1
|
Bellissimo KA, Septer AN, Whistler CA, Rodríguez C, Stabb EV. Deletion of luxI increases luminescence of Vibrio fischeri. mBio 2024; 15:e0244624. [PMID: 39315803 PMCID: PMC11481858 DOI: 10.1128/mbio.02446-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
Bioluminescence in Vibrio fischeri is regulated by a quorum-dependent signaling system composed of LuxI and LuxR. LuxI generates N-3-oxohexanoyl homoserine lactone (3OC6-HSL), which triggers LuxR to activate transcription of the luxICDABEG operon responsible for bioluminescence. Surprisingly, a ∆luxI mutant produced more bioluminescence than the wild type in culture. In contrast, a 4 bp duplication within luxI, resulting in a frameshift mutation and null allele, decreased luminescence tenfold. A second signaling system encoded by ainSR affects bioluminescence by increasing levels of LuxR, via the transcriptional activator LitR, and the N-octanoyl homoserine lactone (C8-HSL) signal produced by AinS is considered only a weak activator of LuxR. However, ainS is required for the bright phenotype of the ∆luxI mutant in culture. When 3OC6-HSL was provided either in the medium or by expression of luxI in trans, all cultures were brighter, but the ∆luxI mutant remained significantly brighter than the luxI frameshift mutant. Taken together, these data suggest that the enhanced bioluminescence due to the LuxI product 3OC6-HSL counteracts a negative cis-acting regulatory element within the luxI gene and that when luxI is absent the C8-HSL signal is sufficient to induce luminescence. IMPORTANCE The regulation of bioluminescence by Vibrio fischeri is a textbook example of bacterial quorum-dependent pheromone signaling. The canonical regulatory model is that an autoinducer pheromone produced by LuxI accumulates as cells achieve a high density, and this LuxI-generated signal stimulates LuxR to activate transcription of the lux operon that underlies bioluminescence. The surprising observation that LuxI is dispensable for inducing bioluminescence forces a re-evaluation of the role of luxI. More broadly, the results underscore the potential deceptiveness of complex regulatory circuits, particularly those in which bacteria produce multiple related signaling molecules.
Collapse
Affiliation(s)
- Kathryn A. Bellissimo
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Alecia N. Septer
- Department of Earth, Marine & Environmental Sciences, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Cheryl A. Whistler
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | - Coralis Rodríguez
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Eric V. Stabb
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
2
|
Hu L, Rossetti M, Bergua JF, Parolo C, Álvarez-Diduk R, Rivas L, Idili A, Merkoçi A. Harnessing Bioluminescent Bacteria to Develop an Enzymatic-free Enzyme-linked immunosorbent assay for the Detection of Clinically Relevant Biomarkers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30636-30647. [PMID: 38651970 PMCID: PMC11194763 DOI: 10.1021/acsami.4c01744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024]
Abstract
Enzyme-linked immunosorbent assay (ELISA) is the gold standard technique for measuring protein biomarkers due to its high sensitivity, specificity, and throughput. Despite its success, continuous advancements in ELISA and immunoassay formats are crucial to meet evolving global challenges and to address new analytical needs in diverse applications. To expand the capabilities and applications of immunoassays, we introduce a novel ELISA-like assay that we call Bioluminescent-bacteria-linked immunosorbent assay (BBLISA). BBLISA is an enzyme-free assay that utilizes the inner filter effect between the bioluminescent bacteriaAllivibrio fischeriand metallic nanoparticles (gold nanoparticles and gold iridium oxide nanoflowers) as molecular absorbers. Functionalizing these nanoparticles with antibodies induces their accumulation in wells upon binding to molecular targets, forming the classical immune-sandwich complex. Thanks to their ability to adsorb the light emitted by the bacteria, the nanoparticles can suppress the bioluminescence signal, allowing the rapid quantification of the target. To demonstrate the bioanalytical properties of the novel immunoassay platform, as a proof of principle, we detected two clinically relevant biomarkers (human immunoglobulin G and SARS-CoV-2 nucleoprotein) in human serum, achieving the same sensitivity and precision as the classic ELISA. We believe that BBLISA can be a promising alternative to the standard ELISA techniques, offering potential advancements in biomarker detection and analysis by combining nanomaterials with a low-cost, portable bioluminescent platform.
Collapse
Affiliation(s)
- Liming Hu
- Nanobioelectronics
& Biosensors Group, Catalan Institute
of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra 08193, Barcelona, Spain
| | - Marianna Rossetti
- Nanobioelectronics
& Biosensors Group, Catalan Institute
of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra 08193, Barcelona, Spain
| | - José Francisco Bergua
- Nanobioelectronics
& Biosensors Group, Catalan Institute
of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra 08193, Barcelona, Spain
| | - Claudio Parolo
- Barcelona
Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona 08036, Spain
| | - Ruslan Álvarez-Diduk
- Nanobioelectronics
& Biosensors Group, Catalan Institute
of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra 08193, Barcelona, Spain
| | - Lourdes Rivas
- Nanobioelectronics
& Biosensors Group, Catalan Institute
of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra 08193, Barcelona, Spain
| | - Andrea Idili
- Department
of Chemical Sciences and Technologies, University
of Rome Tor Vergata, Via della Ricerca Scientifica, Rome 00133, Italy
| | - Arben Merkoçi
- Nanobioelectronics
& Biosensors Group, Catalan Institute
of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra 08193, Barcelona, Spain
- Institució
Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona 08010, Spain
| |
Collapse
|
3
|
Septer AN, Visick KL. Lighting the way: how the Vibrio fischeri model microbe reveals the complexity of Earth's "simplest" life forms. J Bacteriol 2024; 206:e0003524. [PMID: 38695522 PMCID: PMC11112999 DOI: 10.1128/jb.00035-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024] Open
Abstract
Vibrio (Aliivibrio) fischeri's initial rise to fame derived from its alluring production of blue-green light. Subsequent studies to probe the mechanisms underlying this bioluminescence helped the field discover the phenomenon now known as quorum sensing. Orthologs of quorum-sensing regulators (i.e., LuxR and LuxI) originally identified in V. fischeri were subsequently uncovered in a plethora of bacterial species, and analogous pathways were found in yet others. Over the past three decades, the study of this microbe has greatly expanded to probe the unique role of V. fischeri as the exclusive symbiont of the light organ of the Hawaiian bobtail squid, Euprymna scolopes. Buoyed by this optically amenable host and by persistent and insightful researchers who have applied novel and cross-disciplinary approaches, V. fischeri has developed into a robust model for microbe-host associations. It has contributed to our understanding of how bacteria experience and respond to specific, often fluxing environmental conditions and the mechanisms by which bacteria impact the development of their host. It has also deepened our understanding of numerous microbial processes such as motility and chemotaxis, biofilm formation and dispersal, and bacterial competition, and of the relevance of specific bacterial genes in the context of colonizing an animal host. Parallels in these processes between this symbiont and bacteria studied as pathogens are readily apparent, demonstrating functional conservation across diverse associations and permitting a reinterpretation of "pathogenesis." Collectively, these advances built a foundation for microbiome studies and have positioned V. fischeri to continue to expand the frontiers of our understanding of the microbial world inside animals.
Collapse
Affiliation(s)
- Alecia N. Septer
- Department of Earth, Marine and Environmental Sciences, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Karen L. Visick
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
4
|
Dong T, Zhang L, Hao S, Yang J, Peng Y. Interspecies cooperation-driven photogenerated electron transfer processes and efficient multi-pathway nitrogen removal in the g-C 3N 4-anammox consortia biohybrid system. WATER RESEARCH 2024; 255:121532. [PMID: 38564893 DOI: 10.1016/j.watres.2024.121532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Photocatalytic materials-microbial biohybrid systems pave the way for solar-driven wastewater nitrogen removal. In this study, interspecies cooperation in photogenerated electron transfer and efficient nitrogen removal mechanism in the g-C3N4-anammox consortia biohybrid system were first deciphered. The results indicated that the essential extracellular electron carriers (cytochrome c and flavin) for anammox genomes were provided by associated bacteria (BACT3 and CHLO2). This cooperation, regulated by the ArcAB system and electron transfer flavoprotein, made anammox bacteria the primary photogenerated electron sink. Furthermore, an efficient photogenerated electron harness was used to construct a reductive glycine pathway (rGlyP) in anammox bacteria inventively, which coexisted with the Wood-Ljungdahl pathway (WLP), constituting a dual-pathway carbon fixation model, rGlyP-WLP. Carbon fixation products efficiently contributed to the tricarboxylic acid cycle, while inhibiting electron diversion in anabolism. Photogenerated electrons were targeted channeled into nitrogen metabolism-available electron carriers, enhancing anammox and dissimilatory nitrate reduction to ammonium (DNRA) processes. Moreover, ammonia assimilation by the glycine cleavage system in rGlyP established an alternative ammonia removal route. Ultimately, multi-pathway nitrogen removal involving anammox, DNRA, and rGlyP achieved 100 % ammonia removal and 94.25 % total nitrogen removal efficiency. This study has expanded understanding of anammox metabolic diversity, enhancing its potential application in carbon-neutral wastewater treatment.
Collapse
Affiliation(s)
- Tingjun Dong
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing, 100124, China
| | - Li Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing, 100124, China.
| | - Shiwei Hao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing, 100124, China
| | - Jiachun Yang
- China Coal Technology & Engineering Group Co. Ltd., Tokyo, 100-0011, Japan
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing, 100124, China
| |
Collapse
|
5
|
Zhang C, Liu M, Wu Y, Li X, Zhang C, Call DR, Liu M, Zhao Z. ArcB orchestrates the quorum-sensing system to regulate type III secretion system 1 in Vibrio parahaemolyticus. Gut Microbes 2023; 15:2281016. [PMID: 37982663 PMCID: PMC10841015 DOI: 10.1080/19490976.2023.2281016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/05/2023] [Indexed: 11/21/2023] Open
Abstract
In many Vibrio species, virulence is regulated by quorum sensing, which is regulated by a complex, multichannel, two-component phosphorelay circuit. Through this circuit, sensor kinases transmit sensory information to the phosphotransferase LuxU via a phosphotransfer mechanism, which in turn transmits the signal to the response regulator LuxO. For Vibrio parahaemolyticus, type III secretion system 1 (T3SS1) is required for cytotoxicity, but it is unclear how quorum sensing regulates T3SS1 expression. Herein, we report that a hybrid histidine kinase, ArcB, instead of LuxU, and sensor kinase LuxQ and response regulator LuxO, collectively orchestrate T3SS1 expression in V. parahaemolyticus. Under high oxygen conditions, LuxQ can interact with ArcB directly and phosphorylates the Hpt domain of ArcB. The Hpt domain of ArcB phosphorylates the downstream response regulator LuxO instead of ArcA. LuxO then activates transcription of the T3SS1 gene cluster. Under hypoxic conditions, ArcB autophosphorylates and phosphorylates ArcA, whereas ArcA does not participate in regulating the expression of T3SS1. Our data provides evidence of an alternative regulatory path involving the quorum sensing phosphorelay and adds another layer of understanding about the environmental regulation of gene expression in V. parahaemolyticus.
