1
|
Mondal A, Teimouri H, Kolomeisky AB. Molecular mechanisms of precise timing in cell lysis. Biophys J 2024; 123:3090-3099. [PMID: 38971973 PMCID: PMC11427807 DOI: 10.1016/j.bpj.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/03/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024] Open
Abstract
Many biological systems exhibit precise timing of events, and one of the most known examples is cell lysis, which is a process of breaking bacterial host cells in the virus infection cycle. However, the underlying microscopic picture of precise timing remains not well understood. We present a novel theoretical approach to explain the molecular mechanisms of effectively deterministic dynamics in biological systems. Our hypothesis is based on the idea of stochastic coupling between relevant underlying biophysical and biochemical processes that lead to noise cancellation. To test this hypothesis, we introduced a minimal discrete-state stochastic model to investigate how holin proteins produced by bacteriophages break the inner membranes of gram-negative bacteria. By explicitly solving this model, the dynamic properties of cell lysis are fully evaluated, and theoretical predictions quantitatively agree with available experimental data for both wild-type and holin mutants. It is found that the observed threshold-like behavior is a result of the balance between holin proteins entering the membrane and leaving the membrane during the lysis. Theoretical analysis suggests that the cell lysis achieves precise timing for wild-type species by maximizing the number of holins in the membrane and narrowing their spatial distribution. In contrast, for mutated species, these conditions are not satisfied. Our theoretical approach presents a possible molecular picture of precise dynamic regulation in intrinsically random biological processes.
Collapse
Affiliation(s)
- Anupam Mondal
- Center for Theoretical Biological Physics, Rice University, Houston, Texas; Department of Chemistry, Rice University, Houston, Texas
| | - Hamid Teimouri
- Center for Theoretical Biological Physics, Rice University, Houston, Texas; Department of Chemistry, Rice University, Houston, Texas
| | - Anatoly B Kolomeisky
- Center for Theoretical Biological Physics, Rice University, Houston, Texas; Department of Chemistry, Rice University, Houston, Texas; Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas.
| |
Collapse
|
2
|
Kalbfleisch TS, Ahammad T, Lorigan GA, Jaeger VW. Thermodynamic Details of Pinholin S 2168 Activation Revealed Using Alchemical Free Energy Simulations. J Phys Chem B 2024; 128:8762-8770. [PMID: 39197172 DOI: 10.1021/acs.jpcb.4c03302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Pinholin S2168 is a viral integral membrane protein whose function is to form nanoscopic "pinholes" in bacterial cell membranes to induce cell lysis as part of the viral replication cycle. Pinholin can transition from an inactive to an active conformation by exposing a transmembrane domain (TMD1) to the extracellular fluid. Upon activation, several copies of the protein assemble via interactions among a second transmembrane domain (TMD2) to form a single pore, thus hastening cell lysis and viral escape. The following experiments provide conformational descriptors of pinholin in active and inactive states and elucidate the molecular driving forces that control pinholin activity. In the present study, molecular dynamics (MD) simulations have been used to refine experimentally derived conformational descriptors into an atomistically detailed model of irsS2168, an antiholin mutant. To provide additional details about the thermodynamics of pinholin activation and to overcome large intrinsic kinetic barriers to activation, alchemical free energy simulations have been conducted. Alchemical mutations reveal the change in folding free energy upon mutation. The results suggest that alchemical mutations are an effective tool to rationalize experimental observations and predict the effects of site mutations on conformational states for proteins integrated into lipid bilayers. S16F, A17Q, A17Q+G21Q, and A17Q+G21Q+G14Q mutants reveal how changes in hydrophilicity and disruption of the glycine zipper motif influence pinholin's thermodynamic equilibrium, favoring the active conformation. These findings align with experimental observations from DEER spectroscopy, demonstrating that mutations increasing the hydrophilicity of TMD1 promote activation by making TMD1 more likely to exit the membrane and enter the extracellular fluid.
Collapse
Affiliation(s)
- Theodore S Kalbfleisch
- Department of Chemical Engineering, University of Louisville, Louisville, Kentucky 40292, United States
| | - Tanbir Ahammad
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Vance W Jaeger
- Department of Chemical Engineering, University of Louisville, Louisville, Kentucky 40292, United States
| |
Collapse
|
3
|
Mondal A, Teimouri H, Kolomeisky AB. Elucidating Physicochemical Features of Holin Proteins Responsible for Bacterial Cell Lysis. J Phys Chem B 2024; 128:7129-7140. [PMID: 38985954 DOI: 10.1021/acs.jpcb.4c03040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Bacterial resistance to conventional antibiotics stimulated the development of so-called "phage therapies" that rely on cell lysis, which is a process of destroying bacterial cells due to their infections by bacterial viruses. For λ bacteriophages, it is known that the critical role in this process is played by holin proteins that aggregate in cellular membranes before breaking them apart. While multiple experimental studies probed various aspects of cell lysis, the underlying molecular mechanisms remain not well understood. Here we investigate what physicochemical properties of holin proteins are the most relevant for these processes by employing statistical correlation analysis of cell lysis dynamics for different experimentally observed mutant species. Our findings reveal significant correlations between various physicochemical features and cell lysis dynamics. Notably, we uncover a strong inverse correlation between local hydrophobicity and cell lysis times, underscoring the crucial role of hydrophobic interactions in membrane disruption. Stimulated by these observations, a predictive model capable of explicitly estimating cell lysis times for any holin protein mutants based on their mean hydrophobicity values is developed. Our study not only provides important microscopic insights into cell lysis phenomena but also proposes specific routes to optimize medical and biotechnological applications of bacteriophages.
Collapse
Affiliation(s)
- Anupam Mondal
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Hamid Teimouri
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Anatoly B Kolomeisky
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
4
|
Thöneböhn S, Fischer D, Kreiling V, Kemmler A, Oberheim I, Hager F, Schmid NE, Thormann KM. Identifying components of the Shewanella phage LambdaSo lysis system. J Bacteriol 2024; 206:e0002224. [PMID: 38771038 PMCID: PMC11332162 DOI: 10.1128/jb.00022-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024] Open
Abstract
Phage-induced lysis of Gram-negative bacterial hosts usually requires a set of phage lysis proteins, a holin, an endopeptidase, and a spanin system, to disrupt each of the three cell envelope layers. Genome annotations and previous studies identified a gene region in the Shewanella oneidensis prophage LambdaSo, which comprises potential holin- and endolysin-encoding genes but lacks an obvious spanin system. By a combination of candidate approaches, mutant screening, characterization, and microscopy, we found that LambdaSo uses a pinholin/signal-anchor-release (SAR) endolysin system to induce proton leakage and degradation of the cell wall. Between the corresponding genes, we found that two extensively nested open-reading frames encode a two-component spanin module Rz/Rz1. Unexpectedly, we identified another factor strictly required for LambdaSo-induced cell lysis, the phage protein Lcc6. Lcc6 is a transmembrane protein of 65 amino acid residues with hitherto unknown function, which acts at the level of holin in the cytoplasmic membrane to allow endolysin release. Thus, LambdaSo-mediated cell lysis requires at least four protein factors (pinholin, SAR endolysin, spanin, and Lcc6). The findings further extend the known repertoire of phage proteins involved in host lysis and phage egress. IMPORTANCE Lysis of bacteria can have multiple consequences, such as the release of host DNA to foster robust biofilm. Phage-induced lysis of Gram-negative cells requires the disruption of three layers, the outer and inner membranes and the cell wall. In most cases, the lysis systems of phages infecting Gram-negative cells comprise holins to disrupt or depolarize the membrane, thereby releasing or activating endolysins, which then degrade the cell wall. This, in turn, allows the spanins to become active and fuse outer and inner membranes, completing cell envelope disruption and allowing phage egress. Here, we show that the presence of these three components may not be sufficient to allow cell lysis, implicating that also in known phages, further factors may be required.
