1
|
Ranjit P, Varkey D, Shah BS, Paulsen IT. Substrate specificity and ecological significance of PstS homologs in phosphorus uptake in marine Synechococcus sp. WH8102. Microbiol Spectr 2024; 12:e0278623. [PMID: 38179917 PMCID: PMC10846223 DOI: 10.1128/spectrum.02786-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Phosphorus, a vital macronutrient, often limits primary productivity in marine environments. Marine Synechococcus strains, including WH8102, rely on high-affinity phosphate-binding proteins (PstS) to scavenge inorganic phosphate in oligotrophic oceans. However, WH8102 possesses three distinct PstS homologs whose substrate specificity and ecological roles are unclear. The three PstS homologs were heterologously expressed and purified to investigate their substrate specificity and binding kinetics. Our study revealed that all three PstS homologs exhibited a high degree of specificity for phosphate but differed in phosphate binding affinities. Notably, PstS1b displayed nearly 10-fold higher binding affinity (KD = 0.44 µM) compared to PstS1a (KD = 3.3 μM) and PstS2 (KD = 4.3 μM). Structural modeling suggested a single amino acid variation in the binding pocket of PstS1b (threonine instead of serine in PstS1a and PstS2) likely contributed to its higher Pi affinity. Genome context data, together with the protein biophysical data, suggest distinct ecological roles for the three PstS homologs. We propose that PstS1b may be involved in scavenging inorganic phosphorus in oligotrophic conditions and that PstS1a may be involved in transporting recycled phosphate derived from organic phosphate cleavage. The role of PstS2 is less clear, but it may be involved in phosphate uptake when environmental phosphate concentrations are transiently higher. The conservation of three distinct PstS homologs in Synechococcus clade III strains likely reflects distinct adaptations for P acquisition under varying oligotrophic conditions.IMPORTANCEPhosphorus is an essential macronutrient that plays a key role in marine primary productivity and biogeochemistry. However, intense competition for bioavailable phosphorus in the marine environment limits growth and productivity of ecologically important cyanobacteria. In oligotrophic oceans, marine Synechococcus strains, like WH8102, utilize high-affinity phosphate-binding proteins (PstS) to scavenge inorganic phosphate. However, WH8102 possesses three distinct PstS homologs, with unclear substrate specificity and ecological roles, creating a knowledge gap in understanding phosphorus acquisition mechanisms in picocyanobacteria. Through genomic, functional, biophysical, and structural analysis, our study unravels the ecological functions of these homologs. Our findings enhance our understanding of cyanobacterial nutritional uptake strategies and shed light on the crucial role of these conserved nutrient uptake systems in adaptation to specific niches, which ultimately underpins the success of marine Synechococcus across a diverse array of marine ecosystems.
Collapse
Affiliation(s)
- Pramita Ranjit
- School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Deepa Varkey
- School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Bhumika S. Shah
- School of Natural Sciences, Macquarie University, Sydney, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Ian T. Paulsen
- School of Natural Sciences, Macquarie University, Sydney, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| |
Collapse
|
2
|
Zhang L, Yu J, Zheng J, Wu L, Zhou X, Ban Y, Sun Y, Zhang H, Feng Y. A new l-serine binding orphan SerBP affects indole synthesis in Pantoea ananatis. J Basic Microbiol 2023; 63:1348-1360. [PMID: 37495561 DOI: 10.1002/jobm.202300165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/28/2023]
Abstract
Indole is traditionally known as a metabolite of l-tryptophan and now as an important signaling molecule in bacteria, however, the understanding of its upstream synthesis regulation is very limited. Pantoea ananatis YJ76, a predominant diazotrophic endophyte isolated from rice (Oryza sativa), can produce indole to regulate various physiological and biochemical behaviors. We constructed a mutant library of YJ76 using the mTn5 transposon insertion mutation method, from which an indole-deficient mutant was screened out. Via high-efficiency thermal asymmetric interlaced PCR (hiTAIL-PCR), the transposon was determined to be inserted in a gene (RefSeq: WP014605468.1) of unknown function that is highly conserved at the intraspecific level. Bioinformatics analysis implied that the protein (Protein ID: WP089517194.1) encoded by the mutant gene is most likely to be a new orphan substrate-binding protein (SBP) for amino acid ABC transporters. Amino acid supplement cultivation experiments and surface plasmon resonance revealed that the protein could bind to l-serine (KD = 6.149 × 10-5 M). Therefore, the SBP was named as SerBP. This is the first case that a SBP responds to l-serine ABC transports. As a precursor of indole synthesis, the transmembrane transported l-serine was directly correlated with indole signal production and the mutation of serBP gene weakened the resistance of YJ76 to antibiotics, alkali, heavy metals, and starvation. This study provided a new paradigm for exploring the upstream regulatory pathway for indole synthesis of bacteria.