Collapse
Affiliation(s)
- Ce Zhang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, China
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
| | - Min Liu
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, China
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
| | - Ying Wu
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, China
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
| | - Xixi Li
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, China
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
| | - Chen Zhang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, China
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
| | - Douglas R. Call
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, USA
| | - Ming Liu
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
- Department of Clinical Laboratory, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, National Clinical Research Center for Infectious Diseases, Shenzhen, Guangdong Province, China
| | - Zhe Zhao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, China
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
| |
Collapse
|
6
|
Thar HM, Treesubsuntorn C, Thiravetyan P, Dolphen R. Development of light-emitting Episcia lilacina leaf by applying Vibrio campbellii RMT1 and extending the glowing by CaCl 2 and yeast extract. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-28657-9. [PMID: 37421531 DOI: 10.1007/s11356-023-28657-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
Glowing Episcia lilacina was generated through foliar application of the bioluminescent bacterium Vibrio campbellii RMT1. Firstly, different nutrient formulas were tested, incorporating yeast extract and various inorganic salts, such as CaCl2, MgCl2, MgSO4, KH2PO4, K2HPO4, and NaCl, in order to enhance bacterial growth and light emission. The combination of 0.15% of yeast extract and 0.3% of CaCl2 in a nutrient broth (NB) + 1% NaCl medium extended light emission to 24 h and resulted in higher light intensity compared to other combinations of yeast extract and inorganic salts. The peak intensity reached approximately 1.26 × 108 relative light units (RLU) at 7 h. The optimal presence of inorganic salt ions likely contributed to enhanced light emission, while the yeast extract acted as a nutrient source. Secondly, the effect of proline on salt-induced stress symptoms was investigated by applying 20 mM proline to the glowing plant. Additionally, a 0.5% agar nutrient was spread on the leaves prior to bacteria application to support bacterial growth and penetration. Exogenous proline application led to a significant accumulation of proline in plant cells, resulting in decreased malondialdehyde (MDA) levels. However, the proline accumulation also reduced the light intensity of the bioluminescent bacteria. This study demonstrates the potential for generating light on a living plant using bioluminescent bacteria. Further understanding of the interaction between plants and light-emitting bacteria could contribute to the development of sustainably light-emitting plants.
Collapse
Affiliation(s)
- Hsu Myat Thar
- Division of Biotechnology, Schools of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Chairat Treesubsuntorn
- Division of Biotechnology, Schools of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Paitip Thiravetyan
- Division of Biotechnology, Schools of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Rujira Dolphen
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.
| |
Collapse
|
7
|
Brown AN, Anderson MT, Bachman MA, Mobley HLT. The ArcAB Two-Component System: Function in Metabolism, Redox Control, and Infection. Microbiol Mol Biol Rev 2022; 86:e0011021. [PMID: 35442087 PMCID: PMC9199408 DOI: 10.1128/mmbr.00110-21] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
ArcAB, also known as the Arc system, is a member of the two-component system family of bacterial transcriptional regulators and is composed of sensor kinase ArcB and response regulator ArcA. In this review, we describe the structure and function of these proteins and assess the state of the literature regarding ArcAB as a sensor of oxygen consumption. The bacterial quinone pool is the primary modulator of ArcAB activity, but questions remain for how this regulation occurs. This review highlights the role of quinones and their oxidation state in activating and deactivating ArcB and compares competing models of the regulatory mechanism. The cellular processes linked to ArcAB regulation of central metabolic pathways and potential interactions of the Arc system with other regulatory systems are also reviewed. Recent evidence for the function of ArcAB under aerobic conditions is challenging the long-standing characterization of this system as strictly an anaerobic global regulator, and the support for additional ArcAB functionality in this context is explored. Lastly, ArcAB-controlled cellular processes with relevance to infection are assessed.
Collapse
Affiliation(s)
- Aric N. Brown
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Mark T. Anderson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Michael A. Bachman
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Harry L. T. Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
Tepavčević J, Yarrington K, Fung B, Lin X, Visick KL. sRNA chaperone Hfq controls bioluminescence and other phenotypes through Qrr1-dependent and -independent mechanisms in Vibrio fischeri. Gene X 2022; 809:146048. [PMID: 34756963 PMCID: PMC8673744 DOI: 10.1016/j.gene.2021.146048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 10/26/2021] [Indexed: 02/01/2023] Open
Abstract
Colonization of the squid Euprymna scolopes by the bacterium Vibrio fischeri depends on bacterial biofilm formation, motility, and bioluminescence. Previous work has demonstrated an inhibitory role for the small RNA (sRNA) Qrr1 in quorum-induced bioluminescence of V. fischeri, but the contribution of the corresponding sRNA chaperone, Hfq, was not examined. We thus hypothesized that V. fischeri Hfq similarly functions to inhibit bacterial bioluminescence as well as regulate other key steps of symbiosis, including bacterial biofilm formation and motility. Surprisingly, deletion of hfq increased luminescence of V. fischeri beyond what was observed for the loss of qrr1 sRNA. Epistasis experiments revealed that, while Hfq contributes to the Qrr1-dependent regulation of light production, it also functions independently of Qrr1 and its downstream target, LitR. This Hfq-dependent, Qrr1-independent regulation of bioluminescence is also independent of the major repressor of light production in V. fischeri, ArcA. We further determined that Hfq is required for full motility of V. fischeri in a mechanism that partially depends on the Qrr1/LitR regulators. Finally, Hfq also appears to function in the control of biofilm formation: loss of Hfq delayed the timing and diminished the extent of wrinkled colony development, but did not eliminate the production of SYP-polysaccharide-dependent cohesive colonies. Furthermore, loss of Hfq enhanced production of cellulose and resulted in increased Congo red binding. Together, these findings point to Hfq as an important regulator of multiple phenotypes relevant to symbiosis between V. fischeri and its squid host.
Collapse
Affiliation(s)
- Jovanka Tepavčević
- Department of Biology, Wheaton College, Wheaton, Illinois, USA,Corresponding author
| | - Kaiti Yarrington
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Brittany Fung
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois
| | - Xijin Lin
- Department of Biology, Wheaton College, Wheaton, Illinois, USA
| | - Karen L. Visick
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois
| |
Collapse
|
9
|
Kuwahara H, Morita H. Bioluminescence of Aliivibrio Fischeri in Artificial Seawater and Its Application in Fungicide Sensing. Methods Mol Biol 2022; 2524:183-195. [PMID: 35821472 DOI: 10.1007/978-1-0716-2453-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
It has been well investigated that the bioluminescence (BL) intensity of marine luminous bacteria is enhanced depending on cell density. In contrast, the correlation between seawater components and BL intensity is still a challenging subject to be addressed. In addition, the marine luminous bacteria rapidly lose the BL intensity when exposed to toxic substances, but unclear to fungicides. Herein, we introduce a new approach to investigate (i) the correlation between the components of artificial seawater (ASW) and BL intensity and (ii) the corresponding protocol to determine the susceptibility of marine luminous bacteria to fungicide using A. fischeri. The examples show that (i) ionic ingredients (K+, HCO3-, and SO42-) activate the BL cell density independently and (ii) A. fischeri cultured with the ionic ingredients shows the susceptibility to fungicide (sodium ortho-phenylphenol and imazalil). These protocols provide a new insight how to investigate the correlation between inorganic salts and BL intensity in a low cell density environment such as seawater.
Collapse
Affiliation(s)
- Hitomi Kuwahara
- Faculty of Environment Engineering, University of Kitakyushu, Kitakyushu, Fukuoka, Japan.
| | - Hiroshi Morita
- Faculty of Environment Engineering, University of Kitakyushu, Kitakyushu, Fukuoka, Japan
| |
Collapse
|
10
|
Dimension-reduction simplifies the analysis of signal crosstalk in a bacterial quorum sensing pathway. Sci Rep 2021; 11:19719. [PMID: 34611201 PMCID: PMC8492804 DOI: 10.1038/s41598-021-99169-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
Many pheromone sensing bacteria produce and detect more than one chemically distinct signal, or autoinducer. The pathways that detect these signals are typically noisy and interlocked through crosstalk and feedback. As a result, the sensing response of individual cells is described by statistical distributions that change under different combinations of signal inputs. Here we examine how signal crosstalk reshapes this response. We measure how combinations of two homoserine lactone (HSL) input signals alter the statistical distributions of individual cell responses in the AinS/R- and LuxI/R-controlled branches of the Vibrio fischeri bioluminescence pathway. We find that, while the distributions of pathway activation in individual cells vary in complex fashion with environmental conditions, these changes have a low-dimensional representation. For both the AinS/R and LuxI/R branches, the distribution of individual cell responses to mixtures of the two HSLs is effectively one-dimensional, so that a single tuning parameter can capture the full range of variability in the distributions. Combinations of crosstalking HSL signals extend the range of responses for each branch of the circuit, so that signals in combination allow population-wide distributions that are not available under a single HSL input. Dimension reduction also simplifies the problem of identifying the HSL conditions to which the pathways and their outputs are most sensitive. A comparison of the maximum sensitivity HSL conditions to actual HSL levels measured during culture growth indicates that the AinS/R and LuxI/R branches lack sensitivity to population density except during the very earliest and latest stages of growth respectively.
Collapse
|
11
|
Dial CN, Eichinger SJ, Foxall R, Corcoran CJ, Tischler AH, Bolz RM, Whistler CA, Visick KL. Quorum Sensing and Cyclic di-GMP Exert Control Over Motility of Vibrio fischeri KB2B1. Front Microbiol 2021; 12:690459. [PMID: 34262549 PMCID: PMC8273514 DOI: 10.3389/fmicb.2021.690459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/28/2021] [Indexed: 11/23/2022] Open
Abstract
Bacterial motility is critical for symbiotic colonization by Vibrio fischeri of its host, the squid Euprymna scolopes, facilitating movement from surface biofilms to spaces deep inside the symbiotic organ. While colonization has been studied traditionally using strain ES114, others, including KB2B1, can outcompete ES114 for colonization for a variety of reasons, including superior biofilm formation. We report here that KB2B1 also exhibits an unusual pattern of migration through a soft agar medium: whereas ES114 migrates rapidly and steadily, KB2B1 migrates slowly and then ceases migration. To better understand this phenomenon, we isolated and sequenced five motile KB2B1 suppressor mutants. One harbored a mutation in the gene for the cAMP receptor protein (crp); because this strain also exhibited a growth defect, it was not characterized further. Two other suppressors contained mutations in the quorum sensing pathway that controls bacterial bioluminescence in response to cell density, and two had mutations in the diguanylate cyclase (DGC) gene VF_1200. Subsequent analysis indicated that (1) the quorum sensing mutations shifted KB2B1 to a perceived low cell density state and (2) the high cell density state inhibited migration via the downstream regulator LitR. Similar to the initial point mutations, deletion of the VF_1200 DGC gene increased migration. Consistent with the possibility that production of the second messenger c-di-GMP inhibited the motility of KB2B1, reporter-based measurements of c-di-GMP revealed that KB2B1 produced higher levels of c-di-GMP than ES114, and overproduction of a c-di-GMP phosphodiesterase promoted migration of KB2B1. Finally, we assessed the role of viscosity in controlling the quorum sensing pathway using polyvinylpyrrolidone and found that viscosity increased light production of KB2B1 but not ES114. Together, our data indicate that while the two strains share regulators in common, they differ in the specifics of the regulatory control over downstream phenotypes such as motility.
