1
|
Siegel EL, Rich C, Saravanan S, Pearson P, Xu G, Rich SM. Effects of Inosine-5'-monophosphate Dehydrogenase (IMPDH/GuaB) Inhibitors on Borrelia burgdorferi Growth in Standard and Modified Culture Conditions. Microorganisms 2024; 12:2064. [PMID: 39458373 PMCID: PMC11509813 DOI: 10.3390/microorganisms12102064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Borrelia burgdorferi's inosine-5'-monophosphate dehydrogenase (IMPDH, GuaB encoded by the guaB gene) is a potential therapeutic target. GuaB is necessary for B. burgdorferi replication in mammalian hosts but not in standard laboratory culture conditions. Therefore, we cannot test novel GuaB inhibitors against B. burgdorferi without utilizing mammalian infection models. This study aimed to evaluate modifications to a standard growth medium that may mimic mammalian conditions and induce the requirement of GuaB usage for replication. The effects of two GuaB inhibitors (mycophenolic acid, 6-chloropurine riboside at 125 μM and 250 μM) were assessed against B. burgdorferi (guaB+) grown in standard Barbour-Stoenner-Kelly-II (BSK-II) medium (6% rabbit serum) and BSK-II modified to 60% concentration rabbit serum (BSK-II/60% serum). BSK-II directly supplemented with adenine, hypoxanthine, and nicotinamide (75 μM each, BSK-II/AHN) was also considered as a comparison group. In standard BSK-II, neither mycophenolic acid nor 6-chloropurine riboside affected B. burgdorferi growth. Based on an ANOVA, a dose-dependent increase in drug effects was observed in the modified growth conditions (F = 4.471, p = 0.001). Considering higher drug concentrations at exponential growth, mycophenolic acid at 250 μM reduced spirochete replication by 48% in BSK-II/60% serum and by 50% in BSK-II/AHN (p < 0.001 each). 6-chloropurine riboside was more effective in both mediums than mycophenolic acid, reducing replication by 64% in BSK-II/60% serum and 65% in BSK-II/AHN (p < 0.001 each). These results demonstrate that modifying BSK-II medium with physiologically relevant levels of mammalian serum supports replication and induces the effects of GuaB inhibitors. This represents the first use of GuaB inhibitors against Borrelia burgdorferi, building on tests against purified B. burgdorferi GuaB. The strong effects of 6-chloropurine riboside indicate that B. burgdorferi can salvage and phosphorylate these purine derivative analogs. Therefore, this type of molecule may be considered for future drug development. Optimization of this culture system will allow for better assessment of novel Borrelia-specific GuaB inhibitor molecules for Lyme disease interventions. The use of GuaB inhibitors as broadcast sprays or feed baits should also be evaluated to reduce spirochete load in competent reservoir hosts.
Collapse
Affiliation(s)
- Eric L. Siegel
- Laboratory of Medical Zoology, Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA; (E.L.S.); (C.R.); (S.S.); (P.P.); (G.X.)
- New England Center of Excellence in Vector-Borne Disease, Amherst, MA 01003, USA
| | - Connor Rich
- Laboratory of Medical Zoology, Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA; (E.L.S.); (C.R.); (S.S.); (P.P.); (G.X.)
- New England Center of Excellence in Vector-Borne Disease, Amherst, MA 01003, USA
| | - Sanchana Saravanan
- Laboratory of Medical Zoology, Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA; (E.L.S.); (C.R.); (S.S.); (P.P.); (G.X.)
- New England Center of Excellence in Vector-Borne Disease, Amherst, MA 01003, USA
| | - Patrick Pearson
- Laboratory of Medical Zoology, Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA; (E.L.S.); (C.R.); (S.S.); (P.P.); (G.X.)
- New England Center of Excellence in Vector-Borne Disease, Amherst, MA 01003, USA
| | - Guang Xu
- Laboratory of Medical Zoology, Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA; (E.L.S.); (C.R.); (S.S.); (P.P.); (G.X.)
- New England Center of Excellence in Vector-Borne Disease, Amherst, MA 01003, USA
| | - Stephen M. Rich
- Laboratory of Medical Zoology, Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA; (E.L.S.); (C.R.); (S.S.); (P.P.); (G.X.)
- New England Center of Excellence in Vector-Borne Disease, Amherst, MA 01003, USA
| |
Collapse
|
2
|
Mandwal A, Bishop SL, Castellanos M, Westlund A, Chaconas G, Lewis I, Davidsen J. Metabolic Interactive Nodular Network for Omics (MINNO): Refining and investigating metabolic networks based on empirical metabolomics data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.14.548964. [PMID: 37503268 PMCID: PMC10370097 DOI: 10.1101/2023.07.14.548964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Metabolomics is a powerful tool for uncovering biochemical diversity in a wide range of organisms, and metabolic network modeling is commonly used to frame results in the context of a broader homeostatic system. However, network modeling of poorly characterized, non-model organisms remains challenging due to gene homology mismatches. To address this challenge, we developed Metabolic Interactive Nodular Network for Omics (MINNO), a web-based mapping tool that takes in empirical metabolomics data to refine metabolic networks for both model and unusual organisms. MINNO allows users to create and modify interactive metabolic pathway visualizations for thousands of organisms, in both individual and multi-species contexts. Herein, we demonstrate an important application of MINNO in elucidating the metabolic networks of understudied species, such as those of the Borrelia genus, which cause Lyme disease and relapsing fever. Using a hybrid genomics-metabolomics modeling approach, we constructed species-specific metabolic networks for three Borrelia species. Using these empirically refined networks, we were able to metabolically differentiate these genetically similar species via their nucleotide and nicotinate metabolic pathways that cannot be predicted from genomic networks. These examples illustrate the use of metabolomics for the empirical refining of genetically constructed networks and show how MINNO can be used to study non-model organisms.
Collapse
Affiliation(s)
- Ayush Mandwal
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada
| | - Stephanie L. Bishop
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Mildred Castellanos
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Anika Westlund
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - George Chaconas
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Ian Lewis
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Jörn Davidsen
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
3
|
Ramos D, Lasseter AG, Richards CL, Schwarz B, Ghosh S, Victoria B, Bosio CM, Gherardini FC, Jewett MW. Riboflavin salvage by Borrelia burgdorferi supports carbon metabolism and is essential for survival in the tick vector. Mol Microbiol 2022; 118:443-456. [PMID: 36054485 PMCID: PMC9588712 DOI: 10.1111/mmi.14977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 10/20/2023]
Abstract
The Lyme disease agent, Borrelia burgdorferi, harbors a significantly reduced genome and relies on the scavenging of critical nutrients from its tick and mammalian hosts for survival. Riboflavin salvage has been shown to be important for B. burgdorferi infection of mice, yet the contributions of riboflavin to B. burgdorferi metabolism and survival in the tick remain unknown. Using a targeted mass spectrometry approach, we confirmed the importance of bb0318, the putative ATPase component of an ABC-type riboflavin transporter, for riboflavin salvage and the production of FMN and FAD. This analysis further revealed that Δbb0318 B. burgdorferi displayed increased levels of glycerol 3-phosphate compared to the wild-type. The glycerol 3-phosphate dehydrogenase activity of GlpD was found to be FAD-dependent and the transcription and translation of glpD were significantly decreased in Δbb0318 B. burgdorferi. Finally, gene bb0318 was found to be important for maximal spirochete burden in unfed larvae and essential for survival in feeding ticks. Together, these data demonstrate the importance of riboflavin salvage for B. burgdorferi carbon metabolism and survival in ticks.