Collapse
Affiliation(s)
- Lei Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Jiajia Yu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Jing Zheng
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Liqing Wu
- Center of Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Xinyi Zhou
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yali Ban
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yuanhao Sun
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Haotian Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yongjun Feng
- School of Life Science, Beijing Institute of Technology, Beijing, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Ford BA, Ranjit P, Mabbutt BC, Paulsen IT, Shah BS. ProX from marine Synechococcus spp. show a sole preference for glycine-betaine with differential affinity between ecotypes. Environ Microbiol 2022; 24:6071-6085. [PMID: 36054310 PMCID: PMC10087775 DOI: 10.1111/1462-2920.16168] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/09/2022] [Indexed: 01/12/2023]
Abstract
Osmotic stress, caused by high or fluctuating salt concentrations, is a crucial abiotic factor affecting microbial growth in aquatic habitats. Many organisms utilize common responses to osmotic stress, generally requiring active extrusion of toxic inorganic ions and accumulation of compatible solutes to protect cellular machinery. We heterologously expressed and purified predicted osmoprotectant, proline/glycine betaine-binding proteins (ProX) from two phylogenetically distinct Synechococcus spp. MITS9220 and WH8102. Homologues of this protein are conserved only among Prochlorococcus LLIV and Synechococcus clade I, III and CRD1 strains. Our biophysical characterization show Synechococcus ProX exists as a dimer, with specificity solely for glycine betaine but not to other osmoprotectants tested. We discovered that MITS9220_ProX has a 10-fold higher affinity to glycine betaine than WH8102_ProX, which is further elevated (24-fold) in high salt conditions. The stronger affinity and effect of ionic strength on MITS9220_ProX glycine betaine binding but not on WH8102_ProX alludes to a novel regulatory mechanism, providing critical functional insights into the phylogenetic divergence of picocyanobacterial ProX proteins that may be necessary for their ecological success.
Collapse
Affiliation(s)
- Benjamin A Ford
- School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Pramita Ranjit
- School of Natural Sciences, Macquarie University, Sydney, Australia
| | | | - Ian T Paulsen
- School of Natural Sciences, Macquarie University, Sydney, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Bhumika S Shah
- School of Natural Sciences, Macquarie University, Sydney, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| |
Collapse
|
4
|
Mandal SK, Kanaujia SP. Role of an orphan substrate-binding protein MhuP in transient heme transfer in Mycobacterium tuberculosis. Int J Biol Macromol 2022; 211:342-356. [PMID: 35569676 DOI: 10.1016/j.ijbiomac.2022.05.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/25/2022] [Accepted: 05/08/2022] [Indexed: 11/25/2022]
Abstract
The redox property of iron makes it an essential cofactor for numerous enzymes involved in various metabolic processes. In vertebrates, iron is attached to either heme molecules or with other circulatory proteins, making its accessibility restricted for bacterial pathogens residing inside the host. Due to this importance, there is always an ongoing battle between the host system and pathogens, known as nutritional immunity. To capture the bound iron from the human hosts, intracellular pathogens like Mycobacterium tuberculosis secrete siderophore molecules which are ultimately uptaken by versatile transport machinery such as ATP-binding cassette (ABC) transporters. Earlier reports have suggested the presence of a heme uptake protein MhuP (ORF id: Rv0265c) in M. tuberculosis, which transiently transfers the bound iron to the protein DppA for further heme transport by utilizing its cognate transport machinery (DppBCD). In the present study, we report the crystal structure of MhuP. The binding experiments of heme with MhuP suggest its specific nature. Molecular docking studies confirm the binding of the protein MhuP with heme as well as to the protein DppA. Thus, the results indicate the binding of heme to MhuP and its probable transient transport via the DppABCD transport system in M. tuberculosis.
Collapse
Affiliation(s)
- Suraj Kumar Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Shankar Prasad Kanaujia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
5
|
Novel functional insights into a modified sugar-binding protein from Synechococcus MITS9220. Sci Rep 2022; 12:4805. [PMID: 35314715 PMCID: PMC8938411 DOI: 10.1038/s41598-022-08459-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/07/2022] [Indexed: 11/17/2022] Open
Abstract
Paradigms of metabolic strategies employed by photoautotrophic marine picocyanobacteria have been challenged in recent years. Based on genomic annotations, picocyanobacteria are predicted to assimilate organic nutrients via ATP-binding cassette importers, a process mediated by substrate-binding proteins. We report the functional characterisation of a modified sugar-binding protein, MsBP, from a marine Synechococcus strain, MITS9220. Ligand screening of MsBP shows a specific affinity for zinc (KD ~ 1.3 μM) and a preference for phosphate-modified sugars, such as fructose-1,6-biphosphate, in the presence of zinc (KD ~ 5.8 μM). Our crystal structures of apo MsBP (no zinc or substrate-bound) and Zn-MsBP (with zinc-bound) show that the presence of zinc induces structural differences, leading to a partially-closed substrate-binding cavity. The Zn-MsBP structure also sequesters several sulphate ions from the crystallisation condition, including two in the binding cleft, appropriately placed to mimic the orientation of adducts of a biphosphate hexose. Combined with a previously unseen positively charged binding cleft in our two structures and our binding affinity data, these observations highlight novel molecular variations on the sugar-binding SBP scaffold. Our findings lend further evidence to a proposed sugar acquisition mechanism in picocyanobacteria alluding to a mixotrophic strategy within these ubiquitous photosynthetic bacteria.