Collapse
Affiliation(s)
- Courtney N. Dial
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, United States
| | - Steven J. Eichinger
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, United States
| | - Randi Foxall
- Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - Christopher J. Corcoran
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, United States
| | - Alice H. Tischler
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, United States
| | - Robert M. Bolz
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, United States
| | - Cheryl A. Whistler
- Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - Karen L. Visick
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, United States
| |
Collapse
|
12
|
Soto W, Nishiguchi MK. Environmental Stress Selects for Innovations That Drive Vibrio Symbiont Diversity. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.616973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Symbiotic bacteria in the Vibrionaceae are a dynamic group of γ-Proteobacteria that are commonly found throughout the world. Although they primarily are free-living in the environment, they can be commonly found associated with various Eukarya, either as beneficial or pathogenic symbionts. Interestingly, this dual lifestyle (free-living or in symbiosis) enables the bacteria to have enormous ecological breadth, where they can accommodate a variety of stresses in both stages. Here, we discuss some of the most common stressors that Vibrio bacteria encounter when in their free-living state or associated with an animal host, and how some of the mechanisms that are used to cope with these stressors can be used as an evolutionary advantage that increases their diversity both in the environment and within their specific hosts.
Collapse
|
13
|
Patel K, Rodriguez C, Stabb EV, Hagen SJ. Wavelike propagation of quorum activation through a spatially distributed bacterial population under natural regulation. Phys Biol 2021; 18. [PMID: 34114973 DOI: 10.1088/1478-3975/ac02ac] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/18/2021] [Indexed: 11/11/2022]
Abstract
Many bacteria communicate using diffusible pheromone signals known as autoinducers. When the autoinducer concentration reaches a threshold, which requires a minimum population density or 'quorum', the bacteria activate specific gene regulatory pathways. Simple diffusion of autoinducer can activate quorum-dependent pathways in cells that are located at substantial distances from the secreting source. However, modeling has predicted that autoinducer diffusion, coupled with positive feedback regulation in autoinducer synthesis, could also allow a quorum-regulated behavior to spread more rapidly through a population by moving as a self-sustaining front at constant speed. Here we show that such propagation can occur in a population of bacteria whose quorum pathway operates under its own natural regulation. We find that in unstirred populations ofVibrio fischeri, introduction of autoinducer at one location triggers a wavelike traveling front of natural bioluminescence. The front moves with a well-defined speed ∼2.5 mm h-1, eventually outrunning the slower diffusional spreading of the initial stimulus. Consistent with predictions from modeling, the wave travels until late in growth, when population-wide activation occurs due to basal autoinducer production. Subsequent rounds of waves, including waves propagating in the reverse direction, can also be observed late in the growth ofV.fischeriunder natural regulation. Using an engineered,lac-dependent strain, we show that local stimuli other than autoinducers can also elicit a self-sustaining, propagating response. Our data show that the wavelike dynamics predicted by simple mathematical models of quorum signaling are readily detected in bacterial populations functioning under their own natural regulation, and that other, more complex traveling phenomena are also present. Because a traveling wave can substantially increase the efficiency of intercellular communication over macroscopic distances, our data indicate that very efficient modes of communication over distance are available to unmixed populations ofV.fischeriand other microbes.
Collapse
Affiliation(s)
- Keval Patel
- Physics Department, University of Florida, Gainesville, FL 32611-8440, United States of America
| | - Coralis Rodriguez
- Department of Microbiology, University of Georgia, Athens, GA 30602, United States of America
| | - Eric V Stabb
- Department of Microbiology, University of Georgia, Athens, GA 30602, United States of America.,Biological Sciences, College of Liberal Arts and Sciences, University of Illinois, Chicago, IL 60607, United States of America
| | - Stephen J Hagen
- Physics Department, University of Florida, Gainesville, FL 32611-8440, United States of America
| |
Collapse
|
14
|
Intracellular protein delivery using QRPL - A vacuolar targeting signal on carboxypeptidase Y. Enzyme Microb Technol 2021; 149:109848. [PMID: 34311885 DOI: 10.1016/j.enzmictec.2021.109848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 11/21/2022]
Abstract
The signal peptide sequence is known to increase transport efficiency to organelles in eukaryotic cells. In this study, we focus on the signal peptide of the vacuolar protein for vacuolar targeting. The signal peptide sequence QRPL of carboxypeptidase Y (CPY) was inserted inside the interest protein that does not locate in the vacuole for vacuolar targeting. We constructed recombinant strains MBTL-Q-DJ1 and MBTL-Q-DJ2 containing QRPL and green florescent protein (GFP) or aldehyde dehydrogenase 6 (ALD6), respectively. The protein location was then confirmed by confocal microscopy. Fascinatingly, the green fluorescent protein that contains QRPL inside the sequence could be expressed faster than its natural form (within 1 h after induction). Also, the aldehyde removal activity of ALD6 protein in the recombinant yeast was then analyzed by measuring the luminescent intensity in Vibrio fischeri. We confirmed that MBTL-Q-DJ2 containing ALD6 protein has the aldehydes-reducing ability, and in particular, the highest efficiency showed at 500 μg/μL of vacuolar enzyme. In summary, the signal peptide QRPL could be used not only to transport proteins accurately to vacuole but also to improve the protein activity and shorten the induction time.
Collapse
|
15
|
A lasting symbiosis: how Vibrio fischeri finds a squid partner and persists within its natural host. Nat Rev Microbiol 2021; 19:654-665. [PMID: 34089008 DOI: 10.1038/s41579-021-00557-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2021] [Indexed: 01/10/2023]
Abstract
As our understanding of the human microbiome progresses, so does the need for natural experimental animal models that promote a mechanistic understanding of beneficial microorganism-host interactions. Years of research into the exclusive symbiosis between the Hawaiian bobtail squid, Euprymna scolopes, and the bioluminescent bacterium Vibrio fischeri have permitted a detailed understanding of those bacterial genes underlying signal exchange and rhythmic activities that result in a persistent, beneficial association, as well as glimpses into the evolution of symbiotic competence. Migrating from the ambient seawater to regions deep inside the light-emitting organ of the squid, V. fischeri experiences, recognizes and adjusts to the changing environmental conditions. Here, we review key advances over the past 15 years that are deepening our understanding of these events.
Collapse
|
16
|
Christensen DG, Visick KL. Vibrio fischeri: Laboratory Cultivation, Storage, and Common Phenotypic Assays. ACTA ACUST UNITED AC 2021; 57:e103. [PMID: 32497392 DOI: 10.1002/cpmc.103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Vibrio fischeri is a nonpathogenic organism related to pathogenic Vibrio species that can be readily grown and stored with common laboratory equipment. In this article, protocols for routine growth, storage, and phenotypic assessment of V. fischeri, as well as recipes for useful media, are included. Specifically, this article describes procedures and considerations for growth of this microbe in complex and minimal media. It also describes assays for biofilm formation, motility, and bioluminescence, three commonly assessed phenotypes of V. fischeri. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Growth of V. fischeri from frozen stocks Basic Protocol 2: Growth of V. fischeri in rich, undefined liquid medium Alternate Protocol 1: Growth of V. fischeri in minimal medium Basic Protocol 3: Storage of V. fischeri in frozen stocks Basic Protocol 4: Biofilm assay on solid agar Alternate Protocol 2: Biofilm assay in shaking liquid culture Alternate Protocol 3: Biofilm assay in static liquid culture Basic Protocol 5: Motility assay Basic Protocol 6: Luminescence assay.
Collapse
Affiliation(s)
- David G Christensen
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois
| | - Karen L Visick
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois
| |
Collapse
|
17
|
Control of Competence in Vibrio fischeri. Appl Environ Microbiol 2021; 87:AEM.01962-20. [PMID: 33397700 DOI: 10.1128/aem.01962-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/22/2020] [Indexed: 01/18/2023] Open
Abstract
Vibrio species, including the squid symbiont Vibrio fischeri, become competent to take up DNA under specific conditions. For example, V. fischeri becomes competent when grown in the presence of chitin oligosaccharides or upon overproduction of the competence regulatory factor TfoX. While little is known about the regulatory pathway(s) that controls V. fischeri competence, this microbe encodes homologs of factors that control competence in the well-studied V. cholerae To further develop V. fischeri as a genetically tractable organism, we evaluated the roles of some of these competence homologs. Using TfoX-overproducing cells, we found that competence depends upon LitR, the homolog of V. cholerae master quorum-sensing and competence regulator HapR, and upon homologs of putative pilus genes that in V. cholerae facilitate DNA uptake. Disruption of genes for negative regulators upstream of LitR, namely, the LuxO protein and the small RNA (sRNA) Qrr1, resulted in increased transformation frequencies. Unlike LitR-controlled light production, however, competence did not vary with cell density under tfoX overexpression conditions. Analogous to the case with V. cholerae, the requirement for LitR could be suppressed by loss of the Dns nuclease. We also found a role for the putative competence regulator CytR. Finally, we determined that transformation frequencies varied depending on the TfoX-encoding plasmid, and we developed a new dual tfoX and litR overexpression construct that substantially increased the transformation frequency of a less genetically tractable strain. By advancing the ease of genetic manipulation of V. fischeri, these findings will facilitate the rapid discovery of genes involved in physiologically relevant processes, such as biofilm formation and host colonization.IMPORTANCE The ability of bacteria to take up DNA (competence) and incorporate foreign DNA into their genomes (transformation) permits them to rapidly evolve and gain new traits and/or acquire antibiotic resistances. It also facilitates laboratory-based investigations into mechanisms of specific phenotypes, such as those involved in host colonization. Vibrio fischeri has long been a model for symbiotic bacterium-host interactions as well as for other aspects of its physiology, such as bioluminescence and biofilm formation. Competence of V. fischeri can be readily induced upon overexpression of the competence factor TfoX. Relatively little is known about the V. fischeri competence pathway, although homologs of factors known to be important in V. cholerae competence exist. By probing the importance of putative competence factors that control transformation of V. fischeri, this work deepens our understanding of the competence process and advances our ability to genetically manipulate this important model organism.
Collapse
|
18
|
The cytokine MIF controls daily rhythms of symbiont nutrition in an animal-bacterial association. Proc Natl Acad Sci U S A 2020; 117:27578-27586. [PMID: 33067391 DOI: 10.1073/pnas.2016864117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The recent recognition that many symbioses exhibit daily rhythms has encouraged research into the partner dialogue that drives these biological oscillations. Here we characterized the pivotal role of the versatile cytokine macrophage migration inhibitory factor (MIF) in regulating a metabolic rhythm in the model light-organ symbiosis between Euprymna scolopes and Vibrio fischeri As the juvenile host matures, it develops complex daily rhythms characterized by profound changes in the association, from gene expression to behavior. One such rhythm is a diurnal shift in symbiont metabolism triggered by the periodic provision of a specific nutrient by the mature host: each night the symbionts catabolize chitin released from hemocytes (phagocytic immune cells) that traffic into the light-organ crypts, where the population of V. fischeri cells resides. Nocturnal migration of these macrophage-like cells, together with identification of an E. scolopes MIF (EsMIF) in the light-organ transcriptome, led us to ask whether EsMIF might be the gatekeeper controlling the periodic movement of the hemocytes. Western blots, ELISAs, and confocal immunocytochemistry showed EsMIF was at highest abundance in the light organ. Its concentration there was lowest at night, when hemocytes entered the crypts. EsMIF inhibited migration of isolated hemocytes, whereas exported bacterial products, including peptidoglycan derivatives and secreted chitin catabolites, induced migration. These results provide evidence that the nocturnal decrease in EsMIF concentration permits the hemocytes to be drawn into the crypts, delivering chitin. This nutritional function for a cytokine offers the basis for the diurnal rhythms underlying a dynamic symbiotic conversation.
