1
|
Farag SI, Francis MK, Gurung JM, Wai SN, Stenlund H, Francis MS, Nadeem A. Macrophage innate immune responses delineate between defective translocon assemblies produced by Yersinia pseudotuberculosis YopD mutants. Virulence 2023; 14:2249790. [PMID: 37621095 PMCID: PMC10461508 DOI: 10.1080/21505594.2023.2249790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 06/11/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023] Open
Abstract
Translocon pores formed in the eukaryotic cell membrane by a type III secretion system facilitate the translocation of immune-modulatory effector proteins into the host cell interior. The YopB and YopD proteins produced and secreted by pathogenic Yersinia spp. harboring a virulence plasmid-encoded type III secretion system perform this pore-forming translocator function. We had previously characterized in vitro T3SS function and in vivo pathogenicity of a number of strains encoding sited-directed point mutations in yopD. This resulted in the classification of mutants into three different classes based upon the severity of the phenotypic defects. To investigate the molecular and functional basis for these defects, we explored the effectiveness of RAW 264.7 cell line to respond to infection by representative YopD mutants of all three classes. Signature cytokine profiles could separate the different YopD mutants into distinct categories. The activation and suppression of certain cytokines that function as central innate immune response modulators correlated well with the ability of mutant bacteria to alter anti-phagocytosis and programmed cell death pathways. These analyses demonstrated that sub-optimal translocon pores impact the extent and magnitude of host cell responsiveness, and this limits the capacity of pathogenic Yersinia spp. to fortify against attack by both early and late arms of the host innate immune response.
Collapse
Affiliation(s)
- Salah I. Farag
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Monika K. Francis
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Jyoti M. Gurung
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Sun Nyunt Wai
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Hans Stenlund
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, Umeå, Sweden
- Swedish Metabolomics Centre (SMC), Umeå, Sweden
| | - Matthew S. Francis
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Aftab Nadeem
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| |
Collapse
|
2
|
Inoue K, Kinoshita M, Muranishi K, Ohara J, Sudo K, Kawaguchi K, Shimizu M, Naito Y, Moriyama K, Sawa T. Effect of a Novel Trivalent Vaccine Formulation against Acute Lung Injury Caused by Pseudomonas aeruginosa. Vaccines (Basel) 2023; 11:1088. [PMID: 37376477 DOI: 10.3390/vaccines11061088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/26/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
An effective vaccine against Pseudomonas aeruginosa would benefit people susceptible to severe infection. Vaccination targeting V antigen (PcrV) of the P. aeruginosa type III secretion system is a potential prophylactic strategy for reducing P. aeruginosa-induced acute lung injury and acute mortality. We created a recombinant protein (designated POmT) comprising three antigens: full-length PcrV (PcrV#1-#294), the outer membrane domain (#190-342) of OprF (OprF#190-#342), and a non-catalytic mutant of the carboxyl domain (#406-613) of exotoxin A (mToxA#406-#613(E553Δ)). In the combination of PcrV and OprF, mToxA, the efficacy of POmT was compared with that of single-antigen vaccines, two-antigen mixed vaccines, and a three-antigen mixed vaccine in a murine model of P. aeruginosa pneumonia. As a result, the 24 h-survival rates were 79%, 78%, 21%, 7%, and 36% in the POmT, PcrV, OprF, mTox, and alum-alone groups, respectively. Significant improvement in acute lung injury and reduction in acute mortality within 24 h after infection was observed in the POmT and PcrV groups than in the other groups. Overall, the POmT vaccine exhibited efficacy comparable to that of the PcrV vaccine. The future goal is to prove the efficacy of the POmT vaccine against various P. aeruginosa strains.
Collapse
Affiliation(s)
- Keita Inoue
- Department of Anesthesiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Mao Kinoshita
- Department of Anesthesiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Kentaro Muranishi
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan
| | - Junya Ohara
- Department of Anesthesiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Kazuki Sudo
- Department of Anesthesiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Ken Kawaguchi
- Department of Anesthesiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Masaru Shimizu
- Department of Anesthesiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yoshifumi Naito
- Department of Anesthesiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Kiyoshi Moriyama
- Department of Anesthesiology, School of Medicine, Kyorin University, Mitaka 181-8611, Japan
| | - Teiji Sawa
- Department of Anesthesiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
3
|
PopB-PcrV Interactions Are Essential for Pore Formation in the Pseudomonas aeruginosa Type III Secretion System Translocon. mBio 2022; 13:e0238122. [PMID: 36154276 PMCID: PMC9600203 DOI: 10.1128/mbio.02381-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The type III secretion system (T3SS) is a syringe-like virulence factor that delivers bacterial proteins directly into the cytoplasm of host cells. An essential component of the system is the translocon, which creates a pore in the host cell membrane through which proteins are injected. In Pseudomonas aeruginosa, the translocation pore is formed by proteins PopB and PopD and attaches to the T3SS needle via the needle tip protein PcrV. The structure and stoichiometry of the multimeric pore are unknown. We took a genetic approach to map contact points within the system by taking advantage of the fact that the translocator proteins of P. aeruginosa and the related Aeromonas hydrophila T3SS are incompatible and cannot be freely exchanged. We created chimeric versions of P. aeruginosa PopB and A. hydrophila AopB to intentionally disrupt and restore protein-protein interactions. We identified a chimeric B-translocator that specifically disrupts an interaction with the needle tip protein. This disruption did not affect membrane insertion of the B-translocator but did prevent formation of the translocation pore, arguing that the needle tip protein drives the formation of the translocation pore. IMPORTANCE Type III secretion systems are integral to the pathogenesis of many Gram-negative bacterial pathogens. A hallmark of these secretion systems is that they deliver effector proteins vectorially into the targeted host cell via a translocation pore. The translocon is crucial for T3SS function, but it has proven difficult to study biochemically and structurally. Here, we used a genetic approach to identify protein-protein contacts among translocator proteins that are important for function. This genetic approach allowed us to specifically break a contact between the translocator PopB and the T3SS needle tip protein PcrV. Breaking this contact allowed us to determine, for the first time, that the needle tip actively participates in the assembly of the translocation pore by the membrane-bound pore-forming translocator proteins. Our study therefore both expands our knowledge of the network of functionally important interactions among translocator proteins and illuminates a new step in the assembly of this critical host cell interface.
Collapse
|
4
|
Evolutionary Conservation, Variability, and Adaptation of Type III Secretion Systems. J Membr Biol 2022; 255:599-612. [PMID: 35695900 DOI: 10.1007/s00232-022-00247-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/20/2022] [Indexed: 10/18/2022]
Abstract
Type III secretion (T3S) systems are complex bacterial structures used by many pathogens to inject proteins directly into the cytosol of the host cell. These secretion machines evolved from the bacterial flagella and they have been grouped into families by phylogenetic analysis. The T3S system is composed of more than 20 proteins grouped into five complexes: the cytosolic platform, the export apparatus, the basal body, the needle, and the translocon complex. While the proteins located inside the bacterium are conserved, those exposed to the external media present high variability among families. This suggests that the T3S systems have adapted to interact with different cells or tissues in the host, and/or have been subjected to the evolutionary pressure of the host immune defenses. Such adaptation led to changes in the sequence of the T3S needle tip and translocon suggesting differences in the mechanism of assembly and structure of this complex.
Collapse
|
5
|
Jenkins J, Worrall L, Strynadka N. Recent structural advances towards understanding of the bacterial type III secretion injectisome. Trends Biochem Sci 2022; 47:795-809. [DOI: 10.1016/j.tibs.2022.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 04/01/2022] [Accepted: 04/25/2022] [Indexed: 12/22/2022]
|
6
|
Hau D, Wade B, Lovejoy C, Pandit SG, Reed DE, DeMers HL, Green HR, Hannah EE, McLarty ME, Creek CJ, Chokapirat C, Arias-Umana J, Cecchini GF, Nualnoi T, Gates-Hollingsworth MA, Thorkildson PN, Pflughoeft KJ, AuCoin DP. Development of a dual antigen lateral flow immunoassay for detecting Yersinia pestis. PLoS Negl Trop Dis 2022; 16:e0010287. [PMID: 35320275 PMCID: PMC8979426 DOI: 10.1371/journal.pntd.0010287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 04/04/2022] [Accepted: 02/28/2022] [Indexed: 11/18/2022] Open
Abstract
Background
Yersinia pestis is the causative agent of plague, a zoonosis associated with small mammals. Plague is a severe disease, especially in the pneumonic and septicemic forms, where fatality rates approach 100% if left untreated. The bacterium is primarily transmitted via flea bite or through direct contact with an infected host. The 2017 plague outbreak in Madagascar resulted in more than 2,400 cases and was highlighted by an increased number of pneumonic infections. Standard diagnostics for plague include laboratory-based assays such as bacterial culture and serology, which are inadequate for administering immediate patient care for pneumonic and septicemic plague.
Principal findings
The goal of this study was to develop a sensitive rapid plague prototype that can detect all virulent strains of Y. pestis. Monoclonal antibodies (mAbs) were produced against two Y. pestis antigens, low-calcium response V (LcrV) and capsular fraction-1 (F1), and prototype lateral flow immunoassays (LFI) and enzyme-linked immunosorbent assays (ELISA) were constructed. The LFIs developed for the detection of LcrV and F1 had limits of detection (LOD) of roughly 1–2 ng/mL in surrogate clinical samples (antigens spiked into normal human sera). The optimized antigen-capture ELISAs produced LODs of 74 pg/mL for LcrV and 61 pg/mL for F1 when these antigens were spiked into buffer. A dual antigen LFI prototype comprised of two test lines was evaluated for the detection of both antigens in Y. pestis lysates. The dual format was also evaluated for specificity using a small panel of clinical near-neighbors and other Tier 1 bacterial Select Agents.
Conclusions
LcrV is expressed by all virulent Y. pestis strains, but homologs produced by other Yersinia species can confound assay specificity. F1 is specific to Y. pestis but is not expressed by all virulent strains. Utilizing highly reactive mAbs, a dual-antigen detection (multiplexed) LFI was developed to capitalize on the diagnostic strengths of each target.
