1
|
Abstract
Methanogenic archaea are the only organisms that produce CH4 as part of their energy-generating metabolism. They are ubiquitous in oxidant-depleted, anoxic environments such as aquatic sediments, anaerobic digesters, inundated agricultural fields, the rumen of cattle, and the hindgut of termites, where they catalyze the terminal reactions in the degradation of organic matter. Methanogenesis is the only metabolism that is restricted to members of the domain Archaea. Here, we discuss the importance of model organisms in the history of methanogen research, including their role in the discovery of the archaea and in the biochemical and genetic characterization of methanogenesis. We also discuss outstanding questions in the field and newly emerging model systems that will expand our understanding of this uniquely archaeal metabolism.
Collapse
Affiliation(s)
- Kyle C. Costa
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | | |
Collapse
|
2
|
Sanders TJ, Marshall CJ, Santangelo TJ. The Role of Archaeal Chromatin in Transcription. J Mol Biol 2019; 431:4103-4115. [PMID: 31082442 PMCID: PMC6842674 DOI: 10.1016/j.jmb.2019.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/02/2019] [Accepted: 05/04/2019] [Indexed: 02/08/2023]
Abstract
Genomic organization impacts accessibility and movement of information processing systems along DNA. DNA-bound proteins dynamically dictate gene expression and provide regulatory potential to tune transcription rates to match ever-changing environmental conditions. Archaeal genomes are typically small, circular, gene dense, and organized either by histone proteins that are homologous to their eukaryotic counterparts, or small basic proteins that function analogously to bacterial nucleoid proteins. We review here how archaeal genomes are organized and how such organization impacts archaeal gene expression, focusing on conserved DNA-binding proteins within the clade and the factors that are known to impact transcription initiation and elongation within protein-bound genomes.
Collapse
Affiliation(s)
- Travis J Sanders
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Craig J Marshall
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Thomas J Santangelo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
3
|
Abstract
Global (metabolic) regulatory networks allow microorganisms to survive periods of nitrogen starvation or general nutrient stress. Uptake and utilization of various nitrogen sources are thus commonly tightly regulated in Prokarya (Bacteria and Archaea) in response to available nitrogen sources. Those well-studied regulations occur mainly at the transcriptional and posttranslational level. Surprisingly, and in contrast to their involvement in most other stress responses, small RNAs (sRNAs) involved in the response to environmental nitrogen fluctuations are only rarely reported. In addition to sRNAs indirectly affecting nitrogen metabolism, only recently it was demonstrated that three sRNAs were directly involved in regulation of nitrogen metabolism in response to changes in available nitrogen sources. All three trans-acting sRNAs are under direct transcriptional control of global nitrogen regulators and affect expression of components of nitrogen metabolism (glutamine synthetase, nitrogenase, and PII-like proteins) by either masking the ribosome binding site and thus inhibiting translation initiation or stabilizing the respective target mRNAs. Most likely, there are many more sRNAs and other types of noncoding RNAs, e.g., riboswitches, involved in the regulation of nitrogen metabolism in Prokarya that remain to be uncovered. The present review summarizes the current knowledge on sRNAs involved in nitrogen metabolism and their biological functions and targets.
Collapse
|
4
|
Quitzke V, Fersch J, Seyhan D, Rother M. Selenium-dependent gene expression in Methanococcus maripaludis: Involvement of the transcriptional regulator HrsM. Biochim Biophys Acta Gen Subj 2018; 1862:2441-2450. [DOI: 10.1016/j.bbagen.2018.03.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 01/23/2023]
|
5
|
Chellapandi P, Bharathi M, Sangavai C, Prathiviraj R. Methanobacterium formicicum as a target rumen methanogen for the development of new methane mitigation interventions: A review. Vet Anim Sci 2018; 6:86-94. [PMID: 32734058 PMCID: PMC7386643 DOI: 10.1016/j.vas.2018.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 08/29/2018] [Accepted: 09/12/2018] [Indexed: 12/18/2022] Open
Abstract
Methanobacterium formicicum (Methanobacteriaceae family) is an endosymbiotic methanogenic Archaean found in the digestive tracts of ruminants and elsewhere. It has been significantly implicated in global CH4 emission during enteric fermentation processes. In this review, we discuss current genomic and metabolic aspects of this microorganism for the purpose of the discovery of novel veterinary therapeutics. This microorganism encompasses a typical H2 scavenging system, which facilitates a metabolic symbiosis across the H2 producing cellulolytic bacteria and fumarate reducing bacteria. To date, five genome-scale metabolic models (iAF692, iMG746, iMB745, iVS941 and iMM518) have been developed. These metabolic reconstructions revealed the cellular and metabolic behaviors of methanogenic archaea. The characteristics of its symbiotic behavior and metabolic crosstalk with competitive rumen anaerobes support understanding of the physiological function and metabolic fate of shared metabolites in the rumen ecosystem. Thus, systems biological characterization of this microorganism may provide a new insight to realize its metabolic significance for the development of a healthy microbiota in ruminants. An in-depth knowledge of this microorganism may allow us to ensure a long term sustainability of ruminant-based agriculture.
