1
|
Fiedler SM, Graumann PL. B. subtilis Sec and Srp Systems Show Dynamic Adaptations to Different Conditions of Protein Secretion. Cells 2024; 13:377. [PMID: 38474341 DOI: 10.3390/cells13050377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/04/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
SecA is a widely conserved ATPase that drives the secretion of proteins across the cell membrane via the SecYEG translocon, while the SRP system is a key player in the insertion of membrane proteins via SecYEG. How SecA gains access to substrate proteins in Bacillus subtilis cells and copes with an increase in substrate availability during biotechnologically desired, high-level expression of secreted proteins is poorly understood. Using single molecule tracking, we found that SecA localization closely mimics that of ribosomes, and its molecule dynamics change similarly to those of ribosomes after inhibition of transcription or translation. These data suggest that B. subtilis SecA associates with signal peptides as they are synthesized at the ribosome, similar to the SRP system. In agreement with this, SecA is a largely mobile cytosolic protein; only a subset is statically associated with the cell membrane, i.e., likely with the Sec translocon. SecA dynamics were considerably different during the late exponential, transition, and stationary growth phases, revealing that single molecule dynamics considerably alter during different genetic programs in cells. During overproduction of a secretory protein, AmyE, SecA showed the strongest changes during the transition phase, i.e., where general protein secretion is high. To investigate whether the overproduction of AmyE also has an influence on other proteins that interact with SecYEG, we analyzed the dynamics of SecDF, YidC, and FtsY with and without AmyE overproduction. SecDF and YidC did not reveal considerable differences in single molecule dynamics during overexpression, while the SRP component FtsY changed markedly in its behavior and became more statically engaged. These findings indicate that the SRP pathway becomes involved in protein secretion upon an overload of proteins carrying a signal sequence. Thus, our data reveal high plasticity of the SecA and SRP systems in dealing with different needs for protein secretion.
Collapse
Affiliation(s)
- Svenja M Fiedler
- Fachbereich Chemie und Zentrum für Synthetische Mikrobiologie, SYNMIKRO, Philipps-Universität Marburg, Hans-Meerwein Straße 4, 35043 Marburg, Germany
| | - Peter L Graumann
- Fachbereich Chemie und Zentrum für Synthetische Mikrobiologie, SYNMIKRO, Philipps-Universität Marburg, Hans-Meerwein Straße 4, 35043 Marburg, Germany
| |
Collapse
|
2
|
Fu Y, Liu X, Su Z, Wang P, Guo Q, Ma P. Arabinose Plays an Important Role in Regulating the Growth and Sporulation of Bacillus subtilis NCD-2. Int J Mol Sci 2023; 24:17472. [PMID: 38139303 PMCID: PMC10744016 DOI: 10.3390/ijms242417472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/22/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
A microbial fungicide developed from Bacillus subtilis NCD-2 has been registered for suppressing verticillium wilt in crops in China. Spores are the main ingredient of this fungicide and play a crucial role in suppressing plant disease. Therefore, increasing the number of spores of strain NCD-2 during fermentation is important for reducing the cost of the fungicide. In this study, five kinds of carbon sources were found to promote the metabolism of strain NCD-2 revealed via Biolog Phenotype MicroArray (PM) technology. L-arabinose showed the strongest ability to promote the growth and sporulation of strain NCD-2. L-arabinose increased the bacterial concentration and the sporulation efficiency of strain NCD-2 by 2.04 times and 1.99 times compared with D-glucose, respectively. Moreover, L-arabinose significantly decreased the autolysis of strain NCD-2. Genes associated with arabinose metabolism, sporulation, spore resistance to heat, and spore coat formation were significantly up-regulated, and genes associated with sporulation-delaying protein were significantly down-regulated under L-arabinose treatment. The deletion of msmX, which is involved in arabinose transport in the Bacillus genus, decreased growth and sporulation by 53.71% and 86.46% compared with wild-type strain NCD-2, respectively. Complementing the mutant strain by importing an intact msmX gene restored the strain's growth and sporulation.
Collapse
Affiliation(s)
- Yifan Fu
- College of Plant Protection, Agricultural University of Hebei, Baoding 071000, China;
- Key Laboratory of IPM on Crops in Northern Region of North China, Integrated Pest Management Innovation Centre of Hebei Province, Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Ministry of Agriculture and Rural Affairs of China, Baoding 071000, China; (X.L.); (Z.S.); (P.W.)
| | - Xiaomeng Liu
- Key Laboratory of IPM on Crops in Northern Region of North China, Integrated Pest Management Innovation Centre of Hebei Province, Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Ministry of Agriculture and Rural Affairs of China, Baoding 071000, China; (X.L.); (Z.S.); (P.W.)
| | - Zhenhe Su
- Key Laboratory of IPM on Crops in Northern Region of North China, Integrated Pest Management Innovation Centre of Hebei Province, Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Ministry of Agriculture and Rural Affairs of China, Baoding 071000, China; (X.L.); (Z.S.); (P.W.)
| | - Peipei Wang
- Key Laboratory of IPM on Crops in Northern Region of North China, Integrated Pest Management Innovation Centre of Hebei Province, Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Ministry of Agriculture and Rural Affairs of China, Baoding 071000, China; (X.L.); (Z.S.); (P.W.)
| | - Qinggang Guo
- Key Laboratory of IPM on Crops in Northern Region of North China, Integrated Pest Management Innovation Centre of Hebei Province, Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Ministry of Agriculture and Rural Affairs of China, Baoding 071000, China; (X.L.); (Z.S.); (P.W.)
| | - Ping Ma
- Key Laboratory of IPM on Crops in Northern Region of North China, Integrated Pest Management Innovation Centre of Hebei Province, Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Ministry of Agriculture and Rural Affairs of China, Baoding 071000, China; (X.L.); (Z.S.); (P.W.)
| |
Collapse
|
3
|
Wang B, van der Kloet F, Hamoen LW. Induction of the CtsR regulon improves Xylanase production in Bacillus subtilis. Microb Cell Fact 2023; 22:231. [PMID: 37946188 PMCID: PMC10633939 DOI: 10.1186/s12934-023-02239-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND The bacterium Bacillus subtilis is extensively used for the commercial production of enzymes due to its efficient protein secretion capacity. However, the efficiency of secretion varies greatly between enzymes, and despite many years of research, optimization of enzyme production is still largely a matter of trial-and-error. Genome-wide transcriptome analysis seems a useful tool to identify relevant secretion bottlenecks, yet to this day, only a limited number of transcriptome studies have been published that focus on enzyme secretion in B. subtilis. Here, we examined the effect of high-level expression of the commercially important enzyme endo-1,4-β-xylanase XynA on the B. subtilis transcriptome using RNA-seq. RESULTS Using the novel gene-set analysis tool GINtool, we found a reduced activity of the CtsR regulon when XynA was overproduced. This regulon comprises several protein chaperone genes, including clpC, clpE and clpX, and is controlled by transcriptional repression. CtsR levels are directly controlled by regulated proteolysis, involving ClpC and its cognate protease ClpP. When we abolished this negative feedback, by inactivating the repressor CtsR, the XynA production increased by 25%. CONCLUSIONS Overproduction of enzymes can reduce the pool of Clp protein chaperones in B. subtilis, presumably due to negative feedback regulation. Breaking this feedback can improve enzyme production yields. Considering the conserved nature of Clp chaperones and their regulation, this method might benefit high-yield enzyme production in other organisms.
Collapse
Affiliation(s)
- Biwen Wang
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, C3.108, 1098 XH, Amsterdam, The Netherlands
| | - Frans van der Kloet
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, C3.108, 1098 XH, Amsterdam, The Netherlands
| | - Leendert W Hamoen
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, C3.108, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Shiota N, Shimokawa-Chiba N, Fujiwara K, Chiba S. Identification of Bacillus subtilis YidC substrates using a MifM-instructed translation arrest-based reporter. J Mol Biol 2023:168172. [PMID: 37290739 DOI: 10.1016/j.jmb.2023.168172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
YidC is a member of the YidC/Oxa1/Alb3 protein family that is crucial for membrane protein biogenesis in the bacterial plasma membrane. While YidC facilitates the folding and complex assembly of membrane proteins along with the Sec translocon, it also functions as a Sec-independent membrane protein insertase in the YidC-only pathway. However, little is known about how membrane proteins are recognized and sorted by these pathways, especially in Gram-positive bacteria, for which only a small number of YidC substrates have been identified to date. In this study, we aimed to identify Bacillus subtilis membrane proteins whose membrane insertion depends on SpoIIIJ, the primary YidC homolog in B. subtilis. We took advantage of the translation arrest sequence of MifM, which can monitor YidC-dependent membrane insertion. Our systematic screening identified eight membrane proteins as candidate SpoIIIJ substrates. Results of our genetic study also suggest that the conserved arginine in the hydrophilic groove of SpoIIIJ is crucial for the membrane insertion of the substrates identified here. However, in contrast to MifM, a previously identified YidC substrate, the importance of the negatively charged residue on the substrates for membrane insertion varied depending on the substrate. These results suggest that B. subtilis YidC uses substrate-specific interactions to facilitate membrane insertion.
Collapse
Affiliation(s)
- Narumi Shiota
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555, Japan
| | - Naomi Shimokawa-Chiba
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555, Japan; Institute for Protein Dynamics, Kyoto Sangyo University, Japan
| | - Keigo Fujiwara
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555, Japan; Institute for Protein Dynamics, Kyoto Sangyo University, Japan
| | - Shinobu Chiba
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555, Japan; Institute for Protein Dynamics, Kyoto Sangyo University, Japan.
| |
Collapse
|
5
|
Uesugi T, Mori S, Miyanaga K, Yamamoto N. GroEL Secreted from Bacillus subtilis Natto Exerted a Crucial Role for Anti-Inflammatory IL-10 Induction in THP-1 Cells. Microorganisms 2023; 11:1281. [PMID: 37317255 DOI: 10.3390/microorganisms11051281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 06/16/2023] Open
Abstract
Although diverse immunomodulatory reactions of probiotic bacteria have been reported, this effect via Bacillus subtilis natto remains unclear, despite its long consumption history in Japan and usage in Natto production. Hence, we performed a comparative analysis of the immunomodulatory activities of 23 types of B. subtilis natto isolated from Natto products to elucidate the key active components. Among the isolated 23 strains, the supernatant from B. subtilis strain 1 fermented medium showed the highest induction of anti-inflammatory IL-10 and pro-inflammatory IL-12 in THP-1 dendritic cells (THP-1 DC) after co-incubation. We isolated the active component from strain 1 cultured medium and employed DEAE-Sepharose chromatography with 0.5 M NaCl elution for fractionation. IL-10-inducing activity was specific to an approximately 60 kDa protein, GroEL, which was identified as a chaperone protein and was significantly reduced with anti-GroEL antibody. Differential expression analysis of strains 1 and 15, which had the lowest cytokine-producing activity, showed a higher expression of various genes involved in chaperones and sporulation in strain 1. Furthermore, GroEL production was induced in spore-forming medium. The present study is the first to show that the chaperone protein GroEL, secreted by B. subtilis natto during sporulation, plays a crucial role in IL-10 and IL-12 production in THP-1 DC.
Collapse
Affiliation(s)
- Taisuke Uesugi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Kanagawa, Japan
- Ezaki Glico Co., Ltd., 4-6-5 Utajima, Nishiyodogawa-ku, Osaka 555-8502, Osaka, Japan
| | - Suguru Mori
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Kanagawa, Japan
| | - Kazuhiko Miyanaga
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Kanagawa, Japan
- Department of Infection and Immunity, School of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-Shi 329-0498, Tochigi, Japan
| | - Naoyuki Yamamoto
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Kanagawa, Japan
| |
Collapse
|
6
|
Guerrero M. GG. Sporulation, Structure Assembly, and Germination in the Soil Bacterium Bacillus thuringiensis: Survival and Success in the Environment and the Insect Host. MICROBIOLOGY RESEARCH 2023. [DOI: 10.3390/microbiolres14020035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Bacillus thuringiensis (Bt) is a rod-shaped, Gram-positive soil bacterium that belongs to the phylum Firmicutes and the genus Bacillus. It is a spore-forming bacterium. During sporulation, it produces a wide range of crystalline proteins that are toxic to different orders of insects. Sporulation, structure assembly, and germination are essential stages in the cell cycle of B. thuringiensis. The majority of studies on these issues have focused on the model organism Bacillus subtilis, followed by Bacillus cereus and Bacillus anthracis. The machinery for sporulation and germination extrapolated to B. thuringiensis. However, in the light of recent findings concerning the role of the sporulation proteins (SPoVS), the germination receptors (Gr), and the cortical enzymes in Bt, the theory strengthened that conservation in sporulation, structure assembly, and germination programs drive the survival and success of B. thuringiensis in the environment and the insect host. In the present minireview, the latter pinpointed and reviewed.