Collapse
Affiliation(s)
- Darlene Ramos
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Amanda G. Lasseter
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Crystal L. Richards
- Laboratory of Bacteriology, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Benjamin Schwarz
- Laboratory of Bacteriology, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Susmita Ghosh
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
- Tectonic Therapeutics, Watertown, Massachusetts, USA
| | - Berta Victoria
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Catharine M. Bosio
- Laboratory of Bacteriology, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Frank C. Gherardini
- Laboratory of Bacteriology, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Mollie W. Jewett
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
4
|
Abstract
Alteromonas is an opportunistic marine bacterium that persists in the global ocean and has important ecological significance. However, current knowledge about the diversity and ecology of alterophages (phages that infect Alteromonas) is lacking. Here, three similar phages infecting Alteromonas macleodii ATCC 27126T were isolated and physiologically characterized. Transmission electron microscopy revealed Siphoviridae morphology, with an oblate icosahedral head and a long noncontractile tail. Notably, these members displayed a small burst size (15–19 plaque-forming units/cell) yet an extensively broad host spectrum when tested on 175 Alteromonas strains. Such unique infection kinetics are potentially associated with discrepancies in codon usage bias from the host tRNA inventory. Phylogenetic analysis indicated that the three phages are closely evolutionarily related; they clustered at the species level and represent a novel genus. Three auxiliary metabolic genes with roles in nucleotide metabolism and putative biofilm dispersal were found in these phage genomes, which revealed important biogeochemical significance of these alterophages in marine ecosystems. Our isolation and characterization of these novel phages expand the current understanding of alterophage diversity, evolution, and phage–host interactions. IMPORTANCE The marine bacterium Alteromonas is prevalent in the global ocean with crucial ecological significance; however, little is known about the diversity and evolution of its bacteriophages that profoundly affect the bacterial communities. Our study characterized a novel genus of three newly isolated Alteromonas phages that exhibited a distinct infection strategy of broad host spectrum and small burst size. This strategy is likely a consequence of the viral trade-off between virulence and lysis profiles during phage–host coevolution, and our work provides new insight into viral evolution and infection strategies.
Collapse
|
5
|
Fernández-Lucas J, Acebrón I, Wu RY, Alfaro Y, Acosta J, Kaminski PA, Arroyo M, Joachimiak A, Nocek BP, De la Mata I, Mancheño JM. Biochemical and structural studies of two tetrameric nucleoside 2'-deoxyribosyltransferases from psychrophilic and mesophilic bacteria: Insights into cold-adaptation. Int J Biol Macromol 2021; 192:138-150. [PMID: 34624379 DOI: 10.1016/j.ijbiomac.2021.09.164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
Nucleoside 2'-deoxyribosyltransferases (NDTs) catalyze the cleavage of glycosidic bonds of 2'-deoxynucleosides and the following transfer of the 2'-deoxyribose moiety to acceptor nucleobases. Here, we report the crystal structures and biochemical properties of the first tetrameric NDTs: the type I NDT from the mesophilic bacterium Enterococcus faecalis V583 (EfPDT) and the type II NDT from the bacterium Desulfotalea psychrophila (DpNDT), the first psychrophilic NDT. This novel structural and biochemical data permitted an exhaustive comparative analysis aimed to shed light into the basis of the high global stability of the psychrophilic DpNDT, which has a higher melting temperature than EfPDT (58.5 °C versus 54.4 °C) or other mesophilic NDTs. DpNDT possesses a combination of unusual structural motifs not present neither in EfPDT nor any other NDT that most probably contribute to its global stability, in particular, a large aliphatic isoleucine-leucine-valine (ILV) bundle accompanied by a vicinal disulfide bridge and also an intersubunit disulfide bridge, the first described for an NDT. The functional and structural features of DpNDT do not fit the standard features of psychrophilic enzymes, which lead us to consider the implication of (sub)cellular levels together with the protein level in the adaptation of enzymatic activity to low temperatures.
Collapse
Affiliation(s)
- Jesús Fernández-Lucas
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain; Grupo de Investigación en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Calle 58 # 55 66, Barranquilla, Colombia
| | - Iván Acebrón
- Department of Crystallography and Structural Biology, Institute Rocasolano (CSIC), Serrano 119, 28006 Madrid, Spain
| | - Ruiying Y Wu
- Bioscience Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Yohana Alfaro
- Department of Biochemistry and Molecular Biology I, Faculty of Biology, Complutense University of Madrid, C/José Antonio Nováis 2, 28040 Madrid, Spain
| | - Javier Acosta
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain
| | - Pierre A Kaminski
- Institut Pasteur, Unite ́Biologie des Bactéries Pathogènes à Gram-positif, CNRS URL3526, Paris, France
| | - Miguel Arroyo
- Department of Biochemistry and Molecular Biology I, Faculty of Biology, Complutense University of Madrid, C/José Antonio Nováis 2, 28040 Madrid, Spain
| | - Andrzej Joachimiak
- Department of Crystallography and Structural Biology, Institute Rocasolano (CSIC), Serrano 119, 28006 Madrid, Spain; Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA; Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60367, USA
| | - Boguslaw P Nocek
- Bioscience Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Isabel De la Mata
- Department of Biochemistry and Molecular Biology I, Faculty of Biology, Complutense University of Madrid, C/José Antonio Nováis 2, 28040 Madrid, Spain
| | - José M Mancheño
- Department of Crystallography and Structural Biology, Institute Rocasolano (CSIC), Serrano 119, 28006 Madrid, Spain.
| |
Collapse
|
6
|
Liotta L, Luchini A. Unconventional Approaches to Direct Detection of Borreliosis and Other Tick Borne Illnesses: A Path Forward. JOURNAL OF CELLULAR IMMUNOLOGY 2021; 3:164-172. [PMID: 34414392 PMCID: PMC8372993 DOI: 10.33696/immunology.3.094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Lance Liotta
- George Mason University, Manassas, Virginia, USA
| | | |
Collapse
|
7
|
Del Arco J, Acosta J, Fernández-Lucas J. New trends in the biocatalytic production of nucleosidic active pharmaceutical ingredients using 2'-deoxyribosyltransferases. Biotechnol Adv 2021; 51:107701. [PMID: 33515673 DOI: 10.1016/j.biotechadv.2021.107701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/27/2020] [Accepted: 01/21/2021] [Indexed: 12/16/2022]
Abstract
Nowadays, pharmaceutical industry demands competitive and eco-friendly processes for active pharmaceutical ingredients (APIs) manufacturing. In this context, enzyme and whole-cell mediated processes offer an efficient, sustainable and cost-effective alternative to the traditional multi-step and environmentally-harmful chemical processes. Particularly, 2'-deoxyribosyltransferases (NDTs) have emerged as a novel synthetic alternative, not only to chemical but also to other enzyme-mediated synthetic processes. This review describes recent findings in the development and scaling up of NDTs as industrial biocatalysts, including the most relevant and recent examples of single enzymatic steps, multienzyme cascades, chemo-enzymatic approaches, and engineered biocatalysts. Finally, to reflect the inventive and innovative steps of NDT-mediated bioprocesses, a detailed analysis of recently granted patents, with specific focus on industrial synthesis of nucleoside-based APIs, is hereunder presented.