Collapse
Affiliation(s)
- Svenja Thöneböhn
- Institute of Microbiology and Molecular Biology, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Dorian Fischer
- Institute of Microbiology and Molecular Biology, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Vanessa Kreiling
- Institute of Microbiology and Molecular Biology, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Alina Kemmler
- Institute of Microbiology and Molecular Biology, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Isabella Oberheim
- Institute of Microbiology and Molecular Biology, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Fabian Hager
- Institute of Microbiology and Molecular Biology, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Nicole E. Schmid
- Institute of Microbiology and Molecular Biology, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Kai M. Thormann
- Institute of Microbiology and Molecular Biology, Justus-Liebig-Universität Gießen, Gießen, Germany
| |
Collapse
|
5
|
Kim D, Kim M. Sensitive detection of viable Cronobacter sakazakii by bioluminescent reporter phage emitting stable signals with truncated holin. Food Res Int 2023; 174:113665. [PMID: 37981373 DOI: 10.1016/j.foodres.2023.113665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/21/2023]
Abstract
As outbreaks of foodborne illness caused by the opportunistic pathogen Cronobacter sakazakii (Cs) continue to occur, particularly in infants consuming powdered infant formula (PIF), the need for sensitive, rapid, and easy-to-use detection of Cs from food and food processing environments is increasing. Here, we developed bioluminescent reporter bacteriophages for viable Cs-specific, substrate-free, rapid detection by introducing luciferase and its corresponding substrate-providing enzyme complex into the virulent phage ΦC01. Although the reporter phage ΦC01_lux, constructed by replacing non-essential genes for phage infectivity with a luxCDABE reporter operon, produced bioluminescence upon Cs infection, the emitted signal was quickly decayed due to the superior bacteriolytic activity of ΦC01. By truncating the membrane pore-forming protein holin and thus limiting its function, the bacterial lysis was delayed and the resultant engineered reporter phage ΦC01_lux_Δhol could produce a more stable and reliable bioluminescent signal. Accordingly, ΦC01_lux_Δhol was able to detect at least an average of 2 CFU/ml of Cs artificially contaminated PIF and Sunsik and food contact surface models within a total of 7 h of assays, including 5 h of pre-enrichment for Cs amplification. The sensitive, easy-to-use, and specific detection of live Cs with the developed reporter phage could be applied as a novel complementary tool for monitoring Cs in food and food-related environments for food safety and public health.
Collapse
Affiliation(s)
- Doyeon Kim
- Laboratory of Molecular Food Microbiology, Department of Food and Nutrition, Brain Korea 21 FOUR, College of Human Ecology, Yonsei University, Seoul 03722, Republic of Korea
| | - Minsik Kim
- Laboratory of Molecular Food Microbiology, Department of Food and Nutrition, Brain Korea 21 FOUR, College of Human Ecology, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
6
|
Khan RH, Rotich NC, Morris A, Ahammad T, Baral B, Sahu ID, Lorigan GA. Probing the Structural Topology and Dynamic Properties of gp28 Using Continuous Wave Electron Paramagnetic Resonance Spectroscopy. J Phys Chem B 2023; 127:9236-9247. [PMID: 37856870 DOI: 10.1021/acs.jpcb.3c03679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Lysis of Gram-negative bacteria by dsDNA phages is accomplished through either the canonical holin-endolysin pathway or the pinholin-SAR endolysin pathway. During lysis, the outer membrane (OM) is disrupted, typically by two-component spanins or unimolecular spanins. However, in the absence of spanins, phages use alternative proteins called Disruptin to disrupt the OM. The Disruptin family includes the cationic antimicrobial peptide gp28, which is found in the virulent podophage φKT. In this study, EPR spectroscopy was used to analyze the dynamics and topology of gp28 incorporated into a lipid bilayer, revealing differences in mobility, depth parameter, and membrane interaction among different segments and residues of the protein. Our results indicate that multiple points of helix 2 and helix 3 interact with the phospholipid membrane, while others are solvent-exposed, suggesting that gp28 is a surface-bound peptide. The CW-EPR power saturation data and helical wheel analysis confirmed the amphipathic-helical structure of gp28. Additionally, course-grain molecular dynamics simulations were further used to develop the structural model of the gp28 peptide associated with the lipid bilayers. Based on the data obtained in this study, we propose a structural topology model for gp28 with respect to the membrane. This work provides important insights into the structural and dynamic properties of gp28 incorporated into a lipid bilayer environment.
Collapse
Affiliation(s)
- Rasal H Khan
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Nancy C Rotich
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Andrew Morris
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Tanbir Ahammad
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Binaya Baral
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Indra D Sahu
- Natural Science Division, Campbellsville University, Campbellsville, Kentucky 42718, United States
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|
7
|
Stockwald ER, Steger LME, Vollmer S, Gottselig C, Grage SL, Bürck J, Afonin S, Fröbel J, Blümmel AS, Setzler J, Wenzel W, Walther TH, Ulrich AS. Length matters: Functional flip of the short TatA transmembrane helix. Biophys J 2023; 122:2125-2146. [PMID: 36523158 PMCID: PMC10257086 DOI: 10.1016/j.bpj.2022.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
The twin arginine translocase (Tat) exports folded proteins across bacterial membranes. The putative pore-forming or membrane-weakening component (TatAd in B. subtilis) is anchored to the lipid bilayer via an unusually short transmembrane α-helix (TMH), with less than 16 residues. Its tilt angle in different membranes was analyzed under hydrophobic mismatch conditions, using synchrotron radiation circular dichroism and solid-state NMR. Positive mismatch (introduced either by reconstitution in short-chain lipids or by extending the hydrophobic TMH length) increased the helix tilt of the TMH as expected. Negative mismatch (introduced either by reconstitution in long-chain lipids or by shortening the TMH), on the other hand, led to protein aggregation. These data suggest that the TMH of TatA is just about long enough for stable membrane insertion. At the same time, its short length is a crucial factor for successful translocation, as demonstrated here in native membrane vesicles using an in vitro translocation assay. Furthermore, when reconstituted in model membranes with negative spontaneous curvature, the TMH was found to be aligned parallel to the membrane surface. This intrinsic ability of TatA to flip out of the membrane core thus seems to play a key role in its membrane-destabilizing effect during Tat-dependent translocation.
Collapse
Affiliation(s)
- Eva R Stockwald
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Karlsruhe, Germany
| | - Lena M E Steger
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), Karlsruhe, Germany
| | - Stefanie Vollmer
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Karlsruhe, Germany
| | - Christina Gottselig
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Karlsruhe, Germany
| | - Stephan L Grage
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), Karlsruhe, Germany
| | - Jochen Bürck
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), Karlsruhe, Germany
| | - Sergii Afonin
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), Karlsruhe, Germany
| | - Julia Fröbel
- University of Freiburg, Institute of Biochemistry and Molecular Biology, Freiburg, Germany
| | - Anne-Sophie Blümmel
- University of Freiburg, Institute of Biochemistry and Molecular Biology, Freiburg, Germany
| | - Julia Setzler
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, Karlsruhe, Germany
| | - Wolfgang Wenzel
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, Karlsruhe, Germany
| | - Torsten H Walther
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), Karlsruhe, Germany.
| | - Anne S Ulrich
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Karlsruhe, Germany; Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), Karlsruhe, Germany.