Collapse
Affiliation(s)
- P Chellapandi
- Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India
| | - M Bharathi
- Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India
| | - C Sangavai
- Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India
| | - R Prathiviraj
- Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India
| |
Collapse
|
6
|
Kelly WJ, Leahy SC, Li D, Perry R, Lambie SC, Attwood GT, Altermann E. The complete genome sequence of the rumen methanogen Methanobacterium formicicum BRM9. Stand Genomic Sci 2014; 9:15. [PMID: 25780506 PMCID: PMC4335013 DOI: 10.1186/1944-3277-9-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 10/29/2014] [Indexed: 01/09/2023] Open
Abstract
Methanobacterium formicicum BRM9 was isolated from the rumen of a New Zealand Friesan cow grazing a ryegrass/clover pasture, and its genome has been sequenced to provide information on the phylogenetic diversity of rumen methanogens with a view to developing technologies for methane mitigation. The 2.45 Mb BRM9 chromosome has an average G + C content of 41%, and encodes 2,352 protein-coding genes. The genes involved in methanogenesis are comparable to those found in other members of the Methanobacteriaceae with the exception that there is no [Fe]-hydrogenase dehydrogenase (Hmd) which links the methenyl-H4MPT reduction directly with the oxidation of H2. Compared to the rumen Methanobrevibacter strains, BRM9 has a much larger complement of genes involved in determining oxidative stress response, signal transduction and nitrogen fixation. BRM9 also has genes for the biosynthesis of the compatible solute ectoine that has not been reported to be produced by methanogens. The BRM9 genome has a prophage and two CRISPR repeat regions. Comparison to the genomes of other Methanobacterium strains shows a core genome of ~1,350 coding sequences and 190 strain-specific genes in BRM9, most of which are hypothetical proteins or prophage related.
Collapse
Affiliation(s)
- William J Kelly
- Rumen Microbiology, Animal Nutrition and Health, AgResearch Limited, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North 4442, New Zealand
| | - Sinead C Leahy
- Rumen Microbiology, Animal Nutrition and Health, AgResearch Limited, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North 4442, New Zealand
- New Zealand Agricultural Greenhouse Gas Research Centre, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North 4442, New Zealand
| | - Dong Li
- Rumen Microbiology, Animal Nutrition and Health, AgResearch Limited, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North 4442, New Zealand
| | - Rechelle Perry
- Rumen Microbiology, Animal Nutrition and Health, AgResearch Limited, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North 4442, New Zealand
| | - Suzanne C Lambie
- Rumen Microbiology, Animal Nutrition and Health, AgResearch Limited, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North 4442, New Zealand
| | - Graeme T Attwood
- Rumen Microbiology, Animal Nutrition and Health, AgResearch Limited, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North 4442, New Zealand
- New Zealand Agricultural Greenhouse Gas Research Centre, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North 4442, New Zealand
| | - Eric Altermann
- Rumen Microbiology, Animal Nutrition and Health, AgResearch Limited, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North 4442, New Zealand
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand
| |
Collapse
|
7
|
Weidenbach K, Ehlers C, Schmitz RA. The transcriptional activator NrpA is crucial for inducing nitrogen fixation in Methanosarcina mazei Gö1 under nitrogen-limited conditions. FEBS J 2014; 281:3507-22. [PMID: 24930989 DOI: 10.1111/febs.12876] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 06/05/2014] [Accepted: 06/11/2014] [Indexed: 11/29/2022]
Abstract
With the aim of unraveling their potential involvement in the regulation of nitrogen metabolism in Methanosarcina mazei strain Gö1, we characterized five genes that are differentially transcribed in response to changing nitrogen availability and encoding putative transcriptional regulators. Study of the respective mutant strains under nitrogen-limited conditions revealed a growth delay for M. mazei MM0444::pac and MM1708::pac, and strongly reduced diazotrophic growth for MM0872::pac, whereas the absence of MM2441 or MM2525 did not affect growth behaviour. Transcriptome analyses further demonstrated that only MM1708 - encoding a CxxCG zinc finger protein - plays a regulatory role in nitrogen metabolism, most