elofsson M, Marquez R, Gabrielsen M, Roe AJ. Crystal structures of WrbA, a spurious target of the salicylidene acylhydrazide inhibitors of type III secretion in Gram-negative pathogens, and verification of improved specificity of next-generation compounds. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35829699 DOI: 10.1099/mic.0.001211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The enterohemorrhagic Escherichia coli pathotype is responsible for severe and dangerous infections in humans. Establishment of the infection requires colonization of the gastro-intestinal tract, which is dependent on the Type III Secretion System. The Type III Secretion System (T3SS) allows attachment of the pathogen to the mammalian host cell and cytoskeletal rearrangements within the host cell. Blocking the functionality of the T3SS is likely to reduce colonization and therefore limit the disease. This route offers an alternative to antibiotics, and problems with the development of antibiotics resistance. Salicylidene acylhydrazides have been shown to have an inhibitory effect on the T3SS in several pathogens. However, the main target of these compounds is still unclear. Past work has identified a number of putative protein targets of these compounds, one of which being WrbA. Whilst WrbA is considered an off-target interaction, this study presents the effect of the salicylidne acylhydrazide compounds on the activity of WrbA, along with crystal structures of WrbA from Yersinia pseudotuberculosis and Salmonella serovar Typhimurium; the latter also containing parts of the compound in the structure. We also present data showing that the original compounds were unstable in acidic conditions, and that later compounds showed improved stability.
Collapse
Affiliation(s)
- Riccardo Zambelloni
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Glasgow, G12 8TA, UK
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
- Sygnature Discovery Ltd, Biocity, Discovery Building, Nottingham, NG1 1GR, UK
| | - Katherine S H Beckham
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Glasgow, G12 8TA, UK
- EMBL Hamburg c/o DESY, Notkestraße 85, 22603 Hamburg, Germany
| | - Hong-Jin Wu
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Glasgow, G12 8TA, UK
| | - Mikael Elofsson
- Umeå Centre for Microbial Research, Department of Chemistry, Umeå University, Umeå, Sweden
| | - Rudi Marquez
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
- School of Physical and Chemical Sciences, Te Kura Matū, University of Canterbury, Christchurch, New Zealand
| | - Mads Gabrielsen
- MVLS Structural Biology and Biophysical Characterisation Facility, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Andrew J Roe
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Glasgow, G12 8TA, UK
| |
Collapse
|
6
|
Identification of Translocation Inhibitors Targeting the Type III Secretion System of Enteropathogenic Escherichia coli. Antimicrob Agents Chemother 2021; 65:e0095821. [PMID: 34543097 DOI: 10.1128/aac.00958-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infections with enteropathogenic Escherichia coli (EPEC) cause severe diarrhea in children. The noninvasive bacteria adhere to enterocytes of the small intestine and use a type III secretion system (T3SS) to inject effector proteins into host cells to modify and exploit cellular processes in favor of bacterial survival and replication. Several studies have shown that the T3SSs of bacterial pathogens are essential for virulence. Furthermore, the loss of T3SS-mediated effector translocation results in increased immune recognition and clearance of the bacteria. The T3SS is, therefore, considered a promising target for antivirulence strategies and novel therapeutics development. Here, we report the results of a high-throughput screening assay based on the translocation of the EPEC effector protein Tir (translocated intimin receptor). Using this assay, we screened more than 13,000 small molecular compounds of six different compound libraries and identified three substances which showed a significant dose-dependent effect on translocation without adverse effects on bacterial or eukaryotic cell viability. In addition, these substances reduced bacterial binding to host cells, effector-dependent cell detachment, and abolished attaching and effacing lesion formation without affecting the expression of components of the T3SS or associated effector proteins. Moreover, no effects of the inhibitors on bacterial motility or Shiga-toxin expression were observed. In summary, we have identified three new compounds that strongly inhibit T3SS-mediated translocation of effectors into mammalian cells, which could be valuable as lead substances for treating EPEC and enterohemorrhagic E. coli infections.
Collapse
|
7
|
Aslam M, Shehroz M, Ali F, Zia A, Pervaiz S, Shah M, Hussain Z, Nishan U, Zaman A, Afridi SG, Khan A. Chlamydia trachomatis core genome data mining for promising novel drug targets and chimeric vaccine candidates identification. Comput Biol Med 2021; 136:104701. [PMID: 34364258 DOI: 10.1016/j.compbiomed.2021.104701] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 11/30/2022]
Abstract
Chlamydia trachomatis is involved in most sexually transmitted diseases. The species has emerged as a major public health threat due to its multidrug-resistant capabilities, and new therapeutic target inferences have become indispensable to combat its pathogenesis. However, no commercial vaccine is yet available to treat the C. trachomatis infection. In this study, we used the publicly available complete genome sequences of C. trachomatis and performed comparative proteomics and reverse vaccinology analyses to explore novel drug and vaccine targets against this devastating pathogen. We identified 713 core proteins from 71 C. trachomatis complete genome sequences and prioritized them based on their cellular essentiality, virulence, and available antibiotic resistance. The analyses led to the identification of 16 pathogen-specific proteins with no resolved 3D structures, though holding significant druggable potential. The sequences of the three shortlisted candidates' membrane proteins were used for designing vaccine constructs. The antigenicity, toxicity, and solubility profile-based lead epitopes were prioritized for multi-epitope-based vaccine constructs in combination with specific linkers, PADRE sequences, and molecular adjuvants for immunogenicity enhancement. The molecular-level interactions of the prioritized vaccine construct with human immune cells HLA and TLR4/MD were validated by molecular docking and molecular dynamic simulation analyses. Furthermore, the cloning and expression potential of the lead vaccine construct was predicted in the E. coli cloning vector system. Additional testing and experimental validation of these multi-epitope constructs appear promising against C. trachomatis-mediated infection.
Collapse
Affiliation(s)
- Muneeba Aslam
- Department of Biochemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Shehroz
- Department of Biotechnology, Virtual University of Pakistan, Peshawar, Pakistan
| | - Fawad Ali
- Department of Biochemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Asad Zia
- Department of Biochemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Sadia Pervaiz
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Mohibullah Shah
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Punjab, Pakistan.
| | - Zahid Hussain
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Umar Nishan
- Department of Chemistry, Kohat University of Science & Technology, Kohat, Pakistan
| | - Aqal Zaman
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | - Sahib Gul Afridi
- Department of Biochemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Asifullah Khan
- Department of Biochemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
8
|
Persistence Alters the Interaction between Chlamydia trachomatis and Its Host Cell. Infect Immun 2021; 89:e0068520. [PMID: 34001559 DOI: 10.1128/iai.00685-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In response to stress, the obligate intracellular pathogen Chlamydia trachomatis stops dividing and halts its biphasic developmental cycle. The infectious, extracellular form of this bacterium is highly susceptible to killing by the host immune response, and by pausing development, Chlamydia can survive in an intracellular, "aberrant" state for extended periods of time. The relevance of these aberrant forms has long been debated, and many questions remain concerning how they contribute to the persistence and pathogenesis of the organism. Using reporter cell lines, fluorescence microscopy, and a dipeptide labeling strategy, we measured the ability of C. trachomatis to synthesize, assemble, and degrade peptidoglycan under various aberrance-inducing conditions. We found that all aberrance-inducing conditions affect chlamydial peptidoglycan and that some actually halt the biosynthesis pathway early enough to prevent the release of an immunostimulatory peptidoglycan component, muramyl tripeptide. In addition, utilizing immunofluorescence and electron microscopy, we determined that the induction of aberrance can detrimentally affect the development of the microbe's pathogenic vacuole (the inclusion). Taken together, our data indicate that aberrant forms of Chlamydia generated by different environmental stressors can be sorted into two broad categories based on their ability to continue releasing peptidoglycan-derived, immunostimulatory muropeptides and their ability to secrete effector proteins that are normally expressed at the mid- and late stages of the microbe's developmental cycle. Our findings reveal a novel, immunoevasive feature inherent to a subset of aberrant chlamydial forms and provide clarity and context to the numerous persistence mechanisms employed by these ancient, genetically reduced microbes.
Collapse
|
9
|
Ouellette SP, Blay EA, Hatch ND, Fisher-Marvin LA. CRISPR Interference To Inducibly Repress Gene Expression in Chlamydia trachomatis. Infect Immun 2021; 89:e0010821. [PMID: 33875479 PMCID: PMC8373233 DOI: 10.1128/iai.00108-21] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/08/2021] [Indexed: 12/16/2022] Open
Abstract
The ability to inducibly repress gene expression is critical to the study of organisms, like Chlamydia, with reduced genomes in which the majority of genes are likely to be essential. We recently described the feasibility of a CRISPR interference (CRISPRi) system to inducibly repress gene expression in Chlamydia trachomatis. However, the initial system suffered from some drawbacks, primarily leaky expression of the anhydrotetracycline (aTc)-inducible dCas9 ortholog and plasmid instability, which prevented population-wide studies (e.g., transcript analyses) of the effects of knockdown. Here, we describe various modifications to the original system that have allowed us to measure gene expression changes within a transformed population of C. trachomatis serovar L2. These modifications include (i) a change in the vector backbone, (ii) the introduction of a weaker ribosome binding site driving dCas9 translation, and (iii) the addition of a degradation tag to dCas9 itself. With these changes, we demonstrate the ability to inducibly repress a target gene sequence, as measured by the absence of protein by immunofluorescence analysis and by decreased transcript levels. Importantly, the expression of dCas9 alone (i.e., without a guide RNA [gRNA]) had minimal impact on chlamydial growth or development. We also describe complementation of the knockdown effect by introducing a transcriptional fusion of the target gene 3' to dCas9. Finally, we demonstrate the functionality of a second CRISPRi system based on a dCas12 system that expands the number of potential chromosomal targets. These tools should provide the ability to study essential gene function in Chlamydia.