| |
Collapse
|
8
|
Khan RH, Ahammad T, Sahu ID, Rotich NC, Daufel A, Lorigan GA. Determining the helical tilt angle and dynamic properties of the transmembrane domains of pinholin S 2168 using mechanical alignment EPR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184154. [PMID: 37023970 DOI: 10.1016/j.bbamem.2023.184154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 04/08/2023]
Abstract
The lytic cycle of bacteriophage φ21 for the infected E. coli is initiated by pinholin S21, which determines the timing of host cell lysis through the function of pinholin (S2168) and antipinholin (S2171). The activity of pinholin or antipinholin directly depends on the function of two transmembrane domains (TMDs) within the membrane. For active pinholin, TMD1 externalizes and lies on the surface while TMD2 remains incorporated inside the membrane forming the lining of the small pinhole. In this study, spin labeled pinholin TMDs were incorporated separately into mechanically aligned POPC (1-palmitoyl-2-oleoyl-glycero-3-phosphocholine) lipid bilayers and investigated with electron paramagnetic resonance (EPR) spectroscopy to determine the topology of both TMD1 and TMD2 with respect to the lipid bilayer; the TOAC (2,2,6,6-tetramethyl-N-oxyl-4-amino-4-carboxylic acid) spin label was used here because it attaches to the backbone of a peptide and is very rigid. TMD2 was found to be nearly colinear with the bilayer normal (n) with a helical tilt angle of 16 ± 4° while TMD1 lies on or near the surface with a helical tilt angle of 84 ± 4°. The order parameters (~0.6 for both TMDs) obtained from our alignment study were reasonable, which indicates the samples incorporated inside the membrane were well aligned with respect to the magnetic field (B0). The data obtained from this study supports previous findings on pinholin: TMD1 partially externalizes from the lipid bilayer and interacts with the membrane surface, whereas TMD2 remains buried in the lipid bilayer in the active conformation of pinholin S2168. In this study, the helical tilt angle of TMD1 was measured for the first time. For TMD2 our experimental data corroborates the findings of the previously reported helical tilt angle by the Ulrich group.
Collapse
Affiliation(s)
- Rasal H Khan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Tanbir Ahammad
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA; Natural Science Division, Campbellsville University, Campbellsville, KY 42718, USA
| | - Nancy C Rotich
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Andrew Daufel
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA.
| |
Collapse
|
9
|
Functional Dissection of P1 Bacteriophage Holin-like Proteins Reveals the Biological Sense of P1 Lytic System Complexity. Int J Mol Sci 2022; 23:ijms23084231. [PMID: 35457047 PMCID: PMC9025707 DOI: 10.3390/ijms23084231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
P1 is a model temperate myovirus. It infects different Enterobacteriaceae and can develop lytically or form lysogens. Only some P1 adaptation strategies to propagate in different hosts are known. An atypical feature of P1 is the number and organization of cell lysis-associated genes. In addition to SAR-endolysin Lyz, holin LydA, and antiholin LydB, P1 encodes other predicted holins, LydC and LydD. LydD is encoded by the same operon as Lyz, LydA and LydB are encoded by an unlinked operon, and LydC is encoded by an operon preceding the lydA gene. By analyzing the phenotypes of P1 mutants in known or predicted holin genes, we show that all the products of these genes cooperate with the P1 SAR-endolysin in cell lysis and that LydD is a pinholin. The contributions of holins/pinholins to cell lysis by P1 appear to vary depending on the host of P1 and the bacterial growth conditions. The pattern of morphological transitions characteristic of SAR-endolysin–pinholin action dominates during lysis by wild-type P1, but in the case of lydC lydD mutant it changes to that characteristic of classical endolysin-pinholin action. We postulate that the complex lytic system facilitates P1 adaptation to various hosts and their growth conditions.
Collapse
|
10
|
Drew DL, Ahammad T, Serafin RA, Sahu ID, Khan RH, Faul E, McCarrick RM, Lorigan GA. Probing the local secondary structure of bacteriophage S 21 pinholin membrane protein using electron spin echo envelope modulation spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183836. [PMID: 34906602 DOI: 10.1016/j.bbamem.2021.183836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
There have recently been advances in methods for detecting local secondary structures of membrane protein using electron paramagnetic resonance (EPR). A three pulsed electron spin echo envelope modulation (ESEEM) approach was used to determine the local helical secondary structure of the small hole forming membrane protein, S21 pinholin. This ESEEM approach uses a combination of site-directed spin labeling and 2H-labeled side chains. Pinholin S21 is responsible for the permeabilization of the inner cytosolic membrane of double stranded DNA bacteriophage host cells. In this study, we report on the overall global helical structure using circular dichroism (CD) spectroscopy for the active form and the negative-dominant inactive mutant form of S21 pinholin. The local helical secondary structure was confirmed for both transmembrane domains (TMDs) for the active and inactive S21 pinholin using the ESEEM spectroscopic technique. Comparison of the ESEEM normalized frequency domain intensity for each transmembrane domain gives an insight into the α-helical folding nature of these domains as opposed to a π or 310-helix which have been observed in other channel forming proteins.
Collapse
Affiliation(s)
- Daniel L Drew
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Tanbir Ahammad
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Rachel A Serafin
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA; Natural Science Division, Campbellsville University, Campbellsville, KY 42718, USA
| | - Rasal H Khan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Emily Faul
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Robert M McCarrick
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA.
| |
Collapse
|
11
|
Ahammad T, Khan RH, Sahu ID, Drew DL, Faul E, Li T, McCarrick RM, Lorigan GA. Pinholin S 21 mutations induce structural topology and conformational changes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183771. [PMID: 34499883 DOI: 10.1016/j.bbamem.2021.183771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/23/2022]
Abstract
The bacteriophage infection cycle is terminated at a predefined time to release the progeny virions via a robust lytic system composed of holin, endolysin, and spanin proteins. Holin is the timekeeper of this process. Pinholin S21 is a prototype holin of phage Φ21, which determines the timing of host cell lysis through the coordinated efforts of pinholin and antipinholin. However, mutations in pinholin and antipinholin play a significant role in modulating the timing of lysis depending on adverse or favorable growth conditions. Earlier studies have shown that single point mutations of pinholin S21 alter the cell lysis timing, a proxy for pinholin function as lysis is also dependent on other lytic proteins. In this study, continuous wave electron paramagnetic resonance (CW-EPR) power saturation and double electron-electron resonance (DEER) spectroscopic techniques were used to directly probe the effects of mutations on the structure and conformational changes of pinholin S21 that correlate with pinholin function. DEER and CW-EPR power saturation data clearly demonstrate that increased hydrophilicity induced by residue mutations accelerate the externalization of antipinholin transmembrane domain 1 (TMD1), while increased hydrophobicity prevents the externalization of TMD1. This altered hydrophobicity is potentially accelerating or delaying the activation of pinholin S21. It was also found that mutations can influence intra- or intermolecular interactions in this system, which contribute to the activation of pinholin and modulate the cell lysis timing. This could be a novel approach to analyze the mutational effects on other holin systems, as well as any other membrane protein in which mutation directly leads to structural and conformational changes.
Collapse
Affiliation(s)
- Tanbir Ahammad
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Rasal H Khan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA; Natural Science Division, Campbellsville University, Campbellsville, KY 42718, USA
| | - Daniel L Drew
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Emily Faul
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Tianyan Li
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Robert M McCarrick
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA.
| |
Collapse
|
12
|
Probing Structural Dynamics of Membrane Proteins Using Electron Paramagnetic Resonance Spectroscopic Techniques. BIOPHYSICA 2021. [DOI: 10.3390/biophysica1020009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Membrane proteins are essential for the survival of living organisms. They are involved in important biological functions including transportation of ions and molecules across the cell membrane and triggering the signaling pathways. They are targets of more than half of the modern medical drugs. Despite their biological significance, information about the structural dynamics of membrane proteins is lagging when compared to that of globular proteins. The major challenges with these systems are low expression yields and lack of appropriate solubilizing medium required for biophysical techniques. Electron paramagnetic resonance (EPR) spectroscopy coupled with site directed spin labeling (SDSL) is a rapidly growing powerful biophysical technique that can be used to obtain pertinent structural and dynamic information on membrane proteins. In this brief review, we will focus on the overview of the widely used EPR approaches and their emerging applications to answer structural and conformational dynamics related questions on important membrane protein systems.