Collapse
|
19
|
Park DJ, Choi W, Bang SH, Kim SY, Wee JH, Kim YH, Min J. Vacuolar targeting of aldehyde dehydrogenase 6 tagging with signal peptide of proteinase A. J Basic Microbiol 2020; 60:341-350. [DOI: 10.1002/jobm.201900579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/15/2020] [Accepted: 01/18/2020] [Indexed: 01/24/2023]
Affiliation(s)
- Dong J. Park
- Department of Bioprocess Engineering; Jeonbuk National University; Deokjin-Gu Jeonju Jeonbuk South Korea
| | - Wooil Choi
- Graduate School of Semiconductor and Chemical Engineering; Jeonbuk National University; Deokjin-Gu Jeonju Jeonbuk South Korea
| | - Seung H. Bang
- Department of Bioprocess Engineering; Jeonbuk National University; Deokjin-Gu Jeonju Jeonbuk South Korea
| | - Sang Y. Kim
- Department of Food Science and Biotechnology; Shin Ansan University; Danwon-Gu Ansan South Korea
| | - Ji-Hyang Wee
- Department of Food Science and Biotechnology; Shin Ansan University; Danwon-Gu Ansan South Korea
| | - Yang-Hoon Kim
- School of Biological Sciences; Chungbuk National University; Seowon-Gu Cheongju South Korea
| | - Jiho Min
- Department of Bioprocess Engineering; Jeonbuk National University; Deokjin-Gu Jeonju Jeonbuk South Korea
- Graduate School of Semiconductor and Chemical Engineering; Jeonbuk National University; Deokjin-Gu Jeonju Jeonbuk South Korea
| |
Collapse
|
20
|
Schwartzman JA, Lynch JB, Ramos SF, Zhou L, Apicella MA, Yew JY, Ruby EG. Acidic pH promotes lipopolysaccharide modification and alters colonization in a bacteria-animal mutualism. Mol Microbiol 2019; 112:1326-1338. [PMID: 31400167 PMCID: PMC6823639 DOI: 10.1111/mmi.14365] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2019] [Indexed: 02/06/2023]
Abstract
Environmental pH can be an important cue for symbiotic bacteria as they colonize their eukaryotic hosts. Using the model mutualism between the marine bacterium Vibrio fischeri and the Hawaiian bobtail squid, we characterized the bacterial transcriptional response to acidic pH experienced during the shift from planktonic to host-associated lifestyles. We found several genes involved in outer membrane structure were differentially expressed based on pH, indicating alterations in membrane physiology as V. fischeri initiates its symbiotic program. Exposure to host-like pH increased the resistance of V. fischeri to the cationic antimicrobial peptide polymixin B, which resembles antibacterial molecules that are produced by the squid to select V. fischeri from the ocean microbiota. Using a forward genetic screen, we identified a homolog of eptA, a predicted phosphoethanolamine transferase, as critical for antimicrobial defense. We used MALDI-MS to verify eptA as an ethanolamine transferase for the lipid-A portion of V. fischeri lipopolysaccharide. We then used a DNA pulldown approach to discover that eptA transcription is activated by the global regulator H-NS. Finally, we revealed that eptA promotes successful squid colonization by V. fischeri, supporting its potential role in initiation of this highly specific symbiosis.
Collapse
Affiliation(s)
- Julia A. Schwartzman
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison WI, USA
| | - Jonathan B. Lynch
- Pacific Biosciences Research Center, University of Hawaii-Manoa, Honolulu HI, USA
| | | | - Lawrence Zhou
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison WI, USA
| | - Michael A. Apicella
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City IA, USA
| | - Joanne Y. Yew
- Pacific Biosciences Research Center, University of Hawaii-Manoa, Honolulu HI, USA
| | - Edward G. Ruby
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison WI, USA
- Pacific Biosciences Research Center, University of Hawaii-Manoa, Honolulu HI, USA
| |
Collapse
|
21
|
Critical symbiont signals drive both local and systemic changes in diel and developmental host gene expression. Proc Natl Acad Sci U S A 2019; 116:7990-7999. [PMID: 30833394 DOI: 10.1073/pnas.1819897116] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The colonization of an animal's tissues by its microbial partners creates networks of communication across the host's body. We used the natural binary light-organ symbiosis between the squid Euprymna scolopes and its luminous bacterial partner, Vibrio fischeri, to define the impact of colonization on transcriptomic networks in the host. A night-active predator, E. scolopes coordinates the bioluminescence of its symbiont with visual cues from the environment to camouflage against moon and starlight. Like mammals, this symbiosis has a complex developmental program and a strong day/night rhythm. We determined how symbiont colonization impacted gene expression in the light organ itself, as well as in two anatomically remote organs: the eye and gill. While the overall transcriptional signature of light organ and gill were more alike, the impact of symbiosis was most pronounced and similar in light organ and eye, both in juvenile and adult animals. Furthermore, the presence of a symbiosis drove daily rhythms of transcription within all three organs. Finally, a single mutation in V. fischeri-specifically, deletion of the lux operon, which abrogates symbiont luminescence-reduced the symbiosis-dependent transcriptome of the light organ by two-thirds. In addition, while the gills responded similarly to light-organ colonization by either the wild-type or mutant, luminescence was required for all of the colonization-associated transcriptional responses in the juvenile eye. This study defines not only the impact of symbiont colonization on the coordination of animal transcriptomes, but also provides insight into how such changes might impact the behavior and ecology of the host.
Collapse
|
22
|
An Iterative, Synthetic Approach To Engineer a High-Performance PhoB-Specific Reporter. Appl Environ Microbiol 2018; 84:AEM.00603-18. [PMID: 29752265 DOI: 10.1128/aem.00603-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/03/2018] [Indexed: 11/20/2022] Open
Abstract
Transcriptional reporters are common tools for analyzing either the transcription of a gene of interest or the activity of a specific transcriptional regulator. Unfortunately, the latter application has the shortcoming that native promoters did not evolve as optimal readouts for the activity of a particular regulator. We sought to synthesize an optimized transcriptional reporter for assessing PhoB activity, aiming for maximal "on" expression when PhoB is active, minimal background in the "off" state, and no control elements for other regulators. We designed specific sequences for promoter elements with appropriately spaced PhoB-binding sites, and at 19 additional intervening nucleotide positions for which we did not predict sequence-specific effects, the bases were randomized. Eighty-three such constructs were screened in Vibrio fischeri, enabling us to identify bases at particular randomized positions that significantly correlated with high-level "on" or low-level "off" expression. A second round of promoter design rationally constrained 13 additional positions, leading to a reporter with high-level PhoB-dependent expression, essentially no background, and no other known regulatory elements. As expressed reporters, we used both stable and destabilized variants of green fluorescent protein (GFP), the latter of which has a half-life of 81 min in V. fischeri In culture, PhoB induced the reporter when phosphate was depleted to a concentration below 10 μM. During symbiotic colonization of its host squid, Euprymna scolopes, the reporter indicated heterogeneous phosphate availability in different light-organ microenvironments. Finally, testing this construct in other members of the Proteobacteria demonstrated its broader utility. The results illustrate how a limited ability to predict synthetic promoter-reporter performance can be overcome through iterative screening and reengineering.IMPORTANCE Transcriptional reporters can be powerful tools for assessing when a particular regulator is active; however, native promoters may not be ideal for this purpose. Optimal reporters should be specific to the regulator being examined and should maximize the difference between the "on" and "off" states; however, these properties are distinct from the selective pressures driving the evolution of natural promoters. Synthetic promoters offer a promising alternative, but our understanding often does not enable fully predictive promoter design, and the large number of alternative sequence possibilities can be intractable. In a synthetic promoter region with over 34 billion sequence variants, we identified bases correlated with favorable performance by screening only 83 candidates, allowing us to rationally constrain our design. We thereby generated an optimized reporter that is induced by PhoB and used it to explore the low-phosphate response of V. fischeri This promoter design strategy will facilitate the engineering of other regulator-specific reporters.
Collapse
|
23
|
Yu Z, Zhang J, Hou M. Time-dependent disturbances of chloride salts on overall redox reaction and luminescence in Vibrio fischeri. CHEMOSPHERE 2018; 199:122-129. [PMID: 29433025 DOI: 10.1016/j.chemosphere.2018.02.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 02/01/2018] [Accepted: 02/05/2018] [Indexed: 06/08/2023]
Abstract
The redox state of NADH/NADPH balance (nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide phosphate) is crucial in cellular homeostasis. Recent studies reported that sodium halide ions (NaX, X = F-, Cl-, Br- and I-) stimulated NAD(P)H in Vibrio fischeri (VF). However, it remained unanswered whether this pattern applied in salts with other cations, e.g., K+, Mg2+ and Ca2+, whose aquatic concentrations were increased by anthropogenic activities and climate change. Currently, VF were incubated with chloride salts, including KCl, MgCl2 and CaCl2, and effects were measured in a time-dependent fashion. Both NADH and NADPH showed stimulation that increased over time, and the greatest maximum stimulation at 24 h was CaCl2 > MgCl2 > KCl. The changes of NADH/NADPH ratios over time in CaCl2, MgCl2 and KCl were descendent, ascendant and stable, respectively. Simultaneously, FMN:NAD(P)H reaction catalyst (luciferase, in the form of expression levels of lux A and lux B), adenosine triphosphate and the expression levels of its regulating gene adk were also stimulated. The luminescence showed even more significant stimulations than the overall redox reaction. Together with earlier reported effects of NaCl, the chloride salts commonly disturbed the redox state and influenced the adaption of organisms to challenging environments.
Collapse
Affiliation(s)
- Zhenyang Yu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Jiaxing Tongji Institute for Environment, Jiaxing, Zhejiang Province, 3014051 PR China
| | - Jing Zhang
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China; Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, Guilin, 541004, PR China.
| | - Meifang Hou
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China
| |
Collapse
|
24
|
KUWAHARA HITOMI, NINOMIYA JUNKO, MORITA HIROSHI. Control of Aliivibrio fischeri Luminescence and Decrease in Bioluminescence by Fungicides. Biocontrol Sci 2018; 23:85-96. [DOI: 10.4265/bio.23.85] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- HITOMI KUWAHARA
- Graduate School of Environment Engineering, University of Kitakyushu
| | - JUNKO NINOMIYA
- Graduate School of Environment Engineering, University of Kitakyushu
- National Institute of Technology, Oita College
| | - HIROSHI MORITA
- Faculty of Environment Engineering, University of Kitakyushu
| |
Collapse
|
25
|
Schaefer AL, Harwood CS, Greenberg EP. "Hot Stuff": The Many Uses of a Radiolabel Assay in Detecting Acyl-Homoserine Lactone Quorum-Sensing Signals. Methods Mol Biol 2018; 1673:35-47. [PMID: 29130162 DOI: 10.1007/978-1-4939-7309-5_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Many Proteobacteria synthesize acyl-homoserine lactone (AHL) molecules for use as signals in cell density-dependent gene regulation known as quorum sensing (QS) and response. AHL detection protocols are essential to QS researchers and several techniques are available, including a 14C-AHL radiolabel assay. This assay is based on the uptake of radiolabeled methionine by living cells and conversion of the radiolabel into S-adenosylmethionine (SAM). The radiolabeled SAM is then incorporated into AHL signal by an AHL synthase enzyme. Here we describe a methodology to perform the AHL radiolabel assay, which is unbiased, relatively fast, and very sensitive compared to other AHL detection protocols.