Collapse
Affiliation(s)
- Scot P. Ouellette
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Emmanuel A. Blay
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Nathan D. Hatch
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Laura A. Fisher-Marvin
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
10
|
Chen Y, Wang C, Mi J, Zhou Z, Wang J, Tang M, Yu J, Liu A, Wu Y. Characterization and comparison of differentially expressed genes involved in Chlamydia psittaci persistent infection in vitro and in vivo. Vet Microbiol 2021; 255:108960. [PMID: 33667981 DOI: 10.1016/j.vetmic.2020.108960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 12/12/2020] [Indexed: 10/22/2022]
Abstract
Chlamydia psittaci is an obligate intracellular zoonotic pathogen that can enter a persistence state in host cells. While the exact pathogenesis is not well understood, this persistence state may play an important role in chronic Chlamydia disease. Here, we assess the effects of chlamydial persistence state in vitro and in vivo by transmission electron microscopy (TEM) and cDNA microarray assays. First, IFN-γ-induced C. psittaci persistence in HeLa cells resulted in the upregulation of 68 genes. These genes are involved in protein translation, carbohydrate metabolism, nucleotide metabolism, lipid metabolism and general stress. However, 109 genes were downregulated following persistent C. psittaci infection, many of which are involved in the TCA cycle, expression regulation and transcription, protein secretion, proteolysis and transport, membrane protein, presumed virulence factor, cell division and late expression. To further study differential gene expression of C. psittaci persistence in vivo, we established an experimentally tractable mouse model of C. psittaci persistence. The C. psittaci-infected mice were gavaged with either water or amoxicillin (amox), and the results indicated that the 20 mg/kg amox-exposed C. psittaci were viable but not infectious. Differentially expressed genes (DEGs) screened by cDNA microarray were detected, and interestingly, the results showed upregulation of three genes (euo, ahpC, prmC) and downregulation of five genes (pbp3, sucB_1, oppA_4, pmpH, ligA) in 20 mg/kg amox-exposed C. psittaci, which suggests that antibiotic treatment in vivo can induce chlamydial persistence state and lead to differential gene expression. However, the discrepancy on inducers between the two models requires more research to supplement. The results may help researchers better understand survival advantages during persistent infection and mechanisms influencing C. psittaci pathogenesis or evasion of the adaptive immune response.
Collapse
Affiliation(s)
- Yuqing Chen
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, 421001, China; Clinical Microbiology Laboratory, Xiangtan Central Hospital, Xiangtan, 411100, China
| | - Chuan Wang
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, 421001, China
| | - Jing Mi
- Department of Hospital Infection and Control, The First Affiliated Hospital of University of South China, Hengyang, 421001, China
| | - Zhou Zhou
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, 421001, China
| | - Jianye Wang
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, 421001, China
| | - Manjuan Tang
- Clinical Microbiology Laboratory, Xiangtan Central Hospital, Xiangtan, 411100, China
| | - Jian Yu
- Department of Experimental Zoology, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Anyuan Liu
- Clinical Medical Research Center, The Second Affiliated Hospital of University of South China, Hengyang, 421001, China.
| | - Yimou Wu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
11
|
Yuan X, Yu M, Yang CH. Innovation and Application of the Type III Secretion System Inhibitors in Plant Pathogenic Bacteria. Microorganisms 2020; 8:microorganisms8121956. [PMID: 33317075 PMCID: PMC7764658 DOI: 10.3390/microorganisms8121956] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022] Open
Abstract
Many Gram-negative pathogenic bacteria rely on a functional type III secretion system (T3SS), which injects multiple effector proteins into eukaryotic host cells, for their pathogenicity. Genetic studies conducted in different host-microbe pathosystems often revealed a sophisticated regulatory mechanism of their T3SSs, suggesting that the expression of T3SS is tightly controlled and constantly monitored by bacteria in response to the ever-changing host environment. Therefore, it is critical to understand the regulation of T3SS in pathogenic bacteria for successful disease management. This review focuses on a model plant pathogen, Dickeyadadantii, and summarizes the current knowledge of its T3SS regulation. We highlight the roles of several T3SS regulators that were recently discovered, including the transcriptional regulators: FlhDC, RpoS, and SlyA; the post-transcriptional regulators: PNPase, Hfq with its dependent sRNA ArcZ, and the RsmA/B system; and the bacterial second messenger cyclic-di-GMP (c-di-GMP). Homologs of these regulatory components have also been characterized in almost all major bacterial plant pathogens like Erwiniaamylovora, Pseudomonassyringae, Pectobacterium spp., Xanthomonas spp., and Ralstonia spp. The second half of this review shifts focus to an in-depth discussion of the innovation and development of T3SS inhibitors, small molecules that inhibit T3SSs, in the field of plant pathology. This includes T3SS inhibitors that are derived from plant phenolic compounds, plant coumarins, and salicylidene acylhydrazides. We also discuss their modes of action in bacteria and application for controlling plant diseases.
Collapse
Affiliation(s)
- Xiaochen Yuan
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA;
| | - Manda Yu
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
- Correspondence: (M.Y.); (C.-H.Y.)
| | - Ching-Hong Yang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
- Correspondence: (M.Y.); (C.-H.Y.)
| |
Collapse
|
12
|
Marschall MT, Simnacher U, Walther P, Essig A, Hagemann JB. The Putative Type III Secreted Chlamydia abortus Virulence-Associated Protein CAB063 Targets Lamin and Induces Apoptosis. Front Microbiol 2020; 11:1059. [PMID: 32523581 PMCID: PMC7261910 DOI: 10.3389/fmicb.2020.01059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/29/2020] [Indexed: 01/15/2023] Open
Abstract
Since intracellular survival of all chlamydiae depends on the manipulation of the host cell through type III secreted effector proteins, their characterization is crucial for the understanding of chlamydial pathogenesis. We functionally characterized the putative type III secreted Chlamydia abortus protein CAB063, describe its intracellular localization and identified pro- and eukaryotic binding partners. Based on an experimental infection model and plasmid transfections, we investigated the subcellular localization of CAB063 by immunofluorescence microscopy, immunoelectron microscopy, and Western blot analysis. Pro- and eukaryotic targets were identified by co-immunofluorescence, co-immunoprecipitation, and mass spectrometry. Transmission electron microscopy and flow cytometry were used for morphological and functional investigations on host cell apoptosis. CAB063 localized in the nuclear membrane of the host cell nucleus and we identified the chaperone HSP70 and lamin A/C as pro- and eukaryotic targets, respectively. CAB063-dependent morphological alterations of the host cell nucleus correlated with increased apoptosis rates of infected and CAB063-transfected cells. We provide evidence that CAB063 is a chaperone-folded type III secreted C. abortus virulence factor that targets lamin thereby altering the host cell nuclear membrane structure. This process may be responsible for an increased apoptosis rate at the end of the chlamydial developmental cycle, at which CAB063 is physiologically expressed.
Collapse
Affiliation(s)
| | - Ulrike Simnacher
- Institute of Medical Microbiology and Hygiene, Ulm University Hospital, Ulm, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, Ulm, Germany
| | - Andreas Essig
- Institute of Medical Microbiology and Hygiene, Ulm University Hospital, Ulm, Germany
| | | |
Collapse
|
13
|
Bugalhão JN, Mota LJ. The multiple functions of the numerous Chlamydia trachomatis secreted proteins: the tip of the iceberg. MICROBIAL CELL 2019; 6:414-449. [PMID: 31528632 PMCID: PMC6717882 DOI: 10.15698/mic2019.09.691] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chlamydia trachomatis serovars are obligate intracellular bacterial pathogens mainly causing ocular and urogenital infections that affect millions of people worldwide and which can lead to blindness or sterility. They reside and multiply intracellularly within a membrane-bound vacuolar compartment, known as inclusion, and are characterized by a developmental cycle involving two morphologically and physiologically distinct chlamydial forms. Completion of the developmental cycle involves the secretion of > 70 C. trachomatis proteins that function in the host cell cytoplasm and nucleus, in the inclusion membrane and lumen, and in the extracellular milieu. These proteins can, for example, interfere with the host cell cytoskeleton, vesicular and non-vesicular transport, metabolism, and immune signalling. Generally, this promotes C. trachomatis invasion into, and escape from, host cells, the acquisition of nutrients by the chlamydiae, and evasion of cell-autonomous, humoral and cellular innate immunity. Here, we present an in-depth review on the current knowledge and outstanding questions about these C. trachomatis secreted proteins.