Collapse
|
13
|
Grabowski Ł, Łepek K, Stasiłojć M, Kosznik-Kwaśnicka K, Zdrojewska K, Maciąg-Dorszyńska M, Węgrzyn G, Węgrzyn A. Bacteriophage-encoded enzymes destroying bacterial cell membranes and walls, and their potential use as antimicrobial agents. Microbiol Res 2021; 248:126746. [PMID: 33773329 DOI: 10.1016/j.micres.2021.126746] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 01/22/2023]
Abstract
Appearance of pathogenic bacteria resistant to most, if not all, known antibiotics is currently one of the most significant medical problems. Therefore, development of novel antibacterial therapies is crucial for efficient treatment of bacterial infections in the near future. One possible option is to employ enzymes, encoded by bacteriophages, which cause destruction of bacterial cell membranes and walls. Bacteriophages use such enzymes to destroy bacterial host cells at the final stage of their lytic development, in order to ensure effective liberation of progeny virions. Nevertheless, to use such bacteriophage-encoded proteins in medicine and/or biotechnology, it is crucial to understand details of their biological functions and biochemical properties. Therefore, in this review article, we will present and discuss our current knowledge on the processes of bacteriophage-mediated bacterial cell lysis, with special emphasis on enzymes involved in them. Regulation of timing of the lysis is also discussed. Finally, possibilities of the practical use of these enzymes as antibacterial agents will be underlined and perspectives of this aspect will be presented.
Collapse
Affiliation(s)
- Łukasz Grabowski
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822, Gdansk, Poland.
| | - Krzysztof Łepek
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| | - Małgorzata Stasiłojć
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| | - Katarzyna Kosznik-Kwaśnicka
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822, Gdansk, Poland.
| | - Karolina Zdrojewska
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| | - Monika Maciąg-Dorszyńska
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822, Gdansk, Poland.
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| | - Alicja Węgrzyn
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822, Gdansk, Poland.
| |
Collapse
|
14
|
Ahammad T, Drew DL, Sahu ID, Khan RH, Butcher BJ, Serafin RA, Galende AP, McCarrick RM, Lorigan GA. Conformational Differences Are Observed for the Active and Inactive Forms of Pinholin S 21 Using DEER Spectroscopy. J Phys Chem B 2020; 124:11396-11405. [PMID: 33289567 DOI: 10.1021/acs.jpcb.0c09081] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bacteriophages have evolved with an efficient host cell lysis mechanism to terminate the infection cycle and release the new progeny virions at the optimum time, allowing adaptation with the changing host and environment. Among the lytic proteins, holin controls the first and rate-limiting step of host cell lysis by permeabilizing the inner membrane at an allele-specific time known as "holin triggering". Pinholin S21 is a prototype holin of phage Φ21 which makes many nanoscale holes and destroys the proton motive force, which in turn activates the signal anchor release (SAR) endolysin system to degrade the peptidoglycan layer of the host cell and destruction of the outer membrane by the spanin complex. Like many others, phage Φ21 has two holin proteins: active pinholin and antipinholin. The antipinholin form differs only by three extra amino acids at the N-terminus; however, it has a different structural topology and conformation with respect to the membrane. Predefined combinations of active pinholin and antipinholin fine-tune the lysis timing through structural dynamics and conformational changes. Previously, the dynamics and topology of active pinholin and antipinholin were investigated (Ahammad et al. JPCB 2019, 2020) using continuous wave electron paramagnetic resonance (CW-EPR) spectroscopy. However, detailed structural studies and direct comparison of these two forms of pinholin S21 are absent in the literature. In this study, the structural topology and conformations of active pinholin (S2168) and inactive antipinholin (S2168IRS) in DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) proteoliposomes were investigated using the four-pulse double electron-electron resonance (DEER) EPR spectroscopic technique to measure distances between transmembrane domains 1 and 2 (TMD1 and TMD2). Five sets of interlabel distances were measured via DEER spectroscopy for both the active and inactive forms of pinholin S21. Structural models of the active pinholin and inactive antipinholin forms in DMPC proteoliposomes were obtained using the experimental DEER distances coupled with the simulated annealing software package Xplor-NIH. TMD2 of S2168 remains in the lipid bilayer, and TMD1 is partially externalized from the bilayer with some residues located on the surface. However, both TMDs remain incorporated in the lipid bilayer for the inactive S2168IRS form. This study demonstrates, for the first time, clear structural topology and conformational differences between the two forms of pinholin S21. This work will pave the way for further studies of other holin systems using the DEER spectroscopic technique and will give structural insight into these biological clocks in molecular detail.
Collapse
Affiliation(s)
- Tanbir Ahammad
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Daniel L Drew
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States.,Natural Science Division, Campbellsville University, Campbellsville, Kentucky 42718, United States
| | - Rasal H Khan
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Brandon J Butcher
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Rachel A Serafin
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Alberto P Galende
- Natural Science Division, Campbellsville University, Campbellsville, Kentucky 42718, United States
| | - Robert M McCarrick
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|
15
|
Steger LME, Kohlmeyer A, Wadhwani P, Bürck J, Strandberg E, Reichert J, Grage SL, Afonin S, Kempfer M, Görner AC, Koch J, Walther TH, Ulrich AS. Structural and functional characterization of the pore-forming domain of pinholin S 2168. Proc Natl Acad Sci U S A 2020; 117:29637-29646. [PMID: 33154156 PMCID: PMC7703622 DOI: 10.1073/pnas.2007979117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pinholin S2168 triggers the lytic cycle of bacteriophage φ21 in infected Escherichia coli Activated transmembrane dimers oligomerize into small holes and uncouple the proton gradient. Transmembrane domain 1 (TMD1) regulates this activity, while TMD2 is postulated to form the actual "pinholes." Focusing on the TMD2 fragment, we used synchrotron radiation-based circular dichroism to confirm its α-helical conformation and transmembrane alignment. Solid-state 15N-NMR in oriented DMPC bilayers yielded a helix tilt angle of τ = 14°, a high order parameter (Smol = 0.9), and revealed the azimuthal angle. The resulting rotational orientation places an extended glycine zipper motif (G40xxxS44xxxG48) together with a patch of H-bonding residues (T51, T54, N55) sideways along TMD2, available for helix-helix interactions. Using fluorescence vesicle leakage assays, we demonstrate that TMD2 forms stable holes with an estimated diameter of 2 nm, as long as the glycine zipper motif remains intact. Based on our experimental data, we suggest structural models for the oligomeric pinhole (right-handed heptameric TMD2 bundle), for the active dimer (right-handed Gly-zipped TMD2/TMD2 dimer), and for the full-length pinholin protein before being triggered (Gly-zipped TMD2/TMD1-TMD1/TMD2 dimer in a line).