Collapse
Affiliation(s)
- Derrick Hau
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, United States of America
| | - Brian Wade
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, United States of America
| | - Chris Lovejoy
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, United States of America
| | - Sujata G. Pandit
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, United States of America
| | - Dana E. Reed
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, United States of America
| | - Haley L. DeMers
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, United States of America
| | - Heather R. Green
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, United States of America
| | - Emily E. Hannah
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, United States of America
| | - Megan E. McLarty
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, United States of America
| | - Cameron J. Creek
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, United States of America
| | - Chonnikarn Chokapirat
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, United States of America
| | - Jose Arias-Umana
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, United States of America
| | - Garett F. Cecchini
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, United States of America
| | - Teerapat Nualnoi
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, United States of America
| | | | - Peter N. Thorkildson
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, United States of America
| | - Kathryn J. Pflughoeft
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, United States of America
| | - David P. AuCoin
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, United States of America
- * E-mail:
| |
Collapse
|
7
|
Gurung JM, Amer AAA, Chen S, Diepold A, Francis MS. Type III secretion by Yersinia pseudotuberculosis is reliant upon an authentic N-terminal YscX secretor domain. Mol Microbiol 2022; 117:886-906. [PMID: 35043994 PMCID: PMC9303273 DOI: 10.1111/mmi.14880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 11/29/2022]
Abstract
YscX was discovered as an essential part of the Yersinia type III secretion system about 20 years ago. It is required for substrate secretion and is exported itself. Despite this central role, its precise function and mode of action remains unknown. In order to address this knowledge gap, this present study refocused attention on YscX to build on the recent advances in the understanding of YscX function. Our experiments identified a N-terminal secretion domain in YscX promoting its secretion, with the first five codons constituting a minimal signal capable of promoting secretion of the signalless β-lactamase reporter. Replacing the extreme YscX N-terminus with known secretion signals of other Ysc-Yop substrates revealed that the YscX N-terminal segment contains non-redundant information needed for YscX function. Further, both in cis deletion of the YscX N-terminus in the virulence plasmid and ectopic expression of epitope tagged YscX variants again lead to stable YscX production but not type III secretion of Yop effector proteins. Mislocalisation of the needle components, SctI and SctF, accompanied this general defect in Yops secretion. Hence, a coupling exists between YscX secretion permissiveness and the assembly of an operational secretion system.
Collapse
Affiliation(s)
- Jyoti M Gurung
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Ayad A A Amer
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Shiyun Chen
- Wuhan Institute of Virology, The Chinese Academy of Sciences, Wuhan, China
| | - Andreas Diepold
- Max Planck Institute for Terrestrial Microbiology, Department of Ecophysiology, Marburg, Germany
| | - Matthew S Francis
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| |
Collapse
|
8
|
Hajra D, Nair AV, Chakravortty D. An elegant nano-injection machinery for sabotaging the host: Role of Type III secretion system in virulence of different human and animal pathogenic bacteria. Phys Life Rev 2021; 38:25-54. [PMID: 34090822 DOI: 10.1016/j.plrev.2021.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 05/23/2021] [Indexed: 01/22/2023]
Abstract
Various Gram-negative bacteria possess a specialized membrane-bound protein secretion system known as the Type III secretion system (T3SS), which transports the bacterial effector proteins into the host cytosol thereby helping in bacterial pathogenesis. The T3SS has a special needle-like translocon that can sense the contact with the host cell membrane and translocate effectors. The export apparatus of T3SS recognizes these effector proteins bound to chaperones and translocates them into the host cell. Once in the host cell cytoplasm, these effector proteins result in modulation of the host system and promote bacterial localization and infection. Using molecular biology, bioinformatics, genetic techniques, electron microscopic studies, and mathematical modeling, the structure and function of the T3SS and the corresponding effector proteins in various bacteria have been studied. The strategies used by different human pathogenic bacteria to modulate the host system and thereby enhance their virulence mechanism using T3SS have also been well studied. Here we review the history, evolution, and general structure of the T3SS, highlighting the details of its comparison with the flagellar export machinery. Also, this article provides mechanistic details about the common role of T3SS in subversion and manipulation of host cellular processes. Additionally, this review describes specific T3SS apparatus and the role of their specific effectors in bacterial pathogenesis by considering several human and animal pathogenic bacteria.
Collapse
Affiliation(s)
- Dipasree Hajra
- Department of Microbiology & Cell Biology, Indian Institute of Science, India
| | - Abhilash Vijay Nair
- Department of Microbiology & Cell Biology, Indian Institute of Science, India
| | | |
Collapse
|
9
|
Structure of the Yersinia injectisome in intracellular host cell phagosomes revealed by cryo FIB electron tomography. J Struct Biol 2021; 213:107701. [PMID: 33549695 DOI: 10.1016/j.jsb.2021.107701] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/17/2020] [Accepted: 01/14/2021] [Indexed: 02/03/2023]
Abstract
Many pathogenic bacteria use the type III secretion system (T3SS), or injectisome, to secrete toxins into host cells. These protruding systems are primary targets for drug and vaccine development. Upon contact between injectisomes and host membranes, toxin secretion is triggered. How this works structurally and functionally is yet unknown. Using cryo-focused ion beam milling and cryo-electron tomography, we visualized injectisomes of Yersinia enterocolitica inside the phagosomes of infected human myeloid cells in a close-to-native state. We observed that a minimum needle length is required for injectisomes to contact the host membrane and bending of host membranes by some injectisomes that contact the host. Through subtomogram averaging, the structure of the entire injectisome was determined, which revealed structural differences in the cytosolic sorting platform compared to other bacteria. These findings contribute to understanding how injectisomes secrete toxins into host cells and provides the indispensable native context. The application of these cryo-electron microscopy techniques paves the way for the study of the 3D structure of infection-relevant protein complexes in host-pathogen interactions.
Collapse
|
10
|
Cryo-EM structure of the EspA filament from enteropathogenic Escherichia coli: Revealing the mechanism of effector translocation in the T3SS. Structure 2021; 29:479-487.e4. [PMID: 33453150 DOI: 10.1016/j.str.2020.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/22/2020] [Accepted: 12/16/2020] [Indexed: 02/02/2023]
Abstract
The type III secretion system (T3SS) is a virulence mechanism employed by Gram-negative pathogens. The T3SS forms a proteinaceous channel that projects a needle into the extracellular medium where it interacts with the host cell to deliver virulence factors. Enteropathogenic Escherichia coli (EPEC) is unique in adopting a needle extension to the T3SS-a filament formed by EspA-which is absolutely required for efficient colonization of the gut. Here, we describe the cryoelectron microscopy structure of native EspA filaments from EPEC at 3.6-Å resolution. Within the filament, positively charged residues adjacent to a hydrophobic groove line the lumen of the filament in a spiral manner, suggesting a mechanism of substrate translocation mediated via electrostatics. Using structure-guided mutagenesis, in vivo studies corroborate the role of these residues in secretion and translocation function. The high-resolution structure of the EspA filament could aid in structure-guided drug design of antivirulence therapeutics.
Collapse
|
11
|
Armentrout EI, Kundracik EC, Rietsch A. Cell-type-specific hypertranslocation of effectors by the Pseudomonas aeruginosa type III secretion system. Mol Microbiol 2020; 115:305-319. [PMID: 33012037 DOI: 10.1111/mmi.14617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/22/2020] [Indexed: 12/23/2022]
Abstract
Many Gram-negative pathogens use a type III secretion system (T3SS) to promote disease by injecting effector proteins into host cells. Common to many T3SSs is that injection of effector proteins is feedback inhibited. The mechanism of feedback inhibition and its role in pathogenesis are unclear. In the case of P. aeruginosa, the effector protein ExoS is central to limiting effector injection. ExoS is bifunctional, with an amino-terminal RhoGAP and a carboxy-terminal ADP-ribosyltransferase domain. We demonstrate that both domains are required to fully feedback inhibit effector injection. The RhoGAP-, but not the ADP-ribosyltransferase domain of the related effector protein ExoT also participates. Feedback inhibition does not involve translocator insertion nor pore-formation. Instead, feedback inhibition is due, in part, to a loss of the activating trigger for effector injection, and likely also decreased translocon stability. Surprisingly, feedback inhibition is abrogated in phagocytic cells. The lack of feedback inhibition in these cells requires phagocytic uptake of the bacteria, but cannot be explained through acidification of the phagosome or calcium limitation. Given that phagocytes are crucial for controlling P. aeruginosa infections, our data suggest that feedback inhibition allows P. aeruginosa to direct its effector arsenal against the cell types most damaging to its survival.
Collapse
Affiliation(s)
- Erin I Armentrout
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| | - Emma C Kundracik
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| | - Arne Rietsch
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
12
|
Kinoshita M, Shimizu M, Akiyama K, Kato H, Moriyama K, Sawa T. Epidemiological survey of serum titers from adults against various Gram-negative bacterial V-antigens. PLoS One 2020; 15:e0220924. [PMID: 32155175 PMCID: PMC7064248 DOI: 10.1371/journal.pone.0220924] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 02/24/2020] [Indexed: 11/18/2022] Open
Abstract
The V-antigen, a virulence-associated protein, was first identified in Yersinia pestis more than half a century ago. Since then, other V-antigen homologs and orthologs have been discovered and are now considered as critical molecules for the toxic effects mediated by the type III secretion system during infections caused by various pathogenic Gram-negative bacteria. After purifying recombinant V-antigen proteins, including PcrV from Pseudomonas aeruginosa, LcrV from Yersinia, LssV from Photorhabdus luminescens, AcrV from Aeromonas salmonicida, and VcrV from Vibrio parahaemolyticus, we developed an enzyme-linked immunoabsorbent assay to measure titers against each V-antigen in sera collected from 186 adult volunteers. Different titer-specific correlation levels were determined for the five V-antigens. The anti-LcrV and anti-AcrV titers shared the highest correlation with each other with a correlation coefficient of 0.84. The next highest correlation coefficient was between anti-AcrV and anti-VcrV titers at 0.79, while the lowest correlation was found between anti-LcrV and anti-VcrV titers, which were still higher than 0.7. Sera from mice immunized with one of the five recombinant V-antigens displayed cross-antigenicity with some of the other four V-antigens, supporting the results from the human sera. Thus, the serum anti-V-antigen titer measurement system may be used for epidemiological investigations of various pathogenic Gram-negative bacteria.