Collapse
Affiliation(s)
- Joana N Bugalhão
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Luís Jaime Mota
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
14
|
Lyons BJE, Strynadka NCJ. On the road to structure-based development of anti-virulence therapeutics targeting the type III secretion system injectisome. MEDCHEMCOMM 2019; 10:1273-1289. [PMID: 31534650 PMCID: PMC6748289 DOI: 10.1039/c9md00146h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/07/2019] [Indexed: 12/19/2022]
Abstract
The type III secretion system injectisome is a syringe-like multimembrane spanning nanomachine that is essential to the pathogenicity but not viability of many clinically relevant Gram-negative bacteria, such as enteropathogenic Escherichia coli, Salmonella enterica and Pseudomonas aeruginosa. Due to the rise in antibiotic resistance, new strategies must be developed to treat the growing spectre of drug resistant infections. Targeting the injectisome via an 'anti-virulence strategy' is a promising avenue to pursue as an alternative to the more commonly used bactericidal therapeutics, which have a high propensity for resulting resistance development and often more broad killing profile, including unwanted side effects in eliminating favourable members of the microbiome. Building on more than a decade of crystallographic work of truncated or isolated forms of the more than two dozen components of the secretion apparatus, recent advances in the field of single-particle cryo-electron microscopy have allowed for the elucidation of atomic resolution structures for many of the type III secretion system components in their assembled, oligomerized state including the needle complex, export apparatus and ATPase. Cryo-electron tomography studies have also advanced our understanding of the direct pathogen-host interaction between the type III secretion system translocon and host cell membrane. These new structural works that further our understanding of the myriad of protein-protein interactions that promote injectisome function will be highlighted in this review, with a focus on those that yield promise for future anti-virulence drug discovery and design. Recently developed inhibitors, including both synthetic, natural product and peptide inhibitors, as well as promising new developments of immunotherapeutics will be discussed. As our understanding of this intricate molecular machinery advances, the development of anti-virulence inhibitors can be enhanced through structure-guided drug design.
Collapse
Affiliation(s)
- Bronwyn J E Lyons
- Department of Biochemistry and Molecular Biology and Center for Blood Research , University of British Columbia , 2350 Health Sciences Mall , Vancouver , British Columbia V6T 1Z3 , Canada .
| | - Natalie C J Strynadka
- Department of Biochemistry and Molecular Biology and Center for Blood Research , University of British Columbia , 2350 Health Sciences Mall , Vancouver , British Columbia V6T 1Z3 , Canada .
| |
Collapse
|
15
|
Abstract
Antibiotic resistance is a major public health threat that has stimulated the scientific community to search for nontraditional therapeutic targets. Because virulence, but not the growth, of many Gram-negative bacterial pathogens depends on the multicomponent type three secretion system injectisome (T3SSi), the T3SSi has been an attractive target for identifying small molecules, peptides, and monoclonal antibodies that inhibit its function to render the pathogen avirulent. While many small-molecule lead compounds have been identified in whole-cell-based high-throughput screens (HTSs), only a few protein targets of these compounds are known; such knowledge is an important step to developing more potent and specific inhibitors. Evaluation of the efficacy of compounds in animal studies is ongoing. Some efforts involving the development of antibodies and vaccines that target the T3SSi are further along and include an antibody that is currently in phase II clinical trials. Continued research into these antivirulence therapies, used alone or in combination with traditional antibiotics, requires combined efforts from both pharmaceutical companies and academic labs.
Collapse
|
16
|
Mojica SA, Eriksson AU, Davis RA, Bahnan W, Elofsson M, Gylfe Å. Red Fluorescent Chlamydia trachomatis Applied to Live Cell Imaging and Screening for Antibacterial Agents. Front Microbiol 2019; 9:3151. [PMID: 30619216 PMCID: PMC6305398 DOI: 10.3389/fmicb.2018.03151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/05/2018] [Indexed: 11/13/2022] Open
Abstract
In this study, we describe the application of a transformed Chlamydia trachomatis strain constitutively expressing the red fluorescent protein mCherry, to allow real-time monitoring of the infection cycle and screening for agents that block replication of C. trachomatis. The red fluorescent C. trachomatis strain was detected autonomously without antibody staining and was equally susceptible to doxycycline as the wild type strain. A high-throughput screening assay was developed using the transformed strain and automated fluorescence microscopy. The assay was used in a pilot screen of a 349 compound library containing natural products from Australian flora and fauna. Compounds with anti-chlamydial activity were tested for dose response and toxicity to host cells and two non-toxic compounds had 50% effective concentration (EC50) values in the low micromolar range. Natural products are valuable sources for drug discovery and the identified Chlamydia growth inhibition may be starting points for future drug development. Live cell imaging was used to visualize growth of the red fluorescent C. trachomatis strain over time. The screening assay reduced workload and reagents compared to an assay requiring immunostaining and could further be used to monitor the development of Chlamydia inclusions and anti-chlamydial effect in real time.
Collapse
Affiliation(s)
- Sergio A Mojica
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Anna U Eriksson
- Chemical Biology Consortium Sweden, Laboratories of Chemical Biology, Umeå University, Umeå, Sweden
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
| | - Wael Bahnan
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Mikael Elofsson
- Department of Chemistry, Umeå University, Umeå, Sweden.,Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Åsa Gylfe
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden.,Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| |
Collapse
|
17
|
Wen Y, Chen Y, Li L, Xu M, Tan Y, Li Y, Wang C, Chen Q, Kuang X, Wu Y. Localization and characterization of a putative cysteine desulfurase in Chlamydia psittaci. J Cell Biochem 2018; 120:4409-4422. [PMID: 30260037 DOI: 10.1002/jcb.27727] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 08/29/2018] [Indexed: 12/20/2022]
Abstract
Chlamydia psittaci is an obligate intracellular pathogen with a biphasic developmental life cycle. It is auxotrophic for a variety of essential metabolites and obtains amino acids from eukaryotic host cells. Chlamydia can develop inside host cells within chlamydial inclusions. A pathway secreting proteins from inclusions into the host cellular cytoplasm is the type III secretion system (T3SS). The T3SS is universal among several Gram-negative bacteria. Here, we show that CPSIT_0959 of C. psittaci is expressed midcycle and secreted into the infected cellular cytoplasm via the T3SS. Recombinant CPSIT_0959 possesses cysteine desulfurase and PLP-binding activity, which removes sulfur from cysteine to produce alanine, and helps chlamydial replication. Our study shows that CPSIT_0959 improve the infectivity of offspring elementary bodies and seems to promote the replication by its product. This phenomenon has inhibited by the PLP-dependent enzymes inhibitor. Moreover, CPSIT_0959 increased expression of Bim and tBid, and decreased the mitochondrial membrane potential of host mitochondria to induce apoptosis in the latecycle for release of offspring. These results demonstrate that CPSIT_0959 has cysteine desulfurase and PLP-binding activity and is likely to contribute to apoptosis of the infected cells via a mitochondria-mediated pathway to improve the infectivity of progeny.
Collapse
Affiliation(s)
- Yating Wen
- Institute of Pathogenic Biology, Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Yanbo Chen
- Department of Clinical Laboratory, Jiangmen Wuyi Traditional Chinese Medicine Hospital, Jiangmen, China
| | - Li Li
- Toxicology Laboratory, Hunan Provincial Center for Disease Control and Prevention, Changsha, China
| | - Man Xu
- Institute of Pathogenic Biology, Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Yuan Tan
- Institute of Pathogenic Biology, Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Yumeng Li
- Institute of Pathogenic Biology, Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Chuan Wang
- Institute of Pathogenic Biology, Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Qian Chen
- Institute of Pathogenic Biology, Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Xingxing Kuang
- Institute of Pathogenic Biology, Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Yimou Wu
- Institute of Pathogenic Biology, Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| |
Collapse
|
18
|
Potency of Solithromycin against Fast- and Slow-Growing Chlamydial Organisms. Antimicrob Agents Chemother 2018; 62:AAC.00588-18. [PMID: 29891601 DOI: 10.1128/aac.00588-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 06/02/2018] [Indexed: 12/16/2022] Open
Abstract
Evidence is provided that solithromycin is a bactericidal against not only fast-growing chlamydial organisms but also those slowed by gamma interferon (IFN-γ) in vitro At sublethal concentrations, Sol impedes homotypic fusion of Chlamydia-containing vacuoles and reduces secretion of the type III secretion (T3S) effector IncA. Sol may therefore represent a potential new clinical treatment for Chlamydia infections. Selective perturbation of the T3S system suggests a novel mode of antibacterial action for Sol that warrants further investigation.
Collapse
|
19
|
Natural product inspired library synthesis - Identification of 2,3-diarylbenzofuran and 2,3-dihydrobenzofuran based inhibitors of Chlamydia trachomatis. Eur J Med Chem 2018; 143:1077-1089. [DOI: 10.1016/j.ejmech.2017.11.099] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 11/23/2017] [Accepted: 11/29/2017] [Indexed: 01/17/2023]
|
20
|
Resveratrol Inhibits Propagation of Chlamydia trachomatis in McCoy Cells. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4064071. [PMID: 29318147 PMCID: PMC5727650 DOI: 10.1155/2017/4064071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/13/2017] [Indexed: 12/11/2022]
Abstract
Resveratrol (RESV), an antifungal compound from grapes and other plants, has a distinct ability to inhibit the Chlamydia (C.) trachomatis developmental cycle in McCoy cells, a classic cell line used for chlamydial research. Inoculation of C. trachomatis with increasing amounts of RESV (from 12.5 to 100 μM) gave a dose-dependent reduction in the number of infected McCoy cells visualized by using monoclonal antibodies against chlamydial lipopolysaccharide. A similar trend has been observed with immunoassay for major outer membrane protein (MOMP). Furthermore, there was a step-wise reduction in the number of C. trachomatis infective progenies caused by the increasing concentrations of RESV. The ability of RESV to arrest C. trachomatis growth in McCoy cells was confirmed by a nucleic acid amplification protocol which revealed dose-dependent changes in mRNAs for different genes of chlamydial developmental cycle (euo, incA, and omcB). Although the precise nature of the antichlamydial activity of RESV is yet to be determined and evaluated in future studies, the observed effect of RESV on C. trachomatis infection was not related to its potential effect on attachment/entry of the pathogen into eukaryotic cells or RESV toxicity to McCoy cells. Similar inhibitory effect was shown for C. pneumoniae and C. muridarum.