Collapse
Affiliation(s)
- Lena M E Steger
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Annika Kohlmeyer
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Parvesh Wadhwani
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Jochen Bürck
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Erik Strandberg
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Johannes Reichert
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Stephan L Grage
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Sergii Afonin
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Marin Kempfer
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Anne C Görner
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Julia Koch
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Torsten H Walther
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany;
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany;
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| |
Collapse
|
16
|
Ahammad T, Drew DL, Khan RH, Sahu ID, Faul E, Li T, Lorigan GA. Structural Dynamics and Topology of the Inactive Form of S 21 Holin in a Lipid Bilayer Using Continuous-Wave Electron Paramagnetic Resonance Spectroscopy. J Phys Chem B 2020; 124:5370-5379. [PMID: 32501696 DOI: 10.1021/acs.jpcb.0c03575] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bacteriophage infection cycle plays a crucial role in recycling the world's biomass. Bacteriophages devise various cell lysis systems to strictly control the length of the infection cycle for an efficient phage life cycle. Phages evolved with lysis protein systems, which can control and fine-tune the length of this infection cycle depending on the host and growing environment. Among these lysis proteins, holin controls the first and rate-limiting step of host cell lysis by permeabilizing the inner membrane at an allele-specific time and concentration hence known as the simplest molecular clock. Pinholin S21 is the holin from phage Φ21, which defines the cell lysis time through a predefined ratio of active pinholin and antipinholin (inactive form of pinholin). Active pinholin and antipinholin fine-tune the lysis timing through structural dynamics and conformational changes. Previously we reported the structural dynamics and topology of active pinholin S2168. Currently, there is no detailed structural study of the antipinholin using biophysical techniques. In this study, the structural dynamics and topology of antipinholin S2168IRS in DMPC proteoliposomes is investigated using electron paramagnetic resonance (EPR) spectroscopic techniques. Continuous-wave (CW) EPR line shape analysis experiments of 35 different R1 side chains of S2168IRS indicated restricted mobility of the transmembrane domains (TMDs), which were predicted to be inside the lipid bilayer when compared to the N- and C-termini R1 side chains. In addition, the R1 accessibility test performed on 24 residues using the CW-EPR power saturation experiment indicated that TMD1 and TMD2 of S2168IRS were incorporated into the lipid bilayer where N- and C-termini were located outside of the lipid bilayer. Based on this study, a tentative model of S2168IRS is proposed where both TMDs remain incorporated into the lipid bilayer and N- and C-termini are located outside of the lipid bilayer. This work will pave the way for the further studies of other holins using biophysical techniques and will give structural insights into these biological clocks in molecular detail.
Collapse
Affiliation(s)
- Tanbir Ahammad
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Daniel L Drew
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Rasal H Khan
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States.,Natural Science Division, Campbellsville University, Campbellsville, Kentucky 42718, United States
| | - Emily Faul
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Tianyan Li
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|
17
|
Ahammad T, Drew DL, Sahu ID, Serafin RA, Clowes KR, Lorigan GA. Continuous Wave Electron Paramagnetic Resonance Spectroscopy Reveals the Structural Topology and Dynamic Properties of Active Pinholin S 2168 in a Lipid Bilayer. J Phys Chem B 2019; 123:8048-8056. [PMID: 31478671 DOI: 10.1021/acs.jpcb.9b06480] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pinholin S2168 is an essential part of the phage Φ21 lytic protein system to release the virus progeny at the end of the infection cycle. It is known as the simplest natural timing system for its precise control of hole formation in the inner cytoplasmic membrane. Pinholin S2168 is a 68 amino acid integral membrane protein consisting of two transmembrane domains (TMDs) called TMD1 and TMD2. Despite its biological importance, structural and dynamic information of the S2168 protein in a membrane environment is not well understood. Systematic site-directed spin labeling and continuous wave electron paramagnetic resonance (CW-EPR) spectroscopic studies of pinholin S2168 in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) proteoliposomes are used to reveal the structural topology and dynamic properties in a native-like environment. CW-EPR spectral line-shape analysis of the R1 side chain for 39 residue positions of S2168 indicates that the TMDs have more restricted mobility when compared to the N- and C-termini. CW-EPR power saturation data indicate that TMD1 partially externalizes from the lipid bilayer and interacts with the membrane surface, whereas TMD2 remains buried in the lipid bilayer in the active conformation of pinholin S2168. A tentative structural topology model of pinholin S2168 is also suggested based on EPR spectroscopic data reported in this study.
Collapse
Affiliation(s)
- Tanbir Ahammad
- Department of Chemistry and Biochemistry , Miami University , Oxford , Ohio 45056 , United States
| | - Daniel L Drew
- Department of Chemistry and Biochemistry , Miami University , Oxford , Ohio 45056 , United States
| | - Indra D Sahu
- Department of Chemistry and Biochemistry , Miami University , Oxford , Ohio 45056 , United States
| | - Rachel A Serafin
- Department of Chemistry and Biochemistry , Miami University , Oxford , Ohio 45056 , United States
| | - Katherine R Clowes
- Department of Chemistry and Biochemistry , Miami University , Oxford , Ohio 45056 , United States
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry , Miami University , Oxford , Ohio 45056 , United States
| |
Collapse
|
18
|
Drew DL, Ahammad T, Serafin RA, Butcher BJ, Clowes KR, Drake Z, Sahu ID, McCarrick RM, Lorigan GA. Solid phase synthesis and spectroscopic characterization of the active and inactive forms of bacteriophage S 21 pinholin protein. Anal Biochem 2018; 567:14-20. [PMID: 30528914 DOI: 10.1016/j.ab.2018.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 01/06/2023]
Abstract
The mechanism for the lysis pathway of double-stranded DNA bacteriophages involves a small hole-forming class of membrane proteins, the holins. This study focuses on a poorly characterized class of holins, the pinholin, of which the S21 protein of phage ϕ21 is the prototype. Here we report the first in vitro synthesis of the wildtype form of the S21 pinholin, S2168, and negative-dominant mutant form, S21IRS, both prepared using solid phase peptide synthesis and studied using biophysical techniques. Both forms of the pinholin were labeled with a nitroxide spin label and successfully incorporated into both bicelles and multilamellar vesicles which are membrane mimetic systems. Circular dichroism revealed the two forms were both >80% alpha helical, in agreement with the predictions based on the literature. The molar ellipticity ratio [θ]222/[θ]208 for both forms of the pinholin was 1.4, suggesting a coiled-coil tertiary structure in the bilayer consistent with the proposed oligomerization step in models for the mechanism of hole formation. 31P solid-state NMR spectroscopic data on pinholin indicate a strong interaction of both forms of the pinholin with the membrane headgroups. The 31P NMR data has an axially symmetric line shape which is consistent with lamellar phase proteoliposomes lipid mimetics.
Collapse
Affiliation(s)
- Daniel L Drew
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Tanbir Ahammad
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Rachel A Serafin
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Brandon J Butcher
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Katherine R Clowes
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Zachary Drake
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Robert M McCarrick
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA.
| |
Collapse
|
19
|
Abstract
The first steps in phage lysis involve a temporally controlled permeabilization of the cytoplasmic membrane followed by enzymatic degradation of the peptidoglycan. For Caudovirales of Gram-negative hosts, there are two different systems: the holin-endolysin and pinholin-SAR endolysin pathways. In the former, lysis is initiated when the holin forms micron-scale holes in the inner membrane, releasing active endolysin into the periplasm to degrade the peptidoglycan. In the latter, lysis begins when the pinholin causes depolarization of the membrane, which activates the secreted SAR endolysin. Historically, the disruption of the first two barriers of the cell envelope was thought to be necessary and sufficient for lysis of Gram-negative hosts. However, recently a third functional class of lysis proteins, the spanins, has been shown to be required for outer membrane disruption. Spanins are so named because they form a protein bridge that connects both membranes. Most phages produce a two-component spanin complex, composed of an outer membrane lipoprotein (o-spanin) and an inner membrane protein (i-spanin) with a predominantly coiled-coil periplasmic domain. Some phages have a different type of spanin which spans the periplasm as a single molecule, by virtue of an N-terminal lipoprotein signal and a C-terminal transmembrane domain. Evidence is reviewed supporting a model in which the spanins function by fusing the inner membrane and outer membrane. Moreover, it is proposed that spanin function is inhibited by the meshwork of the peptidoglycan, thus coupling the spanin step to the first two steps mediated by the holin and endolysin.