Collapse
|
6
|
Younus I, Kochkina S, Choi CC, Sun W, Ford RC. ATP-Binding Cassette Transporters: Snap-on Complexes? Subcell Biochem 2022; 99:35-82. [PMID: 36151373 DOI: 10.1007/978-3-031-00793-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
ATP-binding cassette (ABC) transporters are one of the largest families of membrane proteins in prokaryotic organisms. Much is now understood about the structure of these transporters and many reviews have been written on that subject. In contrast, less has been written on the assembly of ABC transporter complexes and this will be a major focus of this book chapter. The complexes are formed from two cytoplasmic subunits that are highly conserved (in terms of their primary and three-dimensional structures) across the whole family. These ATP-binding subunits give rise to the name of the family. They must assemble with two transmembrane subunits that will typically form the permease component of the transporter. The transmembrane subunits have been found to be surprisingly diverse in structure when the whole family is examined, with seven distinct folds identified so far. Hence nucleotide-binding subunits appear to have been bolted on to a variety of transmembrane platforms during evolution, leading to a greater variety in function. Furthermore, many importers within the family utilise a further external substrate-binding component to trap scarce substrates and deliver them to the correct permease components. In this chapter, we will discuss whether assembly of the various ABC transporter subunits occurs with high fidelity within the crowded cellular environment and whether promiscuity in assembly of transmembrane and cytoplasmic components can occur. We also discuss the new AlphaFold protein structure prediction tool which predicts a new type of transmembrane domain fold within the ABC transporters that is associated with cation exporters of bacteria and plants.
Collapse
Affiliation(s)
- Iqra Younus
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Sofia Kochkina
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Cheri C Choi
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Wenjuan Sun
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Robert C Ford
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK.
| |
Collapse
|
7
|
Sabrialabed S, Yang JG, Yariv E, Ben-Tal N, Lewinson O. Substrate recognition and ATPase activity of the E. coli cysteine/cystine ABC transporter YecSC-FliY. J Biol Chem 2020; 295:5245-5256. [PMID: 32144203 PMCID: PMC7170509 DOI: 10.1074/jbc.ra119.012063] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/03/2020] [Indexed: 12/20/2022] Open
Abstract
Sulfur is essential for biological processes such as amino acid biogenesis, iron-sulfur cluster formation, and redox homeostasis. To acquire sulfur-containing compounds from the environment, bacteria have evolved high-affinity uptake systems, predominant among which is the ABC transporter family. Theses membrane-embedded enzymes use the energy of ATP hydrolysis for transmembrane transport of a wide range of biomolecules against concentration gradients. Three distinct bacterial ABC import systems of sulfur-containing compounds have been identified, but the molecular details of their transport mechanism remain poorly characterized. Here we provide results from a biochemical analysis of the purified Escherichia coli YecSC-FliY cysteine/cystine import system. We found that the substrate-binding protein FliY binds l-cystine, l-cysteine, and d-cysteine with micromolar affinities. However, binding of the l- and d-enantiomers induced different conformational changes of FliY, where the l- enantiomer-substrate-binding protein complex interacted more efficiently with the YecSC transporter. YecSC had low basal ATPase activity that was moderately stimulated by apo FliY, more strongly by d-cysteine-bound FliY, and maximally by l-cysteine- or l-cystine-bound FliY. However, at high FliY concentrations, YecSC reached maximal ATPase rates independent of the presence or nature of the substrate. These results suggest that FliY exists in a conformational equilibrium between an open, unliganded form that does not bind to the YecSC transporter and closed, unliganded and closed, liganded forms that bind this transporter with variable affinities but equally stimulate its ATPase activity. These findings differ from previous observations for similar ABC transporters, highlighting the extent of mechanistic diversity in this large protein family.
Collapse
Affiliation(s)
- Siwar Sabrialabed
- Department of Biochemistry and the Rappaport Institute for Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Janet G Yang
- Department of Chemistry, University of San Francisco, San Francisco, California 94117
| | - Elon Yariv
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6139001, Israel
| | - Nir Ben-Tal
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6139001, Israel
| | - Oded Lewinson
- Department of Biochemistry and the Rappaport Institute for Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel.
| |
Collapse
|
8
|
Willson BJ, Chapman LNM, Thomas GH. Evolutionary dynamics of membrane transporters and channels: enhancing function through fusion. Curr Opin Genet Dev 2019; 58-59:76-86. [DOI: 10.1016/j.gde.2019.07.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 02/05/2023]
|
9
|
Wang H, Yang Y, Xu J, Kong D, Li Y. iTRAQ-based comparative proteomic analysis of differentially expressed proteins in Rhodococcus sp. BAP-1 induced by fluoranthene. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:282-291. [PMID: 30458394 DOI: 10.1016/j.ecoenv.2018.11.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/16/2018] [Accepted: 11/06/2018] [Indexed: 06/09/2023]
Abstract
To reveal the molecular mechanism at the level of regulation of proteins in Rhodococcus sp. BAP-1 induced by fluoranthene comparative proteomic analysis was performed on proteins extracted from fluoranthene-exposed cells on 1 d, 3 d, 6 d and 8 d compared with control cells using isobaric tags for relative and absolute quantization (iTRAQ) labeling and LC-MS/MS analysis to access differentially expressed proteins. As a result, we detected a total of 897 significantly differentially expressed proteins, including 30 shared proteins in four comparison clusters. We were able to short-list 190, 329, 101 and 90 proteins that were over-represented, and 394, 234, 65 and 49 under-represented proteins, in 1d/control, 3d/control, 6d/control and 8d/control comparisons, respectively. Functional analysis relied on Clusters of Orthologous Groups (COG), gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed that fluoranthene significantly altered the expression of proteins involved in metabolic and biosynthesis processes. Furthermore, BAP-1 up-regulates aldehyde dehydrogenase, cytochrome c oxidase, and oligopeptide transport ATP-binding protein, while down-regulates several other proteins in order to adapt to fluoranthene exposure. These findings provide important clues to reveal fluoranthene degradation mechanism in BAP-1 and promote its bioremediation applications.