Collapse
Affiliation(s)
- Mao Kinoshita
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masaru Shimizu
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Koichi Akiyama
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hideya Kato
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kiyoshi Moriyama
- Department of Anesthesiology, School of Medicine, Kyorin University, Tokyo, Japan
| | - Teiji Sawa
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- * E-mail:
| |
Collapse
|
13
|
Mandal D, Mandal D, Basu A. YspD: A Potential Therapeutic Target for Drug Design to Combat Yersinia enterocolitica Infection. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09968-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Sawa T, Kinoshita M, Inoue K, Ohara J, Moriyama K. Immunoglobulin for Treating Bacterial Infections: One More Mechanism of Action. Antibodies (Basel) 2019; 8:antib8040052. [PMID: 31684203 PMCID: PMC6963986 DOI: 10.3390/antib8040052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/17/2019] [Accepted: 10/28/2019] [Indexed: 02/08/2023] Open
Abstract
The mechanisms underlying the effects of immunoglobulins on bacterial infections are thought to involve bacterial cell lysis via complement activation, phagocytosis via bacterial opsonization, toxin neutralization, and antibody-dependent cell-mediated cytotoxicity. Nevertheless, recent advances in the study of the pathogenicity of Gram-negative bacteria have raised the possibility of an association between immunoglobulin and bacterial toxin secretion. Over time, new toxin secretion systems like the type III secretion system have been discovered in many pathogenic Gram-negative bacteria. With this system, the bacterial toxins are directly injected into the cytoplasm of the target cell through a special secretory apparatus without any exposure to the extracellular environment, and therefore with no opportunity for antibodies to neutralize the toxin. However, antibodies against the V-antigen, which is located on the needle-shaped tip of the bacterial secretion apparatus, can inhibit toxin translocation, thus raising the hope that the toxin may be susceptible to antibody targeting. Because multi-drug resistant bacteria are now prevalent, inhibiting this secretion mechanism is an attractive alternative or adjunctive therapy against lethal bacterial infections. Thus, it is not unreasonable to define the blocking effect of anti-V-antigen antibodies as the fifth mechanism for immunoglobulin action against bacterial infections.
Collapse
Affiliation(s)
- Teiji Sawa
- Department of Anesthesiology, School of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| | - Mao Kinoshita
- Department of Anesthesiology, School of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| | - Keita Inoue
- Department of Anesthesiology, School of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| | - Junya Ohara
- Department of Anesthesiology, School of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| | - Kiyoshi Moriyama
- Department of Anesthesiology, Kyorin University School of Medicine, Tokyo 181-8611, Japan.
| |
Collapse
|
15
|
Singh N, Wagner S. Investigating the assembly of the bacterial type III secretion system injectisome by in vivo photocrosslinking. Int J Med Microbiol 2019; 309:151331. [DOI: 10.1016/j.ijmm.2019.151331] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 12/11/2022] Open
|
16
|
Dey S, Chakravarty A, Guha Biswas P, De Guzman RN. The type III secretion system needle, tip, and translocon. Protein Sci 2019; 28:1582-1593. [PMID: 31301256 DOI: 10.1002/pro.3682] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 11/06/2022]
Abstract
Many Gram-negative bacteria pathogenic to plants and animals deploy the type III secretion system (T3SS) to inject virulence factors into their hosts. All bacteria that rely on the T3SS to cause infectious diseases in humans have developed antibiotic resistance. The T3SS is an attractive target for developing new antibiotics because it is essential in virulence, and part of its structural component is exposed on the bacterial surface. The structural component of the T3SS is the needle apparatus, which is assembled from over 20 different proteins and consists of a base, an extracellular needle, a tip, and a translocon. This review summarizes the current knowledge on the structure and assembly of the needle, tip, and translocon.
Collapse
Affiliation(s)
- Supratim Dey
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | | | | | | |
Collapse
|
17
|
Heine SJ, Franco-Mahecha OL, Sears KT, Drachenberg CB, van Roosmalen ML, Leenhouts K, Picking WL, Pasetti MF. A Combined YopB and LcrV Subunit Vaccine Elicits Protective Immunity against Yersinia Infection in Adult and Infant Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:2005-2016. [PMID: 30787109 PMCID: PMC6424635 DOI: 10.4049/jimmunol.1800985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 01/23/2019] [Indexed: 11/19/2022]
Abstract
Yersinia enterocolitica causes a severe enteric infection in infants and young children. There is no vaccine approved for use in humans. We investigated the immunogenicity and protective capacity of Yersinia YopB, a conserved type III secretion system protein, alone or combined with LcrV in adult mice immunized intranasally. YopB or LcrV (5 μg) administered with the Escherichia coli double mutant heat-labile toxin (dmLT) adjuvant afforded modest (10-30%) protection against lethal Y. enterocolitica oral infection. The combination of YopB and LcrV (5 μg each) dramatically improved vaccine efficacy (70-80%). Additionally, it afforded complete protection against Y. pestis pulmonary infection. Immunization with YopB/LcrV+dmLT resulted in Ag-specific serum IgG, systemic and mucosal Ab-secreting cells, as well as IFN-γ, TNF-α, IL-2, IL-6, IL-17A, and KC production by spleen cells. Serum Abs elicited by YopB/LcrV+dmLT had enhanced bactericidal and opsonophagocytic killing activity. After Y. enterocolitica challenge, YopB/LcrV+dmLT-vaccinated mice exhibited intact intestinal tissue, active germinal centers in mesenteric lymph nodes, IgG+ and IgA+ plasmablasts in the lamina propria, and Abs in intestinal fluid. On the contrary, complete tissue destruction and abscesses were seen in placebo recipients that succumbed to infection. Mice immunized as infants with YopB+dmLT or LcrV+dmLT achieved 60% protection against lethal Y. enterocolitica infection, and vaccine efficacy increased to 90-100% when they received YopB/LcrV+dmLT. YopB+dmLT also afforded substantial (60%) protection when administered intradermally to infant mice. YopB/LcrV+dmLT is a promising subunit vaccine candidate with the potential to elicit broad protection against Yersinia spp.
Collapse
Affiliation(s)
- Shannon J Heine
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Olga L Franco-Mahecha
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Khandra T Sears
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Cinthia B Drachenberg
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201
| | | | | | - Wendy L Picking
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047
| | - Marcela F Pasetti
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201;
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
18
|
Lara-Tejero M, Galán JE. The Injectisome, a Complex Nanomachine for Protein Injection into Mammalian Cells. EcoSal Plus 2019; 8:10.1128/ecosalplus.ESP-0039-2018. [PMID: 30942149 PMCID: PMC6450406 DOI: 10.1128/ecosalplus.esp-0039-2018] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Indexed: 12/20/2022]
Abstract
Type III protein secretion systems (T3SSs), or injectisomes, are multiprotein nanomachines present in many Gram-negative bacteria that have a sustained long-standing close relationship with a eukaryotic host. These secretion systems have evolved to modulate host cellular functions through the activity of the effector proteins they deliver. To reach their destination, T3SS effectors must cross the multibarrier bacterial envelope and the eukaryotic cell membrane. Passage through the bacterial envelope is mediated by the needle complex, a central component of T3SSs that expands both the inner and outer membranes of Gram-negative bacteria. A set of T3SS secreted proteins, known as translocators, form a channel in the eukaryotic plasma membrane through which the effector proteins are delivered to reach the host cell cytosol. While the effector proteins are tailored to the specific lifestyle of the bacterium that encodes them, the injectisome is conserved among the different T3SSs. The central role of T3SSs in pathogenesis and their high degree of conservation make them a desirable target for the development of antimicrobial therapies against several important bacterial pathogens.
Collapse
Affiliation(s)
- Maria Lara-Tejero
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536
| | - Jorge E Galán
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536
| |
Collapse
|
19
|
Diepold A. Assembly and Post-assembly Turnover and Dynamics in the Type III Secretion System. Curr Top Microbiol Immunol 2019; 427:35-66. [PMID: 31218503 DOI: 10.1007/82_2019_164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The type III secretion system (T3SS) is one of the largest transmembrane complexes in bacteria, comprising several intricately linked and embedded substructures. The assembly of this nanomachine is a hierarchical process which is regulated and controlled by internal and external cues at several critical points. Recently, it has become obvious that the assembly of the T3SS is not a unidirectional and deterministic process, but that parts of the T3SS constantly exchange or rearrange. This article aims to give an overview on the assembly and post-assembly dynamics of the T3SS, with a focus on emerging general concepts and adaptations of the general assembly pathway.
Collapse
Affiliation(s)
- Andreas Diepold
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043, Marburg, Germany.
| |
Collapse
|
20
|
Picking WD, Barta ML. The Tip Complex: From Host Cell Sensing to Translocon Formation. Curr Top Microbiol Immunol 2019; 427:173-199. [PMID: 31218507 DOI: 10.1007/82_2019_171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Type III secretion systems are used by some Gram-negative bacteria to inject effector proteins into targeted eukaryotic cells for the benefit of the bacterium. The type III secretion injectisome is a complex nanomachine comprised of four main substructures including a cytoplasmic sorting platform, an envelope-spanning basal body, an extracellular needle and an exposed needle tip complex. Upon contact with a host cell, secretion is induced, resulting in the formation of a translocon pore in the host membrane. Translocon formation completes the conduit needed for effector secretion into the host cell. Control of type III secretion occurs in response to environmental signals, with the final signal being host cell contact. Secretion control occurs primarily at two sites-the cytoplasmic sorting platform, which determines secretion hierarchy, and the needle tip complex, which is critical for sensing and responding to environmental signals. The best-characterized injectisomes are those from Yersinia, Shigella and Salmonella species where there is a wealth of information on the tip complex and the two translocator proteins. Of these systems, the best characterized from a secretion regulation standpoint is Shigella. In the Shigella system, the tip complex and the first secreted translocon both contribute to secretion control and, thus, both are considered components of the tip complex. In this review, all three of these type III secretion systems are described with discussion focused on the structure and formation of the injectisome tip complex and what is known of the transition from nascent tip complex to assembled translocon pore.