Collapse
Affiliation(s)
- Jesse Cahill
- Department of Biochemistry & Biophysics, Center of Phage Technology, Texas A&M University, College Station, TX, United States.
| | - Ry Young
- Department of Biochemistry & Biophysics, Center of Phage Technology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
20
|
Cahill J, Rajaure M, O'Leary C, Sloan J, Marrufo A, Holt A, Kulkarni A, Hernandez O, Young R. Genetic Analysis of the Lambda Spanins Rz and Rz1: Identification of Functional Domains. G3 (BETHESDA, MD.) 2017; 7:741-753. [PMID: 28040784 PMCID: PMC5295617 DOI: 10.1534/g3.116.037192] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/26/2016] [Indexed: 11/18/2022]
Abstract
Coliphage lambda proteins Rz and Rz1 are the inner membrane and outer membrane subunits of the spanin complex-a heterotetramer that bridges the periplasm and is essential for the disruption of the outer membrane during phage lysis. Recent evidence suggests the spanin complex functions by fusing the inner and outer membrane. Here, we use a genetics approach to investigate and characterize determinants of spanin function. Because Rz1 is entirely embedded in the +1 reading frame of Rz, the genes were disembedded before using random mutagenesis to construct a library of lysis-defective alleles for both genes. Surprisingly, most of the lysis-defective missense mutants exhibited normal accumulation or localization in vivo, and also were found to be normal for complex formation in vitro Analysis of the distribution and nature of single missense mutations revealed subdomains that resemble key motifs in established membrane-fusion systems, i.e., two coiled-coil domains in Rz, a proline-rich region of Rz1, and flexible linkers in both proteins. When coding sequences are aligned respective to the embedded genetic architecture of Rz1 within Rz, genetically silent domains of Rz1 correspond to mutationally sensitive domains in Rz, and vice versa, suggesting that the modular structure of the two subunits facilitated the evolutionary compression that resulted in the unique embedded gene architecture.
Collapse
Affiliation(s)
- Jesse Cahill
- Center for Phage Technology and Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Manoj Rajaure
- Center for Phage Technology and Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Chandler O'Leary
- Center for Phage Technology and Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Jordan Sloan
- Center for Phage Technology and Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Armando Marrufo
- Center for Phage Technology and Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Ashley Holt
- Center for Phage Technology and Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Aneesha Kulkarni
- Center for Phage Technology and Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Oscar Hernandez
- Center for Phage Technology and Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Ry Young
- Center for Phage Technology and Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
21
|
The Last r Locus Unveiled: T4 RIII Is a Cytoplasmic Antiholin. J Bacteriol 2016; 198:2448-57. [PMID: 27381920 DOI: 10.1128/jb.00294-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/27/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The latent period of phage T4, normally ∼25 min, can be extended indefinitely if the infected cell is superinfected after 5 min. This phenomenon, designated lysis inhibition (LIN), was first described in the 1940s and is genetically defined by mutations in diverse T4 r genes. RI, the main effector of LIN, has been shown to be secreted to the periplasm, where, upon activation by superinfection with a T-even virion, it binds to the C-terminal periplasmic domain of the T4 holin T and blocks its lethal permeabilization of the cytoplasmic membrane. Another r locus, rIII, has been the subject of conflicting reports. In this study, we show that RIII, an 82-amino-acid protein, is also required for LIN in both Escherichia coli B strains and E. coli K-12 strains. In T4ΔrIII infections, LIN was briefly established but was unstable. The overexpression of a cloned rIII gene alone impeded T-mediated lysis temporarily. However, coexpression of rIII and rI resulted in a stable LIN state. Bacterial two-hybrid assays and pulldown assays showed that RIII interacts with the cytoplasmic N terminus of T, which is a critical domain for holin function. We conclude that RIII is a T4 antiholin that blocks membrane hole formation by interacting directly with the holin. Accordingly, we propose an augmented model for T4 LIN that involves the stabilization of a complex of three proteins in two compartments of the cell: RI interacting with the C terminus of T in the periplasm and RIII interacting with the N terminus of T in the cytoplasm. IMPORTANCE Lysis inhibition is a unique feature of phage T4 in response to environmental conditions, effected by the antiholin RI, which binds to the periplasmic domain of the T holin and blocks its hole-forming function. Here we report that the T4 gene rIII encodes a cytoplasmic antiholin that, together with the main antiholin, RI, inhibits holin T by forming a complex of three proteins spanning two cell compartments.
Collapse
|
22
|
Drulis-Kawa Z, Majkowska-Skrobek G, Maciejewska B. Bacteriophages and phage-derived proteins--application approaches. Curr Med Chem 2016; 22:1757-73. [PMID: 25666799 PMCID: PMC4468916 DOI: 10.2174/0929867322666150209152851] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 11/29/2014] [Accepted: 02/02/2015] [Indexed: 12/17/2022]
Abstract
Currently, the bacterial resistance, especially to most commonly used antibiotics has proved to be a severe therapeutic problem. Nosocomial and community-acquired infections are usually caused by multidrug resistant strains. Therefore, we are forced to develop an alternative or supportive treatment for successful cure of life-threatening infections. The idea of using natural bacterial pathogens such as bacteriophages is already well known. Many papers have been published proving the high antibacterial efficacy of lytic phages tested in animal models as well as in the clinic. Researchers have also investigated the application of non-lytic phages and temperate phages, with promising results. Moreover, the development of molecular biology and novel generation methods of sequencing has opened up new possibilities in the design of engineered phages and recombinant phage-derived proteins. Encouraging performances were noted especially for phage enzymes involved in the first step of viral infection responsible for bacterial envelope degradation, named depolymerases. There are at least five major groups of such enzymes – peptidoglycan hydrolases, endosialidases, endorhamnosidases, alginate lyases and hyaluronate lyases – that have application potential. There is also much interest in proteins encoded by lysis cassette genes (holins, endolysins, spanins) responsible for progeny release during the phage lytic cycle. In this review, we discuss several issues of phage and phage-derived protein application approaches in therapy, diagnostics and biotechnology in general.
Collapse
Affiliation(s)
- Zuzanna Drulis-Kawa
- Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland.
| | | | | |
Collapse
|
23
|
Song J, Xia F, Jiang H, Li X, Hu L, Gong P, Lei L, Feng X, Sun C, Gu J, Han W. Identification and characterization of HolGH15: the holin of Staphylococcus aureus bacteriophage GH15. J Gen Virol 2016; 97:1272-1281. [PMID: 26873847 DOI: 10.1099/jgv.0.000428] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Holins are phage-encoded hydrophobic membrane proteins that spontaneously and non-specifically accumulate and form lesions in the cytoplasmic membrane. The ORF72 gene (also designated HolGH15) derived from the genome of the Staphylococcus aureus phage GH15 was predicted to encode a membrane protein. An analysis indicated that the protein encoded by HolGH15 potentially consisted of two hydrophobic transmembrane helices. This protein exhibited the structural characteristics of class II holins and belonged to the phage_holin_1 superfamily. Expression of HolGH15 in Escherichia coli BL21 cells resulted in growth retardation of the host cells, which was triggered prematurely by the addition of 2,4-dinitrophenol. The expression of HolGH15 caused morphological alterations in engineered E. coli cells, including loss of the cell wall and cytoplasmic membrane integrity and release of intracellular components, which were visualized by transmission electron microscopy. HolGH15 exerted efficient antibacterial activity at 37 °C and pH 5.2. Mutation analysis indicated that the two transmembrane domains of HolGH15 were indispensable for the activity of the full-length protein. HolGH15 showed a broad antibacterial range: it not only inhibited Staphylococcus aureus, but also demonstrated antibacterial activity against other species, including Listeria monocytogenes, Bacillus subtilis, Pseudomonas aeruginosa, Klebsiella pneumoniae and E. coli. At the minimal inhibitory concentration, HolGH15 evoked the release of cellular contents and resulted in the shrinkage and death of Staphylococcus aureus and Listeria monocytogenes cells. To the best of our knowledge, this study is the first report of a Staphylococcus aureus phage holin that exerts antibacterial activity against heterogeneous pathogens.