Collapse
Affiliation(s)
- Amy L Schaefer
- Department of Microbiology, University of Washington, Seattle, WA, USA.
| | | | - E Peter Greenberg
- Department of Microbiology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
26
|
The spatiotemporal system dynamics of acquired resistance in an engineered microecology. Sci Rep 2017; 7:16071. [PMID: 29167517 PMCID: PMC5700104 DOI: 10.1038/s41598-017-16176-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/08/2017] [Indexed: 12/24/2022] Open
Abstract
Great strides have been made in the understanding of complex networks; however, our understanding of natural microecologies is limited. Modelling of complex natural ecological systems has allowed for new findings, but these models typically ignore the constant evolution of species. Due to the complexity of natural systems, unanticipated interactions may lead to erroneous conclusions concerning the role of specific molecular components. To address this, we use a synthetic system to understand the spatiotemporal dynamics of growth and to study acquired resistance in vivo. Our system differs from earlier synthetic systems in that it focuses on the evolution of a microecology from a killer-prey relationship to coexistence using two different non-motile Escherichia coli strains. Using empirical data, we developed the first ecological model emphasising the concept of the constant evolution of species, where the survival of the prey species is dependent on location (distance from the killer) or the evolution of resistance. Our simple model, when expanded to complex microecological association studies under varied spatial and nutrient backgrounds may help to understand the complex relationships between multiple species in intricate natural ecological networks. This type of microecological study has become increasingly important, especially with the emergence of antibiotic-resistant pathogens.
Collapse
|
27
|
Kimbrough JH, Stabb EV. Comparative analysis reveals regulatory motifs at the ainS/ainR pheromone-signaling locus of Vibrio fischeri. Sci Rep 2017; 7:11734. [PMID: 28916743 PMCID: PMC5601948 DOI: 10.1038/s41598-017-11967-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/01/2017] [Indexed: 11/22/2022] Open
Abstract
Vibrio fischeri uses the AinS/AinR pheromone-signaling system to control bioluminescence and other symbiotic colonization factors. The Ain system is thought to initiate cell-cell signaling at moderate cell densities and to prime the LuxI/LuxR signaling system. Here we compared and analyzed the ain locus from two V. fischeri strains and a Vibrio salmonicida strain to explore ain regulation. The ainS and ainR genes were predicted to constitute an operon, which we corroborated using RT-PCR. Comparisons between strains revealed a stark area of conservation across the ainS-ainR junction, including a large inverted repeat in ainR. We found that this inverted repeat in cis can affect accumulation of the AinS-generated pheromone N-octanoyl homoserine lactone, which may account for the previously unexplained low-signal phenotype of a ∆ainR mutant, although the mechanism behind this regulation remains elusive. We also extended the previous observation of a possible “lux box” LuxR binding site upstream of ainS by showing the conservation of this site as well as a second putative lux box. Using a plasmid-based reporter we found that LuxR can mediate repression of ainS, providing a negative feedback mechanism in the Ain/Lux signaling cascade. Our results provide new insights into the regulation, expression, and evolution of ainSR.
Collapse
Affiliation(s)
- John H Kimbrough
- Department of Microbiology, University of Georgia, Athens, GA, USA
| | - Eric V Stabb
- Department of Microbiology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
28
|
Sporer AJ, Kahl LJ, Price-Whelan A, Dietrich LE. Redox-Based Regulation of Bacterial Development and Behavior. Annu Rev Biochem 2017; 86:777-797. [DOI: 10.1146/annurev-biochem-061516-044453] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Abigail J. Sporer
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Lisa J. Kahl
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Alexa Price-Whelan
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Lars E.P. Dietrich
- Department of Biological Sciences, Columbia University, New York, NY 10027
| |
Collapse
|
29
|
Pankey MS, Foxall RL, Ster IM, Perry LA, Schuster BM, Donner RA, Coyle M, Cooper VS, Whistler CA. Host-selected mutations converging on a global regulator drive an adaptive leap towards symbiosis in bacteria. eLife 2017; 6:e24414. [PMID: 28447935 PMCID: PMC5466423 DOI: 10.7554/elife.24414] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/23/2017] [Indexed: 01/14/2023] Open
Abstract
Host immune and physical barriers protect against pathogens but also impede the establishment of essential symbiotic partnerships. To reveal mechanisms by which beneficial organisms adapt to circumvent host defenses, we experimentally evolved ecologically distinct bioluminescent Vibrio fischeri by colonization and growth within the light organs of the squid Euprymna scolopes. Serial squid passaging of bacteria produced eight distinct mutations in the binK sensor kinase gene, which conferred an exceptional selective advantage that could be demonstrated through both empirical and theoretical analysis. Squid-adaptive binK alleles promoted colonization and immune evasion that were mediated by cell-associated matrices including symbiotic polysaccharide (Syp) and cellulose. binK variation also altered quorum sensing, raising the threshold for luminescence induction. Preexisting coordinated regulation of symbiosis traits by BinK presented an efficient solution where altered BinK function was the key to unlock multiple colonization barriers. These results identify a genetic basis for microbial adaptability and underscore the importance of hosts as selective agents that shape emergent symbiont populations.
Collapse
Affiliation(s)
- M Sabrina Pankey
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
- Northeast Center for Vibrio Disease and Ecology, College of Life Science and Agriculture, University of New Hampshire, Durham, United States
| | - Randi L Foxall
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
- Northeast Center for Vibrio Disease and Ecology, College of Life Science and Agriculture, University of New Hampshire, Durham, United States
| | - Ian M Ster
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
- Northeast Center for Vibrio Disease and Ecology, College of Life Science and Agriculture, University of New Hampshire, Durham, United States
- Graduate Program in Biochemistry, University of New Hampshire, Durham, United States
| | - Lauren A Perry
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
- Graduate Program in Microbiology, University of New Hampshire, Durham, United States
| | - Brian M Schuster
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
| | - Rachel A Donner
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
| | - Matthew Coyle
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
- Graduate Program in Microbiology, University of New Hampshire, Durham, United States
| | - Vaughn S Cooper
- Northeast Center for Vibrio Disease and Ecology, College of Life Science and Agriculture, University of New Hampshire, Durham, United States
| | - Cheryl A Whistler
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
- Northeast Center for Vibrio Disease and Ecology, College of Life Science and Agriculture, University of New Hampshire, Durham, United States
| |
Collapse
|
30
|
An Expanded Transposon Mutant Library Reveals that Vibrio fischeri δ-Aminolevulinate Auxotrophs Can Colonize Euprymna scolopes. Appl Environ Microbiol 2017; 83:AEM.02470-16. [PMID: 28003196 DOI: 10.1128/aem.02470-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/14/2016] [Indexed: 11/20/2022] Open
Abstract
Libraries of defined mutants are valuable research tools but necessarily lack gene knockouts that are lethal under the conditions used in library construction. In this study, we augmented a Vibrio fischeri mutant library generated on a rich medium (LBS, which contains [per liter] 10 g of tryptone, 5 g of yeast extract, 20 g of NaCl, and 50 mM Tris [pH 7.5]) by selecting transposon insertion mutants on supplemented LBS and screening for those unable to grow on LBS. We isolated strains with insertions in alr, glr (murI), glmS, several heme biosynthesis genes, and ftsA, as well as a mutant disrupted 14 bp upstream of ftsQ Mutants with insertions in ftsA or upstream of ftsQ were recovered by addition of Mg2+ to LBS, but their cell morphology and motility were affected. The ftsA mutant was more strongly affected and formed cells or chains of cells that appeared to wind back on themselves helically. Growth of mutants with insertions in glmS, alr, or glr was recovered with N-acetylglucosamine (NAG), d-alanine, or d-glutamate, respectively. We hypothesized that NAG, d-alanine, or d-glutamate might be available to V. fischeri in the Euprymna scolopes light organ; however, none of these mutants colonized the host effectively. In contrast, hemA and hemL mutants, which are auxotrophic for δ-aminolevulinate (ALA), colonized at wild-type levels, although mutants later in the heme biosynthetic pathway were severely impaired or unable to colonize. Our findings parallel observations that legume hosts provide Bradyrhizobium symbionts with ALA, but they contrast with virulence phenotypes of hemA mutants in some pathogens. The results further inform our understanding of the symbiotic light organ environment.IMPORTANCE By supplementing a rich yeast-based medium, we were able to recover V. fischeri mutants with insertions in conditionally essential genes, and further characterization of these mutants provided new insights into this bacterium's symbiotic environment. Most notably, we show evidence that the squid host can provide V. fischeri with enough ALA to support its growth in the light organ, paralleling the finding that legumes provide Bradyrhizobium ALA in symbiotic nodules. Taken together, our results show how a simple method of augmenting already rich media can expand the reach and utility of defined mutant libraries.
Collapse
|
31
|
Bolelli L, Ferri EN, Girotti S. The management and exploitation of naturally light-emitting bacteria as a flexible analytical tool: A tutorial. Anal Chim Acta 2016; 934:22-35. [PMID: 27506340 DOI: 10.1016/j.aca.2016.05.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 05/18/2016] [Accepted: 05/21/2016] [Indexed: 10/21/2022]
Abstract
Conventional detection of toxic contaminants on surfaces, in food, and in the environment takes time. Current analytical approaches to chemical detection can be of limited utility due to long detection times, high costs, and the need for a laboratory and trained personnel. A non-specific but easy, rapid, and inexpensive screening test can be useful to quickly classify a specimen as toxic or non toxic, so prompt appropriate measures can be taken, exactly where required. The bioluminescent bacteria-based tests meet all these characteristics. Bioluminescence methods are extremely attractive because of their high sensitivity, speed, ease of implementation, and statistical significance. They are usually sensitive enough to detect the majority of pollutants toxic to humans and mammals. This tutorial provides practical guidelines for isolating, cultivating, and exploiting marine bioluminescent bacteria as a simple and versatile analytical tool. Although mostly applied for aqueous phase sample and organic extracts, the test can also be conducted directly on soil and sediment samples so as to reflect the true toxicity due to the bioavailability fraction. Because tests can be performed with freeze-dried cell preparations, they could make a major contribution to field screening activity. They can be easily conducted in a mobile environmental laboratory and may be adaptable to miniaturized field instruments and field test kits.
Collapse
Affiliation(s)
- L Bolelli
- Department of Pharmacy and Biotechnology, University of Bologna, Via S. Donato 15, 40127 Bologna, Italy
| | - E N Ferri
- Department of Pharmacy and Biotechnology, University of Bologna, Via S. Donato 15, 40127 Bologna, Italy.
| | - S Girotti
- Department of Pharmacy and Biotechnology, University of Bologna, Via S. Donato 15, 40127 Bologna, Italy
| |
Collapse
|
32
|
Szabó L, Tóth T, Engelhardt T, Rácz G, Mohácsi-Farkas C, Takács E, Wojnárovits L. Change in hydrophilicity of penicillins during advanced oxidation by radiolytically generated OH compromises the elimination of selective pressure on bacterial strains. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 551-552:393-403. [PMID: 26881730 DOI: 10.1016/j.scitotenv.2016.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/10/2015] [Accepted: 02/01/2016] [Indexed: 06/05/2023]
Abstract
Advanced oxidation processes are promising technologies for removal of antibiotic residues from wastewater in terms of their high efficacy. However, recent studies have reported the remaining antibacterial activity of the products at early-stages of treatment. The present study investigates the effect of such products of model β-lactams (amoxicillin, ampicillin, cloxacillin) on bacteria introducing structure-based, and biological approaches involving Gram-positive and Gram-negative bacterial strains. Chemical analysis revealed the destruction of the β-lactam pharmacophore in competition with the reaction at the aromatic ring. Multisite attack occurs on the penicillin skeleton producing OH-substituted products. The enhanced hydrophilicity confers higher diffusion rate through the porin channels of Gram-negative bacteria and through the hydrophilic cell wall of Gram-positive species. Accordingly, an increase in acute toxicity of treated samples was observed at the beginning of the treatment. The same tendency was observed for target-specific antimicrobial activity investigated with antibiotic susceptibility testing (agar-diffusion, bacterial growth). Prolonged treatments yielded products, e.g. polyhydroxylated phenolic compounds, being also deleterious for bacteria. Therefore, the advanced oxidation process should be judiciously optimized.
