1
|
Abstract
Entamoeba histolytica is the protozoan parasite that causes human amoebiasis. It is one of the leading parasitic disease burdens in tropical regions and developing countries, with spread to developed countries through migrants from and travellers to endemic regions.Understanding E. histolytica's invasion mechanisms requires an understanding of how it interacts with external cell components and how it engulfs and kills cells (phagocytosis). Recent research suggests that optimal phagocytosis requires signalling events from the cell surface to the nucleus via the cytoplasm, and the induction of several factors that are transported to the plasma membrane. Current research in other protozoans suggests the presence of proteins with nuclear localization signals, nuclear export signals and Ran proteins; however, there is limited literature on their functionality and their functional similarity to higher eukaryotes.Based on learnings from the development of antivirals, nuclear transport elements in E. histolytica may present viable, specific, therapeutic targets.In this review, we aim to summarize our limited knowledge of the eukaryotic nuclear transport mechanisms that are conserved and may function in E. histolytica.
Collapse
|
2
|
Ávila AR, Cabezas-Cruz A, Gissot M. mRNA export in the apicomplexan parasite Toxoplasma gondii: emerging divergent components of a crucial pathway. Parasit Vectors 2018; 11:62. [PMID: 29370868 PMCID: PMC5785795 DOI: 10.1186/s13071-018-2648-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/15/2018] [Indexed: 01/08/2023] Open
Abstract
Control of gene expression is crucial for parasite survival and is the result of a series of processes that are regulated to permit fine-tuning of gene expression in response to biological changes during the life-cycle of apicomplexan parasites. Control of mRNA nuclear export is a key process in eukaryotic cells but is poorly understood in apicomplexan parasites. Here, we review recent knowledge regarding this process with an emphasis on T. gondii. We describe the presence of divergent orthologs and discuss structural and functional differences in export factors between apicomplexans and other eukaryotic lineages. Undoubtedly, the use of the CRISPR/Cas9 system in high throughput screenings associated with the discovery of mRNA nuclear export complexes by proteomic analysis will contribute to identify these divergent factors. Ligand-based or structure-based strategies may be applied to investigate the potential use of these proteins as targets for new antiprotozoal agents.
Collapse
Affiliation(s)
- Andréa Rodrigues Ávila
- Instituto Carlos Chagas, FIOCRUZ, Rua Algacyr Munhoz Mader, 3775. CIC, Curitiba, PR, 81350-010, Brazil. .,UMR BIPAR, Animal Health Laboratory, ANSES, INRA, ENVA, Maisons Alfort, Cedex, France.
| | - Alexjandro Cabezas-Cruz
- UMR BIPAR, Animal Health Laboratory, ANSES, INRA, ENVA, Maisons Alfort, Cedex, France.,Institute of Parasitology, Biology Center, Czech Academy of Sciences, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Mathieu Gissot
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000, Lille, France.
| |
Collapse
|
3
|
Wen Y, Wang Y, Wang W, Lu M, Ehsan M, Tian X, Yan R, Song X, Xu L, Li X. Recombinant Miro domain-containing protein of Haemonchus contortus (rMiro-1) activates goat peripheral blood mononuclear cells in vitro. Vet Parasitol 2017; 243:100-104. [PMID: 28807275 DOI: 10.1016/j.vetpar.2017.06.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 06/20/2017] [Accepted: 06/20/2017] [Indexed: 10/19/2022]
Abstract
In our previous proteomics study, we identified Miro domain-containing protein (Miro-1), an excretory and secretory product of the pole worm, Haemonchus contortus, binds to goat peripheral blood mononuclear cells (PBMCs) in vivo. However, our understanding of the role of Miro-1and its potential immune impact on goat PBMCs is limited. The aim of the present study was to evaluate the effects of Miro-1 on functions of goat PBMCs in vitro. Recombinant protein (rMiro-1) was expressed in a prokaryote and incubated with goat PBMCs. Western blot analysis showed that rMiro-1 is successfully recognized by goat sera infected with H. contortus. Immunofluorescence analysis using rat antibodies against rMiro-1 indicated that this protein binds to goat PBMCs in vitro. Treatment of goat PBMCs/monocytes with various concentrations of rMiro-1 resulted in the upregulation of IL-2, IL-4, and IL-17, which in turn promoted cell proliferation, migration, the release of NO in PBMCs, and enhancement of phagocytosis of monocytes. These findings suggested that rMiro-1 stimulates PBMCs activity.
Collapse
Affiliation(s)
- YuLing Wen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - YuJian Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - WenJuan Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - MingMin Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Muhammad Ehsan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - XiaoWei Tian
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - RuoFeng Yan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - XiaoKai Song
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - LiXin Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - XiangRui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| |
Collapse
|
4
|
Brasseur A, Bayat S, Chua XL, Zhang Y, Zhou Q, Low BC, He CY. The bi-lobe-associated LRRP1 regulates Ran activity in Trypanosoma brucei. J Cell Sci 2014; 127:4846-56. [PMID: 25217630 DOI: 10.1242/jcs.148015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cilia and flagella are conserved eukaryotic organelles important for motility and sensory. The RanGTPase, best known for nucleocytoplasmic transport functions, may also play a role in protein trafficking into the specialized flagellar/ciliary compartments, although the regulatory mechanisms controlling Ran activity at the flagellum remain unclear. The unicellular parasite Trypanosoma brucei contains a single flagellum necessary for cell movement, division and morphogenesis. Correct flagellum functions require flagellar attachment to the cell body, which is mediated by a specialized flagellum attachment zone (FAZ) complex that is assembled together with the flagellum during the cell cycle. We have previously identified the leucine-rich-repeat protein 1 LRRP1 on a bi-lobe structure at the proximal base of flagellum and FAZ. LRRP1 is essential for bi-lobe and FAZ biogenesis, consequently affecting flagellum-driven cell motility and division. Here, we show that LRRP1 forms a complex with Ran and a Ran-binding protein, and regulates Ran-GTP hydrolysis in T. brucei. In addition to mitotic inhibition, depletion of Ran inhibits FAZ assembly in T. brucei, supporting the presence of a conserved mechanism that involves Ran in the regulation of flagellum functions in an early divergent eukaryote.