Collapse
Affiliation(s)
- Hongqi Wang
- College of Water Sciences, Beijing Normal University, 100875 Beijing, China
| | - Yan Yang
- College of Water Sciences, Beijing Normal University, 100875 Beijing, China
| | - Jie Xu
- College of Water Sciences, Beijing Normal University, 100875 Beijing, China
| | - Dekang Kong
- College of Water Sciences, Beijing Normal University, 100875 Beijing, China
| | - Yi Li
- College of Environment and Resource, Guangxi Normal University, 541004 Guilin, Guangxi, China.
| |
Collapse
|
10
|
Characterization of Three Small Proteins in Brucella abortus Linked to Fucose Utilization. J Bacteriol 2018; 200:JB.00127-18. [PMID: 29967118 DOI: 10.1128/jb.00127-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/22/2018] [Indexed: 11/20/2022] Open
Abstract
Elucidating the function of proteins <50 amino acids in length is no small task. Nevertheless, small proteins can play vital roles in the lifestyle of bacteria and influence the virulence of pathogens; thus, the investigation of the small proteome is warranted. Recently, our group identified the Brucella abortus protein VtlR as a transcriptional activator of four genes, one of which is the well-studied small regulatory RNA AbcR2, while the other three genes encode hypothetical small proteins, two of which are highly conserved among the order Rhizobiales This study provides evidence that all three genes encode authentic small proteins and that all three are highly expressed under oxidative stress, low-pH, and stationary-phase growth conditions. Fractionation of the cells revealed that the proteins are localized to the membranes of B. abortus We demonstrate that the small proteins under the transcriptional control of VtlR are not accountable for attenuation observed with the B. abortusvtlR deletion strain. However, there is an association between VtlR-regulated genes and growth inhibition in the presence of the sugar l-fucose. Subsequent transcriptomic analyses revealed that B. abortus initiates the transcription of a locus encoding a putative sugar transport and utilization system when the bacteria are cultured in the presence of l-fucose. Altogether, our observations characterize the role of the VtlR-controlled small proteins BAB1_0914, BAB2_0512, and BAB2_0574 in the biology of B. abortus, particularly in the capacity of the bacteria to utilize l-fucose.IMPORTANCE Despite being one of the most common zoonoses worldwide, there is currently no human vaccine to combat brucellosis. Therefore, a better understanding of the pathogenesis and biology of Brucella spp., the causative agent of brucellosis, is essential for the discovery of novel therapeutics against these highly infectious bacteria. In this study, we further characterize the virulence-associated transcriptional regulator VtlR in Brucella abortus Our findings not only shed light on our current understanding of a virulence related genetic system in Brucella spp. but also increase our knowledge of small proteins in the field of bacteriology.
Collapse
|
11
|
Zhou B, Yang Y, Chen T, Lou Y, Yang XF. The oligopeptide ABC transporter OppA4 negatively regulates the virulence factor OspC production of the Lyme disease pathogen. Ticks Tick Borne Dis 2018; 9:1343-1349. [PMID: 29921537 DOI: 10.1016/j.ttbdis.2018.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/06/2018] [Accepted: 06/13/2018] [Indexed: 12/18/2022]
Abstract
Borrelia burgdorferi sensu lato, the agent of Lyme disease, exists in nature through a complex enzootic life cycle that involves both ticks and mammals. The B. burgdorferi genome encodes five Oligopeptide ABC transporters (Opp) that are predicted to be involve in transport of various nutrients. Previously, it was reported that OppA5 is important for the optimal production of OspC, a major virulence factor of B. burgdorferi. In this study, possible role of another Oligopeptide ABC transporter, OppA4 in ospC expression was investigated by construction of an oppA4 deletion mutant and the complemented strain. Inactivation of oppA4 resulted an increased production of OspC, suggesting that OppA4 has a negative impact on ospC expression. Expression of ospC is controlled by Rrp2-RpoN-RpoS, the central pathway essential for mammal infection. We showed that increased ospC expression in the oppA4 mutant was due to an increased rpoS expression. We then further investigated how OppA4 negatively regulates this pathway. Two regulators, BosR and BadR, are known to positively and negatively, respectively, regulate the Rrp2-RpoN-RpoS pathway. We found that deletion of oppA4 resulted in an increased level of BosR. Previous reports showed that bosR is mainly regulated at the post-transcriptional level by other factors. However, OppA4 appears to negatively regulate bosR expression at the transcriptional level. The finding of OppA4 involved in regulation of the Rrp2-RpoN-RpoS pathway further reinforces the importance of nutritional virulence to the enzootic cycle of B. burgdorferi.