Collapse
Affiliation(s)
- Jun Song
- College of Veterinary Medicine,Jilin University, Changchun 130062, PRChina
| | - Feifei Xia
- College of Veterinary Medicine,Jilin University, Changchun 130062, PRChina
| | - Haiyan Jiang
- The First Affiliated Hospital to Changchun University of Chinese Medicine,Changchun 130021, PRChina
| | - Xinwei Li
- College of Veterinary Medicine,Jilin University, Changchun 130062, PRChina
| | - Liyuan Hu
- College of Veterinary Medicine,Jilin University, Changchun 130062, PRChina
| | - Pengjuan Gong
- College of Veterinary Medicine,Jilin University, Changchun 130062, PRChina
| | - Liancheng Lei
- College of Veterinary Medicine,Jilin University, Changchun 130062, PRChina
| | - Xin Feng
- College of Veterinary Medicine,Jilin University, Changchun 130062, PRChina
| | - Changjiang Sun
- College of Veterinary Medicine,Jilin University, Changchun 130062, PRChina
| | - Jingmin Gu
- College of Veterinary Medicine,Jilin University, Changchun 130062, PRChina
| | - Wenyu Han
- College of Veterinary Medicine,Jilin University, Changchun 130062, PRChina.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses,Yangzhou 225009, PRChina
| |
Collapse
|
24
|
Roces C, Campelo AB, Escobedo S, Wegmann U, García P, Rodríguez A, Martínez B. Reduced Binding of the Endolysin LysTP712 to Lactococcus lactis ΔftsH Contributes to Phage Resistance. Front Microbiol 2016; 7:138. [PMID: 26904011 PMCID: PMC4749879 DOI: 10.3389/fmicb.2016.00138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/25/2016] [Indexed: 02/01/2023] Open
Abstract
Absence of the membrane protease FtsH in Lactococcus lactis hinders release of the bacteriophage TP712. In this work we have analyzed the mechanism responsible for the non-lytic phenotype of L. lactis ΔftsH after phage infection. The lytic cassette of TP712 contains a putative antiholin–pinholin system and a modular endolysin (LysTP712). Inducible expression of the holin gene demonstrated the presence of a dual start motif which is functional in both wildtype and L. lactis ΔftsH cells. Moreover, simulating holin activity with ionophores accelerated lysis of wildtype cells but not L. lactis ΔftsH cells, suggesting inhibition of the endolysin rather than a role of FtsH in holin activation. However, zymograms revealed the synthesis of an active endolysin in both wildtype and L. lactis ΔftsH TP712 lysogens. A reporter protein was generated by fusing the cell wall binding domain of LysTP712 to the fluorescent mCherry protein. Binding of this reporter protein took place at the septa of both wildtype and L. lactis ΔftsH cells as shown by fluorescence microscopy. Nonetheless, fluorescence spectroscopy demonstrated that mutant cells bound 40% less protein. In conclusion, the non-lytic phenotype of L. lactis ΔftsH is not due to direct action of the FtsH protease on the phage lytic proteins but rather to a putative function of FtsH in modulating the architecture of the L. lactis cell envelope that results in a lower affinity of the phage endolysin to its substrate.
Collapse
Affiliation(s)
- Clara Roces
- DairySafe Group, Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas Villaviciosa, Spain
| | - Ana B Campelo
- DairySafe Group, Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas Villaviciosa, Spain
| | - Susana Escobedo
- DairySafe Group, Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas Villaviciosa, Spain
| | - Udo Wegmann
- Institute of Food Research, Norwich Research Park Norwich, UK
| | - Pilar García
- DairySafe Group, Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas Villaviciosa, Spain
| | - Ana Rodríguez
- DairySafe Group, Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas Villaviciosa, Spain
| | - Beatriz Martínez
- DairySafe Group, Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas Villaviciosa, Spain
| |
Collapse
|
25
|
Abstract
We have been witnessing an increased interest in bacteriophage studies focused on their use as antibacterial agents to fight pathogenic bacteria. This interest is a consequence of the phages' ability to lyse a bacterial host. Until recently, little was known about the mechanisms used by mycobacteriophages to induce lysis of their complex hosts. However, studies on Ms6-induced lysis have changed this scenario and provided new insights into the mechanisms of bacteriophage-induced lysis. Specific lysis protein genes have been identified in mycobacteriophage genomes, reflecting the particular mycobacterial cell envelope composition. These include enzymes that target mycolic acid-containing lipids and proteins that participate in the secretion of the phage endolysin, functioning as chaperone-like proteins. This chapter focuses on the current knowledge of mycobacteriophage-induced lysis, starting with an overview of phage lysis and basic features of the lysis players.
Collapse
|
26
|
Pohane AA, Jain V. Insights into the regulation of bacteriophage endolysin: multiple means to the same end. Microbiology (Reading) 2015; 161:2269-76. [DOI: 10.1099/mic.0.000190] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
27
|
Complete Genome Sequence of Klebsiella pneumoniae Carbapenemase-Producing K. pneumoniae Siphophage Sushi. GENOME ANNOUNCEMENTS 2015; 3:3/5/e00994-15. [PMID: 26337889 PMCID: PMC4559738 DOI: 10.1128/genomea.00994-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Klebsiella pneumoniae is a Gram-negative bacterium in the family Enterobacteriaceae. It is associated with numerous nosocomial infections, including respiratory and urinary tract infections in humans. The following reports the complete genome sequence of K. pneumoniae carbapenemase-producing K. pneumoniae T1-like siphophage Sushi and describes its major features.
Collapse
|
28
|
Briers Y, Lavigne R. Breaking barriers: expansion of the use of endolysins as novel antibacterials against Gram-negative bacteria. Future Microbiol 2015; 10:377-90. [DOI: 10.2217/fmb.15.8] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
ABSTRACT The emergence and spread of antibiotic-resistant bacteria drives the search for novel classes of antibiotics to replenish our armamentarium against bacterial infections. This is particularly critical for Gram-negative pathogens, which are intrinsically resistant to many existing classes of antibiotics due to the presence of a protective outer membrane. In addition, the antibiotics development pipeline is mainly oriented to Gram-positive pathogens such as methicillin-resistant Staphylococcus aureus. A promising novel class of antibacterials is endolysins. These enzymes encoded by bacterial viruses hydrolyze the peptidoglycan layer with high efficiency, resulting in abrupt osmotic lysis and cell death. Their potential as novel antibacterials to treat Gram-positive bacteria has been extensively demonstrated; however, the Gram-negative outer membrane has presented a formidable barrier for the use of endolysins against Gram-negatives until recently. This review reports on the most recent advances in the development of endolysins to kill Gram-negative species with a special focus on endolysin-engineered Artilysins®.