Collapse
Affiliation(s)
- Anaïs Brasseur
- Department of Biological Sciences, Centre for BioImaging Sciences, National University of Singapore, 14 Science Drive 4, S1A #06-04, Singapore 117543, Singapore
| | - Shima Bayat
- Department of Biological Sciences, Centre for BioImaging Sciences, National University of Singapore, 14 Science Drive 4, S1A #06-04, Singapore 117543, Singapore
| | - Xiu Ling Chua
- Department of Biological Sciences, Centre for BioImaging Sciences, National University of Singapore, 14 Science Drive 4, S1A #06-04, Singapore 117543, Singapore
| | - Yu Zhang
- Department of Biological Sciences, Centre for BioImaging Sciences, National University of Singapore, 14 Science Drive 4, S1A #06-04, Singapore 117543, Singapore
| | | | - Boon Chuan Low
- Singapore Mechanobiology Institute, National University of Singapore, T-Lab, #10-01, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Cynthia Y He
- Department of Biological Sciences, Centre for BioImaging Sciences, National University of Singapore, 14 Science Drive 4, S1A #06-04, Singapore 117543, Singapore
| |
Collapse
|
5
|
Leishmania donovani Ran-GTPase interacts at the nuclear rim with linker histone H1. Biochem J 2009; 424:367-74. [DOI: 10.1042/bj20090576] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ran-GTPase regulates multiple cellular processes such as nucleocytoplasmic transport, mitotic spindle assembly, nuclear envelope assembly, cell-cycle progression and the mitotic checkpoint. The leishmanial Ran protein, in contrast with its mammalian counterpart which is predominately nucleoplasmic, is localized at the nuclear rim. The aim of the present study was to characterize the LdRan (Leishmania donovani Ran) orthologue with an emphasis on the Ran–histone association. LdRan was found to be developmentally regulated, expressed 3-fold less in the amastigote stage. LdRan overexpression caused a growth defect linked to a delayed S-phase progression in promastigotes as for its mammalian counterpart. We report for the first time that Ran interacts with a linker histone, histone H1, in vitro and that the two proteins co-localize at the parasite nuclear rim. Interaction of Ran with core histones H3 and H4, creating in metazoans a chromosomal Ran-GTP gradient important for mitotic spindle assembly, is speculative in Leishmania spp., not only because this parasite undergoes a closed mitosis, but also because the main localization of LdRan is different from that of core histone H3. Interaction of Ran with the leishmanial linker histone H1 (LeishH1) suggests that this association maybe involved in modulation of pathways other than those documented for the metazoan Ran–core histone association.
Collapse
|
6
|
Frankel MB, Knoll LJ. The ins and outs of nuclear trafficking: unusual aspects in apicomplexan parasites. DNA Cell Biol 2009; 28:277-84. [PMID: 19348590 DOI: 10.1089/dna.2009.0853] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Apicomplexa is a phylum within the kingdom Protista that contains some of the most significant threats to public health. One of the members of this phylum, Toxoplasma gondii, is amenable to molecular genetic analyses allowing for the identification of factors critical for colonization and disease. A pathway found to be important for T. gondii pathogenesis is the Ran network of nuclear trafficking. Bioinformatics analysis of apicomplexan genomes shows that while Ran is well conserved, the key regulators of Ran--Regulator of Chromosome Condensation 1 and Ran GTPase activating protein--are either highly divergent or absent. Likewise, several import and export receptor molecules that are crucial for nuclear transport are either not present or have experienced genetic drift such that they are no longer recognizable by bioinformatics tools. In this minireview we describe the basics of nuclear trafficking and compare components within apicomplexans to defined systems in humans and yeast. A detailed analysis of the nuclear trafficking network in these eukaryotes is required to understand how this potentially unique cellular biological pathway contributes to host-parasite interactions.
Collapse
Affiliation(s)
- Matthew B Frankel
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
7
|
Yudin D, Fainzilber M. Ran on tracks – cytoplasmic roles for a nuclear regulator. J Cell Sci 2009; 122:587-93. [PMID: 19225125 DOI: 10.1242/jcs.015289] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The GTPase Ran is best known for its crucial roles in the regulation of nucleocytoplasmic transport in interphase cells and in the organization of the spindle apparatus during mitosis. A flurry of recent reports has now implicated Ran in diverse cytoplasmic events, including trafficking of an ephrin receptor homolog in nematode oocytes, control of neurite outgrowth in Drosophila and mammalian neurons, and retrograde signaling in nerve axons after injury. Striking findings suggest that the guanine-nucleotide state of Ran can be regulated by local translation of the Ran-binding protein RanBP1 in axons, and that an additional Ran-binding protein, RanBP10, can act as a microtubule-binding cytoplasmic guanine-nucleotide exchange factor for Ran (RanGEF) in megakaryocytes. Thus, the Ran GTPase system can act as a spatial regulator of importin-dependent transport and signaling in distal cytoplasm, and as a regulator of cytoskeletal dynamics at sites that are distant from the nucleus.
Collapse
Affiliation(s)
- Dmitry Yudin
- Department of Biological Chemistry, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Mike Fainzilber
- Department of Biological Chemistry, Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|