Collapse
Affiliation(s)
- William D Picking
- Department of Pharmaceutical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, 66047, KS, USA.
| | - Michael L Barta
- Higuchi Biosciences, 2099 Constant Ave., Lawrence, 66047, KS, USA.,Catalent Pharma Solutions, 10245 Hickman Mills Drive, Kansas City, 64137, MO, USA
| |
Collapse
|
21
|
Nauth T, Huschka F, Schweizer M, Bosse JB, Diepold A, Failla AV, Steffen A, Stradal TEB, Wolters M, Aepfelbacher M. Visualization of translocons in Yersinia type III protein secretion machines during host cell infection. PLoS Pathog 2018; 14:e1007527. [PMID: 30586431 PMCID: PMC6324820 DOI: 10.1371/journal.ppat.1007527] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/08/2019] [Accepted: 12/14/2018] [Indexed: 12/13/2022] Open
Abstract
Type III secretion systems (T3SSs) are essential virulence factors of numerous bacterial pathogens. Upon host cell contact the T3SS machinery—also named injectisome—assembles a pore complex/translocon within host cell membranes that serves as an entry gate for the bacterial effectors. Whether and how translocons are physically connected to injectisome needles, whether their phenotype is related to the level of effector translocation and which target cell factors trigger their formation have remained unclear. We employed the superresolution fluorescence microscopy techniques Stimulated Emission Depletion (STED) and Structured Illumination Microscopy (SIM) as well as immunogold electron microscopy to visualize Y. enterocolitica translocons during infection of different target cell types. Thereby we were able to resolve translocon and needle complex proteins within the same injectisomes and demonstrate that these fully assembled injectisomes are generated in a prevacuole, a PI(4,5)P2 enriched host cell compartment inaccessible to large extracellular proteins like antibodies. Furthermore, the operable translocons were produced by the yersiniae to a much larger degree in macrophages (up to 25% of bacteria) than in HeLa cells (2% of bacteria). However, when the Rho GTPase Rac1 was activated in the HeLa cells, uptake of the yersiniae into the prevacuole, translocon formation and effector translocation were strongly enhanced reaching the same levels as in macrophages. Our findings indicate that operable T3SS translocons can be visualized as part of fully assembled injectisomes with superresolution fluorescence microscopy techniques. By using this technology, we provide novel information about the spatiotemporal organization of T3SS translocons and their regulation by host cell factors. Many human, animal and plant pathogenic bacteria employ a molecular machine termed injectisome to inject their toxins into host cells. Because injectisomes are crucial for these bacteria’s infectious potential they have been considered as targets for antiinfective drugs. Injectisomes are highly similar between the different bacterial pathogens and most of their overall structure is well established at the molecular level. However, only little information is available for a central part of the injectisome named the translocon. This pore-like assembly integrates into host cell membranes and thereby serves as an entry gate for the bacterial toxins. We used state of the art fluorescence microscopy to watch translocons of the diarrheagenic pathogen Yersinia enterocolitica during infection of human host cells. Thereby we could for the first time—with fluorescence microscopy—visualize translocons connected to other parts of the injectisome. Furthermore, because translocons mark functional injectisomes we could obtain evidence that injectisomes only become active for secretion of translocators when the bacteria are almost completely enclosed by host cells. These findings provide a novel view on the organization and regulation of bacterial translocons and may thus open up new strategies to block the function of infectious bacteria.
Collapse
Affiliation(s)
- Theresa Nauth
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Franziska Huschka
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Michaela Schweizer
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Jens B. Bosse
- Heinrich-Pette-Institute (HPI), Leibniz-Institute for Experimental Virology, Hamburg, Germany
| | - Andreas Diepold
- Department of Ecophysiology, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| | - Antonio Virgilio Failla
- UKE Microscopy Imaging Facility, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Anika Steffen
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Theresia E. B. Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Manuel Wolters
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Martin Aepfelbacher
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- * E-mail:
| |
Collapse
|
22
|
Morgan JM, Lam HN, Delgado J, Luu J, Mohammadi S, Isberg RR, Wang H, Auerbuch V. An Experimental Pipeline for Initial Characterization of Bacterial Type III Secretion System Inhibitor Mode of Action Using Enteropathogenic Yersinia. Front Cell Infect Microbiol 2018; 8:404. [PMID: 30524970 PMCID: PMC6262202 DOI: 10.3389/fcimb.2018.00404] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/26/2018] [Indexed: 12/19/2022] Open
Abstract
Dozens of Gram negative pathogens use one or more type III secretion systems (T3SS) to disarm host defenses or occupy a beneficial niche during infection of a host organism. While the T3SS represents an attractive drug target and dozens of compounds with T3SS inhibitory activity have been identified, few T3SS inhibitors have been validated and mode of action determined. One issue is the lack of standardized orthogonal assays following high throughput screening. Using a training set of commercially available compounds previously shown to possess T3SS inhibitory activity, we demonstrate the utility of an experiment pipeline comprised of six distinct assays to assess the stages of type III secretion impacted: T3SS gene copy number, T3SS gene expression, T3SS basal body and needle assembly, secretion of cargo through the T3SS, and translocation of T3SS effector proteins into host cells. We used enteropathogenic Yersinia as the workhorse T3SS-expressing model organisms for this experimental pipeline, as Yersinia is sensitive to all T3SS inhibitors we tested, including those active against other T3SS-expressing pathogens. We find that this experimental pipeline is capable of rapidly distinguishing between T3SS inhibitors that interrupt the process of type III secretion at different points in T3SS assembly and function. For example, our data suggests that Compound 3, a malic diamide, blocks either activity of the assembled T3SS or alters the structure of the T3SS in a way that blocks T3SS cargo secretion but not antibody recognition of the T3SS needle. In contrast, our data predicts that Compound 4, a haloid-containing sulfonamidobenzamide, disrupts T3SS needle subunit secretion or assembly. Furthermore, we suggest that misregulation of copy number control of the pYV virulence plasmid, which encodes the Yersinia T3SS, should be considered as a possible mode of action for compounds with T3SS inhibitory activity against Yersinia.
Collapse
Affiliation(s)
- Jessica M. Morgan
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Hanh N. Lam
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Jocelyn Delgado
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Justin Luu
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Sina Mohammadi
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States
| | - Ralph R. Isberg
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States
| | - Helen Wang
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Victoria Auerbuch
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
23
|
SsaV Interacts with SsaL to Control the Translocon-to-Effector Switch in the Salmonella SPI-2 Type Three Secretion System. mBio 2018; 9:mBio.01149-18. [PMID: 30279280 PMCID: PMC6168863 DOI: 10.1128/mbio.01149-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Salmonella Typhimurium is an intracellular pathogen that uses the SPI-2 type III secretion system to deliver virulence proteins across the vacuole membrane surrounding intracellular bacteria. This involves a tightly regulated hierarchy of protein secretion controlled by two molecular switches. We found that SPI-2-encoded proteins SsaP and SsaU are involved in the first but not the second secretion switch. We identify key amino acids of the inner membrane protein SsaV that are required to interact with the so-called gatekeeper protein SsaL and show that the dissociation of SsaV-SsaL causes the second switch, leading to delivery of effector proteins. Our results provide insights into the molecular events controlling virulence-associated type III secretion and suggest a broader model describing how the process is regulated. Nonflagellar type III secretion systems (nf T3SSs) form a cell surface needle-like structure and an associated translocon that deliver bacterial effector proteins into eukaryotic host cells. This involves a tightly regulated hierarchy of protein secretion. A switch involving SctP and SctU stops secretion of the needle protein. The gatekeeper protein SctW is required for secretion of translocon proteins and controls a second switch to start effector secretion. Salmonella enterica serovar Typhimurium encodes two T3SSs in Salmonella pathogenicity island 1 (SPI-1) and SPI-2. The acidic vacuole containing intracellular bacteria stimulates assembly of the SPI-2 T3SS and its translocon. Sensing the nearly neutral host cytosolic pH is required for effector translocation. Here, we investigated the involvement of SPI-2-encoded proteins SsaP (SctP), SsaU (SctU), SsaV (SctV), and SsaL (SctW) in regulation of secretion. We found that SsaP and SsaU are involved in the first but not the second secretion switch. A random-mutagenesis screen identified amino acids of SsaV that regulate translocon and effector secretion. Single substitutions in subdomain 4 of SsaV or InvA (SPI-1-encoded SctV) phenocopied mutations of their corresponding gatekeepers with respect to translocon and effector protein secretion and host cell interactions. SsaL interacted with SsaV in bacteria exposed to low ambient pH but not after the pH was raised to 7.2. We propose that SsaP and SsaU enable the apparatus to become competent for a secretion switch and facilitate the SsaL-SsaV interaction. This mediates secretion of translocon proteins until neutral pH is sensed, which causes their dissociation, resulting in arrest of translocon secretion and derepression of effector translocation.
Collapse
|
24
|
Wagner S, Grin I, Malmsheimer S, Singh N, Torres-Vargas CE, Westerhausen S. Bacterial type III secretion systems: a complex device for the delivery of bacterial effector proteins into eukaryotic host cells. FEMS Microbiol Lett 2018; 365:5068689. [PMID: 30107569 PMCID: PMC6140923 DOI: 10.1093/femsle/fny201] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/08/2018] [Indexed: 12/21/2022] Open
Abstract
Virulence-associated type III secretion systems (T3SS) serve the injection of bacterial effector proteins into eukaryotic host cells. They are able to secrete a great diversity of substrate proteins in order to modulate host cell function, and have evolved to sense host cell contact and to inject their substrates through a translocon pore in the host cell membrane. T3SS substrates contain an N-terminal signal sequence and often a chaperone-binding domain for cognate T3SS chaperones. These signals guide the substrates to the machine where substrates are unfolded and handed over to the secretion channel formed by the transmembrane domains of the export apparatus components and by the needle filament. Secretion itself is driven by the proton motive force across the bacterial inner membrane. The needle filament measures 20-150 nm in length and is crowned by a needle tip that mediates host-cell sensing. Secretion through T3SS is a highly regulated process with early, intermediate and late substrates. A strict secretion hierarchy is required to build an injectisome capable of reaching, sensing and penetrating the host cell membrane, before host cell-acting effector proteins are deployed. Here, we review the recent progress on elucidating the assembly, structure and function of T3SS injectisomes.