likely by specifically enhancing transcription of the N2 fixation (nif) operon under nitrogen-limited conditions. In agreement with this, a palindromic binding motif was predicted in silico in the nifH promoter region, nine nucleotides upstream of the BRE box, and confirmed to bind purified maltose-binding protein-MM1708 by electromobility shift assays. As MM1708 itself is under the control of the global nitrogen repressor NrpR, this adds a secondary level to the transcriptional regulation of the nif genes, and is most likely crucial for maximal nif induction under nitrogen-limited conditions. This is in accordance with the finding that protein expression of NifH is highly reduced in the absence of MM1708 under nitrogen-limited conditions. On the basis of our findings, we hypothesize that, in M. mazei, nitrogen fixation is controlled by a hierarchical network of two transcriptional regulators, the global nitrogen repressor NrpR, and the newly identified activator NrpA (MM1708), thereby providing tight control of N2 fixation.
Collapse
|
8
|
Abstract
For cellular fitness and survival, gene expression levels need to be regulated in response to a wealth of cellular and environmental signals. TFs (transcription factors) execute a large part of this regulation by interacting with the basal transcription machinery at promoter regions. Archaea are characterized by a simplified eukaryote-like basal transcription machinery and bacteria-type TFs, which convert sequence information into a gene expression output according to cis-regulatory rules. In the present review, we discuss the current state of knowledge about these rules in archaeal systems, ranging from DNA-binding specificities and operator architecture to regulatory mechanisms.
Collapse
|
9
|
Contribution of transcriptomics to systems-level understanding of methanogenic Archaea. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2013; 2013:586369. [PMID: 23533330 PMCID: PMC3600222 DOI: 10.1155/2013/586369] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/24/2012] [Accepted: 01/23/2013] [Indexed: 01/25/2023]
Abstract
Methane-producing Archaea are of interest due to their contribution to atmospheric change and for their roles in technological applications including waste treatment and biofuel production. Although restricted to anaerobic environments, methanogens are found in a wide variety of habitats, where they commonly live in syntrophic relationships with bacterial partners. Owing to tight thermodynamic constraints of methanogenesis alone or in syntrophic metabolism, methanogens must carefully regulate their catabolic pathways including the regulation of RNA transcripts. The transcriptome is a dynamic and important control point in microbial systems. This paper assesses the impact of mRNA (transcriptome) studies on the understanding of methanogenesis with special consideration given to how methanogenesis is regulated to cope with nutrient limitation, environmental variability, and interactions with syntrophic partners. In comparison with traditional microarray-based transcriptome analyses, next-generation high-throughput RNA sequencing is greatly advantageous in assessing transcription start sites, the extent of 5′ untranslated regions, operonic structure, and the presence of small RNAs. We are still in the early stages of understanding RNA regulation but it is already clear that determinants beyond transcript abundance are highly relevant to the lifestyles of methanogens, requiring further study.
Collapse
|
10
|
Atomi H, Imanaka T, Fukui T. Overview of the genetic tools in the Archaea. Front Microbiol 2012; 3:337. [PMID: 23060865 PMCID: PMC3462420 DOI: 10.3389/fmicb.2012.00337] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Accepted: 09/01/2012] [Indexed: 01/17/2023] Open
Abstract
This section provides an overview of the genetic systems developed in the Archaea. Genetic manipulation is possible in many members of the halophiles, methanogens, Sulfolobus, and Thermococcales. We describe the selection/counterselection principles utilized in each of these groups, which consist of antibiotics and their resistance markers, and auxotrophic host strains and complementary markers. The latter strategy utilizes techniques similar to those developed in yeast. However, Archaea are resistant to many of the antibiotics routinely used for selection in the Bacteria, and a number of strategies specific to the Archaea have been developed. In addition, examples utilizing the genetic systems developed for each group will be briefly described.