Collapse
Affiliation(s)
- Bibi Zhou
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Youyun Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Tong Chen
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yongliang Lou
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - X Frank Yang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
12
|
Obando S. TA, Babykin MM, Zinchenko VV. A Cluster of Five Genes Essential for the Utilization of Dihydroxamate Xenosiderophores in Synechocystis sp. PCC 6803. Curr Microbiol 2018; 75:1165-1173. [DOI: 10.1007/s00284-018-1505-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/03/2018] [Indexed: 10/16/2022]
|
13
|
Homburg C, Bommer M, Wuttge S, Hobe C, Beck S, Dobbek H, Deutscher J, Licht A, Schneider E. Inducer exclusion in Firmicutes: insights into the regulation of a carbohydrate ATP binding cassette transporter from Lactobacillus casei BL23 by the signal transducing protein P-Ser46-HPr. Mol Microbiol 2017; 105:25-45. [PMID: 28370477 DOI: 10.1111/mmi.13680] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2017] [Indexed: 12/24/2022]
Abstract
Catabolite repression is a mechanism that enables bacteria to control carbon utilization. As part of this global regulatory network, components of the phosphoenolpyruvate:carbohydrate phosphotransferase system inhibit the uptake of less favorable sugars when a preferred carbon source such as glucose is available. This process is termed inducer exclusion. In bacteria belonging to the phylum Firmicutes, HPr, phosphorylated at serine 46 (P-Ser46-HPr) is the key player but its mode of action is elusive. To address this question at the level of purified protein components, we have chosen a homolog of the Escherichia coli maltose/maltodextrin ATP-binding cassette transporter from Lactobacillus casei (MalE1-MalF1G1K12 ) as a model system. We show that the solute binding protein, MalE1, binds linear and cyclic maltodextrins but not maltose. Crystal structures of MalE1 complexed with these sugars provide a clue why maltose is not a substrate. P-Ser46-HPr inhibited MalE1/maltotetraose-stimulated ATPase activity of the transporter incorporated in proteoliposomes. Furthermore, cross-linking experiments revealed that P-Ser46-HPr contacts the nucleotide-binding subunit, MalK1, in proximity to the Walker A motif. However, P-Ser46-HPr did not block binding of ATP to MalK1. Together, our findings provide first biochemical evidence that P-Ser-HPr arrests the transport cycle by preventing ATP hydrolysis at the MalK1 subunits of the transporter.
Collapse
Affiliation(s)
- Constanze Homburg
- Institut für Biologie/Physiologie der Mikroorganismen, Humboldt-Universität zu Berlin, Berlin, D-10099, Germany
| | - Martin Bommer
- Institut für Biologie/Strukturbiologie und Biochemie, Humboldt-Universität zu Berlin, Berlin, D-10099, Germany
| | - Steven Wuttge
- Institut für Biologie/Physiologie der Mikroorganismen, Humboldt-Universität zu Berlin, Berlin, D-10099, Germany
| | - Carolin Hobe
- Institut für Biologie/Physiologie der Mikroorganismen, Humboldt-Universität zu Berlin, Berlin, D-10099, Germany
| | - Sebastian Beck
- Institut für Chemie/Angewandte Analytik und Umweltchemie, Humboldt-Universität zu Berlin, Berlin, D-10099, Germany
| | - Holger Dobbek
- Institut für Biologie/Strukturbiologie und Biochemie, Humboldt-Universität zu Berlin, Berlin, D-10099, Germany
| | - Josef Deutscher
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, F-78350, France.,Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, Centre National de la Recherche Scientifique, UMR8261, Paris, F-75005, France
| | - Anke Licht
- Institut für Biologie/Physiologie der Mikroorganismen, Humboldt-Universität zu Berlin, Berlin, D-10099, Germany
| | - Erwin Schneider
- Institut für Biologie/Physiologie der Mikroorganismen, Humboldt-Universität zu Berlin, Berlin, D-10099, Germany
| |
Collapse
|
14
|
Xu J, Zhang L, Hou J, Wang X, Liu H, Zheng D, Liang R. iTRAQ-based quantitative proteomic analysis of the global response to 17β-estradiol in estrogen-degradation strain Pseudomonas putida SJTE-1. Sci Rep 2017; 7:41682. [PMID: 28155874 PMCID: PMC5290480 DOI: 10.1038/srep41682] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 12/23/2016] [Indexed: 11/28/2022] Open
Abstract
Microorganism degradation is efficient to remove the steroid hormones like 17β-estradiol (E2); but their degradation mechanism and metabolic network to these chemicals are still not very clear. Here the global responses of the estrogen-degradation strain Pseudomonas putida SJTE-1 to 17β-estradiol and glucose were analyzed and compared using the iTRAQ (isobaric tags for relative and absolute quantization) strategy combined with LC-MS/MS (liquid chromatography-tandem mass spectrometry). 78 proteins were identified with significant changes in expression; 45 proteins and 33 proteins were up-regulated and down-regulated, respectively. These proteins were mainly involved in the processes of stress response, energy metabolism, transportation, chemotaxis and cell motility, and carbon metabolism, considered probably responding to 17β-estradiol and playing a role in its metabolism. The up-regulated proteins in electron transfer, energy generation and transport systems were thought crucial for efficient uptake, translocation and transformation of 17β-estradiol. The over-expression of carbon metabolism proteins indicated cells may activate related pathway members to utilize 17β-estradiol. Meanwhile, proteins functioning in glucose capture and metabolism were mostly down-regulated. These findings provide important clues to reveal the 17β-estradiol degradation mechanism in P. putida and promote its bioremediation applications.