Collapse
|
21
|
Zhang H, Kunadia A, Lin Y, Fondell JD, Seidel D, Fan H. Identification of a strong and specific antichlamydial N-acylhydrazone. PLoS One 2017; 12:e0185783. [PMID: 28973037 PMCID: PMC5626472 DOI: 10.1371/journal.pone.0185783] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/19/2017] [Indexed: 12/02/2022] Open
Abstract
Sexually transmitted Chlamydia trachomatis is an extremely common infection and often leads to serious complications including infertility and pelvic inflammatory syndrome. Several broad-spectrum antibiotics are currently used to treat C. trachomatis. Although effective, they also kill beneficial vaginal lactobacilli. Two N-acylhydrazones, CF0001 and CF0002, have been shown previously to inhibit chlamydial growth without toxicity to human cells and Lactobacillus spp. Of particular significance, the rate of random mutation leading to resistance of these inhibitors appears to be extremely low. Here, we report three analogs of CF0001 and CF0002 with significantly stronger inhibitory effects on chlamydiae. Even though the new compounds (termed SF1, SF2 and SF3) displayed slightly decreased inhibition efficiencies for a rare Chlamydia variant selected for CF0001 resistance (Chlamydia muridarum MCR), they completely overcame the resistance when used at concentrations of 75–100 μM. Importantly, SF1, SF2 and SF3 did not shown any toxic effect on lactobacilli, whereas SF3 was also well tolerated by human host cells. An effort to isolate SF3-resistant variants was unsuccessful. By comparison, variants resistant to rifampin or spectinomycin were obtained from smaller numbers of chlamydiae. Our findings suggest that SF3 utilizes an antichlamydial mechanism similar to that of CF0001 and CF0002, and will be more difficult for chlamydiae to develop resistance to, potentially making it a more effective antichlamydial agent.
Collapse
Affiliation(s)
- Huirong Zhang
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Anuj Kunadia
- Department of Chemistry and Chemical Biology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Yingfu Lin
- Department of Chemistry and Chemical Biology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Joseph D. Fondell
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Daniel Seidel
- Department of Chemistry and Chemical Biology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
- * E-mail: (DS); (HF)
| | - Huizhou Fan
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
- * E-mail: (DS); (HF)
| |
Collapse
|
22
|
da Cunha M, Pais SV, Bugalhão JN, Mota LJ. The Chlamydia trachomatis type III secretion substrates CT142, CT143, and CT144 are secreted into the lumen of the inclusion. PLoS One 2017. [PMID: 28622339 PMCID: PMC5473537 DOI: 10.1371/journal.pone.0178856] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Chlamydia trachomatis is a human bacterial pathogen causing ocular and genital infections. It multiplies exclusively within an intracellular membrane-bound vacuole, the inclusion, and uses a type III secretion system to manipulate host cells by injecting them with bacterially-encoded effector proteins. In this work, we characterized the expression and subcellular localization in infected host cells of the C. trachomatis CT142, CT143, and CT144 proteins, which we previously showed to be type III secretion substrates. Transcriptional analyses in C. trachomatis confirmed the prediction that ct142, ct143 and ct144 are organized in an operon and revealed that their expression is likely driven by the main σ factor, σ66. In host cells infected by C. trachomatis, production of CT142 and CT143 could be detected by immunoblotting from 20–26 h post-infection. Immunofluorescence microscopy of infected cells revealed that from 20 h post-infection CT143 appeared mostly as globular structures outside of the bacterial cells but within the lumen of the inclusion. Furthermore, immunofluorescence microscopy of cells infected by C. trachomatis strains carrying plasmids producing CT142, CT143, or CT144 under the control of the ct142 promoter and with a C-terminal double hemagglutinin (2HA) epitope tag revealed that CT142-2HA, CT143-2HA or CT144-2HA showed an identical localization to chromosomally-encoded CT143. Moreover, CT142-2HA or CT144-2HA and CT143 produced by the same bacteria co-localized in the lumen of the inclusion. Overall, these data suggest that the CT142, CT143, and CT144 type III secretion substrates are secreted into the lumen of the inclusion where they might form a protein complex.
Collapse
Affiliation(s)
- Maria da Cunha
- UCIBIO—REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Sara V. Pais
- UCIBIO—REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Joana N. Bugalhão
- UCIBIO—REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Luís Jaime Mota
- UCIBIO—REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- * E-mail:
| |
Collapse
|
23
|
Colonne PM, Winchell CG, Voth DE. Hijacking Host Cell Highways: Manipulation of the Host Actin Cytoskeleton by Obligate Intracellular Bacterial Pathogens. Front Cell Infect Microbiol 2016; 6:107. [PMID: 27713866 PMCID: PMC5031698 DOI: 10.3389/fcimb.2016.00107] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/05/2016] [Indexed: 12/31/2022] Open
Abstract
Intracellular bacterial pathogens replicate within eukaryotic cells and display unique adaptations that support key infection events including invasion, replication, immune evasion, and dissemination. From invasion to dissemination, all stages of the intracellular bacterial life cycle share the same three-dimensional cytosolic space containing the host cytoskeleton. For successful infection and replication, many pathogens hijack the cytoskeleton using effector proteins introduced into the host cytosol by specialized secretion systems. A subset of effectors contains eukaryotic-like motifs that mimic host proteins to exploit signaling and modify specific cytoskeletal components such as actin and microtubules. Cytoskeletal rearrangement promotes numerous events that are beneficial to the pathogen, including internalization of bacteria, structural support for bacteria-containing vacuoles, altered vesicular trafficking, actin-dependent bacterial movement, and pathogen dissemination. This review highlights a diverse group of obligate intracellular bacterial pathogens that manipulate the host cytoskeleton to thrive within eukaryotic cells and discusses underlying molecular mechanisms that promote these dynamic host-pathogen interactions.
Collapse
Affiliation(s)
- Punsiri M Colonne
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences Little Rock, AR, USA
| | - Caylin G Winchell
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences Little Rock, AR, USA
| | - Daniel E Voth
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences Little Rock, AR, USA
| |
Collapse
|
24
|
Parrett CJ, Lenoci RV, Nguyen B, Russell L, Jewett TJ. Targeted Disruption of Chlamydia trachomatis Invasion by in Trans Expression of Dominant Negative Tarp Effectors. Front Cell Infect Microbiol 2016; 6:84. [PMID: 27602332 PMCID: PMC4993794 DOI: 10.3389/fcimb.2016.00084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/03/2016] [Indexed: 11/13/2022] Open
Abstract
Chlamydia trachomatis invasion of eukaryotic host cells is facilitated, in part, by the type III secreted effector protein, Tarp. The role of Tarp in chlamydiae entry of host cells is supported by molecular approaches that examined recombinant Tarp or Tarp effectors expressed within heterologous systems. A major limitation in the ability to study the contribution of Tarp to chlamydial invasion of host cells was the prior absence of genetic tools for chlamydiae. Based on our knowledge of Tarp domain structure and function along with the introduction of genetic approaches in C. trachomatis, we hypothesized that Tarp function could be disrupted in vivo by the introduction of dominant negative mutant alleles. We provide evidence that transformed C. trachomatis produced epitope tagged Tarp, which was secreted into the host cell during invasion. We examined the effects of domain specific Tarp mutations on chlamydial invasion and growth and demonstrate that C. trachomatis clones harboring engineered Tarp mutants lacking either the actin binding domain or the phosphorylation domain had reduced levels of invasion into host cells. These data provide the first in vivo evidence for the critical role of Tarp in C. trachomatis pathogenesis and indicate that chlamydial invasion of host cells can be attenuated via the introduction of engineered dominant negative type three effectors.
Collapse
Affiliation(s)
- Christopher J Parrett
- Division of Immunology and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida Orlando, FL, USA
| | - Robert V Lenoci
- Division of Immunology and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida Orlando, FL, USA
| | - Brenda Nguyen
- Division of Immunology and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida Orlando, FL, USA
| | - Lauren Russell
- Division of Immunology and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida Orlando, FL, USA
| | - Travis J Jewett
- Division of Immunology and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida Orlando, FL, USA
| |
Collapse
|
25
|
Zigangirova NA, Kost EA, Didenko LV, Kapotina LN, Zayakin ES, Luyksaar SI, Morgunova EY, Fedina ED, Artyukhova OA, Samorodov AV, Kobets NV. A small-molecule compound belonging to a class of 2,4-disubstituted 1,3,4-thiadiazine-5-ones inhibits intracellular growth and persistence of Chlamydia trachomatis. J Med Microbiol 2016; 65:91-98. [PMID: 26489840 DOI: 10.1099/jmm.0.000189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Chlamydia trachomatis is one of the most common sexually transmitted pathogens in the world and often causes chronic inflammatory diseases that are insensitive to antibiotics. The type 3 secretion system (T3SS) of pathogenic bacteria is a promising target for therapeutic intervention aimed at bacterial virulence and can be an attractive alternative for the treatment of chronic infections. Recently, we have shown that a small-molecule compound belonging to a class of 2,4-disubstituted 1,3,4-thiadiazine-5-ones produced through the chemical modification of the thiohydrazides of oxamic acids, designated CL-55, inhibited the intracellular growth of C. trachomatis in a T3SS-dependent manner. To assess the feasibility of CL-55 as a therapeutic agent, our aim was to determine which point(s) in the developmental cycle CL-55 affects. We found that CL-55 had no effect on the adhesion of elementary bodies (EBs) to host cells but significantly suppressed EB internalization. We further found that CL-55 inhibited the intracellular division of reticulate bodies (RBs). An ultrastructural analysis revealed loss of contact between the RBs and the inclusion membrane in the presence of CL-55. Finally, we found that our T3SS inhibitor prevented the persistence of Chlamydia in cell culture and its reversion to the infectious state. Our findings indicate that our T3SS inhibitor may be effective in the treatment of both productive and persistent infections.