Collapse
Affiliation(s)
- Gloria G. Guerrero M.
- Unidad Académica de Ciencias Biológicas, Laboratorio de Immunobiología, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N, Col. Agronomicas, Zacatecas 98066, Mexico
| |
Collapse
|
7
|
To Feed or to Stick? Genomic Analysis Offers Clues for the Role of a Molecular Machine in Endospore Formers. J Bacteriol 2022; 204:e0018722. [PMID: 35913150 PMCID: PMC9487464 DOI: 10.1128/jb.00187-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Sporulation in Firmicutes starts with the formation of two adjacent cells and proceeds with the engulfment of the smaller one, the forespore, by the larger one, the mother cell. This critical step involves a core set of conserved genes, some transcribed in the forespore, such as spoIIQ, and others transcribed in the mother cell, such as the eight-gene spoIIIA operon. A model has been proposed in which the SpoIIIA and the SpoIIQ proteins form a channel connecting the mother cell and the forespore, playing the role of a secretion apparatus allowing the mother cell to nurture the fully engulfed forespore. Exploration of the genomes of Caryophanaceae and Erysipelotrichales has provided informations that are not fully congruent with data from Bacillaceae or Clostridia. The differences observed are correlated with specific physiological features, and alternate, not mutually exclusive views of the function of the SpoIIIA-SpoIIQ complex are presented.
Collapse
|
8
|
Liu B, Chan H, Bauda E, Contreras-Martel C, Bellard L, Villard AM, Mas C, Neumann E, Fenel D, Favier A, Serrano M, Henriques AO, Rodrigues CDA, Morlot C. Structural insights into ring-building motif domains involved in bacterial sporulation. J Struct Biol 2021; 214:107813. [PMID: 34808342 DOI: 10.1016/j.jsb.2021.107813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/29/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023]
Abstract
Components of specialized secretion systems, which span the inner and outer membranes in Gram-negative bacteria, include ring-forming proteins whose oligomerization was proposed to be promoted by domains called RBM for "Ring-Building Motifs". During spore formation in Gram-positive bacteria, a transport system called the SpoIIIA-SpoIIQ complex also assembles in the double membrane that surrounds the forespore following its endocytosis by the mother cell. The presence of RBM domains in some of the SpoIIIA proteins led to the hypothesis that they would assemble into rings connecting the two membranes and form a conduit between the mother cell and forespore. Among them, SpoIIIAG forms homo-oligomeric rings in vitro but the oligomerization of other RBM-containing SpoIIIA proteins, including SpoIIIAH, remains to be demonstrated. In this work, we identified RBM domains in the YhcN/YlaJ family of proteins that are not related to the SpoIIIA-SpoIIQ complex. We solved the crystal structure of YhcN from Bacillus subtilis, which confirmed the presence of a RBM fold, flanked by additional secondary structures. As the protein did not show any oligomerization ability in vitro, we investigated the structural determinants of ring formation in SpoIIIAG, SpoIIIAH and YhcN. We showed that in vitro, the conserved core of RBM domains alone is not sufficient for oligomerization while the β-barrel forming region in SpoIIIAG forms rings on its own. This work suggests that some RBMs might indeed participate in the assembly of homomeric rings but others might have evolved toward other functions.
Collapse
Affiliation(s)
- Bowen Liu
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | - Helena Chan
- The ithree institute, University of Technology Sydney, 2007 Ultimo, NSW, Australia
| | - Elda Bauda
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | | | - Laure Bellard
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | | | - Caroline Mas
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | | | - Daphna Fenel
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | - Adrien Favier
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | - Monica Serrano
- Instituto de Tecnologia Quimica e Biologica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Adriano O Henriques
- Instituto de Tecnologia Quimica e Biologica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | - Cecile Morlot
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France.
| |
Collapse
|
9
|
Levels and Characteristics of mRNAs in Spores of Firmicute Species. J Bacteriol 2021; 203:e0001721. [PMID: 33972352 DOI: 10.1128/jb.00017-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spores of firmicute species contain 100s of mRNAs, whose major function in Bacillus subtilis is to provide ribonucleotides for new RNA synthesis when spores germinate. To determine if this is a general phenomenon, RNA was isolated from spores of multiple firmicute species and relative mRNA levels determined by transcriptome sequencing (RNA-seq). Determination of RNA levels in single spores allowed calculation of RNA nucleotides/spore, and assuming mRNA is 3% of spore RNA indicated that only ∼6% of spore mRNAs were present at >1/spore. Bacillus subtilis, Bacillus atrophaeus, and Clostridioides difficile spores had 49, 42, and 51 mRNAs at >1/spore, and numbers of mRNAs at ≥1/spore were ∼10 to 50% higher in Geobacillus stearothermophilus and Bacillus thuringiensis Al Hakam spores and ∼4-fold higher in Bacillus megaterium spores. In all species, some to many abundant spore mRNAs (i) were transcribed by RNA polymerase with forespore-specific σ factors, (ii) encoded proteins that were homologs of those encoded by abundant B. subtilis spore mRNAs and are proteins in dormant spores, and (iii) were likely transcribed in the mother cell compartment of the sporulating cell. Analysis of the coverage of RNA-seq reads on mRNAs from all species suggested that abundant spore mRNAs were fragmented, as was confirmed by reverse transcriptase quantitative PCR (RT-qPCR) analysis of abundant B. subtilis and C. difficile spore mRNAs. These data add to evidence indicating that the function of at least the great majority of mRNAs in all firmicute spores is to be degraded to generate ribonucleotides for new RNA synthesis when spores germinate. IMPORTANCE Only ∼6% of mRNAs in spores of six firmicute species are at ≥1 molecule/spore, many abundant spore mRNAs encode proteins similar to B. subtilis spore proteins, and some abundant B. subtilis and C. difficile spore mRNAs were fragmented. Most of the abundant B. subtilis and other Bacillales spore mRNAs are transcribed under the control of the forespore-specific RNA polymerase σ factors, F or G, and these results may stimulate transcription analyses in developing spores of species other than B. subtilis. These findings, plus the absence of key nucleotide biosynthetic enzymes in spores, suggest that firmicute spores' abundant mRNAs are not translated when spores germinate but instead are degraded to generate ribonucleotides for new RNA synthesis by the germinated spore.
Collapse
|
10
|
Soto-Avila L, Merce RC, Santos W, Castañeda N, Gutierrez-Ríos RM. Distribution and preservation of the components of the engulfment. What is beyond representative genomes? PLoS One 2021; 16:e0246651. [PMID: 33651833 PMCID: PMC7924749 DOI: 10.1371/journal.pone.0246651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/24/2021] [Indexed: 12/16/2022] Open
Abstract
Engulfment requires the coordinated, targeted synthesis and degradation of peptidoglycan at the leading edge of the engulfing membrane to allow the mother cell to completely engulf the forespore. Proteins such as the DMP and Q:AH complexes in Bacillus subtilis are essential for engulfment, as are a set of accessory proteins including GerM and SpoIIB, among others. Experimental and bioinformatic studies of these proteins in bacteria distinct from Bacillus subtilis indicate that fundamental differences exist regarding the organization and mechanisms used to successfully perform engulfment. As a consequence, the distribution and prevalence of the proteins involved in engulfment and other proteins that participate in different sporulation stages have been studied using bioinformatic approaches. These works are based on the prediction of orthologs in the genomes of representative Firmicutes and have been helpful in tracing hypotheses about the origin and evolution of sporulation genes, some of which have been postulated as sporulation signatures. To date, an extensive study of these signatures outside of the representative Firmicutes is not available. Here, we asked whether phyletic profiles of proteins involved in engulfment can be used as signatures able to describe the sporulation phenotype. We tested this hypothesis in a set of 954 Firmicutes, finding preserved phyletic profiles defining signatures at the genus level. Finally, a phylogenetic reconstruction based on non-redundant phyletic profiles at the family level shows the non-monophyletic origin of these proteins due to gain/loss events along the phylum Firmicutes.
Collapse
Affiliation(s)
- Lizeth Soto-Avila
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos, Mexico
- Centro de Investigacion en Dinamica Celular, Instituto de Investigacion en Ciencias Basicas y Aplicadas, Universidad Autonoma del Estado de Morelos (UAEM), Cuernavaca, Morelos, Mexico
| | - Ricardo Ciria Merce
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos, Mexico
| | - Walter Santos
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos, Mexico
| | - Nori Castañeda
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos, Mexico
| | - Rosa-María Gutierrez-Ríos
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos, Mexico
- * E-mail:
| |
Collapse
|
11
|
Takekawa N, Kawamoto A, Sakuma M, Kato T, Kojima S, Kinoshita M, Minamino T, Namba K, Homma M, Imada K. Two Distinct Conformations in 34 FliF Subunits Generate Three Different Symmetries within the Flagellar MS-Ring. mBio 2021; 12:e03199-20. [PMID: 33653894 PMCID: PMC8092281 DOI: 10.1128/mbio.03199-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/22/2021] [Indexed: 11/20/2022] Open
Abstract
The bacterial flagellum is a protein nanomachine essential for bacterial motility. The flagellar basal body contains several ring structures. The MS-ring is embedded in the cytoplasmic membrane and is formed at the earliest stage of flagellar formation to serve as the base for flagellar assembly as well as a housing for the flagellar protein export gate complex. The MS-ring is formed by FliF, which has two transmembrane helices and a large periplasmic region. A recent electron cryomicroscopy (cryoEM) study of the MS-ring formed by overexpressed FliF revealed a symmetry mismatch between the S-ring and inner part of the M-ring. However, the actual symmetry relation in the native MS-ring and positions of missing domains remain obscure. Here, we show the structure of the M-ring by combining cryoEM and X-ray crystallography. The crystal structure of the N-terminal half of the periplasmic region of FliF showed that it consists of two domains (D1 and D2) resembling PrgK D1/PrgH D2 and PrgK D2/PrgH D3 of the injectisome. CryoEM analysis revealed that the inner part of the M-ring shows a gear wheel-like density with the inner ring of C23 symmetry surrounded by cogs with C11 symmetry, to which 34 copies of FliFD1-D2 fitted well. We propose that FliFD1-D2 adopts two distinct orientations in the M-ring relative to the rest of FliF, with 23 chains forming the wheel and 11 chains forming the cogs, and the 34 chains come together to form the S-ring with C34 symmetry for multiple functions of the MS-ring.IMPORTANCE The bacterial flagellum is a motility organelle formed by tens of thousands of protein molecules. At the earliest stage of flagellar assembly, a transmembrane protein, FliF, forms the MS-ring in the cytoplasmic membrane as the base for flagellar assembly. Here, we solved the crystal structure of a FliF fragment. Electron cryomicroscopy (cryoEM) structural analysis of the MS-ring showed that the M-ring and S-ring have different rotational symmetries. By docking the crystal structure of the FliF fragment into the cryoEM density map of the entire MS-ring, we built a model of the whole periplasmic region of FliF and proposed that FliF adopts two distinct conformations to generate three distinct C11, C23, and C34 symmetries within the MS-ring for its multiple functions.
Collapse
Affiliation(s)
- Norihiro Takekawa
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Akihiro Kawamoto
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Mayuko Sakuma
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Takayuki Kato
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Miki Kinoshita
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- RIKEN Spring-8 Center and Center for Biosystems Dynamics Research, Suita, Osaka, Japan
- JEOL Yokogushi Research Alliance Laboratories, Osaka University, Suita, Osaka, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Katsumi Imada
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| |
Collapse
|
12
|
Riley EP, Schwarz C, Derman AI, Lopez-Garrido J. Milestones in Bacillus subtilis sporulation research. MICROBIAL CELL (GRAZ, AUSTRIA) 2020; 8:1-16. [PMID: 33490228 PMCID: PMC7780723 DOI: 10.15698/mic2021.01.739] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/21/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022]
Abstract
Endospore formation has been a rich field of research for more than a century, and has benefited from the powerful genetic tools available in Bacillus subtilis. In this review, we highlight foundational discoveries that shaped the sporulation field, from its origins to the present day, tracing a chronology that spans more than one hundred eighty years. We detail how cell-specific gene expression has been harnessed to investigate the existence and function of intercellular proteinaceous channels in sporulating cells, and we illustrate the rapid progress in our understanding of the cell biology of sporulation in recent years using the process of chromosome translocation as a storyline. Finally, we sketch general aspects of sporulation that remain largely unexplored, and that we envision will be fruitful areas of future research.