Collapse
Affiliation(s)
- Jing Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Lei Zhang
- School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Jingli Hou
- Instrumental Analysis Center of Shanghai Jiaotong University, 800 Dong-Chuan Road, Shanghai 200240, China
| | - Xiuli Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Huan Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Daning Zheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Rubing Liang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
15
|
The substrate-binding protein in bacterial ABC transporters: dissecting roles in the evolution of substrate specificity. Biochem Soc Trans 2016; 43:1011-7. [PMID: 26517916 DOI: 10.1042/bst20150135] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
ATP-binding cassette (ABC) transporters, although being ubiquitous in biology, often feature a subunit that is limited primarily to bacteria and archaea. This subunit, the substrate-binding protein (SBP), is a key determinant of the substrate specificity and high affinity of ABC uptake systems in these organisms. Most prokaryotes have many SBP-dependent ABC transporters that recognize a broad range of ligands from metal ions to amino acids, sugars and peptides. Herein, we review the structure and function of a number of more unusual SBPs, including an ABC transporter involved in the transport of rare furanose forms of sugars and an SBP that has evolved to specifically recognize the bacterial cell wall-derived murein tripeptide (Mtp). Both these examples illustrate that subtle changes in binding-site architecture, including changes in side chains not directly involved in ligand co-ordination, can result in significant alteration of substrate range in novel and unpredictable ways.
Collapse
|
16
|
Boucher N, Noll KM. Substrate adaptabilities of Thermotogae mannan binding proteins as a function of their evolutionary histories. Extremophiles 2016; 20:771-83. [PMID: 27457081 DOI: 10.1007/s00792-016-0866-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/12/2016] [Indexed: 12/30/2022]
Abstract
The Thermotogae possess a large number of ATP-binding cassette (ABC) transporters, including two mannan binding proteins, ManD and CelE (previously called ManE). We show that a gene encoding an ancestor of these was acquired by the Thermotogae from the archaea followed by gene duplication. To address the functional evolution of these proteins as a consequence of their evolutionary histories, we measured the binding affinities of ManD and CelE orthologs from representative Thermotogae. Both proteins bind cellobiose, cellotriose, cellotetraose, β-1,4-mannotriose, and β-1,4-mannotetraose. The CelE orthologs additionally bind β-1,4-mannobiose, laminaribiose, laminaritriose and sophorose while the ManD orthologs additionally only weakly bind β-1,4-mannobiose. The CelE orthologs have higher unfolding temperatures than the ManD orthologs. An examination of codon sites under positive selection revealed that many of these encode residues located near or in the binding site, suggesting that the proteins experienced selective pressures in regions that might have changed their functions. The gene arrangement, phylogeny, binding properties, and putative regulatory networks suggest that the ancestral mannan binding protein was a CelE ortholog which gave rise to the ManD orthologs. This study provides a window on how one class of proteins adapted to new functions and temperatures to fit the physiologies of their new hosts.
Collapse
Affiliation(s)
- Nathalie Boucher
- Department of Molecular and Cell Biology, University of Connecticut, Unit 3125, 91 N. Eagleville Rd., Storrs, CT, 06269-3125, USA
- New York State Department of Health, Wadsworth Center, Albany, NY, 12201, USA
| | - Kenneth M Noll
- Department of Molecular and Cell Biology, University of Connecticut, Unit 3125, 91 N. Eagleville Rd., Storrs, CT, 06269-3125, USA.
| |
Collapse
|
17
|
Polythioester synthesis in Ralstonia eutropha H16: Novel insights into 3,3′-thiodipropionic acid and 3,3′-dithiodipropionic acid catabolism. J Biotechnol 2014; 184:187-98. [DOI: 10.1016/j.jbiotec.2014.05.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/13/2014] [Accepted: 05/19/2014] [Indexed: 12/24/2022]
|
18
|
Trimethylamine N-oxide metabolism by abundant marine heterotrophic bacteria. Proc Natl Acad Sci U S A 2014; 111:2710-5. [PMID: 24550299 DOI: 10.1073/pnas.1317834111] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Trimethylamine N-oxide (TMAO) is a common osmolyte found in a variety of marine biota and has been detected at nanomolar concentrations in oceanic surface waters. TMAO can serve as an important nutrient for ecologically important marine heterotrophic bacteria, particularly the SAR11 clade and marine Roseobacter clade (MRC). However, the enzymes responsible for TMAO catabolism and the membrane transporter required for TMAO uptake into microbial cells have yet to be identified. We show here that the enzyme TMAO demethylase (Tdm) catalyzes the first step in TMAO degradation. This enzyme represents a large group of proteins with an uncharacterized domain (DUF1989). The function of TMAO demethylase in a representative from the SAR11 clade (strain HIMB59) and in a representative of the MRC (Ruegeria pomeroyi DSS-3) was confirmed by heterologous expression of tdm (the gene encoding Tdm) in Escherichia coli. In R. pomeroyi, mutagenesis experiments confirmed that tdm is essential for growth on TMAO. We also identified a unique ATP-binding cassette transporter (TmoXWV) found in a variety of marine bacteria and experimentally confirmed its specificity for TMAO through marker exchange mutagenesis and lacZ reporter assays of the promoter for genes encoding this transporter. Both Tdm and TmoXWV are particularly abundant in natural seawater assemblages and actively expressed, as indicated by a number of recent metatranscriptomic and metaproteomic studies. These data suggest that TMAO represents a significant, yet overlooked, nutrient for marine bacteria.