Collapse
Affiliation(s)
- Naylia A Zigangirova
- Gamaleya Center of Epidemiology and Microbiology, Ministry of Health Russian Federation, 123098, Gamaleya Str. 18, Moscow, Russian Federation
| | - Elena A Kost
- Gamaleya Center of Epidemiology and Microbiology, Ministry of Health Russian Federation, 123098, Gamaleya Str. 18, Moscow, Russian Federation
| | - Lubov V Didenko
- Gamaleya Center of Epidemiology and Microbiology, Ministry of Health Russian Federation, 123098, Gamaleya Str. 18, Moscow, Russian Federation
| | - Lydia N Kapotina
- Gamaleya Center of Epidemiology and Microbiology, Ministry of Health Russian Federation, 123098, Gamaleya Str. 18, Moscow, Russian Federation
| | - Egor S Zayakin
- Gamaleya Center of Epidemiology and Microbiology, Ministry of Health Russian Federation, 123098, Gamaleya Str. 18, Moscow, Russian Federation
| | - Sergei I Luyksaar
- Gamaleya Center of Epidemiology and Microbiology, Ministry of Health Russian Federation, 123098, Gamaleya Str. 18, Moscow, Russian Federation
| | - Elena Y Morgunova
- Gamaleya Center of Epidemiology and Microbiology, Ministry of Health Russian Federation, 123098, Gamaleya Str. 18, Moscow, Russian Federation
| | - Elena D Fedina
- Gamaleya Center of Epidemiology and Microbiology, Ministry of Health Russian Federation, 123098, Gamaleya Str. 18, Moscow, Russian Federation
| | - Olga A Artyukhova
- Bauman Moscow State Technical University, 105005, 2nd Baumanskaya Str. 5, Moscow, Russian Federation
| | - Andrey V Samorodov
- Bauman Moscow State Technical University, 105005, 2nd Baumanskaya Str. 5, Moscow, Russian Federation
| | - Natalya V Kobets
- Gamaleya Center of Epidemiology and Microbiology, Ministry of Health Russian Federation, 123098, Gamaleya Str. 18, Moscow, Russian Federation
| |
Collapse
|
26
|
Tan GMY, Lim HJ, Yeow TC, Movahed E, Looi CY, Gupta R, Arulanandam BP, Abu Bakar S, Sabet NS, Chang LY, Wong WF. Temporal proteomic profiling of Chlamydia trachomatis-infected HeLa-229 human cervical epithelial cells. Proteomics 2016; 16:1347-60. [PMID: 27134121 DOI: 10.1002/pmic.201500219] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 02/15/2016] [Accepted: 03/01/2016] [Indexed: 12/30/2022]
Abstract
Chlamydia trachomatis is the leading causative agent of bacterial sexually transmitted infections worldwide which can lead to female pelvic inflammatory disease and infertility. A greater understanding of host response during chlamydial infection is essential to design intervention technique to reduce the increasing incidence rate of genital chlamydial infection. In this study, we investigated proteome changes in epithelial cells during C. trachomatis infection by using an isobaric tags for relative and absolute quantitation (iTRAQ) labeling technique coupled with a liquid chromatography-tandem mass spectrometry (LC-MS(3) ) analysis. C. trachomatis (serovar D, MOI 1)-infected HeLa-229 human cervical carcinoma epithelial cells (at 2, 4 and 8 h) showed profound modifications of proteome profile which involved 606 host proteins. MGST1, SUGP2 and ATXN10 were among the top in the list of the differentially upregulated protein. Through pathway analysis, we suggested the involvement of eukaryotic initiation factor 2 (eIF2) and mammalian target of rapamycin (mTOR) in host cells upon C. trachomatis infection. Network analysis underscored the participation of DNA repair mechanism during C. trachomatis infection. In summary, intense modifications of proteome profile in C. trachomatis-infected HeLa-229 cells indicate complex host-pathogen interactions at early phase of chlamydial infection.
Collapse
Affiliation(s)
- Grace Min Yi Tan
- Department of Medical Microbiology, Tropical Infectious Disease Research and Education Centre, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Hui Jing Lim
- Department of Medical Microbiology, Tropical Infectious Disease Research and Education Centre, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Tee Cian Yeow
- Department of Medical Microbiology, Tropical Infectious Disease Research and Education Centre, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Elaheh Movahed
- Department of Medical Microbiology, Tropical Infectious Disease Research and Education Centre, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chung Yeng Looi
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Rishein Gupta
- Center of Excellence in Infection Genomics, South Texas Center For Emerging Infectious Diseases, University of Texas at San Antonio, Texas, USA
| | - Bernard P Arulanandam
- Center of Excellence in Infection Genomics, South Texas Center For Emerging Infectious Diseases, University of Texas at San Antonio, Texas, USA
| | - Sazaly Abu Bakar
- Department of Medical Microbiology, Tropical Infectious Disease Research and Education Centre, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Li-Yen Chang
- Department of Medical Microbiology, Tropical Infectious Disease Research and Education Centre, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Won Fen Wong
- Department of Medical Microbiology, Tropical Infectious Disease Research and Education Centre, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
27
|
Nans A, Ford C, Hayward RD. Host-pathogen reorganisation during host cell entry by Chlamydia trachomatis. Microbes Infect 2015; 17:727-31. [PMID: 26320027 PMCID: PMC4670903 DOI: 10.1016/j.micinf.2015.08.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/20/2015] [Indexed: 12/12/2022]
Abstract
Chlamydia trachomatis is obligate intracellular bacterial pathogen that remains a significant public health burden worldwide. A critical early event during infection is chlamydial entry into non-phagocytic host epithelial cells. Like other Gram-negative bacteria, C. trachomatis uses a type III secretion system (T3SS) to deliver virulence effector proteins into host cells. These effectors trigger bacterial uptake and promote bacterial survival and replication within the host cell. In this review, we highlight recent cryo-electron tomography that has provided striking insights into the initial interactions between Chlamydia and its host. We describe the polarised structure of extracellular C. trachomatis elementary bodies (EBs), and the supramolecular organisation of T3SS complexes on the EB surface, in addition to the changes in host and pathogen architecture that accompany bacterial internalisation and EB encapsulation into early intracellular vacuoles. Finally, we consider the implications for further understanding the mechanism of C. trachomatis entry and how this might relate to those of other bacteria and viruses.
Collapse
Affiliation(s)
- Andrea Nans
- Institute of Structural and Molecular Biology, University College London & Birkbeck, Malet Street, London WC1E 7HX, UK
| | - Charlotte Ford
- Institute of Structural and Molecular Biology, University College London & Birkbeck, Malet Street, London WC1E 7HX, UK
| | - Richard D Hayward
- Institute of Structural and Molecular Biology, University College London & Birkbeck, Malet Street, London WC1E 7HX, UK.
| |
Collapse
|
28
|
Heras B, Scanlon MJ, Martin JL. Targeting virulence not viability in the search for future antibacterials. Br J Clin Pharmacol 2015; 79:208-15. [PMID: 24552512 DOI: 10.1111/bcp.12356] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/09/2013] [Indexed: 01/01/2023] Open
Abstract
New antibacterials need new approaches to overcome the problem of rapid antibiotic resistance. Here we review the development of potential new antibacterial drugs that do not kill bacteria or inhibit their growth, but combat disease instead by targeting bacterial virulence.
Collapse
Affiliation(s)
- Begoña Heras
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Vic
| | | | | |
Collapse
|
29
|
McShan AC, De Guzman RN. The bacterial type III secretion system as a target for developing new antibiotics. Chem Biol Drug Des 2015; 85:30-42. [PMID: 25521643 DOI: 10.1111/cbdd.12422] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 01/14/2023]
Abstract
Antibiotic resistance in pathogens requires new targets for developing novel antibacterials. The bacterial type III secretion system (T3SS) is an attractive target for developing antibacterials as it is essential in the pathogenesis of many Gram-negative bacteria. The T3SS consists of structural proteins, effectors, and chaperones. Over 20 different structural proteins assemble into a complex nanoinjector that punctures a hole on the eukaryotic cell membrane to allow the delivery of effectors directly into the host cell cytoplasm. Defects in the assembly and function of the T3SS render bacteria non-infective. Two major classes of small molecules, salicylidene acylhydrazides and thiazolidinones, have been shown to inhibit multiple genera of bacteria through the T3SS. Many additional chemically and structurally diverse classes of small molecule inhibitors of the T3SS have been identified as well. While specific targets within the T3SS of a few inhibitors have been suggested, the vast majority of specific protein targets within the T3SS remain to be identified or characterized. Other T3SS inhibitors include polymers, proteins, and polypeptides mimics. In addition, T3SS activity is regulated by its interaction with biologically relevant molecules, such as bile salts and sterols, which could serve as scaffolds for drug design.