Collapse
Affiliation(s)
- Jon Del Arco
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain
| | - Javier Acosta
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain
| | - Jesús Fernández-Lucas
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain; Grupo de Investigación en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Calle 58 # 55 - 66, Barranquilla, Colombia.
| |
Collapse
|
8
|
Acosta J, Pérez E, Sánchez-Murcia PA, Fillat C, Fernández-Lucas J. Molecular Basis of NDT-Mediated Activation of Nucleoside-Based Prodrugs and Application in Suicide Gene Therapy. Biomolecules 2021; 11:biom11010120. [PMID: 33477716 PMCID: PMC7831932 DOI: 10.3390/biom11010120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 11/16/2022] Open
Abstract
Herein we report the first proof for the application of type II 2′-deoxyribosyltransferase from Lactobacillus delbrueckii (LdNDT) in suicide gene therapy for cancer treatment. To this end, we first confirm the hydrolytic ability of LdNDT over the nucleoside-based prodrugs 2′-deoxy-5-fluorouridine (dFUrd), 2′-deoxy-2-fluoroadenosine (dFAdo), and 2′-deoxy-6-methylpurine riboside (d6MetPRib). Such activity was significantly increased (up to 30-fold) in the presence of an acceptor nucleobase. To shed light on the strong nucleobase dependence for enzymatic activity, different molecular dynamics simulations were carried out. Finally, as a proof of concept, we tested the LdNDT/dFAdo system in human cervical cancer (HeLa) cells. Interestingly, LdNDT/dFAdo showed a pronounced reduction in cellular viability with inhibitory concentrations in the low micromolar range. These results open up future opportunities for the clinical implementation of nucleoside 2′-deoxyribosyltransferases (NDTs) in cancer treatment.
Collapse
Affiliation(s)
- Javier Acosta
- Applied Biotechnology Group, European University of Madrid, c/ Tajo s/n, Villaviciosa de Odón, 28670 Madrid, Spain; (J.A.); (E.P.)
| | - Elena Pérez
- Applied Biotechnology Group, European University of Madrid, c/ Tajo s/n, Villaviciosa de Odón, 28670 Madrid, Spain; (J.A.); (E.P.)
| | - Pedro A. Sánchez-Murcia
- Division of Physiological Chemistry, Otto-Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/III, A-8010 Graz, Austria;
| | - Cristina Fillat
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08036 Barcelona, Spain
| | - Jesús Fernández-Lucas
- Division of Physiological Chemistry, Otto-Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/III, A-8010 Graz, Austria;
- Grupo de Investigación en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Calle 58 # 55-66 Barranquilla, Colombia
- Correspondence:
| |
Collapse
|
9
|
Structural and Biomolecular Analyses of Borrelia burgdorferi BmpD Reveal a Substrate-Binding Protein of an ABC-Type Nucleoside Transporter Family. Infect Immun 2020; 88:IAI.00962-19. [PMID: 31988175 PMCID: PMC7093131 DOI: 10.1128/iai.00962-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 01/23/2020] [Indexed: 02/08/2023] Open
Abstract
Borrelia burgdorferisensu lato, the causative agent of tick-borne Lyme borreliosis (LB), has a limited metabolic capacity and needs to acquire nutrients, such as amino acids, fatty acids, and nucleic acids, from the host environment. Using X-ray crystallography, liquid chromatography-mass spectrometry, microscale thermophoresis, and cellular localization studies, we show that basic membrane protein D (BmpD) is a periplasmic substrate-binding protein of an ABC transporter system binding to purine nucleosides. Borrelia burgdorferisensu lato, the causative agent of tick-borne Lyme borreliosis (LB), has a limited metabolic capacity and needs to acquire nutrients, such as amino acids, fatty acids, and nucleic acids, from the host environment. Using X-ray crystallography, liquid chromatography-mass spectrometry, microscale thermophoresis, and cellular localization studies, we show that basic membrane protein D (BmpD) is a periplasmic substrate-binding protein of an ABC transporter system binding to purine nucleosides. Nucleosides are essential for bacterial survival in the host organism, and these studies suggest a key role for BmpD in the purine salvage pathway of B. burgdorferi sensu lato. Because B. burgdorferisensu lato lacks the enzymes required for de novo purine synthesis, BmpD may play a vital role in ensuring access to the purines needed to sustain an infection in the host. Furthermore, we show that, although human LB patients develop anti-BmpD antibodies, immunization of mice with BmpD does not confer protection against B. burgdorferi sensu lato infection.
Collapse
|
10
|
Jones-Carson J, Yahashiri A, Kim JS, Liu L, Fitzsimmons LF, Weiss DS, Vázquez-Torres A. Nitric oxide disrupts bacterial cytokinesis by poisoning purine metabolism. SCIENCE ADVANCES 2020; 6:eaaz0260. [PMID: 32133408 PMCID: PMC7043908 DOI: 10.1126/sciadv.aaz0260] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/04/2019] [Indexed: 06/02/2023]
Abstract
Cytostasis is the most salient manifestation of the potent antimicrobial activity of nitric oxide (NO), yet the mechanism by which NO disrupts bacterial cell division is unknown. Here, we show that in respiring Escherichia coli, Salmonella, and Bacillus subtilis, NO arrests the first step in division, namely, the GTP-dependent assembly of the bacterial tubulin homolog FtsZ into a cytokinetic ring. FtsZ assembly fails in respiring cells because NO inactivates inosine 5'-monophosphate dehydrogenase in de novo purine nucleotide biosynthesis and quinol oxidases in the electron transport chain, leading to drastic depletion of nucleoside triphosphates, including the GTP needed for the polymerization of FtsZ. Despite inhibiting respiration and dissipating proton motive force, NO does not destroy Z ring formation and only modestly decreases nucleoside triphosphates in glycolytic cells, which obtain much of their ATP by substrate-level phosphorylation and overexpress inosine 5'-monophosphate dehydrogenase. Purine metabolism dictates the susceptibility of early morphogenic steps in cytokinesis to NO toxicity.