Collapse
|
19
|
Bayle L, Chimalapati S, Schoehn G, Brown J, Vernet T, Durmort C. Zinc uptake by Streptococcus pneumoniae depends on both AdcA and AdcAII and is essential for normal bacterial morphology and virulence. Mol Microbiol 2011; 82:904-16. [PMID: 22023106 DOI: 10.1111/j.1365-2958.2011.07862.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Zinc is an essential trace metal for living cells. The ABC transporter AdcABC was previously shown to be required for zinc uptake by Streptococcus pneumoniae. As we have recently described AdcAII as another zinc-binding lipoprotein, we have investigated the role of both AdcA and AdcAII in S. pneumoniae zinc metabolism. Deletion of either adcA or adcAII but not phtD reduced S. pneumoniae zinc uptake, with dual mutation of both adcA and adcAII further decreasing zinc import. For the Δ(adcA/adcAII) mutant, growth and intracellular concentrations of zinc were both greatly reduced in low zinc concentration. When grown in zinc-deficient medium, the Δ(adcA/adcAII) mutant displayed morphological defects related to aberrant septation. Growth and morphology of the Δ(adcA/adcAII) mutant recovered after supplementation with zinc. Dual deletion of adcA and adcAII strongly impaired growth of the pneumococcus in bronchoalveolar lavage fluid and human serum, and prevented S. pneumoniae establishing infection in mouse models of nasopharyngeal colonization, pneumonia and sepsis without altering the capsule. Taken together, our results show that AdcA and AdcAII play an essential and redundant role in specifically importing zinc into the pneumococcus, and that both zinc transporters are required for proper cell division and for S. pneumoniae survival during infection.
Collapse
Affiliation(s)
- Lucie Bayle
- CEA, Institut de Biologie Structurale Jean-Pierre Ebel, Grenoble, 41 Rue Jules Horowitz, 38027 Grenoble cedex 1, France
| | | | | | | | | | | |
Collapse
|
20
|
Choline uptake in Agrobacterium tumefaciens by the high-affinity ChoXWV transporter. J Bacteriol 2011; 193:5119-29. [PMID: 21803998 DOI: 10.1128/jb.05421-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Agrobacterium tumefaciens is a facultative phytopathogen that causes crown gall disease. For successful plant transformation A. tumefaciens requires the membrane lipid phosphatidylcholine (PC), which is produced via the methylation and the PC synthase (Pcs) pathways. The latter route is dependent on choline. Although choline uptake has been demonstrated in A. tumefaciens, the responsible transporter(s) remained elusive. In this study, we identified the first choline transport system in A. tumefaciens. The ABC-type choline transporter is encoded by the chromosomally located choXWV operon (ChoX, binding protein; ChoW, permease; and ChoV, ATPase). The Cho system is not critical for growth and PC synthesis. However, [14C]choline uptake is severely reduced in A. tumefaciens choX mutants. Recombinant ChoX is able to bind choline with high affinity (equilibrium dissociation constant [KD] of ≈2 μM). Since other quaternary amines are bound by ChoX with much lower affinities (acetylcholine, KD of ≈80 μM; betaine, KD of ≈470 μM), the ChoXWV system functions as a high-affinity transporter with a preference for choline. Two tryptophan residues (W40 and W87) located in the predicted ligand-binding pocket are essential for choline binding. The structural model of ChoX built on Sinorhizobium meliloti ChoX resembles the typical structure of substrate binding proteins with a so-called "Venus flytrap mechanism" of substrate binding.
Collapse
|
21
|
Abstract
Background Transporter proteins are one of an organism’s primary interfaces with the environment. The expressed set of transporters mediates cellular metabolic capabilities and influences signal transduction pathways and regulatory networks. The functional annotation of most transporters is currently limited to general classification into families. The development of capabilities to map ligands with specific transporters would improve our knowledge of the function of these proteins, improve the annotation of related genomes, and facilitate predictions for their role in cellular responses to environmental changes. Results To improve the utility of the functional annotation for ABC transporters, we expressed and purified the set of solute binding proteins from Rhodopseudomonas palustris and characterized their ligand-binding specificity. Our approach utilized ligand libraries consisting of environmental and cellular metabolic compounds, and fluorescence thermal shift based high throughput ligand binding screens. This process resulted in the identification of specific binding ligands for approximately 64% of the purified and screened proteins. The collection of binding ligands is representative of common functionalities associated with many bacterial organisms as well as specific capabilities linked to the ecological niche occupied by R. palustris. Conclusion The functional screen identified specific ligands that bound to ABC transporter periplasmic binding subunits from R. palustris. These assignments provide unique insight for the metabolic capabilities of this organism and are consistent with the ecological niche of strain isolation. This functional insight can be used to improve the annotation of related organisms and provides a route to evaluate the evolution of this important and diverse group of transporter proteins.