Collapse
Affiliation(s)
- Samuel Wagner
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
- German Center for Infection Research (DZIF), partner-site Tübingen, Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| | - Iwan Grin
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| | - Silke Malmsheimer
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| | - Nidhi Singh
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| | - Claudia E Torres-Vargas
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| | - Sibel Westerhausen
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| |
Collapse
|
25
|
Tang Y, Romano FB, Breña M, Heuck AP. The Pseudomonas aeruginosa type III secretion translocator PopB assists the insertion of the PopD translocator into host cell membranes. J Biol Chem 2018; 293:8982-8993. [PMID: 29685888 DOI: 10.1074/jbc.ra118.002766] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/10/2018] [Indexed: 11/06/2022] Open
Abstract
Many Gram-negative bacterial pathogens use a type III secretion system to infect eukaryotic cells. The injection of bacterial toxins or protein effectors via this system is accomplished through a plasma membrane channel formed by two bacterial proteins, termed translocators, whose assembly and membrane-insertion mechanisms are currently unclear. Here, using purified proteins we demonstrate that the translocators PopB and PopD in Pseudomonas aeruginosa assemble heterodimers in membranes, leading to stably inserted hetero-complexes. Using site-directed fluorescence labeling with an environment-sensitive probe, we found that hydrophobic segments in PopD anchor the translocator to the membrane, but without adopting a typical transmembrane orientation. A fluorescence dual-quenching assay revealed that the presence of PopB changes the conformation adopted by PopD segments in membranes. Furthermore, analysis of PopD's interaction with human cell membranes revealed that PopD adopts a distinctive conformation when PopB is present. An N-terminal region of PopD is only exposed to the host cytosol when PopB is present. We conclude that PopB assists with the proper insertion of PopD in cell membranes, required for the formation of a functional translocon and host infection.
Collapse
Affiliation(s)
- Yuzhou Tang
- From the Program in Molecular and Cellular Biology and
| | | | - Mariana Breña
- From the Program in Molecular and Cellular Biology and
| | - Alejandro P Heuck
- From the Program in Molecular and Cellular Biology and .,Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| |
Collapse
|
26
|
Barta ML, Shearer JP, Arizmendi O, Tremblay JM, Mehzabeen N, Zheng Q, Battaile KP, Lovell S, Tzipori S, Picking WD, Shoemaker CB, Picking WL. Single-domain antibodies pinpoint potential targets within Shigella invasion plasmid antigen D of the needle tip complex for inhibition of type III secretion. J Biol Chem 2017; 292:16677-16687. [PMID: 28842484 DOI: 10.1074/jbc.m117.802231] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/14/2017] [Indexed: 12/18/2022] Open
Abstract
Numerous Gram-negative pathogens infect eukaryotes and use the type III secretion system (T3SS) to deliver effector proteins into host cells. One important T3SS feature is an extracellular needle with an associated tip complex responsible for assembly of a pore-forming translocon in the host cell membrane. Shigella spp. cause shigellosis, also called bacillary dysentery, and invade colonic epithelial cells via the T3SS. The tip complex of Shigella flexneri contains invasion plasmid antigen D (IpaD), which initially regulates secretion and provides a physical platform for the translocon pore. The tip complex represents a promising therapeutic target for many important T3SS-containing pathogens. Here, in an effort to further elucidate its function, we created a panel of single-VH domain antibodies (VHHs) that recognize distinct epitopes within IpaD. These VHHs recognized the in situ tip complex and modulated the infectious properties of Shigella Moreover, structural elucidation of several IpaD-VHH complexes provided critical insights into tip complex formation and function. Of note, one VHH heterodimer could reduce Shigella hemolytic activity by >80%. Our observations along with previous findings support the hypothesis that the hydrophobic translocator (IpaB in Shigella) likely binds to a region within the tip protein that is structurally conserved across all T3SS-possessing pathogens, suggesting potential therapeutic avenues for managing infections by these pathogens.
Collapse
Affiliation(s)
- Michael L Barta
- From the Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047
| | - Jonathan P Shearer
- Department of Infectious Diseases and Global Health, Tufts Clinical and Translational Science Institute, North Grafton, Massachusetts 02111
| | - Olivia Arizmendi
- From the Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047
| | - Jacqueline M Tremblay
- Department of Infectious Diseases and Global Health, Tufts Clinical and Translational Science Institute, North Grafton, Massachusetts 02111
| | - Nurjahan Mehzabeen
- Protein Structure Laboratory, Del Shankel Structural Biology Center, University of Kansas, Lawrence, Kansas 66047, and
| | - Qi Zheng
- From the Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047
| | - Kevin P Battaile
- IMCA-CAT, Hauptman-Woodward Medical Research Institute, Argonne, Illinois 60439
| | - Scott Lovell
- Protein Structure Laboratory, Del Shankel Structural Biology Center, University of Kansas, Lawrence, Kansas 66047, and
| | - Saul Tzipori
- Department of Infectious Diseases and Global Health, Tufts Clinical and Translational Science Institute, North Grafton, Massachusetts 02111
| | - William D Picking
- From the Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047
| | - Charles B Shoemaker
- Department of Infectious Diseases and Global Health, Tufts Clinical and Translational Science Institute, North Grafton, Massachusetts 02111
| | - Wendy L Picking
- From the Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047,
| |
Collapse
|
27
|
Grabowski B, Schmidt MA, Rüter C. Immunomodulatory Yersinia outer proteins (Yops)-useful tools for bacteria and humans alike. Virulence 2017; 8:1124-1147. [PMID: 28296562 DOI: 10.1080/21505594.2017.1303588] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human-pathogenic Yersinia produce plasmid-encoded Yersinia outer proteins (Yops), which are necessary to down-regulate anti-bacterial responses that constrict bacterial survival in the host. These Yops are effectively translocated directly from the bacterial into the target cell cytosol by the type III secretion system (T3SS). Cell-penetrating peptides (CPPs) in contrast are characterized by their ability to autonomously cross cell membranes and to transport cargo - independent of additional translocation systems. The recent discovery of bacterial cell-penetrating effector proteins (CPEs) - with the prototype being the T3SS effector protein YopM - established a new class of autonomously translocating immunomodulatory proteins. CPEs represent a vast source of potential self-delivering, anti-inflammatory therapeutics. In this review, we give an update on the characteristic features of the plasmid-encoded Yops and, based on recent findings, propose the further development of these proteins for potential therapeutic applications as natural or artificial cell-penetrating forms of Yops might be of value as bacteria-derived biologics.
Collapse
Affiliation(s)
- Benjamin Grabowski
- a Institute of Infectiology - Centre for Molecular Biology of Inflammation (ZMBE), University of Münster , Münster , Germany
| | - M Alexander Schmidt
- a Institute of Infectiology - Centre for Molecular Biology of Inflammation (ZMBE), University of Münster , Münster , Germany
| | - Christian Rüter
- a Institute of Infectiology - Centre for Molecular Biology of Inflammation (ZMBE), University of Münster , Münster , Germany
| |
Collapse
|
28
|
Klein JA, Dave BM, Raphenya AR, McArthur AG, Knodler LA. Functional relatedness in the Inv/Mxi-Spa type III secretion system family. Mol Microbiol 2017; 103:973-991. [PMID: 27997726 DOI: 10.1111/mmi.13602] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2016] [Indexed: 01/06/2023]
Abstract
Type III Secretion Systems (T3SSs) are structurally conserved nanomachines that span the inner and outer bacterial membranes, and via a protruding needle complex contact host cell membranes and deliver type III effector proteins. T3SS are phylogenetically divided into several families based on structural basal body components. Here we have studied the evolutionary and functional conservation of four T3SS proteins from the Inv/Mxi-Spa family: a cytosolic chaperone, two hydrophobic translocators that form a plasma membrane-integral pore, and the hydrophilic 'tip complex' translocator that connects the T3SS needle to the translocon pore. Salmonella enterica serovar Typhimurium (S. Typhimurium), a common cause of food-borne gastroenteritis, possesses two T3SSs, one belonging to the Inv/Mxi-Spa family. We used invasion-deficient S. Typhimurium mutants as surrogates for expression of translocator orthologs identified from an extensive phylogenetic analysis, and type III effector translocation and host cell invasion as a readout for complementation efficiency, and identified several Inv/Mxi-Spa orthologs that can functionally substitute for the S. Typhimurium chaperone and translocator proteins. Functional complementation correlates with amino acid sequence identity between orthologs, but varies considerably between the four proteins. This is the first in-depth survey of the functional interchangeability of Inv/Mxi-Spa T3SS proteins acting directly at the host-pathogen interface.
Collapse
Affiliation(s)
- Jessica A Klein
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA
| | - Biren M Dave
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Amogelang R Raphenya
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Andrew G McArthur
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Leigh A Knodler
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
29
|
Francis MS, Amer AAA, Milton DL, Costa TRD. Site-Directed Mutagenesis and Its Application in Studying the Interactions of T3S Components. Methods Mol Biol 2017; 1531:11-31. [PMID: 27837478 DOI: 10.1007/978-1-4939-6649-3_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Type III secretion systems are a prolific virulence determinant among Gram-negative bacteria. They are used to paralyze the host cell, which enables bacterial pathogens to establish often fatal infections-unless an effective therapeutic intervention is available. However, as a result of a catastrophic rise in infectious bacteria resistant to conventional antibiotics, these bacteria are again a leading cause of worldwide mortality. Hence, this report describes a pDM4-based site-directed mutagenesis strategy that is assisting in our foremost objective to better understand the fundamental workings of the T3SS, using Yersinia as a model pathogenic bacterium. Examples are given that clearly document how pDM4-mediated site-directed mutagenesis has been used to establish clean point mutations and in-frame deletion mutations that have been instrumental in identifying and understanding the molecular interactions between components of the Yersinia type III secretion system.
Collapse
Affiliation(s)
- Matthew S Francis
- Department of Molecular Biology, Umeå University, 6K och 6L, Sjukhusområdet, Umeå, 901 87, Sweden.