Collapse
Affiliation(s)
- Jessica Jones-Carson
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
- Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, CO, USA
| | - Atsushi Yahashiri
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Ju-Sim Kim
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Lin Liu
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Liam F. Fitzsimmons
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - David S. Weiss
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Andrés Vázquez-Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
- Veterans Administration Eastern Colorado Health Care System, Aurora, CO, USA
| |
Collapse
|
11
|
Pérez E, Sánchez‐Murcia PA, Jordaan J, Blanco MD, Mancheño JM, Gago F, Fernández‐Lucas J. Enzymatic Synthesis of Therapeutic Nucleosides using a Highly Versatile Purine Nucleoside 2’‐DeoxyribosylTransferase from
Trypanosoma brucei. ChemCatChem 2018. [DOI: 10.1002/cctc.201800775] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Elena Pérez
- Applied Biotechnology GroupUniversidad Europea de Madrid Villaviciosa de Odón E-28670 Spain
| | - Pedro A. Sánchez‐Murcia
- Institute of Theoretical Chemistry Faculty of ChemistryUniversity of Vienna Vienna 1090 Austria
| | - Justin Jordaan
- Biotechnology Innovation CentreRhodes University Grahamstown 6140 South Africa
- ReSyn Biosciences Meiring Naudé Road Brummeria Pretoria 0184 South Africa
| | - María Dolores Blanco
- Department of Biochemistry and Molecular Biology III School of MedicineUniversidad Complutense Madrid E-28040 Spain
| | - José Miguel Mancheño
- Department of Crystallography and Structural BiologyRocasolano Institute (CSIC) Madrid E-28006 Spain
| | - Federico Gago
- Department of Biomedical Sciences and “U. A. IQM-CSIC” School of Medicine and Health SciencesUniversity of Alcalá Alcalá de Henares E-28805 Spain
| | - Jesús Fernández‐Lucas
- Applied Biotechnology GroupUniversidad Europea de Madrid Villaviciosa de Odón E-28670 Spain
- Grupo de Investigación en Desarrollo Agroindustrial SostenibleUniversidad de la Costa Barranquilla 080002 Colombia
| |
Collapse
|
12
|
Del Arco J, Fernández-Lucas J. Purine and pyrimidine salvage pathway in thermophiles: a valuable source of biocatalysts for the industrial production of nucleic acid derivatives. Appl Microbiol Biotechnol 2018; 102:7805-7820. [PMID: 30027492 DOI: 10.1007/s00253-018-9242-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/11/2018] [Accepted: 07/11/2018] [Indexed: 12/25/2022]
Abstract
Due to their similarity to natural counterparts, nucleic acid derivatives (nucleobases, nucleosides, and nucleotides, among others) are interesting molecules for pharmaceutical, biomedical, or food industries. For this reason, there is increasing worldwide demand for the development of efficient synthetic processes for these compounds. Chemical synthetic methodologies require numerous protection-deprotection steps and often lead to the presence of undesirable by-products or enantiomeric mixtures. These methods also require harsh operating conditions, such as the use of organic solvents and hazard reagents. Conversely, enzymatic production by whole cells or enzymes improves regio-, stereo-, and enantioselectivity and provides an eco-friendly alternative. Because of their essential role in purine and pyrimidine scavenging, enzymes from purine and pyrimidine salvage pathways are valuable candidates for the synthesis of many different nucleic acid components. In recent years, many different enzymes from these routes, such as nucleoside phosphorylases, nucleoside kinases, 2'-deoxyribosyltransferases, phosphoribosyl transferases, or deaminases, have been successfully employed as biocatalysts in the production of nucleobase, nucleoside, or nucleotide analogs. Due to their great activity and stability at extremely high temperatures, the use of enzymes from thermophiles in industrial biocatalysis is gaining momentum. Thermophilic enzymes not only display unique characteristics such as temperature, chemical, and pH stability but also provide many different advantages from an industrial perspective. This mini-review aims to cover the most representative enzymatic approaches for the synthesis of nucleic acid derivatives. In this regard, we provide detailed comments about enzymes involved in crucial steps of purine and pyrimidine salvage pathways in thermophiles, as well as their biological role, biochemical characterization, active site mechanism, and substrate specificity. In addition, the most interesting synthetic examples reported in the literature are also included.
Collapse
Affiliation(s)
- Jon Del Arco
- Applied Biotechnology Group, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Urbanización El Bosque, c/ Tajo, s/n, E-28670, Villaviciosa de Odón, Madrid, Spain
| | - Jesús Fernández-Lucas
- Applied Biotechnology Group, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Urbanización El Bosque, c/ Tajo, s/n, E-28670, Villaviciosa de Odón, Madrid, Spain. .,Grupo de Investigación en Desarrollo Agroindustrial Sostenible, Universidad de la Costa, CUC, Calle 58 #55-66, Barranquilla, Colombia.
| |
Collapse
|
13
|
Characterization of an atypical, thermostable, organic solvent- and acid-tolerant 2'-deoxyribosyltransferase from Chroococcidiopsis thermalis. Appl Microbiol Biotechnol 2018; 102:6947-6957. [PMID: 29872887 DOI: 10.1007/s00253-018-9134-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/15/2018] [Accepted: 05/23/2018] [Indexed: 10/14/2022]
Abstract
In our search for thermophilic and acid-tolerant nucleoside 2'-deoxyribosyltransferases (NDTs), we found a good candidate in an enzyme encoded by Chroococcidiopsis thermalis PCC 7203 (CtNDT). Biophysical and biochemical characterization revealed CtNDT as a homotetramer endowed with good activity and stability at both high temperatures (50-100 °C) and a wide range of pH values (from 3 to 7). CtNDT recognizes purine bases and their corresponding 2'-deoxynucleosides but is also proficient using cytosine and 2'-deoxycytidine as substrates. These unusual features preclude the strict classification of CtNDT as either a type I or a type II NDT and further suggest that this simple subdivision may need to be updated in the future. Our findings also hint at a possible link between oligomeric state and NDT's substrate specificity. Interestingly from a practical perspective, CtNDT displays high activity (80-100%) in the presence of several water-miscible co-solvents in a proportion of up to 20% and was successfully employed in the enzymatic production of several therapeutic nucleosides such as didanosine, vidarabine, and cytarabine.
Collapse
|
14
|
2′-Deoxyribosyltransferase from Bacillus psychrosaccharolyticus: A Mesophilic-Like Biocatalyst for the Synthesis of Modified Nucleosides from a Psychrotolerant Bacterium. Catalysts 2018. [DOI: 10.3390/catal8010008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
15
|
Crespo N, Sánchez-Murcia PA, Gago F, Cejudo-Sanches J, Galmes MA, Fernández-Lucas J, Mancheño JM. 2'-Deoxyribosyltransferase from Leishmania mexicana, an efficient biocatalyst for one-pot, one-step synthesis of nucleosides from poorly soluble purine bases. Appl Microbiol Biotechnol 2017; 101:7187-7200. [PMID: 28785897 DOI: 10.1007/s00253-017-8450-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/19/2017] [Accepted: 07/21/2017] [Indexed: 12/11/2022]
Abstract
Processes catalyzed by enzymes offer numerous advantages over chemical methods although in many occasions the stability of the biocatalysts becomes a serious concern. Traditionally, synthesis of nucleosides using poorly water-soluble purine bases, such as guanine, xanthine, or hypoxanthine, requires alkaline pH and/or high temperatures in order to solubilize the substrate. In this work, we demonstrate that the 2'-deoxyribosyltransferase from Leishmania mexicana (LmPDT) exhibits an unusually high activity and stability under alkaline conditions (pH 8-10) across a broad range of temperatures (30-70 °C) and ionic strengths (0-500 mM NaCl). Conversely, analysis of the crystal structure of LmPDT together with comparisons with hexameric, bacterial homologues revealed the importance of the relationships between the oligomeric state and the active site architecture within this family of enzymes. Moreover, molecular dynamics and docking approaches provided structural insights into the substrate-binding mode. Biochemical characterization of LmPDT identifies the enzyme as a type I NDT (PDT), exhibiting excellent activity, with specific activity values 100- and 4000-fold higher than the ones reported for other PDTs. Interestingly, LmPDT remained stable during 36 h at different pH values at 40 °C. In order to explore the potential of LmPDT as an industrial biocatalyst, enzymatic production of several natural and non-natural therapeutic nucleosides, such as vidarabine (ara A), didanosine (ddI), ddG, or 2'-fluoro-2'-deoxyguanosine, was carried out using poorly water-soluble purines. Noteworthy, this is the first time that the enzymatic synthesis of 2'-fluoro-2'-deoxyguanosine, ara G, and ara H by a 2'-deoxyribosyltransferase is reported.