Collapse
Affiliation(s)
- Eammon P. Riley
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Corinna Schwarz
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Alan I. Derman
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | | |
Collapse
|
13
|
Setlow P, Christie G. Bacterial Spore mRNA - What's Up With That? Front Microbiol 2020; 11:596092. [PMID: 33193276 PMCID: PMC7649253 DOI: 10.3389/fmicb.2020.596092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/28/2020] [Indexed: 01/19/2023] Open
Abstract
Bacteria belonging to the orders Bacillales and Clostridiales form spores in response to nutrient starvation. From a simplified morphological perspective, the spore can be considered as comprising a central protoplast or core, that is, enveloped sequentially by an inner membrane (IM), a peptidoglycan cortex, an outer membrane, and a proteinaceous coat. All of these structures are characterized by unique morphological and/or structural features, which collectively confer metabolic dormancy and properties of environmental resistance to the quiescent spore. These properties are maintained until the spore is stimulated to germinate, outgrow and form a new vegetative cell. Spore germination comprises a series of partially overlapping biochemical and biophysical events - efflux of ions from the core, rehydration and IM reorganization, disassembly of cortex and coat - all of which appear to take place in the absence of de novo ATP and protein synthesis. If the latter points are correct, why then do spores of all species examined to date contain a diverse range of mRNA molecules deposited within the spore core? Are some of these molecules "functional," serving as translationally active units that are required for efficient spore germination and outgrowth, or are they just remnants from sporulation whose sole purpose is to provide a reservoir of ribonucleotides for the newly outgrowing cell? What is the fate of these molecules during spore senescence, and indeed, are conditions within the spore core likely to provide any opportunity for changes in the transcriptional profile of the spore during dormancy? This review encompasses a historical perspective of spore ribonucleotide biology, from the earliest biochemical led analyses - some of which in hindsight have proved to be remarkably prescient - through the transcriptomic era at the turn of this century, to the latest next generation sequencing derived insights. We provide an overview of the key literature to facilitate reasoned responses to the aforementioned questions, and many others, prior to concluding by identifying the major outstanding issues in this crucial area of spore biology.
Collapse
Affiliation(s)
- Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | - Graham Christie
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
14
|
Khanna K, Lopez-Garrido J, Pogliano K. Shaping an Endospore: Architectural Transformations During Bacillus subtilis Sporulation. Annu Rev Microbiol 2020; 74:361-386. [PMID: 32660383 PMCID: PMC7610358 DOI: 10.1146/annurev-micro-022520-074650] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Endospore formation in Bacillus subtilis provides an ideal model system for studying development in bacteria. Sporulation studies have contributed a wealth of information about the mechanisms of cell-specific gene expression, chromosome dynamics, protein localization, and membrane remodeling, while helping to dispel the early view that bacteria lack internal organization and interesting cell biological phenomena. In this review, we focus on the architectural transformations that lead to a profound reorganization of the cellular landscape during sporulation, from two cells that lie side by side to the endospore, the unique cell within a cell structure that is a hallmark of sporulation in B. subtilis and other spore-forming Firmicutes. We discuss new insights into the mechanisms that drive morphogenesis, with special emphasis on polar septation, chromosome translocation, and the phagocytosis-like process of engulfment, and also the key experimental advances that have proven valuable in revealing the inner workings of bacterial cells.
Collapse
Affiliation(s)
- Kanika Khanna
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA; ,
| | | | - Kit Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA; ,
| |
Collapse
|
15
|
Parrell D, Kroos L. Channels modestly impact compartment-specific ATP levels during Bacillus subtilis sporulation and a rise in the mother cell ATP level is not necessary for Pro-σ K cleavage. Mol Microbiol 2020; 114:563-581. [PMID: 32515031 DOI: 10.1111/mmi.14560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 01/13/2023]
Abstract
Starvation of Bacillus subtilis initiates endosporulation involving formation of mother cell (MC) and forespore (FS) compartments. During engulfment, the MC membrane migrates around the FS and protein channels connect the two compartments. The channels are necessary for postengulfment FS gene expression, which relieves inhibition of SpoIVFB, an intramembrane protease that cleaves Pro-σK , releasing σK into the MC. SpoIVFB has an ATP-binding domain exposed to the MC cytoplasm, but the role of ATP in regulating Pro-σK cleavage has been unclear, as has the impact of the channels on MC and FS ATP levels. Using luciferase produced separately in each compartment to measure relative ATP concentrations during sporulation, we found that the MC ATP concentration rises about twofold coincident with increasing cleavage of Pro-σK , and the FS ATP concentration does not decline. Mutants lacking a channel protein or defective in channel protein turnover exhibited modest and varied effects on ATP levels, which suggested that low ATP concentration does not explain the lack of postengulfment FS gene expression in channel mutants. Furthermore, a rise in the MC ATP level was not necessary for Pro-σK cleavage by SpoIVFB, based on analysis of mutants that bypass the need for relief of SpoIVFB inhibition.
Collapse
Affiliation(s)
- Daniel Parrell
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Lee Kroos
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
16
|
Khurana H, Sharma M, Verma H, Lopes BS, Lal R, Negi RK. Genomic insights into the phylogeny of Bacillus strains and elucidation of their secondary metabolic potential. Genomics 2020; 112:3191-3200. [PMID: 32512145 DOI: 10.1016/j.ygeno.2020.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/17/2020] [Accepted: 06/02/2020] [Indexed: 12/16/2022]
Abstract
The genus Bacillus constitutes a plethora of species that have medical, environmental, and industrial applications. While genus Bacillus has been the focus of several studies where genomic data have been used to resolve many taxonomic issues, there still exist several ambiguities. Through the use of in-silico genome-based methods, we tried to resolve the taxonomic anomalies of a large set of Bacillus genomes (n = 178). We also proposed species names for uncharacterized strains and reported genome sequence of a novel isolate Bacillus sp. RL. In the hierarchical clustering on genome-to-genome distances, we observed 11 distinct monophyletic clusters and investigated the functional pathways annotated as the property of these clusters and core-gene content of the entire dataset. Thus, we were able to assert the possible outlier strains (n = 17) for this genus. Analyses of secondary metabolite potential of each strain helped us unravel still unexplored diversity for various biosynthetic genes.
Collapse
Affiliation(s)
- Himani Khurana
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India
| | - Monika Sharma
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India
| | - Helianthous Verma
- Molecular Biology and Genomics Research Laboratory, Ramjas College, University of Delhi, Delhi 110007, India
| | - Bruno Silvester Lopes
- School of Medicine, Medical Sciences and Nutrition, Medical Microbiology, 0:025 Polwarth Building, Aberdeen AB25 2ZD, UK
| | - Rup Lal
- The Energy and Resources Institute, Darbari Seth Block, IHC Complex, Lodhi Road, New Delhi 110003, India.
| | - Ram Krishan Negi
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India.
| |
Collapse
|
17
|
Ramos-Silva P, Serrano M, Henriques AO. From Root to Tips: Sporulation Evolution and Specialization in Bacillus subtilis and the Intestinal Pathogen Clostridioides difficile. Mol Biol Evol 2020; 36:2714-2736. [PMID: 31350897 PMCID: PMC6878958 DOI: 10.1093/molbev/msz175] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bacteria of the Firmicutes phylum are able to enter a developmental pathway that culminates with the formation of highly resistant, dormant endospores. Endospores allow environmental persistence, dissemination and for pathogens, are also infection vehicles. In both the model Bacillus subtilis, an aerobic organism, and in the intestinal pathogen Clostridioides difficile, an obligate anaerobe, sporulation mobilizes hundreds of genes. Their expression is coordinated between the forespore and the mother cell, the two cells that participate in the process, and is kept in close register with the course of morphogenesis. The evolutionary mechanisms by which sporulation emerged and evolved in these two species, and more broadly across Firmicutes, remain largely unknown. Here, we trace the origin and evolution of sporulation using the genes known to be involved in the process in B. subtilis and C. difficile, and estimating their gain-loss dynamics in a comprehensive bacterial macroevolutionary framework. We show that sporulation evolution was driven by two major gene gain events, the first at the base of the Firmicutes and the second at the base of the B. subtilis group and within the Peptostreptococcaceae family, which includes C. difficile. We also show that early and late sporulation regulons have been coevolving and that sporulation genes entail greater innovation in B. subtilis with many Bacilli lineage-restricted genes. In contrast, C. difficile more often recruits new sporulation genes by horizontal gene transfer, which reflects both its highly mobile genome, the complexity of the gut microbiota, and an adjustment of sporulation to the gut ecosystem.
Collapse
Affiliation(s)
- Paula Ramos-Silva
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Marine Biodiversity Group, Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Mónica Serrano
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Adriano O Henriques
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
18
|
Shen A, Edwards AN, Sarker MR, Paredes-Sabja D. Sporulation and Germination in Clostridial Pathogens. Microbiol Spectr 2019; 7:10.1128/microbiolspec.GPP3-0017-2018. [PMID: 31858953 PMCID: PMC6927485 DOI: 10.1128/microbiolspec.gpp3-0017-2018] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Indexed: 12/14/2022] Open
Abstract
As obligate anaerobes, clostridial pathogens depend on their metabolically dormant, oxygen-tolerant spore form to transmit disease. However, the molecular mechanisms by which those spores germinate to initiate infection and then form new spores to transmit infection remain poorly understood. While sporulation and germination have been well characterized in Bacillus subtilis and Bacillus anthracis, striking differences in the regulation of these processes have been observed between the bacilli and the clostridia, with even some conserved proteins exhibiting differences in their requirements and functions. Here, we review our current understanding of how clostridial pathogens, specifically Clostridium perfringens, Clostridium botulinum, and Clostridioides difficile, induce sporulation in response to environmental cues, assemble resistant spores, and germinate metabolically dormant spores in response to environmental cues. We also discuss the direct relationship between toxin production and spore formation in these pathogens.
Collapse
Affiliation(s)
- Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University Medical School, Boston, MA
| | - Adrianne N Edwards
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Mahfuzur R Sarker
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR
| | - Daniel Paredes-Sabja
- Department of Gut Microbiota and Clostridia Research Group, Departamento de Ciencias Biolo gicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
19
|
Analysis of the mRNAs in Spores of Bacillus subtilis. J Bacteriol 2019; 201:JB.00007-19. [PMID: 30782632 DOI: 10.1128/jb.00007-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/08/2019] [Indexed: 12/12/2022] Open
Abstract
Large-scale shotgun sequencing (RNA-seq) analysis of mRNAs in dormant Bacillus subtilis spores prepared on plates or in liquid generally found the same ∼46 abundant mRNA species, with >250 mRNAs detected at much lower abundances. Knowledge of the amount of phosphate in a single B. subtilis spore allowed calculation of the amount of mRNA in an individual spore as ∼106 nucleotides (nt). Given the levels of abundant spore mRNAs compared to those of other mRNAs, it was calculated that the great majority of low-abundance mRNAs are present in only small fractions of spores in populations. Almost all of the most abundant spore mRNAs are encoded by genes expressed late in sporulation in the developing spore under the control of the forespore-specific RNA polymerase sigma factor, σG, and most of the encoded proteins are in spores. Levels of the most abundant spore mRNAs were also relatively stable for a week at 4°C after spore harvest. RNA-seq analysis of mRNAs in highly purified and less-well-purified spores made in liquid, as well as from spores that were chemically decoated to remove possible contaminating mRNA, indicated that low-abundance mRNAs in spores were not contaminants in purified spore preparations, and several sources of low-abundance mRNAs in spores are suggested. The function of at least the great majority of spore mRNAs seems most likely to be the generation of ribonucleotides for new RNA synthesis by their degradation early in spore revival.IMPORTANCE Previous work indicates that dormant Bacillus subtilis spores have many hundreds of mRNAs, some of which are suggested to play roles in spores' "return to life" or revival. The present work finds only ∼46 mRNAs at ≥1 molecule spore, with others in only fractions of spores in populations, often very small fractions. Less-abundant spore mRNAs are not contaminants in spore preparations, but how spores accumulate them is not clear. Almost all abundant spore mRNAs are synthesized in the developing spore late in its development, most encode proteins in spores, and abundant mRNAs in spores are relatively stable at 4°C. These findings will have a major impact on thinking about the roles that spore mRNAs may play in spore revival.