Collapse
Affiliation(s)
- Haruyuki Atomi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku Kyoto, Japan ; JST, CREST, Sanbancho, Chiyoda-ku Tokyo, Japan
| | | | | |
Collapse
|
11
|
Marschaus L, Pfeifer F. A dual promoter region with overlapping activator sequences drives the expression of gas vesicle protein genes in haloarchaea. MICROBIOLOGY-SGM 2012; 158:2815-2825. [PMID: 22997463 DOI: 10.1099/mic.0.060178-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Gas vesicle formation in haloarchaea involves 14 gas vesicle protein (gvp) genes. The strong promoter P(A) drives the expression of gvpACNO, which encodes the major gas vesicle structural proteins GvpA and GvpC, whereas the oppositely oriented promoter P(D) initiates the synthesis of the two regulator proteins, GvpD and GvpE. GvpE activates P(A) and P(D), and requires a 20 nt upstream activator sequence (UAS). UAS(A) and UAS(D) partially overlap in the centre of the 35 bp intergenic region. The basal and GvpE-induced activities of P(A) and P(D) were investigated in Haloferax volcanii transformants. Each UAS consists of two 8 nt portions (P(A), 1A+2A; P(D), 1D+2D), and mutations in the overlapping 1A and 1D portions affected the GvpE induction of both promoters. Substitution of one of the UAS portions by a nonsense sequence showed that a complete UAS is required for activation. The activation of P(A) was more efficient compared with P(D). Promoter P(A) with UAS(A) in configuration 1A+1A was still activated by GvpE, but P(D) was not inducible with UAS(D) in configuration 1D+1D. The TATA box and/or transcription factor B recognition element (BRE) were exchanged between P(A) and P(D). All elements of P(A) functioned well in the environment of 'P(D)' and transferred the stronger P(A) activity to 'P(D)'. In contrast, the respective 'P(A)' chimeras were less active, and BRE(D) was not functional in the environment of 'P(A)'. The relative strengths of the two promoters were substantially determined by the BRE. A 4 nt scanning mutagenesis uncovered an additional regulatory element in the region between TATA(D) and the transcriptional start site of gvpD.
Collapse
Affiliation(s)
- Larissa Marschaus
- Mikrobiologie und Archaea, Fachbereich Biologie der Technischen Universität Darmstadt, Schnittspahnstrasse 10, D-64287 Darmstadt, Germany
| | - Felicitas Pfeifer
- Mikrobiologie und Archaea, Fachbereich Biologie der Technischen Universität Darmstadt, Schnittspahnstrasse 10, D-64287 Darmstadt, Germany
| |
Collapse
|
12
|
Yoon SH, Reiss DJ, Bare JC, Tenenbaum D, Pan M, Slagel J, Moritz RL, Lim S, Hackett M, Menon AL, Adams MWW, Barnebey A, Yannone SM, Leigh JA, Baliga NS. Parallel evolution of transcriptome architecture during genome reorganization. Genome Res 2011; 21:1892-904. [PMID: 21750103 DOI: 10.1101/gr.122218.111] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Assembly of genes into operons is generally viewed as an important process during the continual adaptation of microbes to changing environmental challenges. However, the genome reorganization events that drive this process are also the roots of instability for existing operons. We have determined that there exists a statistically significant trend that correlates the proportion of genes encoded in operons in archaea to their phylogenetic lineage. We have further characterized how microbes deal with operon instability by mapping and comparing transcriptome architectures of four phylogenetically diverse extremophiles that span the range of operon stabilities observed across archaeal lineages: a photoheterotrophic halophile (Halobacterium salinarum NRC-1), a hydrogenotrophic methanogen (Methanococcus maripaludis S2), an acidophilic and aerobic thermophile (Sulfolobus solfataricus P2), and an anaerobic hyperthermophile (Pyrococcus furiosus DSM 3638). We demonstrate how the evolution of transcriptional elements (promoters and terminators) generates new operons, restores the coordinated regulation of translocated, inverted, and newly acquired genes, and introduces completely novel regulation for even some of the most conserved operonic genes such as those encoding subunits of the ribosome. The inverse correlation (r=-0.92) between the proportion of operons with such internally located transcriptional elements and the fraction of conserved operons in each of the four archaea reveals an unprecedented view into varying stages of operon evolution. Importantly, our integrated analysis has revealed that organisms adapted to higher growth temperatures have lower tolerance for genome reorganization events that disrupt operon structures.