Collapse
Affiliation(s)
- N Crespo
- Department of Crystallography and Structural Biology, Institute Rocasolano (CSIC), Serrano 119, E-28006, Madrid, Spain.,Applied Biotechnology Group, European University of Madrid, E-28670, Villaviciosa de Odón, Madrid, Spain
| | - P A Sánchez-Murcia
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, 1090, Vienna, Austria.,Department of Biomedical Sciences and "Unidad Asociada IQM-CSIC", School of Medicine and Health Sciences, University of Alcalá, E-28871, Alcalá de Henares, Spain
| | - F Gago
- Department of Biomedical Sciences and "Unidad Asociada IQM-CSIC", School of Medicine and Health Sciences, University of Alcalá, E-28871, Alcalá de Henares, Spain
| | - J Cejudo-Sanches
- Applied Biotechnology Group, European University of Madrid, E-28670, Villaviciosa de Odón, Madrid, Spain
| | - M A Galmes
- Applied Biotechnology Group, European University of Madrid, E-28670, Villaviciosa de Odón, Madrid, Spain
| | - Jesús Fernández-Lucas
- Applied Biotechnology Group, European University of Madrid, E-28670, Villaviciosa de Odón, Madrid, Spain. .,Grupo de Investigación en Desarrollo Agroindustrial Sostenible, Department of Agroindustrial Engineering, School of Environmental Sciences, Universidad de la Costa, Cra. 55 #58-66, Barranquilla, Colombia.
| | - José Miguel Mancheño
- Department of Crystallography and Structural Biology, Institute Rocasolano (CSIC), Serrano 119, E-28006, Madrid, Spain.
| |
Collapse
|
16
|
Adams PP, Flores Avile C, Popitsch N, Bilusic I, Schroeder R, Lybecker M, Jewett MW. In vivo expression technology and 5' end mapping of the Borrelia burgdorferi transcriptome identify novel RNAs expressed during mammalian infection. Nucleic Acids Res 2017; 45:775-792. [PMID: 27913725 PMCID: PMC5314773 DOI: 10.1093/nar/gkw1180] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/18/2016] [Accepted: 11/15/2016] [Indexed: 12/28/2022] Open
Abstract
Borrelia burgdorferi, the bacterial pathogen responsible for Lyme disease, modulates its gene expression profile in response to the environments encountered throughout its tick-mammal infectious cycle. To begin to characterize the B. burgdorferi transcriptome during murine infection, we previously employed an in vivo expression technology-based approach (BbIVET). This identified 233 putative promoters, many of which mapped to un-annotated regions of the complex, segmented genome. Herein, we globally identify the 5' end transcriptome of B. burgdorferi grown in culture as a means to validate non-ORF associated promoters discovered through BbIVET. We demonstrate that 119 BbIVET promoters are associated with transcription start sites (TSSs) and validate novel RNA transcripts using Northern blots and luciferase promoter fusions. Strikingly, 49% of BbIVET promoters were not found to associate with TSSs. This finding suggests that these sequences may be primarily active in the mammalian host. Furthermore, characterization of the 6042 B. burgdorferi TSSs reveals a variety of RNAs including numerous antisense and intragenic transcripts, leaderless RNAs, long untranslated regions and a unique nucleotide frequency for initiating intragenic transcription. Collectively, this is the first comprehensive map of TSSs in B. burgdorferi and characterization of previously un-annotated RNA transcripts expressed by the spirochete during murine infection.
Collapse
Affiliation(s)
- Philip P Adams
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL 32827, USA
| | - Carlos Flores Avile
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL 32827, USA
| | - Niko Popitsch
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Ivana Bilusic
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna 1030, Austria
| | - Renée Schroeder
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna 1030, Austria
| | - Meghan Lybecker
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| | - Mollie W Jewett
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL 32827, USA
| |
Collapse
|
17
|
Molecular dissection of a Borrelia burgdorferi in vivo essential purine transport system. Infect Immun 2015; 83:2224-33. [PMID: 25776752 DOI: 10.1128/iai.02859-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 03/10/2015] [Indexed: 12/31/2022] Open
Abstract
The Lyme disease spirochete Borrelia burgdorferi is dependent on purine salvage from the host environment for survival. The genes bbb22 and bbb23 encode purine permeases that are essential for B. burgdorferi mouse infectivity. We now demonstrate the unique contributions of each of these genes to purine transport and murine infection. The affinities of spirochetes carrying bbb22 alone for hypoxanthine and adenine were similar to those of spirochetes carrying both genes. Spirochetes carrying bbb22 alone were able to achieve wild-type levels of adenine saturation but not hypoxanthine saturation, suggesting that maximal hypoxanthine uptake requires the presence of bbb23. Moreover, the purine transport activity conferred by bbb22 was dependent on an additional distal transcriptional start site located within the bbb23 open reading frame. The initial rates of uptake of hypoxanthine and adenine by spirochetes carrying bbb23 alone were below the level of detection. However, these spirochetes demonstrated a measurable increase in hypoxanthine uptake over a 30-min time course. Our findings indicate that bbb22-dependent adenine transport is essential for B. burgdorferi survival in mice. The bbb23 gene was dispensable for B. burgdorferi mouse infectivity, yet its presence was required along with that of bbb22 for B. burgdorferi to achieve maximal spirochete loads in infected mouse tissues. These data demonstrate that both genes, bbb22 and bbb23, are critical for B. burgdorferi to achieve wild-type infection of mice and that the differences in the capabilities of the two transporters may reflect distinct purine salvage needs that the spirochete encounters throughout its natural infectious cycle.