Collapse
Affiliation(s)
- Andrew C McShan
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, USA
| | | |
Collapse
|
30
|
Barta ML, Battaile KP, Lovell S, Hefty PS. Hypothetical protein CT398 (CdsZ) interacts with σ(54) (RpoN)-holoenzyme and the type III secretion export apparatus in Chlamydia trachomatis. Protein Sci 2015; 24:1617-32. [PMID: 26173998 DOI: 10.1002/pro.2746] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/06/2015] [Indexed: 12/22/2022]
Abstract
A significant challenge to bacteriology is the relatively large proportion of proteins that lack sufficient sequence similarity to support functional annotation (i.e. hypothetical proteins). The aim of this study was to apply protein structural homology to gain insights into a candidate protein of unknown function (CT398) within the medically important, obligate intracellular bacterium Chlamydia trachomatis. C. trachomatis is a major human pathogen responsible for numerous infections throughout the world that can lead to blindness and infertility. A 2.12 Å crystal structure of hypothetical protein CT398 was determined that was comprised of N-terminal coiled-coil and C-terminal Zn-ribbon domains. The structure of CT398 displayed a high degree of structural similarity to FlgZ (Flagellar-associated zinc-ribbon domain protein) from Helicobacter pylori. This observation directed analyses of candidate protein partners of CT398, revealing interactions with two paralogous type III secretion system (T3SS) ATPase-regulators (CdsL and FliH) and the alternative sigma factor RpoN (σ(54) ). Furthermore, genetic introduction of a conditional expression, affinity-tagged construct into C. trachomatis enabled the purification of a CT398-RpoN-holoenzyme complex, suggesting a potential role for CT398 in modulating transcriptional activity during infection. The interactions reported here, in tandem with previous FlgZ studies in H. pylori, indicate that CT398 functions as a regulator of several key areas of chlamydial biology throughout the developmental cycle. Accordingly, we propose that CT398 be named CdsZ (Contact-dependent secretion-associated zinc-ribbon domain protein).
Collapse
Affiliation(s)
- Michael L Barta
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045
| | - Kevin P Battaile
- IMCA-CAT, Hauptman-Woodward Medical Research Institute, Argonne, Illinois
| | - Scott Lovell
- Protein Structure Laboratory, Del Shankel Structural Biology Center, University of Kansas, Lawrence, KS, 66045
| | - P Scott Hefty
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045
| |
Collapse
|
31
|
Charro N, Mota LJ. Approaches targeting the type III secretion system to treat or prevent bacterial infections. Expert Opin Drug Discov 2015; 10:373-87. [DOI: 10.1517/17460441.2015.1019860] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Nuno Charro
- 1UCIBIO, REQUIMTE, Departmento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica 2829-516, Portugal
| | - Luís Jaime Mota
- 2UCIBIO, REQUIMTE, Departmento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica 2829-516, Portugal ;
| |
Collapse
|
32
|
The type III secretion system (T3SS) of Chlamydophila psittaci is involved in the host inflammatory response by activating the JNK/ERK signaling pathway. BIOMED RESEARCH INTERNATIONAL 2015; 2015:652416. [PMID: 25685800 PMCID: PMC4317586 DOI: 10.1155/2015/652416] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/21/2014] [Accepted: 10/05/2014] [Indexed: 12/03/2022]
Abstract
Chlamydophila psittaci (C. psittaci) is a human zoonotic pathogen, which could result in severe respiratory disease. In the present study, we investigated the role and mechanism of the type III secretion system (T3SS) of C. psittaci in regulating the inflammatory response in host cells. C. psittaci-infected THP-1 cells were incubated with the specific T3SS inhibitor INP0007, inhibitors of ERK, p38, or JNK, and the levels of inflammatory cytokines were analyzed using Q-PCR and ELISA. The levels of ERK, p38, and JNK phosphorylation were analyzed by Western blot. Our results verified that INP0007 inhibited chlamydial growth in vitro, but the coaddition of exogenous iron completely reversed the growth deficit. INP0007 inhibited the growth of C. psittaci and decreased the levels of IL-8, IL-6, TNF-α, and IL-1β. Exogenous iron restored the chlamydial growth but not the production of inflammatory cytokines. These results demonstrated that the expression of inflammatory cytokines during infection was associated with the T3SS which reduced by incubation with ERK and JNK inhibitors, but not with p38 inhibitor. We concluded that the T3SS elicited inflammatory responses by activating the JNK or ERK signaling pathways in the infection of C. psittaci.
Collapse
|
33
|
Abstract
Resistance of important bacterial pathogens to common antimicrobial therapies and the emergence of multidrug-resistant bacteria are increasing at an alarming rate and constitute one of our greatest challenges in the combat of bacterial infection and accompanied diseases. The current shortage of effective drugs, lack of successful prevention measures and only a few new antibiotics in the clinical pipeline demand the development of novel treatment options and alternative antimicrobial therapies. Our increasing understanding of bacterial virulence strategies and the induced molecular pathways of the infectious disease provides novel opportunities to target and interfere with crucial pathogenicity factors or virulence-associated traits of the bacteria while bypassing the evolutionary pressure on the bacterium to develop resistance. In the past decade, numerous new bacterial targets for anti-virulence therapies have been identified, and structure-based tailoring of intervention strategies and screening assays for small-molecule inhibitors of such pathways were successfully established. In this chapter, we will take a closer look at the bacterial virulence-related factors and processes that present promising targets for anti-virulence therapies, recently discovered inhibitory substances and their promises and discuss the challenges, and problems that have to be faced.
Collapse
|
34
|
Zambelloni R, Marquez R, Roe AJ. Development of Antivirulence Compounds: A Biochemical Review. Chem Biol Drug Des 2014; 85:43-55. [DOI: 10.1111/cbdd.12430] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/20/2014] [Accepted: 08/26/2014] [Indexed: 01/09/2023]
Affiliation(s)
- Riccardo Zambelloni
- Institute of Infection Immunity and Inflammation; University of Glasgow; Sir Graeme Davies Building 120 University Place Glasgow G12 8TA UK
- Institute of Molecular and Cell Biology and Chemistry; University of Glasgow; Joseph Black Building Glasgow G12 8QQ UK
| | - Rudi Marquez
- Institute of Molecular and Cell Biology and Chemistry; University of Glasgow; Joseph Black Building Glasgow G12 8QQ UK
| | - Andrew J. Roe
- Institute of Molecular and Cell Biology and Chemistry; University of Glasgow; Joseph Black Building Glasgow G12 8QQ UK
| |
Collapse
|
35
|
Hua Z, Frohlich KM, Zhang Y, Feng X, Zhang J, Shen L. Andrographolide inhibits intracellular Chlamydia trachomatis multiplication and reduces secretion of proinflammatory mediators produced by human epithelial cells. Pathog Dis 2014; 73:1-11. [PMID: 25854005 DOI: 10.1093/femspd/ftu022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2014] [Indexed: 11/12/2022] Open
Abstract
Chlamydia trachomatis is the most common sexually transmitted bacterial disease worldwide. Untreated C. trachomatis infections may cause inflammation and ultimately damage tissues. Here, we evaluated the ability of Andrographolide (Andro), a natural diterpenoid lactone component of Andrographis paniculata, to inhibit C. trachomatis infection in cultured human cervical epithelial cells. We found that Andro exposure inhibited C. trachomatis growth in a dose- and time-dependent manner. The greatest inhibitory effect was observed when exponentially growing C. trachomatis was exposed to Andro. Electron micrographs demonstrated the accumulation of unusual, structurally deficient chlamydial organisms, correlated with a decrease in levels of OmcB expressed at the late stage of infection. Additionally, Andro significantly reduced the secretion of interleukin6, CXCL8 and interferon-γ-induced protein10 produced by host cells infected with C. trachomatis. These results indicate the efficacy of Andro to perturb C. trachomatis transition from the metabolically active reticulate body to the infectious elementary body and concurrently reduce the production of a proinflammatory mediator by epithelial cells in vitro. Further dissection of Andro's anti-Chlamydia action may provide identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Ziyu Hua
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China, 400014
| | - Kyla M Frohlich
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Yan Zhang
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China, 400014
| | | | - Jiaxing Zhang
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China, 400014
| | - Li Shen
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
36
|
Dumoux M, Nans A, Saibil HR, Hayward RD. Making connections: snapshots of chlamydial type III secretion systems in contact with host membranes. Curr Opin Microbiol 2014; 23:1-7. [PMID: 25461566 DOI: 10.1016/j.mib.2014.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/23/2014] [Accepted: 09/29/2014] [Indexed: 12/17/2022]
Abstract
Chlamydiae are obligate intracellular bacterial pathogens with an unusual biphasic lifecycle, which is underpinned by two bacterial forms of distinct structure and function. Bacterial entry and replication require a type III secretion system (T3SS), a widely conserved nanomachine responsible for the translocation of virulence effectors into host cells. Recent cell biology experiments supported by electron and cryo-electron tomography have provided fresh insights into Chlamydia-host interactions. In this review, we highlight some of the recent advances, particularly the in situ analysis of T3SSs in contact with host membranes during chlamydial entry and intracellular replication, and the role of the host rough endoplasmic reticulum (rER) at the recently described intracellular 'pathogen synapse'.
Collapse
Affiliation(s)
- Maud Dumoux
- Institute of Structural and Molecular Biology, University College London & Birkbeck, Malet Street, London WC1E 7HX, UK
| | - Andrea Nans
- Crystallography, Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
| | - Helen R Saibil
- Crystallography, Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
| | - Richard D Hayward
- Institute of Structural and Molecular Biology, University College London & Birkbeck, Malet Street, London WC1E 7HX, UK.
| |
Collapse
|
37
|
Beckham KSH, Roe AJ. From screen to target: insights and approaches for the development of anti-virulence compounds. Front Cell Infect Microbiol 2014; 4:139. [PMID: 25325019 PMCID: PMC4179734 DOI: 10.3389/fcimb.2014.00139] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 09/11/2014] [Indexed: 01/10/2023] Open
Abstract
A detailed understanding of host-pathogen interactions provides exciting opportunities to interfere with the infection process. Anti-virulence compounds aim to modulate or pacify pathogenesis by reducing expression of critical virulence determinants. In particular, prevention of attachment by inhibiting adhesion mechanisms has been the subject of intense research. Whilst it has proven relatively straightforward to develop robust screens for potential anti-virulence compounds, understanding their precise mode of action has proven much more challenging. In this review we illustrate this challenge from our own experiences working with the salicylidene acylhydrazide group of compounds. We aim to provide a useful perspective to guide researchers interested in this field and to avoid some of the obvious pitfalls.