Collapse
Affiliation(s)
- László Szabó
- Institute for Energy Security and Environmental Safety, Centre for Energy Research, Hungarian Academy of Sciences, Konkoly-Thege Miklós út 29-33, H-1121 Budapest, Hungary; Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary.
| | - Tünde Tóth
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary
| | - Tekla Engelhardt
- Department of Microbiology and Biotechnology, Corvinus University of Budapest, H-1118 Budapest, Hungary
| | - Gergely Rácz
- Institute for Energy Security and Environmental Safety, Centre for Energy Research, Hungarian Academy of Sciences, Konkoly-Thege Miklós út 29-33, H-1121 Budapest, Hungary
| | - Csilla Mohácsi-Farkas
- Department of Microbiology and Biotechnology, Corvinus University of Budapest, H-1118 Budapest, Hungary
| | - Erzsébet Takács
- Institute for Energy Security and Environmental Safety, Centre for Energy Research, Hungarian Academy of Sciences, Konkoly-Thege Miklós út 29-33, H-1121 Budapest, Hungary; Department of Microbiology and Biotechnology, Corvinus University of Budapest, H-1118 Budapest, Hungary
| | - László Wojnárovits
- Institute for Energy Security and Environmental Safety, Centre for Energy Research, Hungarian Academy of Sciences, Konkoly-Thege Miklós út 29-33, H-1121 Budapest, Hungary
| |
Collapse
|
33
|
Didovyk A, Borek B, Hasty J, Tsimring L. Orthogonal Modular Gene Repression in Escherichia coli Using Engineered CRISPR/Cas9. ACS Synth Biol 2016; 5:81-8. [PMID: 26390083 DOI: 10.1021/acssynbio.5b00147] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The progress in development of synthetic gene circuits has been hindered by the limited repertoire of available transcription factors. Recently, it has been greatly expanded using the CRISPR/Cas9 system. However, this system is limited by its imperfect DNA sequence specificity, leading to potential crosstalk with host genome or circuit components. Furthermore, CRISPR/Cas9-mediated gene regulation is context dependent, affecting the modularity of Cas9-based transcription factors. In this paper we address the problems of specificity and modularity by developing a computational approach for selecting Cas9/gRNA transcription factor/promoter pairs that are maximally orthogonal to each other as well as to the host genome and synthetic circuit components. We validate the method by designing and experimentally testing four orthogonal promoter/repressor pairs in the context of a strong promoter PL from phage lambda. We demonstrate that these promoters can be interfaced by constructing double and triple inverter circuits. To address the problem of modularity we propose and experimentally validate a scheme to predictably incorporate orthogonal CRISPR/Cas9 regulation into a large class of natural promoters.
Collapse
Affiliation(s)
- Andriy Didovyk
- BioCircuits Institute, ‡San Diego Center for Systems Biology, ¶Department of Bioengineering, and §Molecular Biology
Section, Division of Biological Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Bartłomiej Borek
- BioCircuits Institute, ‡San Diego Center for Systems Biology, ¶Department of Bioengineering, and §Molecular Biology
Section, Division of Biological Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Jeff Hasty
- BioCircuits Institute, ‡San Diego Center for Systems Biology, ¶Department of Bioengineering, and §Molecular Biology
Section, Division of Biological Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Lev Tsimring
- BioCircuits Institute, ‡San Diego Center for Systems Biology, ¶Department of Bioengineering, and §Molecular Biology
Section, Division of Biological Sciences, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
34
|
Antisocial luxO Mutants Provide a Stationary-Phase Survival Advantage in Vibrio fischeri ES114. J Bacteriol 2015; 198:673-87. [PMID: 26644435 DOI: 10.1128/jb.00807-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/25/2015] [Indexed: 01/13/2023] Open
Abstract
UNLABELLED The squid light organ symbiont Vibrio fischeri controls bioluminescence using two acyl-homoserine lactone pheromone-signaling (PS) systems. The first of these systems to be activated during host colonization, AinS/AinR, produces and responds to N-octanoyl homoserine lactone (C(8)-AHL). We screened activity of a P(ainS)-lacZ transcriptional reporter in a transposon mutant library and found three mutants with decreased reporter activity, low C(8)-AHL output, and other traits consistent with low ainS expression. However, the transposon insertions were unrelated to these phenotypes, and genome resequencing revealed that each mutant had a distinct point mutation in luxO. In the wild type, LuxO is phosphorylated by LuxU and then activates transcription of the small RNA (sRNA) Qrr, which represses ainS indirectly by repressing its activator LitR. The luxO mutants identified here encode LuxU-independent, constitutively active LuxO* proteins. The repeated appearance of these luxO mutants suggested that they had some fitness advantage during construction and/or storage of the transposon mutant library, and we found that luxO* mutants survived better and outcompeted the wild type in prolonged stationary-phase cultures. From such cultures we isolated additional luxO* mutants. In all, we isolated LuxO* allelic variants with the mutations P41L, A91D, F94C, P98L, P98Q, V106A, V106G, T107R, V108G, R114P, L205F, H319R, H324R, and T335I. Based on the current model of the V. fischeri PS circuit, litR knockout mutants should resemble luxO* mutants; however, luxO* mutants outcompeted litR mutants in prolonged culture and had much poorer host colonization competitiveness than is reported for litR mutants, illustrating additional complexities in this regulatory circuit. IMPORTANCE Our results provide novel insight into the function of LuxO, which is a key component of pheromone signaling (PS) cascades in several members of the Vibrionaceae. Our results also contribute to an increasingly appreciated aspect of bacterial behavior and evolution whereby mutants that do not respond to a signal from like cells have a selective advantage. In this case, although "antisocial" mutants locked in the PS signal-off mode can outcompete parents, their survival advantage does not require wild-type cells to exploit. Finally, this work strikes a note of caution for those conducting or interpreting experiments in V. fischeri, as it illustrates how pleiotropic mutants could easily and inadvertently be enriched in this bacterium during prolonged culturing.
Collapse
|
35
|
Dunn AK, Rader BA, Stabb EV, Mandel MJ. Regulation of Bioluminescence in Photobacterium leiognathi Strain KNH6. J Bacteriol 2015; 197:3676-85. [PMID: 26350139 PMCID: PMC4626902 DOI: 10.1128/jb.00524-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 09/03/2015] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED Bacterial bioluminescence is taxonomically restricted to certain proteobacteria, many of which belong to the Vibrionaceae. In the most well-studied cases, pheromone signaling plays a key role in regulation of light production. However, previous reports have indicated that certain Photobacterium strains do not use this regulatory method for controlling luminescence. In this study, we combined genome sequencing with genetic approaches to characterize the regulation of luminescence in Photobacterium leiognathi strain KNH6, an extremely bright isolate. Using transposon mutagenesis and screening for decreased luminescence, we identified insertions in genes encoding components necessary for the luciferase reaction (lux, lum, and rib operons) as well as in nine other loci. These additional loci encode gene products predicted to be involved in the tricarboxylic acid (TCA) cycle, DNA and RNA metabolism, transcriptional regulation, and the synthesis of cytochrome c, peptidoglycan, and fatty acids. The mutagenesis screen did not identify any mutants with disruptions of predicted pheromone-related loci. Using targeted gene insertional disruptions, we demonstrate that under the growth conditions tested, luminescence levels do not appear to be controlled through canonical pheromone signaling systems in this strain. IMPORTANCE Despite the long-standing interest in luminous bacteria, outside a few model organisms, little is known about the regulation and function of luminescence. Light-producing marine bacteria are widely distributed and have diverse lifestyles, suggesting that the control and significance of luminescence may be similarly diverse. In this study, we apply genetic tools to the study of regulation of light production in the extremely bright isolate Photobacterium leiognathi KNH6. Our results suggest an unusual lack of canonical pheromone-mediated control of luminescence and contribute to a better understanding of alternative strategies for regulation of a key bacterial behavior. These experiments lay the groundwork for further study of the regulation and role of bioluminescence in P. leiognathi.
Collapse
Affiliation(s)
- Anne K Dunn
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Bethany A Rader
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Eric V Stabb
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Mark J Mandel
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
36
|
Colton DM, Stabb EV. Rethinking the roles of CRP, cAMP, and sugar-mediated global regulation in the Vibrionaceae. Curr Genet 2015. [PMID: 26215147 DOI: 10.1007/s00294-015-0508-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Many proteobacteria modulate a suite of catabolic genes using the second messenger cyclic 3', 5'-AMP (cAMP) and the cAMP receptor protein (CRP). Together, the cAMP-CRP complex regulates target promoters, usually by activating transcription. In the canonical model, the phosphotransferase system (PTS), and in particular the EIIA(Glc) component for glucose uptake, provides a mechanistic link that modulates cAMP levels depending on glucose availability, resulting in more cAMP and activation of alternative catabolic pathways when glucose is unavailable. Within the Vibrionaceae, cAMP-CRP appears to play the classical role in modulating metabolic pathways; however, it also controls functions involved in natural competence, bioluminescence, pheromone signaling, and colonization of animal hosts. For this group of marine bacteria, chitin is an ecologically relevant resource, and chitin's monomeric sugar N-acetylglucosamine (NAG) supports robust growth while also triggering regulatory responses. Recent studies with Vibrio fischeri indicate that NAG and glucose uptake share EIIA(Glc), yet the responses of cAMP-CRP to these two carbon sources are starkly different. Moreover, control of cAMP levels appears to be more dominantly controlled by export and degradation. Perhaps more surprisingly, although CRP may require cAMP, its activity can be controlled in response to glucose by a mechanism independent of cAMP levels. Future studies in this area promise to shed new light on the role of cAMP and CRP.
Collapse
Affiliation(s)
- Deanna M Colton
- Department of Microbiology, University of Georgia, 120 Cedar Street, Athens, GA, 30602, USA
| | - Eric V Stabb
- Department of Microbiology, University of Georgia, 120 Cedar Street, Athens, GA, 30602, USA.
| |
Collapse
|
37
|
Colton DM, Stoudenmire JL, Stabb EV. Growth on glucose decreases cAMP-CRP activity while paradoxically increasing intracellular cAMP in the light-organ symbiont Vibrio fischeri. Mol Microbiol 2015; 97:1114-27. [PMID: 26062003 DOI: 10.1111/mmi.13087] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2015] [Indexed: 12/25/2022]
Abstract
Proteobacteria often co-ordinate responses to carbon sources using CRP and the second messenger cyclic 3', 5'-AMP (cAMP), which combine to control transcription of genes during growth on non-glucose substrates as part of the catabolite-repression response. Here we show that cAMP-CRP is active and important in Vibrio fischeri during colonization of its host squid Euprymna scolopes. Moreover, consistent with a classical role in catabolite repression, a cAMP-CRP-dependent reporter showed lower activity in cells grown in media amended with glucose rather than glycerol. Surprisingly though, intracellular cAMP levels were higher in glucose-grown cells. Mutant analyses were consistent with predictions that CyaA was responsible for cAMP generation, that the EIIA(Glc) component of glucose transport could enhance cAMP production and that the phophodiesterases CpdA and CpdP consumed intracellular and extracellular cAMP respectively. However, the observation of lower cAMP levels in glycerol-grown cells seemed best explained by changes in cAMP export, via an unknown mechanism. Our data also indicated that cAMP-CRP activity decreased during growth on glucose independently of crp's native transcriptional regulation or cAMP levels. We speculate that some unknown mechanism, perhaps carbon-source-dependent post-translational modulation of CRP, may help control cAMP-CRP activity in V.fischeri.