Collapse
|
18
|
BB0238, a presumed tetratricopeptide repeat-containing protein, is required during Borrelia burgdorferi mammalian infection. Infect Immun 2014; 82:4292-306. [PMID: 25069985 DOI: 10.1128/iai.01977-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Lyme disease spirochete, Borrelia burgdorferi, occupies both a tick vector and mammalian host in nature. Considering the unique enzootic life cycle of B. burgdorferi, it is not surprising that a large proportion of its genome is composed of hypothetical proteins not found in other bacterial pathogens. bb0238 encodes a conserved hypothetical protein of unknown function that is predicted to contain a tetratricopeptide repeat (TPR) domain, a structural motif responsible for mediating protein-protein interactions. To evaluate the role of bb0238 during mammalian infection, a bb0238-deficient mutant was constructed. The bb0238 mutant was attenuated in mice infected via needle inoculation, and complementation of bb0238 expression restored infectivity to wild-type levels. bb0238 expression does not change in response to varying culture conditions, and thus, it appears to be constitutively expressed under in vitro conditions. bb0238 is expressed in murine tissues during infection, though there was no significant change in expression levels among different tissue types. Localization studies indicate that BB0238 is associated with the inner membrane of the spirochete and is therefore unlikely to promote interaction with host ligands during infection. B. burgdorferi clones containing point mutations in conserved residues of the putative TPR motif of BB0238 demonstrated attenuation in mice that was comparable to that in the bb0238 deletion mutant, suggesting that BB0238 may contain a functional TPR domain.
Collapse
|
19
|
Groshong AM, Blevins JS. Insights into the biology of Borrelia burgdorferi gained through the application of molecular genetics. ADVANCES IN APPLIED MICROBIOLOGY 2014; 86:41-143. [PMID: 24377854 DOI: 10.1016/b978-0-12-800262-9.00002-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Borrelia burgdorferi, the vector-borne bacterium that causes Lyme disease, was first identified in 1982. It is known that much of the pathology associated with Lyme borreliosis is due to the spirochete's ability to infect, colonize, disseminate, and survive within the vertebrate host. Early studies aimed at defining the biological contributions of individual genes during infection and transmission were hindered by the lack of adequate tools and techniques for molecular genetic analysis of the spirochete. The development of genetic manipulation techniques, paired with elucidation and annotation of the B. burgdorferi genome sequence, has led to major advancements in our understanding of the virulence factors and the molecular events associated with Lyme disease. Since the dawn of this genetic era of Lyme research, genes required for vector or host adaptation have garnered significant attention and highlighted the central role that these components play in the enzootic cycle of this pathogen. This chapter covers the progress made in the Borrelia field since the application of mutagenesis techniques and how they have allowed researchers to begin ascribing roles to individual genes. Understanding the complex process of adaptation and survival as the spirochete cycles between the tick vector and vertebrate host will lead to the development of more effective diagnostic tools as well as identification of novel therapeutic and vaccine targets. In this chapter, the Borrelia genes are presented in the context of their general biological roles in global gene regulation, motility, cell processes, immune evasion, and colonization/dissemination.
Collapse
Affiliation(s)
- Ashley M Groshong
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jon S Blevins
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
| |
Collapse
|
20
|
Ellis TC, Jain S, Linowski AK, Rike K, Bestor A, Rosa PA, Halpern M, Kurhanewicz S, Jewett MW. In vivo expression technology identifies a novel virulence factor critical for Borrelia burgdorferi persistence in mice. PLoS Pathog 2013; 9:e1003567. [PMID: 24009501 PMCID: PMC3757035 DOI: 10.1371/journal.ppat.1003567] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 07/01/2013] [Indexed: 12/15/2022] Open
Abstract
Analysis of the transcriptome of Borrelia burgdorferi, the causative agent of Lyme disease, during infection has proven difficult due to the low spirochete loads in the mammalian tissues. To overcome this challenge, we have developed an In Vivo Expression Technology (IVET) system for identification of B. burgdorferi genes expressed during an active murine infection. Spirochetes lacking linear plasmid (lp) 25 are non-infectious yet highly transformable. Mouse infection can be restored to these spirochetes by expression of the essential lp25-encoded pncA gene alone. Therefore, this IVET-based approach selects for in vivo-expressed promoters that drive expression of pncA resulting in the recovery of infectious spirochetes lacking lp25 following a three week infection in mice. Screening of approximately 15,000 clones in mice identified 289 unique in vivo-expressed DNA fragments from across all 22 replicons of the B. burgdorferi B31 genome. The in vivo-expressed candidate genes putatively encode proteins in various functional categories including antigenicity, metabolism, motility, nutrient transport and unknown functions. Candidate gene bbk46 on essential virulence plasmid lp36 was found to be highly induced in vivo and to be RpoS-independent. Immunocompetent mice inoculated with spirochetes lacking bbk46 seroconverted but no spirochetes were recovered from mouse tissues three weeks post inoculation. However, the bbk46 gene was not required for B. burgdorferi infection of immunodeficient mice. Therefore, through an initial IVET screen in B. burgdorferi we have identified a novel in vivo-induced virulence factor critical for the ability of the spirochete to evade the humoral immune response and persistently infect mice.
Collapse
Affiliation(s)
- Tisha Choudhury Ellis
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| | - Sunny Jain
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| | - Angelika K. Linowski
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| | - Kelli Rike
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| | - Aaron Bestor
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Patricia A. Rosa
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Micah Halpern
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| | - Stephanie Kurhanewicz
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| | - Mollie W. Jewett
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| |
Collapse
|
21
|
Zhou W, Nakhleh L. Convergent evolution of modularity in metabolic networks through different community structures. BMC Evol Biol 2012; 12:181. [PMID: 22974099 PMCID: PMC3534581 DOI: 10.1186/1471-2148-12-181] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 08/09/2012] [Indexed: 01/01/2023] Open
Abstract
Background It has been reported that the modularity of metabolic networks of bacteria is closely related to the variability of their living habitats. However, given the dependency of the modularity score on the community structure, it remains unknown whether organisms achieve certain modularity via similar or different community structures. Results In this work, we studied the relationship between similarities in modularity scores and similarities in community structures of the metabolic networks of 1021 species. Both similarities are then compared against the genetic distances. We revisited the association between modularity and variability of the microbial living environments and extended the analysis to other aspects of their life style such as temperature and oxygen requirements. We also tested both topological and biological intuition of the community structures identified and investigated the extent of their conservation with respect to the taxomony. Conclusions We find that similar modularities are realized by different community structures. We find that such convergent evolution of modularity is closely associated with the number of (distinct) enzymes in the organism’s metabolome, a consequence of different life styles of the species. We find that the order of modularity is the same as the order of the number of the enzymes under the classification based on the temperature preference but not on the oxygen requirement. Besides, inspection of modularity-based communities reveals that these communities are graph-theoretically meaningful yet not reflective of specific biological functions. From an evolutionary perspective, we find that the community structures are conserved only at the level of kingdoms. Our results call for more investigation into the interplay between evolution and modularity: how evolution shapes modularity, and how modularity affects evolution (mainly in terms of fitness and evolvability). Further, our results call for exploring new measures of modularity and network communities that better correspond to functional categorizations.