- Umeå Centre for Microbial Research, Umeå University, 6K och 6L, Sjukhusområdet, Umeå, 901 87, Sweden.
| | - Ayad A A Amer
- Department of Molecular Biology, Umeå University, 6K och 6L, Sjukhusområdet, Umeå, 901 87, Sweden
- Umeå Centre for Microbial Research, Umeå University, 6K och 6L, Sjukhusområdet, Umeå, 901 87, Sweden
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Debra L Milton
- Department of Molecular Biology, Umeå University, 6K och 6L, Sjukhusområdet, Umeå, 901 87, Sweden
- Umeå Centre for Microbial Research, Umeå University, 6K och 6L, Sjukhusområdet, Umeå, 901 87, Sweden
- Department of Biological and Environmental Sciences, Troy University, Troy, AL, USA
| | - Tiago R D Costa
- Department of Molecular Biology, Umeå University, 6K och 6L, Sjukhusområdet, Umeå, 901 87, Sweden
- Umeå Centre for Microbial Research, Umeå University, 6K och 6L, Sjukhusområdet, Umeå, 901 87, Sweden
- Institute of Structural and Molecular Biology, University College London and Birkbeck, Malet Street, London, UK
| |
Collapse
|
30
|
Abstract
Type III secretion (T3S) systems are found in a large number of gram-negative bacteria where they function to manipulate the biology of infected hosts. Hosts targeted by T3S systems are widely distributed in nature and are represented by animals and plants. T3S systems are found in diverse genera of bacteria and they share a common core structure and function. Effector proteins are delivered by T3S systems into targeted host cells without prior secretion of the effectors into the environment. Instead, an assembled translocon structure functions to translocate effectors across eukaryotic cell membranes. In many cases, T3S systems are essential virulence factors and in some instances they promote symbiotic interactions.
Collapse
Affiliation(s)
- Danielle L Jessen Condry
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA.
| | - Matthew L Nilles
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| |
Collapse
|
31
|
Ekestubbe S, Bröms JE, Edgren T, Fällman M, Francis MS, Forsberg Å. The Amino-Terminal Part of the Needle-Tip Translocator LcrV of Yersinia pseudotuberculosis Is Required for Early Targeting of YopH and In vivo Virulence. Front Cell Infect Microbiol 2016; 6:175. [PMID: 27995096 PMCID: PMC5136540 DOI: 10.3389/fcimb.2016.00175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/21/2016] [Indexed: 12/20/2022] Open
Abstract
Type III secretion systems (T3SS) are dedicated to targeting anti-host effector proteins into the cytosol of the host cell to promote bacterial infection. Delivery of the effectors requires three specific translocator proteins, of which the hydrophilic translocator, LcrV, is located at the tip of the T3SS needle and is believed to facilitate insertion of the two hydrophobic translocators into the host cell membrane. Here we used Yersinia as a model to study the role of LcrV in T3SS mediated intracellular effector targeting. Intriguingly, we identified N-terminal lcrV mutants that, similar to the wild-type protein, efficiently promoted expression, secretion and intracellular levels of Yop effectors, yet they were impaired in their ability to inhibit phagocytosis by J774 cells. In line with this, the YopH mediated dephosphorylation of Focal Adhesion Kinase early after infection was compromised when compared to the wild type strain. This suggests that the mutants are unable to promote efficient delivery of effectors to their molecular targets inside the host cell upon host cell contact. The significance of this was borne out by the fact that the mutants were highly attenuated for virulence in the systemic mouse infection model. Our study provides both novel and significant findings that establish a role for LcrV in early targeting of effectors in the host cell.
Collapse
Affiliation(s)
- Sofie Ekestubbe
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå UniversityUmeå, Sweden; Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå UniversityUmeå, Sweden
| | - Jeanette E Bröms
- Department of Clinical Microbiology, Umeå University Umeå, Sweden
| | - Tomas Edgren
- Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University Umeå, Sweden
| | - Maria Fällman
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå UniversityUmeå, Sweden; Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå UniversityUmeå, Sweden
| | - Matthew S Francis
- Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University Umeå, Sweden
| | - Åke Forsberg
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå UniversityUmeå, Sweden; Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå UniversityUmeå, Sweden
| |
Collapse
|
32
|
Abstract
The human pathogens
Yersinia pseudotuberculosis and
Yersinia enterocolitica cause enterocolitis, while
Yersinia pestis is responsible for pneumonic, bubonic, and septicaemic plague. All three share an infection strategy that relies on a virulence factor arsenal to enable them to enter, adhere to, and colonise the host while evading host defences to avoid untimely clearance. Their arsenal includes a number of adhesins that allow the invading pathogens to establish a foothold in the host and to adhere to specific tissues later during infection. When the host innate immune system has been activated, all three pathogens produce a structure analogous to a hypodermic needle. In conjunction with the translocon, which forms a pore in the host membrane, the channel that is formed enables the transfer of six ‘effector’ proteins into the host cell cytoplasm. These proteins mimic host cell proteins but are more efficient than their native counterparts at modifying the host cell cytoskeleton, triggering the host cell suicide response. Such a sophisticated arsenal ensures that yersiniae maintain the upper hand despite the best efforts of the host to counteract the infecting pathogen.
Collapse
Affiliation(s)
- Steve Atkinson
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Paul Williams
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
33
|
Oyston PCF, Williamson ED. Modern Advances against Plague. ADVANCES IN APPLIED MICROBIOLOGY 2016; 81:209-41. [PMID: 22958531 DOI: 10.1016/b978-0-12-394382-8.00006-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Plague has been a scourge of humanity, responsible for the deaths of millions. The etiological agent, Yersinia pestis, has evolved relatively recently from an enteropathogen, Yersinia pseudotuberculosis. The evolution of the plague pathogen has involved a complex series of genetic acquisitions, deletions, and rearrangements in its transition from an enteric niche to becoming a systemic, flea-vectored pathogen. With the advent of modern molecular biology techniques, we are starting to understand how the organism adapts to the diverse niches it encounters and how to combat the threat it poses.
Collapse
|
34
|
Armentrout EI, Rietsch A. The Type III Secretion Translocation Pore Senses Host Cell Contact. PLoS Pathog 2016; 12:e1005530. [PMID: 27022930 PMCID: PMC4811590 DOI: 10.1371/journal.ppat.1005530] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/06/2016] [Indexed: 12/31/2022] Open
Abstract
Type III secretion systems (T3SS) are nano-syringes used by a wide range of Gram-negative pathogens to promote infection by directly injecting effector proteins into targeted host cells. Translocation of effectors is triggered by host-cell contact and requires assembly of a pore in the host-cell plasma membrane, which consists of two translocator proteins. Our understanding of the translocation pore, how it is assembled in the host cell membrane and its precise role in effector translocation, is extremely limited. Here we use a genetic technique to identify protein-protein contacts between pore-forming translocator proteins, as well as the T3SS needle-tip, that are critical for translocon function. The data help establish the orientation of the translocator proteins in the host cell membrane. Analysis of translocon function in mutants that break these contacts demonstrates that an interaction between the pore-forming translocator PopD and the needle-tip is required for sensing host cell contact. Moreover, tethering PopD at a dimer interface also specifically prevents host-cell sensing, arguing that the translocation pore is actively involved in detecting host cell contact. The work presented here therefore establishes a signal transduction pathway for sensing host cell contact that is initiated by a conformational change in the translocation pore, and is subsequently transmitted to the base of the apparatus via a specific contact between the pore and the T3SS needle-tip. Type III secretion systems (T3SSs) are molecular syringes used by a wide variety of Gram-negative pathogens to directly deliver proteins (effectors) into host cells, allowing the bacteria to cause disease. Injection of proteins is triggered by host-cell contact, but how the machinery to deliver effectors is assembled (the translocon), or indeed, how cell contact is perceived, is unclear. Here we identify protein-protein contacts that are critical for translocon function. Our analysis sheds light on the organization of the translocon, and reveals that host cell contact is perceived by a change in the structure of the translocation pore. This signal is then transmitted to the tip of the T3SS needle, and down to the base of the apparatus.
Collapse
Affiliation(s)
- Erin I. Armentrout
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Arne Rietsch
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
35
|
Picking WL, Picking WD. The Many Faces of IpaB. Front Cell Infect Microbiol 2016; 6:12. [PMID: 26904511 PMCID: PMC4746235 DOI: 10.3389/fcimb.2016.00012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/22/2016] [Indexed: 12/15/2022] Open
Abstract
The type III secretion system (T3SS) is Shigella's most important virulence factor. The T3SS apparatus (T3SA) is comprised of an envelope-spanning basal body and an external needle topped by a tip complex protein called IpaD. This nanomachine is used to deliver effector proteins into host cells to promote pathogen entry. A key component of the matured T3SS needle tip complex is the translocator protein IpaB. IpaB can exist in multiple states when prepared as a recombinant protein, however, it has also been described as having additional roles in Shigella pathogenesis. This mini-review will briefly describe some of the features of IpaB as a T3SS needle tip protein, as a pore-forming translocator protein and as an effector protein. Reflection on the potential importance of the different in vitro states of IpaB on its function and importance in serotype-independent vaccines is also provided.
Collapse
Affiliation(s)
- Wendy L Picking
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas Lawrence, KS, USA
| | - William D Picking
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas Lawrence, KS, USA
| |
Collapse
|
36
|
Basu A, Das A, Mondal A, Datta S. Structural analysis of inter-genus complexes of V-antigen and its regulator and their stabilization by divalent metal ions. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 45:113-28. [PMID: 26463823 DOI: 10.1007/s00249-015-1081-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/09/2015] [Accepted: 09/16/2015] [Indexed: 10/23/2022]
Abstract
Gram-negative bacteria like Yersinia, Pseudomonas, and Aeromonas need type III secretion system (T3SS) for their pathogenicity. V-antigen and its regulator are essential for functioning of T3SS. There is significant functional conservation amongst V-antigen and its regulator belonging to the Ysc family. In this study, we have structurally characterized the inter-genus complexes of V-antigen and its regulator. ConSurf analysis demonstrates that V-antigens belonging to the Ysc family show high structural identity predominantly confined to the two long helical regions. The regulator of V-antigen shows high conservation in its first intramolecular coiled-coil domain, responsible for interaction with V-antigen. ∆LcrG(1-70) localizes within the groove formed by long helices of LcrV, as observed in PcrV-∆PcrG(13-72) interaction. Inter-genus complexes of LcrV-PcrG and PcrV-LcrG exhibited elongated conformation and 1:1 heterodimeric state like the native complex of PcrV-PcrG and LcrV-LcrG. Both native and inter-genus complexes showed rigid tertiary structure, solvent-exposed hydrophobic patches, and cooperative melting behavior with high melting temperature. LcrV-PcrG and PcrV-LcrG showed nanomolar affinity of interaction, identical to PcrV-PcrG interaction, but stronger than LcrV-LcrG interaction. Calcium (a secretion blocker of T3SS) propels all the complexes towards a highly monodisperse form. Calcium and magnesium increase the helicity of the native and inter-genus complexes, and causes helix-helix stabilization. Stabilization of helices leads to a slight increase in the melting temperature by 1.5-2.0 °C. However, calcium does not alter the affinity of interaction of V-antigen and its regulator, emphasizing the effect of divalent of cations at the structural level without any regulatory implications. Therefore, the structural conservation of these inter-genus complexes could be the basis for their functional complementation.