Collapse
|
20
|
Abstract
Bacteria employ a number of dedicated secretion systems to export proteins to the extracellular environment. Several of these comprise large complexes that assemble in and around the bacterial membrane(s) to form specialized channels through which only selected proteins are actively delivered. Although typically associated with bacterial pathogenicity, a specialized variant of these secretion systems has been proposed to play a central part in bacterial sporulation, a primitive protective process that allows starving cells to form spores that survive in extreme environments. Following asymmetric division, the mother cell engulfs the forespore, leaving it surrounded by two bilayer membranes. During the engulfment process an essential channel apparatus is thought to cross both membranes to create a direct conduit between the mother cell and forespore. At least nine proteins are essential for channel formation, including SpoIIQ under forespore control and the eight SpoIIIA proteins (SpoIIIAA to -AH) under mother cell control. Presumed to form a core channel complex, several of these proteins share similarity with components of Gram-negative bacterial secretion systems, including the type II, III, and IV secretion systems and the flagellum. Based on these similarities it has been suggested that the sporulation channel represents a hybrid, secretion-like transport machinery. Recently, in-depth biochemical and structural characterization of the individual channel components accompanied by in vivo studies has further reinforced this model. Here we review and discuss these recent studies and suggest an updated model for the unique sporulation channel apparatus architecture.
Collapse
|
21
|
Structural characterization of the sporulation protein GerM from Bacillus subtilis. J Struct Biol 2018; 204:481-490. [PMID: 30266596 DOI: 10.1016/j.jsb.2018.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 12/28/2022]
Abstract
The Gram-positive bacterium Bacillus subtilis responds to starvation by entering a morphological differentiation process leading to the formation of a highly resistant spore. Early in the sporulation process, the cell asymmetrically divides into a large compartment (the mother cell) and a smaller one (the forespore), which will maturate into a resistant spore. Proper development of the forespore requires the assembly of a multiprotein complex called the SpoIIIA-SpoIIQ complex or "A-Q complex". This complex involves the forespore protein SpoIIQ and eight mother cell proteins (SpoIIIAA to SpoIIIAH), many of which share structural similarities with components of specialized secretion systems and flagella found in Gram-negative bacteria. The assembly of the A-Q complex across the two membranes that separate the mother cell and forespore was recently shown to require GerM. GerM is a lipoprotein composed of two GerMN domains, a family of domains with unknown function. Here, we report X-ray crystallographic structures of the first GerMN domain of GerM at 1.0 Å resolution, and of the soluble domain of GerM (the tandem of GerMN domains) at 2.1 Å resolution. These structures reveal that GerMN domains can adopt distinct conformations and that the core of these domains display structural similarities with ring-building motifs found in components of specialized secretion system and in SpoIIIA proteins. This work provides an additional piece towards the structural characterization of the A-Q complex.
Collapse
|
22
|
The New Kid on the Block: A Specialized Secretion System during Bacterial Sporulation. Trends Microbiol 2018; 26:663-676. [DOI: 10.1016/j.tim.2018.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 01/03/2018] [Accepted: 01/09/2018] [Indexed: 01/09/2023]
|
23
|
Mearls EB, Jackter J, Colquhoun JM, Farmer V, Matthews AJ, Murphy LS, Fenton C, Camp AH. Transcription and translation of the sigG gene is tuned for proper execution of the switch from early to late gene expression in the developing Bacillus subtilis spore. PLoS Genet 2018; 14:e1007350. [PMID: 29702640 PMCID: PMC5942855 DOI: 10.1371/journal.pgen.1007350] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/09/2018] [Accepted: 04/03/2018] [Indexed: 12/01/2022] Open
Abstract
A cascade of alternative sigma factors directs developmental gene expression during spore formation by the bacterium Bacillus subtilis. As the spore develops, a tightly regulated switch occurs in which the early-acting sigma factor σF is replaced by the late-acting sigma factor σG. The gene encoding σG (sigG) is transcribed by σF and by σG itself in an autoregulatory loop; yet σG activity is not detected until σF-dependent gene expression is complete. This separation in σF and σG activities has been suggested to be due at least in part to a poorly understood intercellular checkpoint pathway that delays sigG expression by σF. Here we report the results of a careful examination of sigG expression during sporulation. Unexpectedly, our findings argue against the existence of a regulatory mechanism to delay sigG transcription by σF and instead support a model in which sigG is transcribed by σF with normal timing, but at levels that are very low. This low-level expression of sigG is the consequence of several intrinsic features of the sigG regulatory and coding sequence—promoter spacing, secondary structure potential of the mRNA, and start codon identity—that dampen its transcription and translation. Especially notable is the presence of a conserved hairpin in the 5’ leader sequence of the sigG mRNA that occludes the ribosome-binding site, reducing translation by up to 4-fold. Finally, we demonstrate that misexpression of sigG from regulatory and coding sequences lacking these features triggers premature σG activity in the forespore during sporulation, as well as inappropriate σG activity during vegetative growth. Altogether, these data indicate that transcription and translation of the sigG gene is tuned to prevent vegetative expression of σG and to ensure the precise timing of the switch from σF to σG in the developing spore. Global changes in gene expression occur during normal cellular growth and development, as well as during cancer cell transformation and bacterial pathogenesis. In this study we have investigated the molecular mechanisms that drive the switch from early to late developmental gene expression during spore formation by the model bacterium Bacillus subtilis. At early times, gene expression in the developing spore is directed by the transcription factor σF; at later times σF is replaced by σG. An important, yet poorly understood aspect of this σF-to-σG transition is how σG activation is delayed until the early, σF-directed phase of gene expression is complete. Here we have carefully examined expression of the gene encoding σG, sigG, and found that its transcription and translation are ordinarily dampened by several features of its regulatory and coding sequences. Moreover, we have found that this “tuning” of sigG expression is required for proper timing of the switch to σG. These results reframe our understanding of how sigG is regulated during B. subtilis sporulation and, more broadly, advance our understanding of how global changes in gene expression can be precisely executed at the molecular/genetic level.
Collapse
MESH Headings
- Bacillus subtilis/genetics
- Bacillus subtilis/physiology
- Bacterial Proteins/biosynthesis
- Bacterial Proteins/genetics
- Gene Expression Regulation, Bacterial
- Genes, Bacterial
- Inverted Repeat Sequences
- Models, Genetic
- Nucleic Acid Conformation
- Promoter Regions, Genetic
- Protein Biosynthesis
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sigma Factor/biosynthesis
- Sigma Factor/genetics
- Signal Transduction
- Spores, Bacterial/genetics
- Spores, Bacterial/physiology
- Transcription, Genetic
Collapse
Affiliation(s)
- Elizabeth B. Mearls
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA, USA
| | - Jacquelin Jackter
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA, USA
| | | | - Veronica Farmer
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA, USA
| | - Allison J. Matthews
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA, USA
| | - Laura S. Murphy
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA, USA
| | - Colleen Fenton
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA, USA
| | - Amy H. Camp
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA, USA
- * E-mail:
| |
Collapse
|
24
|
Martínez-Lumbreras S, Alfano C, Evans NJ, Collins KM, Flanagan KA, Atkinson RA, Krysztofinska EM, Vydyanath A, Jackter J, Fixon-Owoo S, Camp AH, Isaacson RL. Structural and Functional Insights into Bacillus subtilis Sigma Factor Inhibitor, CsfB. Structure 2018; 26:640-648.e5. [PMID: 29526435 PMCID: PMC5890618 DOI: 10.1016/j.str.2018.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/17/2017] [Accepted: 02/06/2018] [Indexed: 11/23/2022]
Abstract
Global changes in bacterial gene expression can be orchestrated by the coordinated activation/deactivation of alternative sigma (σ) factor subunits of RNA polymerase. Sigma factors themselves are regulated in myriad ways, including via anti-sigma factors. Here, we have determined the solution structure of anti-sigma factor CsfB, responsible for inhibition of two alternative sigma factors, σG and σE, during spore formation by Bacillus subtilis. CsfB assembles into a symmetrical homodimer, with each monomer bound to a single Zn2+ ion via a treble-clef zinc finger fold. Directed mutagenesis indicates that dimer formation is critical for CsfB-mediated inhibition of both σG and σE, and we have characterized these interactions in vitro. This work represents an advance in our understanding of how CsfB mediates inhibition of two alternative sigma factors to drive developmental gene expression in a bacterium.
Collapse
MESH Headings
- Amino Acid Sequence
- Bacillus subtilis/chemistry
- Bacillus subtilis/genetics
- Bacillus subtilis/metabolism
- Binding Sites
- Cations, Divalent
- Cloning, Molecular
- Crystallography, X-Ray
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression Regulation, Bacterial
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- Models, Molecular
- Mutation
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Protein Isoforms/antagonists & inhibitors
- Protein Isoforms/chemistry
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Protein Multimerization
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Repressor Proteins/chemistry
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Sequence Alignment
- Sequence Homology, Amino Acid
- Sigma Factor/antagonists & inhibitors
- Sigma Factor/chemistry
- Sigma Factor/genetics
- Sigma Factor/metabolism
- Spores, Bacterial/chemistry
- Spores, Bacterial/genetics
- Spores, Bacterial/metabolism
- Zinc/chemistry
- Zinc/metabolism
Collapse
Affiliation(s)
| | - Caterina Alfano
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK; Structural Biology and Biophysics Unit, Fondazione Ri.MED, Via Bandiera, 11, 90133 Palermo, Italy
| | - Nicola J Evans
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK
| | - Katherine M Collins
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK
| | - Kelly A Flanagan
- Department of Biological Sciences, Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA
| | - R Andrew Atkinson
- Centre for Biomolecular Spectroscopy and Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Ewelina M Krysztofinska
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK
| | - Anupama Vydyanath
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK
| | - Jacquelin Jackter
- Department of Biological Sciences, Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA
| | - Sarah Fixon-Owoo
- Department of Biological Sciences, Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA
| | - Amy H Camp
- Department of Biological Sciences, Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA
| | - Rivka L Isaacson
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK.
| |
Collapse
|
25
|
Zeytuni N, Flanagan KA, Worrall LJ, Massoni SC, Camp AH, Strynadka NCJ. Structural characterization of SpoIIIAB sporulation-essential protein in Bacillus subtilis. J Struct Biol 2017; 202:105-112. [PMID: 29288127 DOI: 10.1016/j.jsb.2017.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 12/21/2017] [Accepted: 12/23/2017] [Indexed: 11/28/2022]
Abstract
Endospore formation in the Gram-positive bacterium Bacillus subtilis initiates in response to nutrient depletion and involves a series of morphological changes that result in the creation of a dormant spore. Early in this developmental process, the cell undergoes an asymmetric cell division that produces the larger mother cell and smaller forespore, the latter destined to become the mature spore. The mother cell septal membrane then engulfs the forespore, at which time an essential channel, the so-called feeding-tube apparatus, is thought to cross both membranes to create a direct conduit between the cells. At least nine proteins are required to form this channel including SpoIIQ under forespore control and SpoIIIAA-AH under the mother cell control. Several of these proteins share similarity to components of Type-II, -III and -IV secretion systems as well as the flagellum from Gram-negative bacteria. Here we report the X-ray crystallographic structure of the cytosolic domain of SpoIIIAB to 2.3 Å resolution. This domain adopts a conserved, secretion-system related fold of a six membered anti-parallel helical bundle with a positively charged membrane-interaction face at one end and a small groove at the other end that may serve as a binding site for partner proteins in the assembled apparatus. We analyzed and identified potential interaction interfaces by structure-guided mutagenesis in vivo. Furthermore, we were able to identify a remarkable structural homology to the C-subunit of a bacterial V-ATPase. Collectively, our data provides new insight into the possible roles of SpoIIIAB protein within the secretion-like apparatus essential to bacterial sporulation.