Collapse
Affiliation(s)
- Deanna M Colton
- Department of Microbiology, University of Georgia, Athens, GA, USA
| | | | - Eric V Stabb
- Department of Microbiology, University of Georgia, Athens, GA, USA
| |
Collapse
|
38
|
Colton DM, Stabb EV, Hagen SJ. Modeling Analysis of Signal Sensitivity and Specificity by Vibrio fischeri LuxR Variants. PLoS One 2015; 10:e0126474. [PMID: 25962099 PMCID: PMC4427320 DOI: 10.1371/journal.pone.0126474] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 03/13/2015] [Indexed: 01/22/2023] Open
Abstract
The LuxR protein of the bacterium Vibrio fischeri belongs to a family of transcriptional activators that underlie pheromone-mediated signaling by responding to acyl-homoserine lactones (-HSLs) or related molecules. V. fischeri produces two acyl-HSLs, N-3-oxo-hexanoyl-HSL (3OC6-HSL) and N-octanoyl-HSL (C8-HSL), each of which interact with LuxR to facilitate its binding to a "lux box" DNA sequence, thereby enabling LuxR to activate transcription of the lux operon responsible for bioluminescence. We have investigated the HSL sensitivity of four different variants of V. fischeri LuxR: two derived from wild-type strains ES114 and MJ1, and two derivatives of LuxRMJ1 generated by directed evolution. For each LuxR variant, we measured the bioluminescence induced by combinations of C8-HSL and 3OC6-HSL. We fit these data to a model in which the two HSLs compete with each other to form multimeric LuxR complexes that directly interact with lux to activate bioluminescence. The model reproduces the observed effects of HSL combinations on the bioluminescence responses directed by LuxR variants, including competition and non-monotonic responses to C8-HSL and 3OC6-HSL. The analysis yields robust estimates for the underlying dissociation constants and cooperativities (Hill coefficients) of the LuxR-HSL complexes and their affinities for the lux box. It also reveals significant differences in the affinities of LuxRMJ1 and LuxRES114 for 3OC6-HSL. Further, LuxRMJ1 and LuxRES114 differed sharply from LuxRs retrieved by directed evolution in the cooperativity of LuxR-HSL complex formation and the affinity of these complexes for lux. These results show how computational modeling of in vivo experimental data can provide insight into the mechanistic consequences of directed evolution.
Collapse
Affiliation(s)
- Deanna M. Colton
- Department of Microbiology, University of Georgia, Athens, GA, United States of America
| | - Eric V. Stabb
- Department of Microbiology, University of Georgia, Athens, GA, United States of America
| | - Stephen J. Hagen
- Physics Department, University of Florida, Gainesville, FL, United States of America
- * E-mail:
| |
Collapse
|
39
|
Miller KP, Wang L, Chen YP, Pellechia PJ, Benicewicz BC, Decho AW. Engineering nanoparticles to silence bacterial communication. Front Microbiol 2015; 6:189. [PMID: 25806030 PMCID: PMC4354405 DOI: 10.3389/fmicb.2015.00189] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/20/2015] [Indexed: 02/05/2023] Open
Abstract
The alarming spread of bacterial resistance to traditional antibiotics has warranted the study of alternative antimicrobial agents. Quorum sensing (QS) is a chemical cell-to-cell communication mechanism utilized by bacteria to coordinate group behaviors and establish infections. QS is integral to bacterial survival, and therefore provides a unique target for antimicrobial therapy. In this study, silicon dioxide nanoparticles (Si-NP) were engineered to target the signaling molecules [i.e., acylhomoserine lactones (HSLs)] used for QS in order to halt bacterial communication. Specifically, when Si-NP were surface functionalized with β-cyclodextrin (β-CD), then added to cultures of bacteria (Vibrio fischeri), whose luminous output depends upon HSL-mediated QS, the cell-to-cell communication was dramatically reduced. Reductions in luminescence were further verified by quantitative polymerase chain reaction (qPCR) analyses of luminescence genes. Binding of HSLs to Si-NPs was examined using nuclear magnetic resonance (NMR) spectroscopy. The results indicated that by delivering high concentrations of engineered NPs with associated quenching compounds, the chemical signals were removed from the immediate bacterial environment. In actively-metabolizing cultures, this treatment blocked the ability of bacteria to communicate and regulate QS, effectively silencing and isolating the cells. Si-NPs provide a scaffold and critical stepping-stone for more pointed developments in antimicrobial therapy, especially with regard to QS-a target that will reduce resistance pressures imposed by traditional antibiotics.
Collapse
Affiliation(s)
- Kristen P Miller
- Microbial Interactions Laboratory, Department of Environmental Health Sciences, Public Health Research Center, Arnold School of Public Health, University of South Carolina Columbia, SC, USA
| | - Lei Wang
- Department of Chemistry and Biochemistry, JM Palms Center for Graduate Student Research, University of South Carolina Columbia, SC, USA
| | - Yung-Pin Chen
- Microbial Interactions Laboratory, Department of Environmental Health Sciences, Public Health Research Center, Arnold School of Public Health, University of South Carolina Columbia, SC, USA
| | - Perry J Pellechia
- Department of Chemistry and Biochemistry, JM Palms Center for Graduate Student Research, University of South Carolina Columbia, SC, USA
| | - Brian C Benicewicz
- Department of Chemistry and Biochemistry, JM Palms Center for Graduate Student Research, University of South Carolina Columbia, SC, USA
| | - Alan W Decho
- Microbial Interactions Laboratory, Department of Environmental Health Sciences, Public Health Research Center, Arnold School of Public Health, University of South Carolina Columbia, SC, USA
| |
Collapse
|
40
|
Septer AN, Bose JL, Lipzen A, Martin J, Whistler C, Stabb EV. Bright luminescence of Vibrio fischeri aconitase mutants reveals a connection between citrate and the Gac/Csr regulatory system. Mol Microbiol 2014; 95:283-96. [PMID: 25402589 DOI: 10.1111/mmi.12864] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2014] [Indexed: 11/28/2022]
Abstract
The Gac/Csr regulatory system is conserved throughout the γ-proteobacteria and controls key pathways in central carbon metabolism, quorum sensing, biofilm formation and virulence in important plant and animal pathogens. Here we show that elevated intracellular citrate levels in a Vibrio fischeri aconitase mutant correlate with activation of the Gac/Csr cascade and induction of bright luminescence. Spontaneous or directed mutations in the gene that encodes citrate synthase reversed the bright luminescence of aconitase mutants, eliminated their citrate accumulation and reversed their elevated expression of CsrB. Our data elucidate a correlative link between central metabolic and regulatory pathways, and they suggest that the Gac system senses a blockage at the aconitase step of the tricarboxylic acid cycle, either through elevated citrate levels or a secondary metabolic effect of citrate accumulation, and responds by modulating carbon flow and various functions associated with host colonization, including bioluminescence.
Collapse
Affiliation(s)
- Alecia N Septer
- Department of Microbiology, University of Georgia, 120 Cedar Street, Athens, GA, 30602, USA
| | | | | | | | | | | |
Collapse
|
41
|
Langebrake JB, Dilanji GE, Hagen SJ, De Leenheer P. Traveling waves in response to a diffusing quorum sensing signal in spatially-extended bacterial colonies. J Theor Biol 2014; 363:53-61. [DOI: 10.1016/j.jtbi.2014.07.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 06/18/2014] [Accepted: 07/28/2014] [Indexed: 10/24/2022]
|
42
|
Identification of a novel matrix protein that promotes biofilm maturation in Vibrio fischeri. J Bacteriol 2014; 197:518-28. [PMID: 25404700 DOI: 10.1128/jb.02292-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria form communities, termed biofilms, in which cells adhere to each other within a matrix, typically comprised of polysaccharides, proteins, and extracellular DNA. Biofilm formation by the marine bacterium Vibrio fischeri requires the Syp polysaccharide, but the involvement of matrix proteins is as yet unknown. Here we identified three genes, termed bmpA, -B, and -C (biofilm maturation protein), with overlapping functions in biofilm maturation. A triple bmpABC mutant, but not single or double mutants, was defective in producing wrinkled colonies, a form of biofilm. Surprisingly, the triple mutant was competent to form pellicles, another biofilm phenotype, but they generally lacked a three-dimensional architecture. Transmission electron microscopy revealed that the extracellular matrix of the bmp mutant contained electron-dense, thread-like structures that were also present in the wild type but lacking in syp mutant strains. We hypothesized that the bmp mutant produces the Syp polysaccharide but fails to produce/export a distinct matrix component. Indeed, a mixture of the bmp and syp mutants produced a wrinkled colony. Finally, BmpA could be detected in cell-free supernatants from disrupted pellicles. Thus, this work identifies a new matrix protein necessary for biofilm maturation by V. fischeri and, based on the conservation of bmp, potentially other microbes.
Collapse
|
43
|
Miyashiro T, Oehlert D, Ray VA, Visick KL, Ruby EG. The putative oligosaccharide translocase SypK connects biofilm formation with quorum signaling in Vibrio fischeri. Microbiologyopen 2014; 3:836-48. [PMID: 25257018 PMCID: PMC4263508 DOI: 10.1002/mbo3.199] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/17/2014] [Accepted: 06/24/2014] [Indexed: 12/28/2022] Open
Abstract
Quorum signaling (QS) describes how bacteria can use small signaling molecules (autoinducers) to coordinate group-level behaviors. In Vibrio fischeri, QS is achieved through a complex regulatory network that ultimately controls bioluminescence, motility, and host colonization. We conducted a genetic screen focused on qrr1, which encodes a small regulatory RNA that is necessary for the core quorum-signaling cascade to transduce autoinducer information into cellular responses. We isolated unique mutants with a transposon inserted into one of two genes within the syp locus, which is involved in biofilm formation. We found that overexpression of sypK, which encodes a putative oligosaccharide translocase, is sufficient to activate qrr1, and, in addition, this effect appears to depend on the kinase activity of the sensor LuxQ. Consistent with the established model for QS in V. fischeri, enhanced expression of qrr1 by the overexpression of sypK resulted in reduced bioluminescence and increased motility. Finally, we found that induction of the syp locus by overexpression of sypG was sufficient to activate qrr1 levels. Together, our results show how conditions that promote biofilm formation impact the quorum-signaling network in V. fischeri, and further highlight the integrated nature of the regulatory circuits involved in complex bacterial behaviors.