Collapse
Affiliation(s)
- Abhishek Basu
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, West Bengal, India
| | - Atanu Das
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, West Bengal, India
| | - Abhisek Mondal
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, West Bengal, India
| | - Saumen Datta
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, West Bengal, India.
| |
Collapse
|
37
|
Sawa T, Ito E, Nguyen VH, Haight M. Anti-PcrV antibody strategies against virulent Pseudomonas aeruginosa. Hum Vaccin Immunother 2015; 10:2843-52. [PMID: 25483637 DOI: 10.4161/21645515.2014.971641] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen that causes fatal acute lung infections in critically ill individuals. Its pathogenesis is associated with bacterial virulence conferred by the type III secretion system (TTSS), through which P. aeruginosa causes necrosis of the lung epithelium and disseminates into the circulation, resulting in bacteremia, sepsis, and mortality. TTSS allows P. aeruginosa to directly translocate cytotoxins into eukaryotic cells, inducing cell death. The P. aeruginosa V-antigen PcrV, a homolog of the Yersinia V-antigen LcrV, is an indispensable contributor to TTS toxin translocation. Vaccination against PcrV ensures the survival of challenged mice and decreases lung inflammation and injury. Both the rabbit polyclonal anti-PcrV antibody and the murine monoclonal anti-PcrV antibody, mAb166, inhibit TTS toxin translocation. mAb166 IgG was cloned, and a molecular engineered humanized anti-PcrV IgG antigen-binding fragment, KB001, was developed for clinical use. KB001 is currently undergoing Phase-II clinical trials for ventilator-associated pneumonia in France and chronic pneumonia in cystic fibrosis in USA. In these studies, KB001 has demonstrated its safety, a favorable pharmacokinetic profile, and promising potential as a nonantibiotic strategy to reduce airway inflammation and damage in P. aeruginosa pneumonia.
Collapse
Key Words
- CF, cystic fibrosis
- Fab, fragment antigen binding
- Fc, fragment crystallizable region
- MDR, multidrug resistant
- MDRP, multidrug resistant Pseudomonas aeruginosa
- P. aeruginosa, Pseudomonas aeruginosa
- PcrV
- Pseudomonas aeruginosa
- TTS, type III secretory
- TTSS, type III secretion system
- V-antigen
- VAP, ventilator-associated pneumonia
- antibody
- immunoglobulin G, IgG
- mAb, monoclonal antibody
- type III secretion system
Collapse
Affiliation(s)
- Teiji Sawa
- a Department of Anesthesiology ; Kyoto Prefectural University of Medicine ; Kyoto , Japan
| | | | | | | |
Collapse
|
38
|
Molecular ruler determines needle length for the Salmonella Spi-1 injectisome. Proc Natl Acad Sci U S A 2015; 112:4098-103. [PMID: 25775540 DOI: 10.1073/pnas.1423492112] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The type-III secretion (T3S) systems of bacteria are part of self-assembling nanomachines: the bacterial flagellum that enables cells to propel themselves through liquid and across hydrated surfaces, and the injectisome that delivers pathogenic effector proteins into eukaryotic host cells. Although the flagellum and injectisome serve different purposes, they are evolutionarily related and share many structural similarities. Core features to these T3S systems are intrinsic length control mechanisms for external cellular projections: the hook of the flagellum and the injectisome needle. We present evidence that the Spi-1 injectisome, like the Salmonella flagellar hook, uses a secreted molecular ruler, InvJ, to determine needle length. This result supports a universal length control mechanism using molecular rulers for T3S systems.
Collapse
|
39
|
|
40
|
Read T, Olkhov RV, Williamson ED, Shaw AM. Kinetic epitope mapping of monoclonal antibodies raised against the Yersinia pestis virulence factor LcrV. Biosens Bioelectron 2015; 65:47-53. [DOI: 10.1016/j.bios.2014.09.090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/29/2014] [Accepted: 09/30/2014] [Indexed: 10/24/2022]
|
41
|
Monlezun L, Liebl D, Fenel D, Grandjean T, Berry A, Schoehn G, Dessein R, Faudry E, Attree I. PscI is a type III secretion needle anchoring protein within vitropolymerization capacities. Mol Microbiol 2015; 96:419-36. [DOI: 10.1111/mmi.12947] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Laura Monlezun
- INSERM; UMR-S 1036; Biology of Cancer and Infection; Grenoble France
- CNRS; Bacterial Pathogenesis and Cellular Responses; ERL 5261 Grenoble France
- Université Grenoble Alpes; F-38041 Grenoble France
- CEA; DSV/iRTSV; F-38054 Grenoble France
| | - David Liebl
- INSERM; UMR-S 1036; Biology of Cancer and Infection; Grenoble France
- CNRS; Bacterial Pathogenesis and Cellular Responses; ERL 5261 Grenoble France
- Université Grenoble Alpes; F-38041 Grenoble France
- CEA; DSV/iRTSV; F-38054 Grenoble France
| | - Daphna Fenel
- Université Grenoble Alpes; Institut de Biologie Structurale (IBS); 71 avenue des Martyrs 38044 Grenoble France
- CNRS; IBS; F-38044 Grenoble France
- CEA; IBS; F-38044 Grenoble France
| | - Teddy Grandjean
- Groupe de Recherche Translationnelle de la Relation Hôte-Pathogène; Faculté de Médecine de l'Université de Lille; 59000 Lille France
| | - Alice Berry
- INSERM; UMR-S 1036; Biology of Cancer and Infection; Grenoble France
- CNRS; Bacterial Pathogenesis and Cellular Responses; ERL 5261 Grenoble France
- Université Grenoble Alpes; F-38041 Grenoble France
- CEA; DSV/iRTSV; F-38054 Grenoble France
| | - Guy Schoehn
- Université Grenoble Alpes; Institut de Biologie Structurale (IBS); 71 avenue des Martyrs 38044 Grenoble France
- CNRS; IBS; F-38044 Grenoble France
- CEA; IBS; F-38044 Grenoble France
- Unit for Virus Host Cell Interactions UMI 3265 (UJF-EMBL-CNRS); 38027 Grenoble France
| | - Rodrigue Dessein
- Groupe de Recherche Translationnelle de la Relation Hôte-Pathogène; Faculté de Médecine de l'Université de Lille; 59000 Lille France
| | - Eric Faudry
- INSERM; UMR-S 1036; Biology of Cancer and Infection; Grenoble France
- CNRS; Bacterial Pathogenesis and Cellular Responses; ERL 5261 Grenoble France
- Université Grenoble Alpes; F-38041 Grenoble France
- CEA; DSV/iRTSV; F-38054 Grenoble France
| | - Ina Attree
- INSERM; UMR-S 1036; Biology of Cancer and Infection; Grenoble France
- CNRS; Bacterial Pathogenesis and Cellular Responses; ERL 5261 Grenoble France
- Université Grenoble Alpes; F-38041 Grenoble France
- CEA; DSV/iRTSV; F-38054 Grenoble France
| |
Collapse
|
42
|
Banerjee A, Dey S, Chakraborty A, Datta A, Basu A, Chakrabarti S, Datta S. Binding mode analysis of a major T3SS translocator protein PopB with its chaperone PcrH from Pseudomonas aeruginosa. Proteins 2014; 82:3273-85. [PMID: 25116453 DOI: 10.1002/prot.24666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 07/25/2014] [Accepted: 08/05/2014] [Indexed: 11/10/2022]
Abstract
Pseudomonas aeruginosa, a Gram-negative pathogen uses a specialized set of Type III secretion system (T3SS) translocator proteins to establish virulence in the host cell. An understanding of the factors that govern translocation by the translocator protein-chaperone complex is thus of immense importance. In this work, experimental and computational techniques were used to probe into the structure of the major translocator protein PopB from P. aeruginosa and to identify the important regions involved in functioning of the translocator protein. This study reveals that the binding sites of the common chaperone PcrH, needed for maintenance of the translocator PopB within the bacterial cytoplasm, which are primarily localized within the N-terminal domain. However, disordered and flexible residues located both at the N- and C-terminal domains are also observed to be involved in association with the chaperone. This intrinsic disorderliness of the terminal domains is conserved for all the major T3SS translocator proteins and is functionally important to maintain the intrinsically disordered state of the translocators. Our experimental and computational analyses suggest that a "disorder-to-order" transition of PopB protein might take place upon PcrH binding. The long helical coiled-coil part of PopB protein perhaps helps in pore formation while the flexible apical region is involved in chaperone interaction. Thus, our computational model of translocator protein PopB and its binding analyses provide crucial functional insights into the T3SS translocation mechanism.