Collapse
Affiliation(s)
- N Zeytuni
- Department of Biochemistry and Molecular Biology and the Center for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - K A Flanagan
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA, USA
| | - L J Worrall
- Department of Biochemistry and Molecular Biology and the Center for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - S C Massoni
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA, USA
| | - A H Camp
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA, USA.
| | - N C J Strynadka
- Department of Biochemistry and Molecular Biology and the Center for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
26
|
Ramírez-Guadiana FH, Meeske AJ, Rodrigues CDA, Barajas-Ornelas RDC, Kruse AC, Rudner DZ. A two-step transport pathway allows the mother cell to nurture the developing spore in Bacillus subtilis. PLoS Genet 2017; 13:e1007015. [PMID: 28945739 PMCID: PMC5629000 DOI: 10.1371/journal.pgen.1007015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/05/2017] [Accepted: 09/09/2017] [Indexed: 11/18/2022] Open
Abstract
One of the hallmarks of bacterial endospore formation is the accumulation of high concentrations of pyridine-2,6-dicarboxylic acid (dipicolinic acid or DPA) in the developing spore. This small molecule comprises 5–15% of the dry weight of dormant spores and plays a central role in resistance to both wet heat and desiccation. DPA is synthesized in the mother cell at a late stage in sporulation and must be translocated across two membranes (the inner and outer forespore membranes) that separate the mother cell and forespore. The enzymes that synthesize DPA and the proteins required to translocate it across the inner forespore membrane were identified over two decades ago but the factors that transport DPA across the outer forespore membrane have remained mysterious. Here, we report that SpoVV (formerly YlbJ) is the missing DPA transporter. SpoVV is produced in the mother cell during the morphological process of engulfment and specifically localizes in the outer forespore membrane. Sporulating cells lacking SpoVV produce spores with low levels of DPA and cells engineered to express SpoVV and the DPA synthase during vegetative growth accumulate high levels of DPA in the culture medium. SpoVV resembles concentrative nucleoside transporters and mutagenesis of residues predicted to form the substrate-binding pocket supports the idea that SpoVV has a similar structure and could therefore function similarly. These findings provide a simple two-step transport mechanism by which the mother cell nurtures the developing spore. DPA produced in the mother cell is first translocated into the intermembrane space by SpoVV and is then imported into the forespore by the SpoVA complex. This pathway is likely to be broadly conserved as DPA synthase, SpoVV, and SpoVA proteins can be found in virtually all endospore forming bacteria. All pathogenic and non-pathogenic bacteria that differentiate into dormant endospores including Clostridium difficile, Bacillus anthracis, and Bacillus subtilis, contain very high concentrations of the small molecule dipicolinic acid (DPA). This molecule displaces water in the spore core where it plays an integral role in spore resistance and dormancy. DPA and its contribution to spore dehydration were discovered in 1953 but the molecular basis for its accumulation in the spore has remained unclear. The developing endospore resides within a mother cell that assembles protective layers around the spore and nurtures it by providing mother-cell-produced molecules. DPA is produced in the mother cell at a late stage in development and then must be translocated across two membranes into the spore core. Here, we report the discovery of the missing DPA transporter, homologs of which are present in virtually all endospore-forming bacteria. Our data provide evidence for a simple two-step transport pathway in which the mother cell nurtures the developing spore by sequentially moving DPA across the two membranes that surround it.
Collapse
Affiliation(s)
| | - Alexander J. Meeske
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, United States of America
| | | | | | - Andrew C. Kruse
- Department of Biochemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States of America
| | - David Z. Rudner
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
27
|
Near-atomic resolution cryoelectron microscopy structure of the 30-fold homooligomeric SpoIIIAG channel essential to spore formation in Bacillus subtilis. Proc Natl Acad Sci U S A 2017; 114:E7073-E7081. [PMID: 28784753 DOI: 10.1073/pnas.1704310114] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Bacterial sporulation allows starving cells to differentiate into metabolically dormant spores that can survive extreme conditions. Following asymmetric division, the mother cell engulfs the forespore, surrounding it with two bilayer membranes. During the engulfment process, an essential channel, the so-called feeding tube apparatus, is thought to cross both membranes to create a direct conduit between the mother cell and the forespore. At least nine proteins are required to create this channel, including SpoIIQ and SpoIIIAA-AH. Here, we present the near-atomic resolution structure of one of these proteins, SpoIIIAG, determined by single-particle cryo-EM. A 3D reconstruction revealed that SpoIIIAG assembles into a large and stable 30-fold symmetric complex with a unique mushroom-like architecture. The complex is collectively composed of three distinctive circular structures: a 60-stranded vertical β-barrel that forms a large inner channel encircled by two concentric rings, one β-mediated and the other formed by repeats of a ring-building motif (RBM) common to the architecture of various dual membrane secretion systems of distinct function. Our near-atomic resolution structure clearly shows that SpoIIIAG exhibits a unique and dramatic adaptation of the RBM fold with a unique β-triangle insertion that assembles into the prominent channel, the dimensions of which suggest the potential passage of large macromolecules between the mother cell and forespore during the feeding process. Indeed, mutation of residues located at key interfaces between monomers of this RBM resulted in severe defects both in vivo and in vitro, providing additional support for this unprecedented structure.
Collapse
|
28
|
A ring-shaped conduit connects the mother cell and forespore during sporulation in Bacillus subtilis. Proc Natl Acad Sci U S A 2016; 113:11585-11590. [PMID: 27681621 DOI: 10.1073/pnas.1609604113] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During spore formation in Bacillus subtilis a transenvelope complex is assembled across the double membrane that separates the mother cell and forespore. This complex (called the "A-Q complex") is required to maintain forespore development and is composed of proteins with remote homology to components of type II, III, and IV secretion systems found in Gram-negative bacteria. Here, we show that one of these proteins, SpoIIIAG, which has remote homology to ring-forming proteins found in type III secretion systems, assembles into an oligomeric ring in the periplasmic-like space between the two membranes. Three-dimensional reconstruction of images generated by cryo-electron microscopy indicates that the SpoIIIAG ring has a cup-and-saucer architecture with a 6-nm central pore. Structural modeling of SpoIIIAG generated a 24-member ring with dimensions similar to those of the EM-derived saucer. Point mutations in the predicted oligomeric interface disrupted ring formation in vitro and impaired forespore gene expression and efficient spore formation in vivo. Taken together, our data provide strong support for the model in which the A-Q transenvelope complex contains a conduit that connects the mother cell and forespore. We propose that a set of stacked rings spans the intermembrane space, as has been found for type III secretion systems.
Collapse
|
29
|
Rodrigues CDA, Ramírez-Guadiana FH, Meeske AJ, Wang X, Rudner DZ. GerM is required to assemble the basal platform of the SpoIIIA-SpoIIQ transenvelope complex during sporulation in Bacillus subtilis. Mol Microbiol 2016; 102:260-273. [PMID: 27381174 DOI: 10.1111/mmi.13457] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2016] [Indexed: 11/29/2022]
Abstract
Sporulating Bacillus subtilis cells assemble a multimeric membrane complex connecting the mother cell and developing spore that is required to maintain forespore differentiation. An early step in the assembly of this transenvelope complex (called the A-Q complex) is an interaction between the extracellular domains of the forespore membrane protein SpoIIQ and the mother cell membrane protein SpoIIIAH. This interaction provides a platform onto which the remaining components of the complex assemble and also functions as an anchor for cell-cell signalling and morphogenetic proteins involved in spore development. SpoIIQ is required to recruit SpoIIIAH to the sporulation septum on the mother cell side; however, the mechanism by which SpoIIQ specifically localizes to the septal membranes on the forespore side has remained enigmatic. Here, we identify GerM, a lipoprotein previously implicated in spore germination, as the missing factor required for SpoIIQ localization. Our data indicate that GerM and SpoIIIAH, derived from the mother cell, and SpoIIQ, from the forespore, have reciprocal localization dependencies suggesting they constitute a tripartite platform for the assembly of the A-Q complex and a hub for the localization of mother cell and forespore proteins.
Collapse
Affiliation(s)
- Christopher D A Rodrigues
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Fernando H Ramírez-Guadiana
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Alexander J Meeske
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Xindan Wang
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - David Z Rudner
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA.
| |
Collapse
|
30
|
A Membrane-Embedded Amino Acid Couples the SpoIIQ Channel Protein to Anti-Sigma Factor Transcriptional Repression during Bacillus subtilis Sporulation. J Bacteriol 2016; 198:1451-63. [PMID: 26929302 DOI: 10.1128/jb.00958-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/22/2016] [Indexed: 01/19/2023] Open
Abstract
UNLABELLED SpoIIQ is an essential component of a channel connecting the developing forespore to the adjacent mother cell during Bacillus subtilis sporulation. This channel is generally required for late gene expression in the forespore, including that directed by the late-acting sigma factor σ(G) Here, we present evidence that SpoIIQ also participates in a previously unknown gene regulatory circuit that specifically represses expression of the gene encoding the anti-sigma factor CsfB, a potent inhibitor of σ(G) The csfB gene is ordinarily transcribed in the forespore only by the early-acting sigma factor σ(F) However, in a mutant lacking the highly conserved SpoIIQ transmembrane amino acid Tyr-28, csfB was also aberrantly transcribed later by σ(G), the very target of CsfB inhibition. This regulation of csfB by SpoIIQ Tyr-28 is specific, given that the expression of other σ(F)-dependent genes was unaffected. Moreover, we identified a conserved element within the csfB promoter region that is both necessary and sufficient for SpoIIQ Tyr-28-mediated inhibition. These results indicate that SpoIIQ is a bifunctional protein that not only generally promotes σ(G)activity in the forespore as a channel component but also specifically maximizes σ(G)activity as part of a gene regulatory circuit that represses σ(G)-dependent expression of its own inhibitor, CsfB. Finally, we demonstrate that SpoIIQ Tyr-28 is required for the proper localization and stability of the SpoIIE phosphatase, raising the possibility that these two multifunctional proteins cooperate to fine-tune developmental gene expression in the forespore at late times. IMPORTANCE Cellular development is orchestrated by gene regulatory networks that activate or repress developmental genes at the right time and place. Late gene expression in the developing Bacillus subtilis spore is directed by the alternative sigma factor σ(G) The activity of σ(G)requires a channel apparatus through which the adjacent mother cell provides substrates that generally support gene expression. Here we report that the channel protein SpoIIQ also specifically maximizes σ(G)activity as part of a previously unknown regulatory circuit that prevents σ(G)from activating transcription of the gene encoding its own inhibitor, the anti-sigma factor CsfB. The discovery of this regulatory circuit significantly expands our understanding of the gene regulatory network controlling late gene expression in the developing B. subtilis spore.
Collapse
|
31
|
Zhang Y, Halder S, Kerr RA, Parrell D, Ruotolo B, Kroos L. Complex Formed between Intramembrane Metalloprotease SpoIVFB and Its Substrate, Pro-σK. J Biol Chem 2016; 291:10347-62. [PMID: 26953342 DOI: 10.1074/jbc.m116.715508] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Indexed: 11/06/2022] Open
Abstract
Intramembrane metalloproteases (IMMPs) are conserved from bacteria to humans and control many important signaling pathways, but little is known about how IMMPs interact with their substrates. SpoIVFB is an IMMP that cleaves Pro-σ(K) during Bacillus subtilis endospore formation. When catalytically inactive SpoIVFB was coexpressed with C-terminally truncated Pro-σ(K)(1-126) (which can be cleaved by active SpoIVFB) in Escherichia coli, the substrate dramatically improved solubilization of the enzyme from membranes with mild detergents. Both the Pro(1-20) and σ(K)(21-126) parts contributed to improving SpoIVFB solubilization from membranes, but only the σ(K) part was needed to form a stable complex with SpoIVFB in a pulldown assay. The last 10 residues of SpoIVFB were required for improved solubilization from membranes by Pro-σ(K)(1-126) and for normal interaction with the substrate. The inactive SpoIVFB·Pro-σ(K)(1-126)-His6 complex was stable during affinity purification and gel filtration chromatography. Disulfide cross-linking of the purified complex indicated that it resembled the complex formed in vivo Ion mobility-mass spectrometry analysis resulted in an observed mass consistent with a 4:2 SpoIVFB·Pro-σ(K)(1-126)-His6 complex. Stepwise photobleaching of SpoIVFB fused to a fluorescent protein supported the notion that the enzyme is tetrameric during B. subtilis sporulation. The results provide the first evidence that an IMMP acts as a tetramer, give new insights into how SpoIVFB interacts with its substrate, and lay the foundation for further biochemical analysis of the enzyme·substrate complex and future structural studies.