Collapse
Affiliation(s)
- Wanding Zhou
- Department of Bioengineering, Rice University, Houston, TX, USA.
| | | |
Collapse
|
22
|
Fernández-Lucas J, Fresco-Taboada A, de la Mata I, Arroyo M. One-step enzymatic synthesis of nucleosides from low water-soluble purine bases in non-conventional media. BIORESOURCE TECHNOLOGY 2012; 115:63-69. [PMID: 22197334 DOI: 10.1016/j.biortech.2011.11.127] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 11/28/2011] [Accepted: 11/29/2011] [Indexed: 05/31/2023]
Abstract
The effect of several water-miscible cosolvents on activity and stability of soluble and immobilized 2'-deoxyribosyltransferase from Lactobacillus reuteri on Sepabeads® has been studied in order to establish optimal conditions for enzymatic synthesis of nucleosides using purine bases with low solubility in aqueous buffer. As a rule of thumb, there was a general reduction of soluble enzyme activity when cosolvent content was gradually increased in reaction medium. In contrast, immobilized enzyme activity was enhanced 1.2-1.4-fold at 20% of methanol, ethanol, 2-propanol, diethylene glycol, and acetone; and at 10% and 30% acetonitrile. Likewise, highest increased activity (1.8-fold) was also obtained in presence of 20% acetonitrile. Immobilized enzyme was successfully used in the synthesis of 2'-deoxyxanthosine and 2'-deoxyguanosine using 2'-deoxyuridine as sugar donor and the corresponding poor water-soluble base in the presence of 30% of methanol, ethanol, 2-propanol, ethylene glycol, acetonitrile, and DMSO, giving high nucleoside yields at 4h.
Collapse
Affiliation(s)
- Jesús Fernández-Lucas
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | |
Collapse
|
23
|
Tilly K, Checroun C, Rosa PA. Requirements for Borrelia burgdorferi plasmid maintenance. Plasmid 2012; 68:1-12. [PMID: 22289894 PMCID: PMC3367046 DOI: 10.1016/j.plasmid.2012.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 01/09/2012] [Accepted: 01/11/2012] [Indexed: 11/16/2022]
Abstract
Borrelia burgdorferi has multiple linear and circular plasmids that are faithfully replicated and partitioned as the bacterium grows and divides. The low copy number of these replicons implies that active partitioning contributes to plasmid stability. Analyzing the requirements for plasmid replication and partition in B. burgdorferi is complicated by the complexity of the genome and the possibility that products may act in trans. Consequently, we have studied the replication-partition region (bbb10-13) of the B. burgdorferi 26kb circular plasmid (cp26) in Escherichia coli, by fusion with a partition-defective miniF plasmid. Our analysis demonstrated that bbb10, bbb11, and bbb13 are required for stable miniF maintenance, whereas bbb12 is dispensable. To validate these results, we attempted to inactivate two of these genes in B. burgdorferi. bbb12 mutants were obtained at a typical frequency, suggesting that the bbb12 product is dispensable for cp26 maintenance as well. We could not directly measure cp26 stability in the bbb12 mutant, because cp26 carries essential genes, and bacteria that have lost cp26 are inviable. Conversely, we were unable to inactivate bbb10 on cp26 of B. burgdorferi. Our results suggest that bbb12 is dispensable for cp26 maintenance, whereas bbb10, bbb11, and bbb13 play crucial roles in that process.
Collapse
Affiliation(s)
- Kit Tilly
- Laboratory of Zoonotic Pathogens, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA.
| | | | | |
Collapse
|
24
|
Borrelia burgdorferi harbors a transport system essential for purine salvage and mammalian infection. Infect Immun 2012; 80:3086-93. [PMID: 22710875 DOI: 10.1128/iai.00514-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borrelia burgdorferi is the tick-borne bacterium that causes the multistage inflammatory disease Lyme disease. B. burgdorferi has a reduced genome and lacks the enzymes required for de novo synthesis of purines for synthesis of RNA and DNA. Therefore, this obligate pathogen is dependent upon the tick vector and mammalian host environments for salvage of purine bases for nucleic acid biosynthesis. This pathway is vital for B. burgdorferi survival throughout its infectious cycle, as key enzymes in the purine salvage pathway are essential for the ability of the spirochete to infect mice and critical for spirochete replication in the tick. The transport of preformed purines into the spirochete is the first step in the purine salvage pathway and may represent a novel therapeutic target and/or means to deliver antispirochete molecules to the pathogen. However, the transport systems critical for purine salvage by B. burgdorferi have yet to be identified. Herein, we demonstrate that the genes bbb22 and bbb23, present on B. burgdorferi's essential plasmid circular plasmid 26 (cp26), encode key purine transport proteins. BBB22 and/or BBB23 is essential for hypoxanthine transport and contributes to the transport of adenine and guanine. Furthermore, B. burgdorferi lacking bbb22-23 was noninfectious in mice up to a dose of 1 × 10(7) spirochetes. Together, our data establish that bbb22-23 encode purine permeases critical for B. burgdorferi mammalian infectivity, suggesting that this transport system may serve as a novel antimicrobial target for the treatment of Lyme disease.
Collapse
|
25
|
Helicobacter pylori relies primarily on the purine salvage pathway for purine nucleotide biosynthesis. J Bacteriol 2011; 194:839-54. [PMID: 22194455 DOI: 10.1128/jb.05757-11] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Helicobacter pylori is a chronic colonizer of the gastric epithelium and plays a major role in the development of gastritis, peptic ulcer disease, and gastric cancer. In its coevolution with humans, the streamlining of the H. pylori genome has resulted in a significant reduction in metabolic pathways, one being purine nucleotide biosynthesis. Bioinformatic analysis has revealed that H. pylori lacks the enzymatic machinery for de novo production of IMP, the first purine nucleotide formed during GTP and ATP biosynthesis. This suggests that H. pylori must rely heavily on salvage of purines from the environment. In this study, we deleted several genes putatively involved in purine salvage and processing. The growth and survival of these mutants were analyzed in both nutrient-rich and minimal media, and the results confirmed the presence of a robust purine salvage pathway in H. pylori. Of the two phosphoribosyltransferase genes found in the H. pylori genome, only gpt appears to be essential, and an Δapt mutant strain was still capable of growth on adenine, suggesting that adenine processing via Apt is not essential. Deletion of the putative nucleoside phosphorylase gene deoD resulted in an inability of H. pylori to grow on purine nucleosides or the purine base adenine. Our results suggest a purine requirement for growth of H. pylori in standard media, indicating that H. pylori possesses the ability to utilize purines and nucleosides from the environment in the absence of a de novo purine nucleotide biosynthesis pathway.
Collapse
|
26
|
Jewett MW, Jain S, Linowski AK, Sarkar A, Rosa PA. Molecular characterization of the Borrelia burgdorferi in vivo-essential protein PncA. MICROBIOLOGY-SGM 2011; 157:2831-2840. [PMID: 21778210 DOI: 10.1099/mic.0.051706-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The conversion of nicotinamide to nicotinic acid by nicotinamidase enzymes is a critical step in maintaining NAD(+) homeostasis and contributes to numerous important biological processes in diverse organisms. In Borrelia burgdorferi, the nicotinamidase enzyme, PncA, is required for spirochaete survival throughout the infectious cycle. Mammals lack nicotinamidases and therefore PncA may serve as a therapeutic target for Lyme disease. Contrary to the in vivo importance of PncA, the current annotation for the pncA ORF suggests that the encoded protein may be inactive due to the absence of an N-terminal aspartic acid residue that is a conserved member of the catalytic triad of characterized PncA proteins. Herein, we have used genetic and biochemical strategies to determine the N-terminal sequence of B. burgdorferi PncA. Our data demonstrate that the PncA protein is 24 aa longer than the currently annotated sequence and that pncA translation is initiated from the rare, non-canonical initiation codon AUU. These findings are an important first step in understanding the catalytic function of this in vivo-essential protein.