Collapse
|
22
|
Peplinski K, Ehrenreich A, Döring C, Bömeke M, Steinbüchel A. Investigations on the microbial catabolism of the organic sulfur compounds TDP and DTDP in Ralstonia eutropha H16 employing DNA microarrays. Appl Microbiol Biotechnol 2010; 88:1145-59. [PMID: 20924576 PMCID: PMC3128720 DOI: 10.1007/s00253-010-2915-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 09/05/2010] [Accepted: 09/08/2010] [Indexed: 11/27/2022]
Abstract
In this study, we have investigated the transcriptome of Ralstonia eutropha H16 during cultivation with gluconate in presence of 3,3′-thiodipropionic acid (TDP) or 3,3′-dithiodipropionic acid (DTDP) during biosynthesis of poly(3-hydroxybutyrate-co-3-mercaptopropionate). Genome-wide transcriptome analyses revealed several genes which were upregulated during cultivation in presence of the above-mentioned compounds. Obtained data strongly suggest that two ABC-type transport system and three probable extracytoplasmic solute receptors mediate the uptake of TDP and DTDP, respectively. In addition, genes encoding the hydrolase S-adenosylhomocysteinase AhcY and the thiol-disulfide interchange proteins DsbA, DsbD, and FrnE were upregulated during cultivation on DTDP and, in case of AhcY and FrnE, on TDP as well. It is assumed that the corresponding enzymes are involved in the cleavage of TDP and DTDP. Several genes of the fatty acid metabolism exhibited increased expression levels: genes encoding two acetyltransferases, a predicted acyltransferase, the acetoacetyl-CoA reductase phaB3, an enoyl-CoA hydratase as well as an acyl dehydratase, an acetyl-CoA synthetase, two acyl-CoA dehydrogenases, the methylmalonyl-CoA mutase encoded by sbm1 and sbm2 and phaY1 were detected. Furthermore, ORF H16_A0217 encoding a hypothetical protein and exhibiting 54% amino acids identical to an acyl-CoA thioesterase from Saccharomonospora viridis was found to be highly upregulated. As the 2-methylcitrate synthase PrpC exhibited a three- to fourfold increased activity in cells grown in presence of TDP or DTDP as compared to gluconate, metabolization of the cleavage products 3MP and 3-hydroxypropionate to propionyl-CoA is proposed.
Collapse
Affiliation(s)
- Katja Peplinski
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, 48149 Münster, Germany
| | - Armin Ehrenreich
- Institut für Mikrobiologie, Technische Universität München, Am Hochanger 4, 85354 Freising, Germany
| | - Christina Döring
- Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | - Mechthild Bömeke
- Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, 48149 Münster, Germany
| |
Collapse
|
23
|
Thompson BJ, Widdick DA, Hicks MG, Chandra G, Sutcliffe IC, Palmer T, Hutchings MI. Investigating lipoprotein biogenesis and function in the model Gram-positive bacterium Streptomyces coelicolor. Mol Microbiol 2010; 77:943-57. [PMID: 20572939 DOI: 10.1111/j.1365-2958.2010.07261.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lipoproteins are a distinct class of bacterial membrane proteins that are translocated across the cytoplasmic membrane primarily by the Sec general secretory pathway and then lipidated on a conserved cysteine by the enzyme lipoprotein diacylglycerol transferase (Lgt). The signal peptide is cleaved by lipoprotein signal peptidase (Lsp) to leave the lipid-modified cysteine at the N-terminus of the mature lipoprotein. In all Gram-positive bacteria tested to date this pathway is non-essential and the lipid attaches the protein to the outer leaflet of the cytoplasmic membrane. Here we identify lipoproteins in the model Gram-positive bacterium Streptomyces coelicolor using bioinformatics coupled with proteomic and downstream analysis. We report that Streptomyces species translocate large numbers of lipoproteins out via the Tat (twin arginine translocase) pathway and we present evidence that lipoprotein biogenesis might be an essential pathway in S. coelicolor. This is the first analysis of lipoproteins and lipoprotein biogenesis in Streptomyces and provides the first evidence that lipoprotein biogenesis could be essential in a Gram-positive bacterium. This report also provides the first experimental evidence that Tat plays a major role in the translocation of lipoproteins in a specific bacterium.
Collapse
Affiliation(s)
- Benjamin J Thompson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, UK.Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.School of Applied Sciences, Northumbria University, Newcastle NE1 8ST, UK.School of Medicine, Health Policy and Practice, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - David A Widdick
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, UK.Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.School of Applied Sciences, Northumbria University, Newcastle NE1 8ST, UK.School of Medicine, Health Policy and Practice, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Matthew G Hicks
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, UK.Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.School of Applied Sciences, Northumbria University, Newcastle NE1 8ST, UK.School of Medicine, Health Policy and Practice, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Govind Chandra
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, UK.Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.School of Applied Sciences, Northumbria University, Newcastle NE1 8ST, UK.School of Medicine, Health Policy and Practice, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Iain C Sutcliffe
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, UK.Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.School of Applied Sciences, Northumbria University, Newcastle NE1 8ST, UK.School of Medicine, Health Policy and Practice, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Tracy Palmer
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, UK.Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.School of Applied Sciences, Northumbria University, Newcastle NE1 8ST, UK.School of Medicine, Health Policy and Practice, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Matthew I Hutchings
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, UK.Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.School of Applied Sciences, Northumbria University, Newcastle NE1 8ST, UK.School of Medicine, Health Policy and Practice, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|