Collapse
Affiliation(s)
- Yang Zhang
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 and
| | - Sabyasachi Halder
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 and
| | - Richard A Kerr
- the Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Daniel Parrell
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 and
| | - Brandon Ruotolo
- the Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Lee Kroos
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 and
| |
Collapse
|
32
|
Bergeron JR. Structural modeling of the flagellum MS ring protein FliF reveals similarities to the type III secretion system and sporulation complex. PeerJ 2016; 4:e1718. [PMID: 26925337 PMCID: PMC4768692 DOI: 10.7717/peerj.1718] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/31/2016] [Indexed: 11/29/2022] Open
Abstract
The flagellum is a large proteinaceous organelle found at the surface of many bacteria, whose primary role is to allow motility through the rotation of a long extracellular filament. It is an essential virulence factor in many pathogenic species, and is also a priming component in the formation of antibiotic-resistant biofilms. The flagellum consists of the export apparatus on the cytosolic side; the basal body and rotor, spanning the bacterial membrane(s) and periplasm; and the hook-filament, that protrudes away from the bacterial surface. Formation of the basal body MS ring region, constituted of multiple copies of the protein FliF, is one of the initial steps of flagellum assembly. However, the precise architecture of FliF is poorly understood. Here, I report a bioinformatics analysis of the FliF sequence from various bacterial species, suggesting that its periplasmic region is composed of three globular domains. The first two are homologous to that of the type III secretion system injectisome proteins SctJ, and the third possesses a similar fold to that of the sporulation complex component SpoIIIAG. I also describe that Chlamydia possesses an unusual FliF protein, lacking part of the SctJ homology domain and the SpoIIIAG-like domain, and fused to the rotor component FliG at its C-terminus. Finally, I have combined the sequence analysis of FliF with the EM map of the MS ring, to propose the first atomic model for the FliF oligomer, suggesting that FliF is structurally akin to a fusion of the two injectisome components SctJ and SctD. These results further define the relationship between the flagellum, injectisome and sporulation complex, and will facilitate future structural characterization of the flagellum basal body.
Collapse
Affiliation(s)
- Julien R Bergeron
- Department of Biochemistry, University of Washington , Seattle, WA , USA
| |
Collapse
|
33
|
Serrano M, Crawshaw AD, Dembek M, Monteiro JM, Pereira FC, Pinho MG, Fairweather NF, Salgado PS, Henriques AO. The SpoIIQ-SpoIIIAH complex of Clostridium difficile controls forespore engulfment and late stages of gene expression and spore morphogenesis. Mol Microbiol 2016; 100:204-28. [PMID: 26690930 PMCID: PMC4982068 DOI: 10.1111/mmi.13311] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2015] [Indexed: 11/29/2022]
Abstract
Engulfment of the forespore by the mother cell is a universal feature of endosporulation. In Bacillus subtilis, the forespore protein SpoIIQ and the mother cell protein SpoIIIAH form a channel, essential for endosporulation, through which the developing spore is nurtured. The two proteins also form a backup system for engulfment. Unlike in B. subtilis, SpoIIQ of Clostridium difficile has intact LytM zinc‐binding motifs. We show that spoIIQ or spoIIIAH deletion mutants of C. difficile result in anomalous engulfment, and that disruption of the SpoIIQ LytM domain via a single amino acid substitution (H120S) impairs engulfment differently. SpoIIQ and SpoIIQH120S interact with SpoIIIAH throughout engulfment. SpoIIQ, but not SpoIIQH120S, binds Zn2+, and metal absence alters the SpoIIQ‐SpoIIIAH complex in vitro. Possibly, SpoIIQH120S supports normal engulfment in some cells but not a second function of the complex, required following engulfment completion. We show that cells of the spoIIQ or spoIIIAH mutants that complete engulfment are impaired in post‐engulfment, forespore and mother cell‐specific gene expression, suggesting a channel‐like function. Both engulfment and a channel‐like function may be ancestral functions of SpoIIQ‐SpoIIIAH while the requirement for engulfment was alleviated through the emergence of redundant mechanisms in B. subtilis and related organisms.
Collapse
Affiliation(s)
- Mónica Serrano
- Microbial Development, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, Estação Agronómica Nacional, Avenida da República, 2780-157, Oeiras, Portugal
| | - Adam D Crawshaw
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Marcin Dembek
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, UK
| | - João M Monteiro
- Bacterial Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, Estação Agronómica Nacional, Avenida da República, 2780-157, Oeiras, Portugal
| | - Fátima C Pereira
- Microbial Development, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, Estação Agronómica Nacional, Avenida da República, 2780-157, Oeiras, Portugal
| | - Mariana Gomes Pinho
- Bacterial Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, Estação Agronómica Nacional, Avenida da República, 2780-157, Oeiras, Portugal
| | - Neil F Fairweather
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, UK
| | - Paula S Salgado
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Adriano O Henriques
- Microbial Development, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, Estação Agronómica Nacional, Avenida da República, 2780-157, Oeiras, Portugal
| |
Collapse
|
34
|
Abstract
The Gram-positive bacterium Bacillus subtilis initiates the formation of an endospore in response to conditions of nutrient limitation. The morphological differentiation that spores undergo initiates with the formation of an asymmetric septum near to one pole of the cell, forming a smaller compartment, the forespore, and a larger compartment, the mother cell. This process continues with the complex morphogenesis of the spore as governed by an intricate series of interactions between forespore and mother cell proteins across the inner and outer forespore membranes. Given that these interactions occur at a particular place in the cell, a critical question is how the proteins involved in these processes get properly targeted, and we discuss recent progress in identifying mechanisms responsible for this targeting.
Collapse
|
35
|
Fimlaid KA, Jensen O, Donnelly ML, Siegrist MS, Shen A. Regulation of Clostridium difficile Spore Formation by the SpoIIQ and SpoIIIA Proteins. PLoS Genet 2015; 11:e1005562. [PMID: 26465937 PMCID: PMC4605598 DOI: 10.1371/journal.pgen.1005562] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 09/10/2015] [Indexed: 01/05/2023] Open
Abstract
Sporulation is an ancient developmental process that involves the formation of a highly resistant endospore within a larger mother cell. In the model organism Bacillus subtilis, sporulation-specific sigma factors activate compartment-specific transcriptional programs that drive spore morphogenesis. σG activity in the forespore depends on the formation of a secretion complex, known as the “feeding tube,” that bridges the mother cell and forespore and maintains forespore integrity. Even though these channel components are conserved in all spore formers, recent studies in the major nosocomial pathogen Clostridium difficile suggested that these components are dispensable for σG activity. In this study, we investigated the requirements of the SpoIIQ and SpoIIIA proteins during C. difficile sporulation. C. difficile spoIIQ, spoIIIA, and spoIIIAH mutants exhibited defects in engulfment, tethering of coat to the forespore, and heat-resistant spore formation, even though they activate σG at wildtype levels. Although the spoIIQ, spoIIIA, and spoIIIAH mutants were defective in engulfment, metabolic labeling studies revealed that they nevertheless actively transformed the peptidoglycan at the leading edge of engulfment. In vitro pull-down assays further demonstrated that C. difficile SpoIIQ directly interacts with SpoIIIAH. Interestingly, mutation of the conserved Walker A ATP binding motif, but not the Walker B ATP hydrolysis motif, disrupted SpoIIIAA function during C. difficile spore formation. This finding contrasts with B. subtilis, which requires both Walker A and B motifs for SpoIIIAA function. Taken together, our findings suggest that inhibiting SpoIIQ, SpoIIIAA, or SpoIIIAH function could prevent the formation of infectious C. difficile spores and thus disease transmission. The bacterial spore-forming pathogen Clostridium difficile is a leading cause of nosocomial infections in the United States and represents a significant threat to healthcare systems around the world. As an obligate anaerobe, C. difficile must form spores in order to survive exit from the gastrointestinal tract. Accordingly, spore formation is essential for C. difficile disease transmission. Since the mechanisms controlling this process remain poorly characterized, we analyzed the importance of highly conserved secretion channel components during C. difficile sporulation. In the model organism Bacillus subtilis, this channel had previously been shown to function as a “feeding tube” that allows the mother cell to nurture the developing forespore and sustain transcription in the forespore. We show here that conserved components of this structure in C. difficile are dispensable for forespore transcription, although they are important for completing forespore engulfment and retaining the protective spore coat around the forespore, in contrast with B. subtilis. The results of our study suggest that targeting these conserved proteins could prevent C. difficile spore formation and thus disease transmission.
Collapse
Affiliation(s)
- Kelly A. Fimlaid
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
- Program in Cellular, Molecular & Biomedical Sciences, University of Vermont, Burlington, Vermont, United States of America
| | - Owen Jensen
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
| | - M. Lauren Donnelly
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
| | - M. Sloan Siegrist
- Department of Microbiology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Aimee Shen
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
- * E-mail:
| |
Collapse
|
36
|
Dual-specificity anti-sigma factor reinforces control of cell-type specific gene expression in Bacillus subtilis. PLoS Genet 2015; 11:e1005104. [PMID: 25835496 PMCID: PMC4383634 DOI: 10.1371/journal.pgen.1005104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 02/25/2015] [Indexed: 11/19/2022] Open
Abstract
Gene expression during spore development in Bacillus subtilis is controlled by cell type-specific RNA polymerase sigma factors. σFand σE control early stages of development in the forespore and the mother cell, respectively. When, at an intermediate stage in development, the mother cell engulfs the forespore, σF is replaced by σG and σE is replaced by σK. The anti-sigma factor CsfB is produced under the control of σF and binds to and inhibits the auto-regulatory σG, but not σF. A position in region 2.1, occupied by an asparagine in σG and by a glutamate in οF, is sufficient for CsfB discrimination of the two sigmas, and allows it to delay the early to late switch in forespore gene expression. We now show that following engulfment completion, csfB is switched on in the mother cell under the control of σK and that CsfB binds to and inhibits σE but not σK, possibly to facilitate the switch from early to late gene expression. We show that a position in region 2.3 occupied by a conserved asparagine in σE and by a conserved glutamate in σK suffices for discrimination by CsfB. We also show that CsfB prevents activation of σG in the mother cell and the premature σG-dependent activation of σK. Thus, CsfB establishes negative feedback loops that curtail the activity of σE and prevent the ectopic activation of σG in the mother cell. The capacity of CsfB to directly block σE activity may also explain how CsfB plays a role as one of the several mechanisms that prevent σE activation in the forespore. Thus the capacity of CsfB to differentiate between the highly similar σF/σG and σE/σK pairs allows it to rinforce the cell-type specificity of these sigma factors and the transition from early to late development in B. subtilis, and possibly in all sporeformers that encode a CsfB orthologue. Precise temporal and cell-type specific regulation of gene expression is required for development of differentiated cells even in simple organisms. Endospore development by the bacterium Bacillus subtilis involves only two types of differentiated cells, a forespore that develops into the endospore, and a mother cell that nurtures the developing endospore. During development temporal and cell-type specific regulation of gene expression is controlled by transcription factors called sigma factors (σ). An anti-sigma factor known as CsfB binds to σG to prevent its premature activity in the forespore. We found that CsfB is also expressed in the mother cell where it blocks ectopic activity of σG, and blocks the activity σE to allow σK to take over control of gene expression during the final stages of development. Our finding that CsfB directly blocks σE activity also explains how CsfB plays a role in preventing ectopic activity of σE in the forespore. Remarkably, each of the major roles of CsfB, (i.e., control of ectopic σG and σE activities, and the temporal limitation of σE activity) is also accomplished by redundant regulatory processes. This redundancy reinforces control of key regulatory steps to insure reliability and stability of the developmental process.
Collapse
|
37
|
Abstract
My career in science was launched when I was an undergraduate at Princeton University and reinforced by graduate training at the Massachusetts Institute of Technology. However, it was only after I moved to Harvard University as a junior fellow that my affections were captured by a seemingly mundane soil bacterium. What Bacillus subtilis offered was endless fascinating biological problems (alternative sigma factors, sporulation, swarming, biofilm formation, stochastic cell fate switching) embedded in a uniquely powerful genetic system. Along the way, my career in science became inseparably interwoven with teaching and mentoring, which proved to be as rewarding as the thrill of discovery.