Collapse
Affiliation(s)
- Mollie W Jewett
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida (UCF), Orlando, FL 32827, USA.,Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT 59840, USA
| | - Sunny Jain
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida (UCF), Orlando, FL 32827, USA
| | - Angelika K Linowski
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida (UCF), Orlando, FL 32827, USA
| | - Amit Sarkar
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT 59840, USA
| | - Patricia A Rosa
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT 59840, USA
| |
Collapse
|
27
|
Fernández-Lucas J, Fresco-Taboada A, Acebal C, de la Mata I, Arroyo M. Enzymatic synthesis of nucleoside analogues using immobilized 2'-deoxyribosyltransferase from Lactobacillus reuteri. Appl Microbiol Biotechnol 2011; 91:317-27. [PMID: 21476139 DOI: 10.1007/s00253-011-3221-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 02/23/2011] [Accepted: 03/02/2011] [Indexed: 11/29/2022]
Abstract
Covalent attachment of recombinant Lactobacillus reuteri 2'-deoxyribosyltransferase to Sepabeads EC-EP303 leads to the immobilized biocatalyst SLrNDT4, which displayed an enzymatic activity of 65.4 IU/g of wet biocatalyst in 2'-deoxyadenosine synthesis from 2'-deoxyuridine and adenine at 40°C and pH 6.5. Response surface methodology was employed for the optimization of SLrNDT4 activity. Optimal conditions for SLrNDT4 highest activity were observed at 40°C and pH 6.5. Immobilized biocatalyst retained 50% of its maximal activity after 17.9 h at 60°C, whereas 96% activity was observed after storage at 40°C for 110 h. This novel immobilized biocatalyst has been successfully employed in the enzymatic synthesis of different natural and therapeutic nucleosides effective against cancer and viral diseases. Among these last products, enzymatic synthesis of therapeutic nucleosides such as 5-ethyl-2'-deoxyuridine and 5-trifluorothymidine has been carried out for the first time. Importantly for its potential application, SLrNDT4 could be recycled for 26 consecutive batch reactions in the synthesis of 2,6-diaminopurine-2'-deoxyriboside with negligible loss of catalytic activity.
Collapse
Affiliation(s)
- Jesús Fernández-Lucas
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, c/José Antonio Novais 2, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
28
|
Fernández-Lucas J, Acebal C, Sinisterra JV, Arroyo M, de la Mata I. Lactobacillus reuteri 2'-deoxyribosyltransferase, a novel biocatalyst for tailoring of nucleosides. Appl Environ Microbiol 2010; 76:1462-70. [PMID: 20048065 PMCID: PMC2832402 DOI: 10.1128/aem.01685-09] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 12/26/2009] [Indexed: 11/20/2022] Open
Abstract
A novel type II nucleoside 2'-deoxyribosyltransferase from Lactobacillus reuteri (LrNDT) has been cloned and overexpressed in Escherichia coli. The recombinant LrNDT has been structural and functionally characterized. Sedimentation equilibrium analysis revealed a homohexameric molecule of 114 kDa. Circular dichroism studies have showed a secondary structure containing 55% alpha-helix, 10% beta-strand, 16% beta-sheet, and 19% random coil. LrNDT was thermostable with a melting temperature (T(m)) of 64 degrees C determined by fluorescence, circular dichroism, and differential scanning calorimetric studies. The enzyme showed high activity in a broad pH range (4.6 to 7.9) and was also very stable between pH 4 and 7.9. The optimal temperature for activity was 40 degrees C. The recombinant LrNDT was able to synthesize natural and nonnatural nucleoside analogues, improving activities described in the literature, and remarkably, exhibited unexpected new arabinosyltransferase activity, which had not been described so far in this kind of enzyme. Furthermore, synthesis of new arabinonucleosides and 2'-fluorodeoxyribonucleosides was carried out.
Collapse
Affiliation(s)
- Jesús Fernández-Lucas
- Department of Biochemistry and Molecular Biology I, Faculty of Biology, Complutense University of Madrid, C/ José Antonio Nováis 2, 28040 Madrid, Spain, Industrial Biotransformations Service, Scientific Park of Madrid, C/Santiago Grisolía n°2, 28760 Tres Cantos, Madrid, Spain
| | - Carmen Acebal
- Department of Biochemistry and Molecular Biology I, Faculty of Biology, Complutense University of Madrid, C/ José Antonio Nováis 2, 28040 Madrid, Spain, Industrial Biotransformations Service, Scientific Park of Madrid, C/Santiago Grisolía n°2, 28760 Tres Cantos, Madrid, Spain
| | - José V. Sinisterra
- Department of Biochemistry and Molecular Biology I, Faculty of Biology, Complutense University of Madrid, C/ José Antonio Nováis 2, 28040 Madrid, Spain, Industrial Biotransformations Service, Scientific Park of Madrid, C/Santiago Grisolía n°2, 28760 Tres Cantos, Madrid, Spain
| | - Miguel Arroyo
- Department of Biochemistry and Molecular Biology I, Faculty of Biology, Complutense University of Madrid, C/ José Antonio Nováis 2, 28040 Madrid, Spain, Industrial Biotransformations Service, Scientific Park of Madrid, C/Santiago Grisolía n°2, 28760 Tres Cantos, Madrid, Spain
| | - Isabel de la Mata
- Department of Biochemistry and Molecular Biology I, Faculty of Biology, Complutense University of Madrid, C/ José Antonio Nováis 2, 28040 Madrid, Spain, Industrial Biotransformations Service, Scientific Park of Madrid, C/Santiago Grisolía n°2, 28760 Tres Cantos, Madrid, Spain
| |
Collapse
|
29
|
GuaA and GuaB are essential for Borrelia burgdorferi survival in the tick-mouse infection cycle. J Bacteriol 2009; 191:6231-41. [PMID: 19666713 DOI: 10.1128/jb.00450-09] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Pathogens lacking the enzymatic pathways for de novo purine biosynthesis are required to salvage purines and pyrimidines from the host environment for synthesis of DNA and RNA. Two key enzymes in purine salvage pathways are IMP dehydrogenase (GuaB) and GMP synthase (GuaA), encoded by the guaB and guaA genes, respectively. While these genes are typically found on the chromosome in most bacterial pathogens, the guaAB operon of Borrelia burgdorferi is present on plasmid cp26, which also harbors a number of genes critical for B. burgdorferi viability. Using molecular genetics and an experimental model of the tick-mouse infection cycle, we demonstrate that the enzymatic activities encoded by the guaAB operon are essential for B. burgdorferi mouse infectivity and provide a growth advantage to spirochetes in the tick. These data indicate that the GuaA and GuaB proteins are critical for the survival of B. burgdorferi in the infection cycle and highlight a potential difference in the requirements for purine salvage in the disparate mammalian and tick environments.
Collapse
|