Collapse
Affiliation(s)
| | - Andrew J. Roe
- *Correspondence: Andrew J. Roe, Glasgow Biomedical Research Centre, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK e-mail:
| |
Collapse
|
38
|
Bao X, Gylfe A, Sturdevant GL, Gong Z, Xu S, Caldwell HD, Elofsson M, Fan H. Benzylidene acylhydrazides inhibit chlamydial growth in a type III secretion- and iron chelation-independent manner. J Bacteriol 2014; 196:2989-3001. [PMID: 24914180 PMCID: PMC4135636 DOI: 10.1128/jb.01677-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 06/04/2014] [Indexed: 11/20/2022] Open
Abstract
Chlamydiae are widespread Gram-negative pathogens of humans and animals. Salicylidene acylhydrazides, developed as inhibitors of type III secretion system (T3SS) in Yersinia spp., have an inhibitory effect on chlamydial infection. However, these inhibitors also have the capacity to chelate iron, and it is possible that their antichlamydial effects are caused by iron starvation. Therefore, we have explored the modification of salicylidene acylhydrazides with the goal to uncouple the antichlamydial effect from iron starvation. We discovered that benzylidene acylhydrazides, which cannot chelate iron, inhibit chlamydial growth. Biochemical and genetic analyses suggest that the derivative compounds inhibit chlamydiae through a T3SS-independent mechanism. Four single nucleotide polymorphisms were identified in a Chlamydia muridarum variant resistant to benzylidene acylhydrazides, but it may be necessary to segregate the mutations to differentiate their roles in the resistance phenotype. Benzylidene acylhydrazides are well tolerated by host cells and probiotic vaginal Lactobacillus species and are therefore of potential therapeutic value.
Collapse
Affiliation(s)
- Xiaofeng Bao
- Department of Pharmacology, Rutgers University Robert Wood Johnson Medical School, Piscataway, New Jersey, USA Department of Pharmacology, Nantong University School of Pharmacy, Nantong, People's Republic of China
| | - Asa Gylfe
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Gail L Sturdevant
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Zheng Gong
- Department of Pharmacology, Rutgers University Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Shuang Xu
- Department of Pharmacology, Rutgers University Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Harlan D Caldwell
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | | | - Huizhou Fan
- Department of Pharmacology, Rutgers University Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| |
Collapse
|
39
|
N-acylated derivatives of sulfamethoxazole and sulfafurazole inhibit intracellular growth of Chlamydia trachomatis. Antimicrob Agents Chemother 2014; 58:2968-71. [PMID: 24566180 DOI: 10.1128/aac.02015-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Antibacterial compounds with novel modes of action are needed for management of bacterial infections. Here we describe a high-content screen of 9,800 compounds identifying acylated sulfonamides as novel growth inhibitors of the sexually transmitted pathogen Chlamydia trachomatis. The effect was bactericidal and distinct from that of sulfonamide antibiotics, as para-aminobenzoic acid did not reduce efficacy. Chemical inhibitors play an important role in Chlamydia research as probes of potential targets and as drug development starting points.
Collapse
|
40
|
Yang F, Korban SS, Pusey PL, Elofsson M, Sundin GW, Zhao Y. Small-molecule inhibitors suppress the expression of both type III secretion and amylovoran biosynthesis genes in Erwinia amylovora. MOLECULAR PLANT PATHOLOGY 2014; 15:44-57. [PMID: 23915008 PMCID: PMC6638656 DOI: 10.1111/mpp.12064] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The type III secretion system (T3SS) and exopolysaccharide (EPS) amylovoran are two essential pathogenicity factors in Erwinia amylovora, the causal agent of the serious bacterial disease fire blight. In this study, small molecules that inhibit T3SS gene expression in E. amylovora under hrp (hypersensitive response and pathogenicity)-inducing conditions were identified and characterized using green fluorescent protein (GFP) as a reporter. These compounds belong to salicylidene acylhydrazides and also inhibit amylovoran production. Microarray analysis of E. amylovora treated with compounds 3 and 9 identified a total of 588 significantly differentially expressed genes. Among them, 95 and 78 genes were activated and suppressed by both compounds, respectively, when compared with the dimethylsulphoxide (DMSO) control. The expression of the majority of T3SS genes in E. amylovora, including hrpL and the avrRpt2 effector gene, was suppressed by both compounds. Compound 3 also suppressed the expression of amylovoran precursor and biosynthesis genes. However, both compounds induced significantly the expression of glycogen biosynthesis genes and siderophore biosynthesis, regulatory and transport genes. Furthermore, many membrane, lipoprotein and exported protein-encoding genes were also activated by both compounds. Similar expression patterns were observed for compounds 1, 2 and 4. Using crab apple flower as a model, compound 3 was capable of reducing disease development in pistils. These results suggest a common inhibition mechanism shared by salicylidene acylhydrazides and indicate that small-molecule inhibitors that disable T3SS function could be explored to control fire blight disease.
Collapse
Affiliation(s)
- Fan Yang
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | | | | | | | | | | |
Collapse
|
41
|
Penicillin kills Chlamydia following the fusion of bacteria with lysosomes and prevents genital inflammatory lesions in C. muridarum-infected mice. PLoS One 2013; 8:e83511. [PMID: 24376710 PMCID: PMC3871543 DOI: 10.1371/journal.pone.0083511] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/04/2013] [Indexed: 01/11/2023] Open
Abstract
The obligate intracellular bacterium Chlamydia exists as two distinct forms. Elementary bodies (EBs) are infectious and extra-cellular, whereas reticulate bodies (RBs) replicate within a specialized intracellular compartment termed an ‘inclusion’. Alternative persistent intra-cellular forms can be induced in culture by diverse stimuli such as IFNγ or adenosine/EHNA. They do not grow or divide but revive upon withdrawal of the stimulus and are implicated in several widespread human diseases through ill-defined in vivo mechanisms. β-lactam antibiotics have also been claimed to induce persistence in vitro. The present report shows that upon penicillin G (pG) treatment, inclusions grow as fast as those in infected control cells. After removal of pG, Chlamydia do not revert to RBs. These effects are independent of host cell type, serovar, biovar and species of Chlamydia. Time-course experiments demonstrated that only RBs were susceptible to pG. pG-treated bacteria lost their control over host cell apoptotic pathways and no longer expressed pre-16S rRNA, in contrast to persistent bacteria induced with adenosine/EHNA. Confocal and live-video microscopy showed that bacteria within the inclusion fused with lysosomal compartments in pG-treated cells. That leads to recruitment of cathepsin D as early as 3 h post pG treatment, an event preceding bacterial death by several hours. These data demonstrate that pG treatment of cultured cells infected with Chlamydia results in the degradation of the bacteria. In addition we show that pG is significantly more efficient than doxycycline at preventing genital inflammatory lesions in C. muridarum-C57Bl/6 infected mice. These in vivo results support the physiological relevance of our findings and their potential therapeutic applications.
Collapse
|
42
|
The resveratrol tetramer (-)-hopeaphenol inhibits type III secretion in the gram-negative pathogens Yersinia pseudotuberculosis and Pseudomonas aeruginosa. PLoS One 2013; 8:e81969. [PMID: 24324737 PMCID: PMC3853165 DOI: 10.1371/journal.pone.0081969] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 10/18/2013] [Indexed: 11/19/2022] Open
Abstract
Society faces huge challenges, as a large number of bacteria have developed resistance towards many or all of the antibiotics currently available. Novel strategies that can help solve this problem are urgently needed. One such strategy is to target bacterial virulence, the ability to cause disease e.g., by inhibition of type III secretion systems (T3SSs) utilized by many clinically relevant gram-negative pathogens. Many of the antibiotics used today originate from natural sources. In contrast, most virulence-blocking compounds towards the T3SS identified so far are small organic molecules. A recent high-throughput screening of a prefractionated natural product library identified the resveratrol tetramer (-)-hopeaphenol as an inhibitor of the T3SS in Yersinia pseudotuberculosis. In this study we have investigated the virulence blocking properties of (-)-hopeaphenol in three different gram-negative bacteria. (-)-Hopeaphenol was found to have micromolar activity towards the T3SSs in Yersinia pseudotuberculosis and Pseudomonas aeruginosa in cell-based infection models. In addition (-)-hopeaphenol reduced cell entry and subsequent intracellular growth of Chlamydia trachomatis.