Collapse
Affiliation(s)
- Richard Losick
- From the Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 01238
| |
Collapse
|
38
|
MifM monitors total YidC activities of Bacillus subtilis, including that of YidC2, the target of regulation. J Bacteriol 2014; 197:99-107. [PMID: 25313395 DOI: 10.1128/jb.02074-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The YidC/Oxa1/Alb3 family proteins are involved in membrane protein biogenesis in bacteria, mitochondria, and chloroplasts. Recent studies show that YidC uses a channel-independent mechanism to insert a class of membrane proteins into the membrane. Bacillus subtilis has two YidC homologs, SpoIIIJ (YidC1) and YidC2 (YqjG); the former is expressed constitutively, while the latter is induced when the SpoIIIJ activity is compromised. MifM is a substrate of SpoIIIJ, and its failure in membrane insertion is accompanied by stable ribosome stalling on the mifM-yidC2 mRNA, which ultimately facilitates yidC2 translation. While mutational inactivation of SpoIIIJ has been known to induce yidC2 expression, here, we show that the level of this induction is lower than that observed when the membrane insertion signal of MifM is defective. Moreover, this partial induction of YidC2 translation is lowered further when YidC2 is overexpressed in trans. These results suggest that YidC2 is able to insert MifM into the membrane and to release its translation arrest. Thus, under SpoIIIJ-deficient conditions, YidC2 expression is subject to MifM-mediated autogenous feedback repression. Our results show that YidC2 uses a mechanism that is virtually identical to that used by SpoIIIJ; Arg75 of YidC2 in its intramembrane yet hydrophilic cavity is functionally indispensable and requires negatively charged residues of MifM as an insertion substrate. From these results, we conclude that MifM monitors the total activities of the SpoIIIJ and the YidC2 pathways to control the synthesis of YidC2 and to maintain the cellular capability of the YidC mode of membrane protein biogenesis.
Collapse
|
39
|
Crawshaw AD, Serrano M, Stanley WA, Henriques AO, Salgado PS. A mother cell-to-forespore channel: current understanding and future challenges. FEMS Microbiol Lett 2014; 358:129-36. [PMID: 25105965 DOI: 10.1111/1574-6968.12554] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/18/2014] [Accepted: 07/28/2014] [Indexed: 11/30/2022] Open
Abstract
Formation of endospores allows some bacteria to survive extreme nutrient limitation. The resulting dormant cell, the spore, persists in the environment and is highly resistant to physical and chemical stresses. During spore formation, cells divide asymmetrically and the mother cell engulfs the developing spore, encasing it within a double membrane and isolating it from the medium. Communication between mother cell and isolated forespore involves a specialised connection system that allows nurturing of the forespore and continued macromolecular synthesis, required to finalise spore maturation. Here, we review current understanding of this feeding channel formed by a forespore protein, SpoIIQ, and a mother cell protein, SpoIIIAH, in the model organism Bacillus subtilis and the important human pathogen Clostridium difficile. We also analyse the presence of this channel across endospore-forming bacteria and highlight the main questions still remaining.
Collapse
Affiliation(s)
- Adam D Crawshaw
- Faculty of Medical Sciences, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | |
Collapse
|
40
|
A conserved cysteine residue of Bacillus subtilis SpoIIIJ is important for endospore development. PLoS One 2014; 9:e99811. [PMID: 25133632 PMCID: PMC4136701 DOI: 10.1371/journal.pone.0099811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/19/2014] [Indexed: 11/20/2022] Open
Abstract
During sporulation in Bacillus subtilis, the onset of activity of the late forespore-specific sigma factor σG coincides with completion of forespore engulfment by the mother cell. At this stage, the forespore becomes a free protoplast, surrounded by the mother cell cytoplasm and separated from it by two membranes that derive from the asymmetric division septum. Continued gene expression in the forespore, isolated from the surrounding medium, relies on the SpoIIIA-SpoIIQ secretion system assembled from proteins synthesised both in the mother cell and in the forespore. The membrane protein insertase SpoIIIJ, of the YidC/Oxa1/Alb3 family, is involved in the assembly of the SpoIIIA-SpoIIQ complex. Here we show that SpoIIIJ exists as a mixture of monomers and dimers stabilised by a disulphide bond. We show that residue Cys134 within transmembrane segment 2 (TM2) of SpoIIIJ is important to stabilise the protein in the dimeric form. Labelling of Cys134 with a Cys-reactive reagent could only be achieved under stringent conditions, suggesting a tight association at least in part through TM2, between monomers in the membrane. Substitution of Cys134 by an Ala results in accumulation of the monomer, and reduces SpoIIIJ function in vivo. Therefore, SpoIIIJ activity in vivo appears to require dimer formation.
Collapse
|
41
|
Halbedel S, Reiss S, Hahn B, Albrecht D, Mannala GK, Chakraborty T, Hain T, Engelmann S, Flieger A. A systematic proteomic analysis of Listeria monocytogenes house-keeping protein secretion systems. Mol Cell Proteomics 2014; 13:3063-81. [PMID: 25056936 DOI: 10.1074/mcp.m114.041327] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Listeria monocytogenes is a firmicute bacterium causing serious infections in humans upon consumption of contaminated food. Most of its virulence factors are secretory proteins either released to the medium or attached to the bacterial surface. L. monocytogenes encodes at least six different protein secretion pathways. Although great efforts have been made in the past to predict secretory proteins and their secretion routes using bioinformatics, experimental evidence is lacking for most secretion systems. Therefore, we constructed mutants in the main housekeeping protein secretion systems, which are the Sec-dependent transport, the YidC membrane insertases SpoIIIJ and YqjG, as well as the twin-arginine pathway, and analyzed their secretion and virulence defects. Our results demonstrate that Sec-dependent secretion and membrane insertion of proteins via YidC proteins are essential for viability of L. monocytogenes. Depletion of SecA or YidC activity severely affected protein secretion, whereas loss of the Tat-pathway was without any effect on secretion, viability, and virulence. Two-dimensional gel electrophoresis combined with protein identification by mass spectrometry revealed that secretion of many virulence factors and of enzymes synthesizing and degrading the cell wall depends on the SecA route. This finding was confirmed by SecA inhibition experiments using sodium azide. Analysis of secretion of substrates typically dependent on the accessory SecA2 ATPase in wild type and azide resistant mutants of L. monocytogenes revealed for the first time that SecA2-dependent protein secretion also requires the ATPase activity of the house-keeping SecA protein.
Collapse
Affiliation(s)
- Sven Halbedel
- From the ‡Robert Koch Institute, FG11 - Division of Enteropathogenic Bacteria and Legionella, Burgstrasse 37, 38855 Wernigerode, Germany;
| | - Swantje Reiss
- §Institute of Microbiology, University of Greifswald, F.-L.-Jahn-Strasse 15, 17487 Greifswald, Germany
| | - Birgit Hahn
- From the ‡Robert Koch Institute, FG11 - Division of Enteropathogenic Bacteria and Legionella, Burgstrasse 37, 38855 Wernigerode, Germany
| | - Dirk Albrecht
- §Institute of Microbiology, University of Greifswald, F.-L.-Jahn-Strasse 15, 17487 Greifswald, Germany
| | - Gopala Krishna Mannala
- ¶Institute of Medical Microbiology, University of Gießen, Schubertstrasse 81, 35392 Gießen, Germany
| | - Trinad Chakraborty
- ¶Institute of Medical Microbiology, University of Gießen, Schubertstrasse 81, 35392 Gießen, Germany
| | - Torsten Hain
- ¶Institute of Medical Microbiology, University of Gießen, Schubertstrasse 81, 35392 Gießen, Germany
| | - Susanne Engelmann
- §Institute of Microbiology, University of Greifswald, F.-L.-Jahn-Strasse 15, 17487 Greifswald, Germany; ‖Institute of Microbiology, Technical University of Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany; **Helmholtz Centre for Infection Research, Microbial Proteomics, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Antje Flieger
- From the ‡Robert Koch Institute, FG11 - Division of Enteropathogenic Bacteria and Legionella, Burgstrasse 37, 38855 Wernigerode, Germany;
| |
Collapse
|
42
|
Konovalova A, Søgaard-Andersen L, Kroos L. Regulated proteolysis in bacterial development. FEMS Microbiol Rev 2013; 38:493-522. [PMID: 24354618 DOI: 10.1111/1574-6976.12050] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/03/2013] [Accepted: 10/14/2013] [Indexed: 11/30/2022] Open
Abstract
Bacteria use proteases to control three types of events temporally and spatially during the processes of morphological development. These events are the destruction of regulatory proteins, activation of regulatory proteins, and production of signals. While some of these events are entirely cytoplasmic, others involve intramembrane proteolysis of a substrate, transmembrane signaling, or secretion. In some cases, multiple proteolytic events are organized into pathways, for example turnover of a regulatory protein activates a protease that generates a signal. We review well-studied and emerging examples and identify recurring themes and important questions for future research. We focus primarily on paradigms learned from studies of model organisms, but we note connections to regulated proteolytic events that govern bacterial adaptation, biofilm formation and disassembly, and pathogenesis.
Collapse
Affiliation(s)
- Anna Konovalova
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | | |
Collapse
|
43
|
Kroos L, Akiyama Y. Biochemical and structural insights into intramembrane metalloprotease mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2873-85. [PMID: 24099006 DOI: 10.1016/j.bbamem.2013.03.032] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 03/07/2013] [Accepted: 03/27/2013] [Indexed: 01/11/2023]
Abstract
Intramembrane metalloproteases are nearly ubiquitous in living organisms and they function in diverse processes ranging from cholesterol homeostasis and the unfolded protein response in humans to sporulation, stress responses, and virulence of bacteria. Understanding how these enzymes function in membranes is a challenge of fundamental interest with potential applications if modulators can be devised. Progress is described toward a mechanistic understanding, based primarily on molecular genetic and biochemical studies of human S2P and bacterial SpoIVFB and RseP, and on the structure of the membrane domain of an archaeal enzyme. Conserved features of the enzymes appear to include transmembrane helices and loops around the active site zinc ion, which may be near the membrane surface. Extramembrane domains such as PDZ (PSD-95, DLG, ZO-1) or CBS (cystathionine-β-synthase) domains govern substrate access to the active site, but several different mechanisms of access and cleavage site selection can be envisioned, which might differ depending on the substrate and the enzyme. More work is needed to distinguish between these mechanisms, both for enzymes that have been relatively well-studied, and for enzymes lacking PDZ and CBS domains, which have not been studied. This article is part of a Special Issue entitled: Intramembrane Proteases.
Collapse
Affiliation(s)
- Lee Kroos
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| | | |
Collapse
|
44
|
Pereira FC, Saujet L, Tomé AR, Serrano M, Monot M, Couture-Tosi E, Martin-Verstraete I, Dupuy B, Henriques AO. The spore differentiation pathway in the enteric pathogen Clostridium difficile. PLoS Genet 2013; 9:e1003782. [PMID: 24098139 PMCID: PMC3789829 DOI: 10.1371/journal.pgen.1003782] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 07/25/2013] [Indexed: 12/20/2022] Open
Abstract
Endosporulation is an ancient bacterial developmental program that culminates with the differentiation of a highly resistant endospore. In the model organism Bacillus subtilis, gene expression in the forespore and in the mother cell, the two cells that participate in endospore development, is governed by cell type-specific RNA polymerase sigma subunits. σ(F) in the forespore, and σ(E) in the mother cell control early stages of development and are replaced, at later stages, by σ(G) and σ(K), respectively. Starting with σ(F), the activation of the sigma factors is sequential, requires the preceding factor, and involves cell-cell signaling pathways that operate at key morphological stages. Here, we have studied the function and regulation of the sporulation sigma factors in the intestinal pathogen Clostridium difficile, an obligate anaerobe in which the endospores are central to the infectious cycle. The morphological characterization of mutants for the sporulation sigma factors, in parallel with use of a fluorescence reporter for single cell analysis of gene expression, unraveled important deviations from the B. subtilis paradigm. While the main periods of activity of the sigma factors are conserved, we show that the activity of σ(E) is partially independent of σ(F), that σ(G) activity is not dependent on σ(E), and that the activity of σ(K) does not require σ(G). We also show that σ(K) is not strictly required for heat resistant spore formation. In all, our results indicate reduced temporal segregation between the activities of the early and late sigma factors, and reduced requirement for the σ(F)-to-σ(E), σ(E)-to-σ(G), and σ(G)-to-σ(K) cell-cell signaling pathways. Nevertheless, our results support the view that the top level of the endosporulation network is conserved in evolution, with the sigma factors acting as the key regulators of the pathway, established some 2.5 billion years ago upon its emergence at the base of the Firmicutes Phylum.