Collapse
Affiliation(s)
- Tim Miyashiro
- Department of Biochemistry and Molecular Biology, Eberly College of Science, The Pennsylvania State University, University Park, Pennsylvania, 16802; Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, 53706
| | | | | | | | | |
Collapse
|
44
|
Norsworthy AN, Visick KL. Gimme shelter: how Vibrio fischeri successfully navigates an animal's multiple environments. Front Microbiol 2013; 4:356. [PMID: 24348467 PMCID: PMC3843225 DOI: 10.3389/fmicb.2013.00356] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 11/09/2013] [Indexed: 12/19/2022] Open
Abstract
Bacteria successfully colonize distinct niches because they can sense and appropriately respond to a variety of environmental signals. Of particular interest is how a bacterium negotiates the multiple, complex environments posed during successful infection of an animal host. One tractable model system to study how a bacterium manages a host’s multiple environments is the symbiotic relationship between the marine bacterium, Vibrio fischeri, and its squid host, Euprymna scolopes. V. fischeri encounters many different host surroundings ranging from initial contact with the squid to ultimate colonization of a specialized organ known as the light organ. For example, upon recognition of the squid, V. fischeri forms a biofilm aggregate outside the light organ that is required for efficient colonization. The bacteria then disperse from this biofilm to enter the organ, where they are exposed to nitric oxide, a molecule that can act as both a signal and an antimicrobial. After successfully managing this potentially hostile environment, V. fischeri cells finally establish their niche in the deep crypts of the light organ where the bacteria bioluminesce in a pheromone-dependent fashion, a phenotype that E. scolopes utilizes for anti-predation purposes. The mechanism by which V. fischeri manages these environments to outcompete all other bacterial species for colonization of E. scolopes is an important and intriguing question that will permit valuable insights into how a bacterium successfully associates with a host. This review focuses on specific molecular pathways that allow V. fischeri to establish this exquisite bacteria–host interaction.
Collapse
Affiliation(s)
- Allison N Norsworthy
- Department of Microbiology and Immunology, Loyola University Medical Center Maywood, IL, USA
| | - Karen L Visick
- Department of Microbiology and Immunology, Loyola University Medical Center Maywood, IL, USA
| |
Collapse
|
45
|
Substrate specificity and function of the pheromone receptor AinR in Vibrio fischeri ES114. J Bacteriol 2013; 195:5223-32. [PMID: 24056099 DOI: 10.1128/jb.00913-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two distinct but interrelated pheromone-signaling systems, LuxI/LuxR and AinS/AinR, positively control bioluminescence in Vibrio fischeri. Although each system generates an acyl-homoserine lactone (AHL) signal, the protein sequences of LuxI/LuxR and AinS/AinR are unrelated. AinS and LuxI generate the pheromones N-octanoyl-AHL (C8-AHL) and N-3-oxo-hexanoyl-AHL (3OC6-AHL), respectively. LuxR is a transcriptional activator that responds to 3OC6-AHL, and to a lesser extent to C8-AHL. AinR is hypothesized to respond to C8-AHL and, based on homology to Vibrio harveyi LuxN, to mediate the repression of a Qrr regulatory RNA. However, a ΔainR mutation decreased luminescence, which was not predicted based on V. harveyi LuxN, raising the possibility of a distinct regulatory mechanism for AinR. Here we show that ainR can complement a luxN mutant, suggesting functional similarity. Moreover, in V. fischeri, we observed ainR-dependent repression of a Pqrr-lacZ transcriptional reporter in the presence of C8-AHL, consistent with its hypothesized regulatory role. The system appears quite sensitive, with a half-maximal effect on a Pqrr reporter at 140 pM C8-AHL. Several other AHLs with substituted and unsubstituted acyl chains between 6 and 10 carbons also displayed an AinR-dependent effect on Pqrr-lacZ; however, AHLs with acyl chains of four carbons or 12 or more carbons lacked activity. Interestingly, 3OC6-AHL also affected expression from the qrr promoter, but this effect was largely luxR dependent, indicating a previously unknown connection between these systems. Finally, we propose a preliminary explanation for the unexpected luminescence phenotype of the ΔainR mutant.
Collapse
|
46
|
Cyclic AMP receptor protein regulates pheromone-mediated bioluminescence at multiple levels in Vibrio fischeri ES114. J Bacteriol 2013; 195:5051-63. [PMID: 23995643 DOI: 10.1128/jb.00751-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bioluminescence in Vibrio fischeri ES114 is activated by autoinducer pheromones, and this regulation serves as a model for bacterial cell-cell signaling. As in other bacteria, pheromone concentration increases with cell density; however, pheromone synthesis and perception are also modulated in response to environmental stimuli. Previous studies suggested that expression of the pheromone-dependent bioluminescence activator LuxR is regulated in response to glucose by cyclic AMP (cAMP) receptor protein (CRP) (P. V. Dunlap and E. P. Greenberg, J. Bacteriol. 164:45-50, 1985; P. V. Dunlap and E. P. Greenberg, J. Bacteriol. 170:4040-4046, 1988; P. V. Dunlap, J. Bacteriol. 171:1199-1202, 1989; and W. F. Friedrich and E. P. Greenberg, Arch. Microbiol. 134:87-91, 1983). Consistent with this model, we found that bioluminescence in V. fischeri ES114 is modulated by glucose and stimulated by cAMP. In addition, a Δcrp mutant was ∼100-fold dimmer than ES114 and did not increase luminescence in response to added cAMP, even though cells lacking crp were still metabolically capable of producing luminescence. We further discovered that CRP regulates not only luxR but also the alternative pheromone synthase gene ainS. We found that His-tagged V. fischeri CRP could bind sequences upstream of both luxR and ainS, supporting bioinformatic predictions of direct regulation at both promoters. Luminescence increased in response to cAMP if either the ainS or luxR system was under native regulation, suggesting cAMP-CRP significantly increases luminescence through both systems. Finally, using transcriptional reporters in transgenic Escherichia coli, we elucidated two additional regulatory connections. First, LuxR-independent basal transcription of the luxI promoter was enhanced by CRP. Second, the effect of CRP on the ainS promoter depended on whether the V. fischeri regulatory gene litR was also introduced. These results suggest an integral role for CRP in pheromone signaling that goes beyond sensing cell density.
Collapse
|
47
|
Chong G, Kimyon O, Manefield M. Quorum Sensing Signal Synthesis May Represent a Selective Advantage Independent of Its Role in Regulation of Bioluminescence in Vibrio fischeri. PLoS One 2013; 8:e67443. [PMID: 23825662 PMCID: PMC3688970 DOI: 10.1371/journal.pone.0067443] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 05/21/2013] [Indexed: 11/17/2022] Open
Abstract
The evolution of biological signalling systems and apparently altruistic or cooperative traits in diverse organisms has required selection against the subversive tendencies of self-interested biological entities. The bacterial signalling and response system known as quorum sensing or Acylated Homoserine Lactone (AHL) mediated gene expression is thought to have evolved through kin selection. In this in vitro study on the model quorum sensing bioluminescent marine symbiont Vibrio fischeri, competition and long-term sub culturing experiments suggest that selection for AHL synthesis (encoded by the AHL synthase gene luxI) is independent of the quorum sensing regulated phenotype (bioluminescence encoded by luxCDABE). Whilst results support the hypothesis that signal response (AHL binding and transcriptional activation encoded by the luxR gene) is maintained through indirect fitness benefits (kin selection), signal synthesis is maintained in the V. fischeri genome over evolutionary time through direct fitness benefits at the individual level from an unknown function.
Collapse
Affiliation(s)
- Grace Chong
- Centre for Marine BioInnovation (CMB), School of Biotechnology and Biomolecular Sciences (BABS), University of New South Wales (UNSW), Sydney, Australia
| | | | | |
Collapse
|
48
|
Byun CK, Hwang H, Choi WS, Yaguchi T, Park J, Kim D, Mitchell RJ, Kim T, Cho YK, Takayama S. Productive Chemical Interaction between a Bacterial Microcolony Couple Is Enhanced by Periodic Relocation. J Am Chem Soc 2013; 135:2242-7. [DOI: 10.1021/ja3094923] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Chang Kyu Byun
- School of Nano-Bioscience and
Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Republic of Korea
| | - Hyundoo Hwang
- School of Nano-Bioscience and
Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Republic of Korea
| | - Woon Sun Choi
- School of Mechanical and Advanced
Materials Engineering, Ulsan National Institute of Science and Technology (UNIST), Republic of Korea
| | - Toshiyuki Yaguchi
- School of Nano-Bioscience and
Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Republic of Korea
| | - Jiwoon Park
- School of Nano-Bioscience and
Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Republic of Korea
| | - Dasol Kim
- School of Nano-Bioscience and
Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Republic of Korea
| | - Robert J. Mitchell
- School of Nano-Bioscience and
Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Republic of Korea
| | - Taesung Kim
- School of Nano-Bioscience and
Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Republic of Korea
- School of Mechanical and Advanced
Materials Engineering, Ulsan National Institute of Science and Technology (UNIST), Republic of Korea
| | - Yoon-Kyoung Cho
- School of Nano-Bioscience and
Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Republic of Korea
- School of Mechanical and Advanced
Materials Engineering, Ulsan National Institute of Science and Technology (UNIST), Republic of Korea
| | - Shuichi Takayama
- School of Nano-Bioscience and
Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Republic of Korea
- Department of Biomedical Engineering, University of Michigan, Biointerfaces Institute, 2800
Plymouth Rd, Ann Arbor, Michigan 48109-2800, United States
- Macromolecular Science and Engineering
Center, University of Michigan, 2300 Hayward
Street, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
49
|
Symbiotic characterization of Vibrio fischeri ES114 mutants that display enhanced luminescence in culture. Appl Environ Microbiol 2013; 79:2480-3. [PMID: 23377934 DOI: 10.1128/aem.03111-12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio fischeri ES114 is a bioluminescent symbiont of the squid Euprymna scolopes. Like most isolates from E. scolopes, ES114 produces only dim luminescence outside the host, even in dense cultures. We previously identified mutants with brighter luminescence, and here we report their symbiotic phenotypes, providing insights into the host environment.
Collapse
|
50
|
The iron-dependent regulator fur controls pheromone signaling systems and luminescence in the squid symbiont Vibrio fischeri ES114. Appl Environ Microbiol 2013; 79:1826-34. [PMID: 23315731 DOI: 10.1128/aem.03079-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bacteria often use pheromones to coordinate group behaviors in specific environments. While high cell density is required for pheromones to achieve stimulatory levels, environmental cues can also influence pheromone accumulation and signaling. For the squid symbiont Vibrio fischeri ES114, bioluminescence requires pheromone-mediated regulation, and this signaling is induced in the host to a greater extent than in culture, even at an equivalent cell density. Our goal is to better understand this environment-specific control over pheromone signaling and bioluminescence. Previous work with V. fischeri MJ1 showed that iron limitation induces luminescence, and we recently found that ES114 encounters a low-iron environment in its host. Here we show that ES114 induces luminescence at lower cell density and achieves brighter luminescence in low-iron media. This iron-dependent effect on luminescence required ferric uptake regulator (Fur), which we propose influences two pheromone signaling master regulators, LitR and LuxR. Genetic and bioinformatic analyses suggested that under low-iron conditions, Fur-mediated repression of litR is relieved, enabling more LitR to perform its established role as an activator of luxR. Interestingly, Fur may similarly control the LitR homolog SmcR of Vibrio vulnificus. These results reveal an intriguing regulatory link between low-iron conditions, which are often encountered in host tissues, and pheromone-dependent master regulators.
Collapse
|