Collapse
|
43
|
Marshall NC, Finlay BB. Targeting the type III secretion system to treat bacterial infections. Expert Opin Ther Targets 2013; 18:137-52. [DOI: 10.1517/14728222.2014.855199] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
44
|
Abstract
Members of the order Chlamydiales comprise a group of exquisitely evolved parasites of eukaryotic hosts that extends from single-celled amoeba to mammals. The most notable are human pathogens and include the agent of oculogenital disease Chlamydia trachomatis, the respiratory pathogen C. pneumoniae, and the zoonotic agent C. psittaci. All of these species are obligate intracellular bacteria that develop within parasitophorous vesicles termed inclusions. This demanding lifestyle necessitates orchestrated entry into nonphagocytic cells, creation of a privileged intracellular niche, and subversion of potent host defenses. All chlamydial genomes contain the coding capacity for a nonflagellar type III secretion system, and this mechanism has arisen as an essential contributor to chlamydial virulence. The emergence of tractable approaches to the genetic manipulation of chlamydiae raises the possibility of explosive progress in understanding this important contributor to chlamydial pathogenesis. This minireview considers challenges and recent advances that have revealed how chlamydiae have maintained conserved aspects of T3S while exploiting diversification to yield a system that exerts a fundamental role in the unique biology of Chlamydia species.
Collapse
|
45
|
Gloeckl S, Ong VA, Patel P, Tyndall JDA, Timms P, Beagley KW, Allan JA, Armitage CW, Turnbull L, Whitchurch CB, Merdanovic M, Ehrmann M, Powers JC, Oleksyszyn J, Verdoes M, Bogyo M, Huston WM. Identification of a serine protease inhibitor which causes inclusion vacuole reduction and is lethal to Chlamydia trachomatis. Mol Microbiol 2013; 89:676-89. [PMID: 23796320 DOI: 10.1111/mmi.12306] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2013] [Indexed: 12/22/2022]
Abstract
The mechanistic details of the pathogenesis of Chlamydia, an obligate intracellular pathogen of global importance, have eluded scientists due to the scarcity of traditional molecular genetic tools to investigate this organism. Here we report a chemical biology strategy that has uncovered the first essential protease for this organism. Identification and application of a unique CtHtrA inhibitor (JO146) to cultures of Chlamydia resulted in a complete loss of viable elementary body formation. JO146 treatment during the replicative phase of development resulted in a loss of Chlamydia cell morphology, diminishing inclusion size, and ultimate loss of inclusions from the host cells. This completely prevented the formation of viable Chlamydia elementary bodies. In addition to its effect on the human Chlamydia trachomatis strain, JO146 inhibited the viability of the mouse strain, Chlamydia muridarum, both in vitro and in vivo. Thus, we report a chemical biology approach to establish an essential role for Chlamydia CtHtrA. The function of CtHtrA for Chlamydia appears to be essential for maintenance of cell morphology during replicative the phase and these findings provide proof of concept that proteases can be targeted for antimicrobial therapy for intracellular pathogens.
Collapse
Affiliation(s)
- Sarina Gloeckl
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Kelvin Grove, Qld, 4059, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Mutations in hemG mediate resistance to salicylidene acylhydrazides, demonstrating a novel link between protoporphyrinogen oxidase (HemG) and Chlamydia trachomatis infectivity. J Bacteriol 2013; 195:4221-30. [PMID: 23852872 DOI: 10.1128/jb.00506-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Salicylidene acylhydrazides (SAHs) inhibit the type III secretion system (T3S) of Yersinia and other Gram-negative bacteria. In addition, SAHs restrict the growth and development of Chlamydia species. However, since the inhibition of Chlamydia growth by SAH is suppressed by the addition of excess iron and since SAHs have an iron-chelating capacity, their role as specific T3S inhibitors is unclear. We investigated here whether SAHs exhibit a function on C. trachomatis that goes beyond iron chelation. We found that the iron-saturated SAH INP0341 (IS-INP0341) specifically affects C. trachomatis infectivity with reduced generation of infectious elementary body (EB) progeny. Selection and isolation of spontaneous SAH-resistant mutant strains revealed that mutations in hemG suppressed the reduced infectivity caused by IS-INP0341 treatment. Structural modeling of C. trachomatis HemG predicts that the acquired mutations are located in the active site of the enzyme, suggesting that IS-INP0341 inhibits this domain of HemG and that protoporphyrinogen oxidase (HemG) and heme metabolism are important for C. trachomatis infectivity.
Collapse
|
47
|
Shrestha N, Boucher J, Bahnan W, Clark ES, Rosqvist R, Fields KA, Khan WN, Schesser K. The host-encoded Heme Regulated Inhibitor (HRI) facilitates virulence-associated activities of bacterial pathogens. PLoS One 2013; 8:e68754. [PMID: 23874749 PMCID: PMC3707855 DOI: 10.1371/journal.pone.0068754] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 05/31/2013] [Indexed: 11/18/2022] Open
Abstract
Here we show that cells lacking the heme-regulated inhibitor (HRI) are highly resistant to infection by bacterial pathogens. By examining the infection process in wild-type and HRI null cells, we found that HRI is required for pathogens to execute their virulence-associated cellular activities. Specifically, unlike wild-type cells, HRI null cells infected with the gram-negative bacterial pathogen Yersinia are essentially impervious to the cytoskeleton-damaging effects of the Yop virulence factors. This effect is due to reduced functioning of the Yersinia type 3 secretion (T3S) system which injects virulence factors directly into the host cell cytosol. Reduced T3S activity is also observed in HRI null cells infected with the bacterial pathogen Chlamydia which results in a dramatic reduction in its intracellular proliferation. We go on to show that a HRI-mediated process plays a central role in the cellular infection cycle of the Gram-positive pathogen Listeria. For this pathogen, HRI is required for the post-invasion trafficking of the bacterium to the infected host cytosol. Thus by depriving Listeria of its intracellular niche, there is a highly reduced proliferation of Listeria in HRI null cells. We provide evidence that these infection-associated functions of HRI (an eIF2α kinase) are independent of its activity as a regulator of protein synthesis. This is the first report of a host factor whose absence interferes with the function of T3S secretion and cytosolic access by pathogens and makes HRI an excellent target for inhibitors due to its broad virulence-associated activities.
Collapse
Affiliation(s)
- Niraj Shrestha
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Justin Boucher
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Wael Bahnan
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Emily S. Clark
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Roland Rosqvist
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Kenneth A. Fields
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Wasif N. Khan
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Kurt Schesser
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
48
|
|
49
|
Berthelot JM, de la Cochetière MF, Potel G, Le Goff B, Maugars Y. Evidence supporting a role for dormant bacteria in the pathogenesis of spondylarthritis. Joint Bone Spine 2013; 80:135-40. [PMID: 23473929 DOI: 10.1016/j.jbspin.2012.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2012] [Indexed: 12/18/2022]
Abstract
Spondylarthritis is still viewed as a reaction to infectious agents, as opposed to an infection by persistent bacteria, for several reasons: (a) an infection is considered proven only when the organism can be cultured; (b) no studies have identified dormant bacteria in the tissues targeted by spondylarthritis; (c) the bacterial persistence hypothesis has no therapeutic implications at the time being, since antibiotics are effective neither on dormant bacteria nor on the manifestations of spondylarthritis; and (d) the high prevalence of borderline disorders combining features of spondylarthritis and of psoriatic arthritis, or even rheumatoid arthritis (RA), would indicate a role for dormant bacteria in these last two diseases. However, recent data on dormant bacteria have rekindled interest in the bacterial persistence hypothesis. Dormant bacteria cannot be cultured, because they express only a small group of genes, known as the regulon, which includes genes for transcription factors that block the expression of the usual bacterial genes. Certain forms of cell stress, such as molecule misfolding, promote the entry of bacteria into a state of dormancy, which induces the low-level release by the host cells of cytokines such as TNF. Whether HLA-B27 misfolding facilitates the persistence of dormant bacteria within spondylarthritis tissue targets remains to be determined. If it does, then treatments that reactivate dormant bacteria might make these organisms susceptible to appropriate antibiotics and might therefore serve as useful adjuncts to nonsteroidal anti-inflammatory drugs and TNFα antagonists. TNFα antagonists rarely reactivate dormant bacteria, with the exception of Mycobacterium tuberculosis, which, together with metastatic cells, is the most extensively studied latency model to date.
Collapse
Affiliation(s)
- Jean-Marie Berthelot
- Service de Rhumatologie, Hôtel-Dieu, CHU de Nantes, place Alexis-Ricordeau, 44093 Nantes cedex 01, France.
| | | | | | | | | |
Collapse
|
50
|
Cytosporone B, an inhibitor of the type III secretion system of Salmonella enterica serovar Typhimurium. Antimicrob Agents Chemother 2013; 57:2191-8. [PMID: 23459474 DOI: 10.1128/aac.02421-12] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bacterial virulence factors have been increasingly regarded as attractive targets for development of novel antibacterial agents. Virulence inhibitors are less likely to generate bacterial resistance, which makes them superior to traditional antibiotics that target bacterial viability. Salmonella enterica serovar Typhimurium, an important food-borne human pathogen, has type III secretion system (T3SS) as its major virulence factor. T3SS secretes effector proteins to facilitate invasion into host cells. In this study, we identified several analogs of cytosporone B (Csn-B) that strongly block the secretion of Salmonella pathogenicity island 1 (SPI-1)-associated effector proteins, without affecting the secretion of flagellar protein FliC in vitro. Csn-B and two other derivatives exhibited a strong inhibitory effect on SPI-1-mediated invasion to HeLa cells, while no significant toxicity to bacteria was observed. Nucleoid proteins Hha and H-NS bind to the promoters of SPI-1 regulator genes hilD, hilC, and rtsA to repress their expression and consequently regulate the expression of SPI-1 apparatus and effector genes. We found that Csn-B upregulated the transcription of hha and hns, implying that Csn-B probably affected the secretion of effectors through the Hha-H-NS regulatory pathway. In summary, this study presented an effective SPI-1 inhibitor, Csn-B, which may have potential in drug development against antibiotic-resistant Salmonella.
Collapse
|