Collapse
Affiliation(s)
- Fátima C. Pereira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, ITQB-UNL, Estação Agronómica Nacional, Oeiras, Portugal
| | - Laure Saujet
- Univ. Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
| | - Ana R. Tomé
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, ITQB-UNL, Estação Agronómica Nacional, Oeiras, Portugal
| | - Mónica Serrano
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, ITQB-UNL, Estação Agronómica Nacional, Oeiras, Portugal
| | - Marc Monot
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
| | - Evelyne Couture-Tosi
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
| | - Isabelle Martin-Verstraete
- Univ. Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
| | - Bruno Dupuy
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
- * E-mail: (BD); (AOH)
| | - Adriano O. Henriques
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, ITQB-UNL, Estação Agronómica Nacional, Oeiras, Portugal
- * E-mail: (BD); (AOH)
| |
Collapse
|
45
|
Saujet L, Pereira FC, Serrano M, Soutourina O, Monot M, Shelyakin PV, Gelfand MS, Dupuy B, Henriques AO, Martin-Verstraete I. Genome-wide analysis of cell type-specific gene transcription during spore formation in Clostridium difficile. PLoS Genet 2013; 9:e1003756. [PMID: 24098137 PMCID: PMC3789822 DOI: 10.1371/journal.pgen.1003756] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 07/12/2013] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile, a Gram positive, anaerobic, spore-forming bacterium is an emergent pathogen and the most common cause of nosocomial diarrhea. Although transmission of C. difficile is mediated by contamination of the gut by spores, the regulatory cascade controlling spore formation remains poorly characterized. During Bacillus subtilis sporulation, a cascade of four sigma factors, σ(F) and σ(G) in the forespore and σ(E) and σ(K) in the mother cell governs compartment-specific gene expression. In this work, we combined genome wide transcriptional analyses and promoter mapping to define the C. difficile σ(F), σ(E), σ(G) and σ(K) regulons. We identified about 225 genes under the control of these sigma factors: 25 in the σ(F) regulon, 97 σ(E)-dependent genes, 50 σ(G)-governed genes and 56 genes under σ(K) control. A significant fraction of genes in each regulon is of unknown function but new candidates for spore coat proteins could be proposed as being synthesized under σ(E) or σ(K) control and detected in a previously published spore proteome. SpoIIID of C. difficile also plays a pivotal role in the mother cell line of expression repressing the transcription of many members of the σ(E) regulon and activating sigK expression. Global analysis of developmental gene expression under the control of these sigma factors revealed deviations from the B. subtilis model regarding the communication between mother cell and forespore in C. difficile. We showed that the expression of the σ(E) regulon in the mother cell was not strictly under the control of σ(F) despite the fact that the forespore product SpoIIR was required for the processing of pro-σ(E). In addition, the σ(K) regulon was not controlled by σ(G) in C. difficile in agreement with the lack of pro-σ(K) processing. This work is one key step to obtain new insights about the diversity and evolution of the sporulation process among Firmicutes.
Collapse
Affiliation(s)
- Laure Saujet
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Fátima C. Pereira
- Microbial Development Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Monica Serrano
- Microbial Development Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Olga Soutourina
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Marc Monot
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
| | - Pavel V. Shelyakin
- Institute for Information Transmission Problems, RAS, Bolshoi Karetny per, 19, Moscow, Russia
| | - Mikhail S. Gelfand
- Institute for Information Transmission Problems, RAS, Bolshoi Karetny per, 19, Moscow, Russia
- M.V. Lomonosov Moscow State University, Faculty of Biengineering and Bioinformatics, Vorobievy Gory 1-73, Moscow, Russia
| | - Bruno Dupuy
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
| | - Adriano O. Henriques
- Microbial Development Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Isabelle Martin-Verstraete
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
46
|
Søgaard-Andersen L. Stably bridging a great divide: localization of the SpoIIQ landmark protein in Bacillus subtilis. Mol Microbiol 2013; 89:1019-24. [PMID: 23944268 PMCID: PMC3817522 DOI: 10.1111/mmi.12365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2013] [Indexed: 11/28/2022]
Abstract
Many bacterial proteins involved in fundamental processes such as cell shape maintenance, cell cycle regulation, differentiation, division and motility localize dynamically to specific subcellular regions. However, the mechanisms underlying dynamic protein localization are incompletely understood. Using the SpoIIQ protein in Bacillus subtilis as a case study, two reports present important novel insights into how a protein finds its right place at the right time and remains stably bound. During sporulation, SpoIIQ localizes in clusters in the forespore membrane at the interface that separates the forespore and mother cell and functions as a landmark protein for SpoIIIAH in the mother cell membrane. The extracellular domains of SpoIIQ and SpoIIIAH interact directly effectively bridging the gap between the two membranes. Here, SpoIIQ localization is shown to depend on two pathways, one involves SpoIIIAH, the second involves two peptidoglycan-degrading enzymes SpoIIP and SpoIID; and, SpoIIQ is only delocalized in the absence of all three proteins. Importantly, in the absence of SpoIIIAH, SpoIIQ apparently localizes normally. However, FRAP experiments demonstrated that SpoIIQ is not stably maintained in the clusters in this mutant. Thus, a second targeting pathway can mask significant changes in the localization of a protein.
Collapse
Affiliation(s)
- Lotte Søgaard-Andersen
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany
| |
Collapse
|
47
|
Fredlund J, Broder D, Fleming T, Claussin C, Pogliano K. The SpoIIQ landmark protein has different requirements for septal localization and immobilization. Mol Microbiol 2013; 89:1053-68. [PMID: 23859254 DOI: 10.1111/mmi.12333] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2013] [Indexed: 11/30/2022]
Abstract
Bacillus subtilis sporulation depends on the forespore membrane protein SpoIIQ, which interacts with the mother cell protein SpoIIIAH at the septum to localize other sporulation proteins. It has remained unclear how SpoIIQ localizes. We demonstrate that localization of SpoIIQ is achieved by two pathways: SpoIIIAH and the SpoIID, SpoIIM, SpoIIP engulfment proteins. SpoIIQ shows diffuse localization only in a mutant lacking both pathways. Super-resolution imaging shows that in the absence of SpoIIIAH, SpoIIQ forms fewer, slightly larger foci than in wild type. Surprisingly, photobleaching experiments demonstrate that, although SpoIIQ localizes without SpoIIIAH, it is no longer immobilized, and is therefore able to exchange subunits within a localized pool. SpoIIQ mobility is further increased by the additional absence of the engulfment proteins. However an enzymatically inactive SpoIID protein immobilizes SpoIIQ even in the absence of SpoIIIAH, indicating that complete septal thinning is not required for SpoIIQ localization. This suggests that SpoIIQ interacts with both SpoIIIAH and the engulfment proteins or their peptidoglycan cleavage products. They further demonstrate that apparently normal localization of a protein without a binding partner can mask dramatic alterations in protein mobility. We speculate that SpoIIQ assembles foci along the path defined by engulfment proteins degrading peptidoglycan.
Collapse
Affiliation(s)
- Jennifer Fredlund
- Division of Biological Sciences, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0377, USA
| | | | | | | | | |
Collapse
|
48
|
Global analysis of the sporulation pathway of Clostridium difficile. PLoS Genet 2013; 9:e1003660. [PMID: 23950727 PMCID: PMC3738446 DOI: 10.1371/journal.pgen.1003660] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 05/28/2013] [Indexed: 12/19/2022] Open
Abstract
The Gram-positive, spore-forming pathogen Clostridium difficile is the leading definable cause of healthcare-associated diarrhea worldwide. C. difficile infections are difficult to treat because of their frequent recurrence, which can cause life-threatening complications such as pseudomembranous colitis. The spores of C. difficile are responsible for these high rates of recurrence, since they are the major transmissive form of the organism and resistant to antibiotics and many disinfectants. Despite the importance of spores to the pathogenesis of C. difficile, little is known about their composition or formation. Based on studies in Bacillus subtilis and other Clostridium spp., the sigma factors σ(F), σ(E), σ(G), and σ(K) are predicted to control the transcription of genes required for sporulation, although their specific functions vary depending on the organism. In order to determine the roles of σ(F), σ(E), σ(G), and σ(K) in regulating C. difficile sporulation, we generated loss-of-function mutations in genes encoding these sporulation sigma factors and performed RNA-Sequencing to identify specific sigma factor-dependent genes. This analysis identified 224 genes whose expression was collectively activated by sporulation sigma factors: 183 were σ(F)-dependent, 169 were σ(E)-dependent, 34 were σ(G)-dependent, and 31 were σ(K)-dependent. In contrast with B. subtilis, C. difficile σ(E) was dispensable for σ(G) activation, σ(G) was dispensable for σ(K) activation, and σ(F) was required for post-translationally activating σ(G). Collectively, these results provide the first genome-wide transcriptional analysis of genes induced by specific sporulation sigma factors in the Clostridia and highlight that diverse mechanisms regulate sporulation sigma factor activity in the Firmicutes.
Collapse
|
49
|
Rodrigues CDA, Marquis KA, Meisner J, Rudner DZ. Peptidoglycan hydrolysis is required for assembly and activity of the transenvelope secretion complex during sporulation in Bacillus subtilis. Mol Microbiol 2013; 89:1039-52. [PMID: 23834622 DOI: 10.1111/mmi.12322] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2013] [Indexed: 01/22/2023]
Abstract
Sporulating Bacillus subtilis cells assemble a transenvelope secretion complex that connects the mother cell and developing spore. The forespore protein SpoIIQ and the mother-cell protein SpoIIIAH interact across the double membrane septum and are thought to assemble into a channel that serves as the basement layer of this specialized secretion system. SpoIIQ is absolutely required to recruit SpoIIIAH to the sporulation septum on the mother-cell side, however the mechanism by which SpoIIQ is localized has been unclear. Here, we show that SpoIIQ localization requires its partner protein SpoIIIAH and degradation of the septal peptidoglycan (PG) by the two cell wall hydrolases SpoIID and SpoIIP. Our data suggest that PG degradation enables a second mother-cell-produced protein to interact with SpoIIQ. Cells in which both mother-cell anchoring mechanisms have been disabled have a synergistic sporulation defect suggesting that both localization factors function in the secretion complex. Finally, we show that septal PG degradation is critical for the assembly of an active complex. Altogether, these results suggest that the specialized secretion system that links the mother cell and forespore has a complexity approaching those found in Gram-negative bacteria and reveal that the sporulating cell must overcome similar challenges in assembling a transenvelope complex.
Collapse
Affiliation(s)
- Christopher D A Rodrigues
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | | | | | | |
Collapse
|
50
|
Peters NT, Morlot C, Yang DC, Uehara T, Vernet T, Bernhardt TG. Structure-function analysis of the LytM domain of EnvC, an activator of cell wall remodelling at the Escherichia coli division site. Mol Microbiol 2013; 89:690-701. [PMID: 23796240 DOI: 10.1111/mmi.12304] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2013] [Indexed: 12/19/2022]
Abstract
Proteins with LytM (Peptidase_M23) domains are broadly distributed in bacteria and have been implicated in a variety of important processes, including cell division and cell-shape determination. Most LytM-like proteins that have been structurally and/or biochemically characterized are metallo-endopeptidases that cleave cross-links in the peptidoglycan (PG) cell wall matrix. Notable exceptions are the Escherichia coli cell division proteins EnvC and NlpD. These LytM factors are not hydrolases themselves, but instead serve as activators that stimulate PG cleavage by target enzymes called amidases to promote cell separation. Here we report the structure of the LytM domain from EnvC, the first structure of a LytM factor implicated in the regulation of PG hydrolysis. As expected, the fold is highly similar to that of other LytM proteins. However, consistent with its role as a regulator, the active-site region is degenerate and lacks a catalytic metal ion. Importantly, genetic analysis indicates that residues in and around this degenerate active site are critical for amidase activation in vivo and in vitro. Thus, in the regulatory LytM factors, the apparent substrate binding pocket conserved in active metallo-endopeptidases has been adapted to control PG hydrolysis by another set of enzymes.
Collapse
Affiliation(s)
- Nick T Peters
- Department of Microbiology and Immunobiology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|