Collapse
Affiliation(s)
- Anindyajit Banerjee
- Division of Structural Biology and Bioinformatics, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, 700 032, West Bengal, India
| | | | | | | | | | | | | |
Collapse
|
43
|
Plano GV, Schesser K. The Yersinia pestis type III secretion system: expression, assembly and role in the evasion of host defenses. Immunol Res 2014; 57:237-45. [PMID: 24198067 DOI: 10.1007/s12026-013-8454-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Yersinia pestis, the etiologic agent of plague, utilizes a type III secretion system (T3SS) to subvert the defenses of its mammalian hosts. T3SSs are complex nanomachines that allow bacterial pathogens to directly inject effector proteins into eukaryotic cells. The Y. pestis T3SS is not expressed during transit through the flea vector, but T3SS gene expression is rapidly thermoinduced upon entry into a mammalian host. Assembly of the T3S apparatus is a highly coordinated process that requires the homo- and hetero-oligomerization over 20 Yersinia secretion (Ysc) proteins, several assembly intermediates and the T3S process to complete the assembly of the rod and external needle structures. The activation of effector secretion is controlled by the YopN/TyeA/SycN/YscB complex, YscF and LcrG in response to extracellular calcium and/or contact with a eukaryotic cell. Cell contact triggers the T3S process including the secretion and assembly of a pore-forming translocon complex that facilitates the translocation of effector proteins, termed Yersinia outer proteins (Yops), across the eukaryotic membrane. Within the host cell, the Yop effector proteins function to inhibit bacterial phagocytosis and to suppress the production of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Gregory V Plano
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, Miami, FL, 33136, USA,
| | | |
Collapse
|
44
|
Galán JE, Lara-Tejero M, Marlovits TC, Wagner S. Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells. Annu Rev Microbiol 2014; 68:415-38. [PMID: 25002086 DOI: 10.1146/annurev-micro-092412-155725] [Citation(s) in RCA: 376] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
One of the most exciting developments in the field of bacterial pathogenesis in recent years is the discovery that many pathogens utilize complex nanomachines to deliver bacterially encoded effector proteins into target eukaryotic cells. These effector proteins modulate a variety of cellular functions for the pathogen's benefit. One of these protein-delivery machines is the type III secretion system (T3SS). T3SSs are widespread in nature and are encoded not only by bacteria pathogenic to vertebrates or plants but also by bacteria that are symbiotic to plants or insects. A central component of T3SSs is the needle complex, a supramolecular structure that mediates the passage of the secreted proteins across the bacterial envelope. Working in conjunction with several cytoplasmic components, the needle complex engages specific substrates in sequential order, moves them across the bacterial envelope, and ultimately delivers them into eukaryotic cells. The central role of T3SSs in pathogenesis makes them great targets for novel antimicrobial strategies.
Collapse
Affiliation(s)
- Jorge E Galán
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06536;
| | | | | | | |
Collapse
|
45
|
Sawa T, Katoh H, Yasumoto H. V-antigen homologs in pathogenic gram-negative bacteria. Microbiol Immunol 2014; 58:267-85. [DOI: 10.1111/1348-0421.12147] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 03/16/2014] [Accepted: 03/17/2014] [Indexed: 12/31/2022]
Affiliation(s)
- Teiji Sawa
- Department of Anesthesiology; Kyoto Prefectural University of Medicine; Kajii-cho 465 Kamigyo Kyoto 602-8566 Japan
| | - Hideya Katoh
- Department of Anesthesiology; Kyoto Prefectural University of Medicine; Kajii-cho 465 Kamigyo Kyoto 602-8566 Japan
| | - Hiroaki Yasumoto
- Department of Anesthesiology; Kyoto Prefectural University of Medicine; Kajii-cho 465 Kamigyo Kyoto 602-8566 Japan
| |
Collapse
|
46
|
Direct neutralization of type III effector translocation by the variable region of a monoclonal antibody to Yersinia pestis LcrV. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:667-73. [PMID: 24599533 DOI: 10.1128/cvi.00013-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Plague is an acute infection caused by the Gram-negative bacterium Yersinia pestis. Antibodies that are protective against plague target LcrV, an essential virulence protein and component of a type III secretion system of Y. pestis. Secreted LcrV localizes to the tips of type III needles on the bacterial surface, and its function is necessary for the translocation of Yersinia outer proteins (Yops) into the cytosol of host cells infected by Y. pestis. Translocated Yops counteract macrophage functions, for example, by inhibiting phagocytosis (YopE) or inducing cytotoxicity (YopJ). Although LcrV is the best-characterized protective antigen of Y. pestis, the mechanism of protection by anti-LcrV antibodies is not fully understood. Antibodies bind to LcrV at needle tips, neutralize Yop translocation, and promote opsonophagocytosis of Y. pestis by macrophages in vitro. However, it is not clear if anti-LcrV antibodies neutralize Yop translocation directly or if they do so indirectly, by promoting opsonophagocytosis. To determine if the protective IgG1 monoclonal antibody (MAb) 7.3 is directly neutralizing, an IgG2a subclass variant, a deglycosylated variant, F(ab')2, and Fab were tested for the ability to inhibit the translocation of Yops into Y. pestis-infected macrophages in vitro. Macrophage cytotoxicity and cellular fractionation assays show that the Fc of MAb 7.3 is not required for the neutralization of YopJ or YopE translocation. In addition, the use of Fc receptor-deficient macrophages, and the use of cytochalasin D to inhibit actin polymerization, confirmed that opsonophagocytosis is not required for MAb 7.3 to neutralize translocation. These data indicate that the binding of the variable region of MAb 7.3 to LcrV is sufficient to directly neutralize Yop translocation.
Collapse
|
47
|
Diepold A, Wagner S. Assembly of the bacterial type III secretion machinery. FEMS Microbiol Rev 2014; 38:802-22. [PMID: 24484471 DOI: 10.1111/1574-6976.12061] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 01/02/2014] [Accepted: 01/13/2014] [Indexed: 11/29/2022] Open
Abstract
Many bacteria that live in contact with eukaryotic hosts, whether as symbionts or as pathogens, have evolved mechanisms that manipulate host cell behaviour to their benefit. One such mechanism, the type III secretion system, is employed by Gram-negative bacterial species to inject effector proteins into host cells. This function is reflected by the overall shape of the machinery, which resembles a molecular syringe. Despite the simplicity of the concept, the type III secretion system is one of the most complex known bacterial nanomachines, incorporating one to more than hundred copies of up to twenty different proteins into a multi-MDa transmembrane complex. The structural core of the system is the so-called needle complex that spans the bacterial cell envelope as a tripartite ring system and culminates in a needle protruding from the bacterial cell surface. Substrate targeting and translocation are accomplished by an export machinery consisting of various inner membrane embedded and cytoplasmic components. The formation of such a multimembrane-spanning machinery is an intricate task that requires precise orchestration. This review gives an overview of recent findings on the assembly of type III secretion machines, discusses quality control and recycling of the system and proposes an integrated assembly model.
Collapse
Affiliation(s)
- Andreas Diepold
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | |
Collapse
|
48
|
Burkinshaw BJ, Strynadka NCJ. Assembly and structure of the T3SS. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1649-63. [PMID: 24512838 DOI: 10.1016/j.bbamcr.2014.01.035] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/27/2014] [Accepted: 01/29/2014] [Indexed: 02/06/2023]
Abstract
The Type III Secretion System (T3SS) is a multi-mega Dalton apparatus assembled from more than twenty components and is found in many species of animal and plant bacterial pathogens. The T3SS creates a contiguous channel through the bacterial and host membranes, allowing injection of specialized bacterial effector proteins directly to the host cell. In this review, we discuss our current understanding of T3SS assembly and structure, as well as highlight structurally characterized Salmonella effectors. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Brianne J Burkinshaw
- Department of Biochemistry and Molecular Biology, Center for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Natalie C J Strynadka
- Department of Biochemistry and Molecular Biology, Center for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
49
|
Basu A, Das U, Dey S, Datta S. PcrG protects the two long helical oligomerization domains of PcrV, by an interaction mediated by the intramolecular coiled-coil region of PcrG. BMC STRUCTURAL BIOLOGY 2014; 14:5. [PMID: 24460624 PMCID: PMC3904411 DOI: 10.1186/1472-6807-14-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 01/17/2014] [Indexed: 01/21/2023]
Abstract
Background PcrV is a hydrophilic translocator of type three secretion system (TTSS) and a structural component of the functional translocon. C-terminal helix of PcrV is essential for its oligomerization at the needle tip. Conformational changes within PcrV regulate the effector translocation. PcrG is a cytoplasmic regulator of TTSS and forms a high affinity complex with PcrV. C-terminal residues of PcrG control the effector secretion. Result Both PcrV and PcrG-PcrV complex exhibit elongated conformation like their close homologs LcrV and LcrG-LcrV complex. The homology model of PcrV depicts a dumbbell shaped structure with N and C-terminal globular domains. The grip of the dumbbell is formed by two long helices (helix-7 and 12), which show high level of conservation both structurally and evolutionary. PcrG specifically protects a region of PcrV extending from helix-12 to helix-7, and encompassing the C-terminal globular domain. This fragment ∆PcrV(128–294) interacts with PcrG with high affinity, comparable to the wild type interaction. Deletion of N-terminal globular domain leads to the oligomerization of PcrV, but PcrG restores the monomeric state of PcrV by forming a heterodimeric complex. The N-terminal globular domain (∆PcrV(1–127)) does not interact with PcrG but maintains its monomeric state. Interaction affinities of various domains of PcrV with PcrG illustrates that helix-12 is the key mediator of PcrG-PcrV interaction, supported by helix-7. Bioinformatic analysis and study with our deletion mutant ∆PcrG(13–72) revealed that the first predicted intramolecular coiled-coil domain of PcrG contains the PcrV interaction site. However, 12 N-terminal amino acids of PcrG play an indirect role in PcrG-PcrV interaction, as their deletion causes 40-fold reduction in binding affinity and changes the kinetic parameters of interaction. ∆PcrG(13–72) fits within the groove formed between the two globular domains of PcrV, through hydrophobic interaction. Conclusion PcrG interacts with PcrV through its intramolecular coiled-coil region and masks the domains responsible for oligomerization of PcrV at the needle tip. Also, PcrG could restore the monomeric state of oligomeric PcrV. Therefore, PcrG prevents the premature oligomerization of PcrV and maintains its functional state within the bacterial cytoplasm, which is a pre-requisite for formation of the functional translocon.
Collapse
Affiliation(s)
| | | | | | - Saumen Datta
- Structural Biology and Bioinformatics division, Indian Institute of Chemical Biology, 4 Raja S,C, Mullick Road, Kolkata 700032 West Bengal, India.
| |
Collapse
|
50
|
Williamson ED, Duchars MG, Kohberger R. Predictive models and correlates of protection for testing biodefence vaccines. Expert Rev Vaccines 2014; 9:527-37. [DOI: 10.1586/erv.10.22] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|