Collapse
Affiliation(s)
- Sung Ho Yoon
- Institute for Systems Biology, Seattle, Washington 98109, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
More than 200 genes required for methane formation from H₂ and CO₂ and energy conservation are present in Methanothermobacter marburgensis and Methanothermobacter thermautotrophicus. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2011; 2011:973848. [PMID: 21559116 PMCID: PMC3087415 DOI: 10.1155/2011/973848] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 12/07/2010] [Accepted: 02/18/2011] [Indexed: 12/19/2022]
Abstract
The hydrogenotrophic methanogens Methanothermobacter marburgensis and Methanothermobacter thermautotrophicus can easily be mass cultured. They have therefore been used almost exclusively to study the biochemistry of methanogenesis from H2 and CO2, and the genomes of these two model organisms have been sequenced. The close relationship of the two organisms is reflected in their genomic architecture and coding potential. Within the 1,607 protein coding sequences (CDS) in common, we identified approximately 200 CDS required for the synthesis of the enzymes, coenzymes, and prosthetic groups involved in CO2 reduction to methane and in coupling this process with the phosphorylation of ADP. Approximately 20 additional genes, such as those for the biosynthesis of F430 and methanofuran and for the posttranslational modifications of the two methyl-coenzyme M reductases, remain to be identified.
Collapse
|
14
|
Structural underpinnings of nitrogen regulation by the prototypical nitrogen-responsive transcriptional factor NrpR. Structure 2011; 18:1512-21. [PMID: 21070950 PMCID: PMC2996049 DOI: 10.1016/j.str.2010.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 08/02/2010] [Accepted: 08/13/2010] [Indexed: 10/18/2022]
Abstract
Plants and microorganisms reduce environmental inorganic nitrogen to ammonium, which then enters various metabolic pathways solely via conversion of 2-oxoglutarate (2OG) to glutamate and glutamine. Cellular 2OG concentrations increase during nitrogen starvation. We recently identified a family of 2OG-sensing proteins--the nitrogen regulatory protein NrpR--that bind DNA and repress transcription of nitrogen assimilation genes. We used X-ray crystallography to determine the structure of NrpR regulatory domain. We identified the NrpR 2OG-binding cleft and show that residues predicted to interact directly with 2OG are conserved among diverse classes of 2OG-binding proteins. We show that high levels of 2OG inhibit NrpRs ability to bind DNA. Electron microscopy analyses document that NrpR adopts different quaternary structures in its inhibited 2OG-bound state compared with its active apo state. Our results indicate that upon 2OG release, NrpR repositions its DNA-binding domains correctly for optimal interaction with DNA thereby enabling gene repression.
Collapse
|
15
|
Abstract
Methanogenic archaea are a unique group of strictly anaerobic microorganisms characterized by their ability, and dependence, to convert simple C1 and C2 compounds to methane for growth. The major models for studying the biology of methanogens are members of the Methanococcus and Methanosarcina species. Recent development of sophisticated tools for molecular analysis and for genetic manipulation allows investigating not only their metabolism but also their cell cycle, and their interaction with the environment in great detail. One aspect of such analyses is assessment and dissection of methanoarchaeal gene regulation, for which, at present, only a handful of cases have been investigated thoroughly, partly due to the great methodological effort required. However, it becomes more and more evident that many new regulatory paradigms can be unraveled in this unique archaeal group. Here, we report both molecular and physiological/genetic methods to assess gene regulation in Methanococcus maripaludis and Methanosarcina acetivorans, which should, however, be applicable for other methanogens as well.
Collapse
Affiliation(s)
- Michael Rother
- Institut fu¨ r Molekulare Biowissenschaften, Molekulare Mikrobiologie & Bioenergetik, Johann Wolfgang Goethe-Universita¨t, Frankfurt am Main, Germany
| | | | | |
Collapse
|