Collapse
Affiliation(s)
- Yves Briers
- Laboratory of Gene Technology, Department Biosystems, University of Leuven, Kasteelpark Arenberg 21, box 2462, B-3001 Leuven, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, Department Biosystems, University of Leuven, Kasteelpark Arenberg 21, box 2462, B-3001 Leuven, Belgium
| |
Collapse
|
29
|
Abstract
For most phages, holins control the timing of host lysis. During the morphogenesis period of the infection cycle, canonical holins accumulate harmlessly in the cytoplasmic membrane until they suddenly trigger to form lethal lesions called holes. The holes can be visualized by cryo-electron microscopy and tomography as micrometer-scale interruptions in the membrane. To explore the fine structure of the holes formed by the lambda holin, S105, a cysteine-scanning accessibility study was performed. A collection of S105 alleles encoding holins with a single Cys residue in different positions was developed and characterized for lytic function. Based on the ability of 4-acetamido-4'-((iodoacetyl) amino) stilbene-2,2'-disulfonic acid, disodium salt (IASD), to modify these Cys residues, one face of transmembrane domain 1 (TMD1) and TMD3 was judged to face the lumen of the S105 hole. In both cases, the lumen-accessible face was found to correspond to the more hydrophilic face of the two TMDs. Judging by the efficiency of IASD modification, it was concluded that the bulk of the S105 protein molecules were involved in facing the lumen. These results are consistent with a model in which the perimeters of the S105 holes are lined by the holin molecules present at the time of lysis. Moreover, the findings that TMD1 and TMD3 face the lumen, coupled with previous results showing TMD2-TMD2 contacts in the S105 dimer, support a model in which membrane depolarization drives the transition of S105 from homotypic to heterotypic oligomeric interactions.
Collapse
|
30
|
Abstract
t is the holin gene for coliphage T4, encoding a 218-amino-acid (aa) protein essential for the inner membrane hole formation that initiates lysis and terminates the phage infection cycle. T is predicted to be an integral membrane protein that adopts an N(in)-C(out) topology with a single transmembrane domain (TMD). This holin topology is different from those of the well-studied holins S105 (3 TMDs; N(out)-C(in)) of the coliphage lambda and S68 (2 TMDs; N(in)-C(in)) of the lambdoid phage 21. Here, we used random mutagenesis to construct a library of lysis-defective alleles of t to discern residues and domains important for holin function and for the inhibition of lysis by the T4 antiholin, RI. The results show that mutations in all 3 topological domains (N-terminal cytoplasmic, TMD, and C-terminal periplasmic) can abrogate holin function. Additionally, several lysis-defective alleles in the C-terminal domain are no longer competent in binding RI. Taken together, these results shed light on the roles of the previously uncharacterized N-terminal and C-terminal domains in lysis and its real-time regulation.
Collapse
|
31
|
Young R. Phage lysis: three steps, three choices, one outcome. J Microbiol 2014; 52:243-58. [PMID: 24585055 DOI: 10.1007/s12275-014-4087-z] [Citation(s) in RCA: 264] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 02/15/2014] [Indexed: 11/26/2022]
Abstract
The lysis of bacterial hosts by double-strand DNA bacteriophages, once thought to reflect merely the accumulation of sufficient lysozyme activity during the infection cycle, has been revealed to recently been revealed to be a carefully regulated and temporally scheduled process. For phages of Gramnegative hosts, there are three steps, corresponding to subversion of each of the three layers of the cell envelope: inner membrane, peptidoglycan, and outer membrane. The pathway is controlled at the level of the cytoplasmic membrane. In canonical lysis, a phage encoded protein, the holin, accumulates harmlessly in the cytoplasmic membrane until triggering at an allele-specific time to form micron-scale holes. This allows the soluble endolysin to escape from the cytoplasm to degrade the peptidoglycan. Recently a parallel pathway has been elucidated in which a different type of holin, the pinholin, which, instead of triggering to form large holes, triggers to form small, heptameric channels that serve to depolarize the membrane. Pinholins are associated with SAR endolysins, which accumulate in the periplasm as inactive, membrane-tethered enzymes. Pinholin triggering collapses the proton motive force, allowing the SAR endolysins to refold to an active form and attack the peptidoglycan. Surprisingly, a third step, the disruption of the outer membrane is also required. This is usually achieved by a spanin complex, consisting of a small outer membrane lipoprotein and an integral cytoplasmic membrane protein, designated as o-spanin and i-spanin, respectively. Without spanin function, lysis is blocked and progeny virions are trapped in dead spherical cells, suggesting that the outer membrane has considerable tensile strength. In addition to two-component spanins, there are some single-component spanins, or u-spanins, that have an N-terminal outer-membrane lipoprotein signal and a C-terminal transmembrane domain. A possible mechanism for spanin function to disrupt the outer membrane is to catalyze fusion of the inner and outer membranes.
Collapse
Affiliation(s)
- Ryland Young
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX, 77843-2128, USA,
| |
Collapse
|
32
|
Savva CG, Dewey JS, Moussa SH, To KH, Holzenburg A, Young R. Stable micron-scale holes are a general feature of canonical holins. Mol Microbiol 2013; 91:57-65. [PMID: 24164554 DOI: 10.1111/mmi.12439] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2013] [Indexed: 11/27/2022]
Abstract
At a programmed time in phage infection cycles, canonical holins suddenly trigger to cause lethal damage to the cytoplasmic membrane, resulting in the cessation of respiration and the non-specific release of pre-folded, fully active endolysins to the periplasm. For the paradigm holin S105 of lambda, triggering is correlated with the formation of micron-scale membrane holes, visible as interruptions in the bilayer in cryo-electron microscopic images and tomographic reconstructions. Here we report that the size distribution of the holes is stable for long periods after triggering. Moreover, early triggering caused by an early lysis allele of S105 formed approximately the same number of holes, but the lesions were significantly smaller. In contrast, early triggering prematurely induced by energy poisons resulted in many fewer visible holes, consistent with previous sizing studies. Importantly, the unrelated canonical holins P2 Y and T4 T were found to cause the formation of holes of approximately the same size and number as for lambda. In contrast, no such lesions were visible after triggering of the pinholin S(21) 68. These results generalize the hole formation phenomenon for canonical holins. A model is presented suggesting the unprecedentedly large size of these holes is related to the timing mechanism.
Collapse
Affiliation(s)
- Christos G Savva
- Department of Biology, Texas A&M University, College Station, Texas, 77843-3258, USA; Microscopy and Imaging Center, Texas A&M University, College Station, Texas, 77843-2257, USA
| | | | | | | | | | | |
Collapse
|
33
|
Phage lysis: do we have the hole story yet? Curr Opin Microbiol 2013; 16:790-7. [PMID: 24113139 DOI: 10.1016/j.mib.2013.08.008] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/08/2013] [Accepted: 08/17/2013] [Indexed: 11/23/2022]
Abstract
In infections of Gram-negative bacteria, lysis is a three step process, with a choice of two effectors for each step. At a precise, allele-specific time, the inner membrane (IM) is fatally permeabilized by either a holin or a pinholin. This allows a muralytic enzyme, either a canonical endolysin, escaping from the cytoplasm, or a SAR endolysin, activated in the periplasm, to degrade the peptidoglycan. Surprisingly, a third class of lysis protein, the spanin, is required for disruption of the outer membrane (OM). Key steps are regulated by membrane protein dynamics, both in terms of bilayer topology and subcellular distribution, by the energization of the membrane, and by holin-specific inhibitors called antiholins.
Collapse
|
34
|
Srividhya KV, Krishnaswamy S. Characterization of DLP12 Prophage Membrane Associated Protein: HolinGFP. Indian J Microbiol 2013; 52:464-71. [PMID: 23997340 DOI: 10.1007/s12088-012-0278-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 06/04/2012] [Indexed: 10/28/2022] Open
Abstract
Lysis cassette genes from phages determine the final lytic event of the host cells. The lysis cassette genes are conserved in phages and prophages. The membrane associated holin from DLP12 prophage, available as a GFP fusion construct, was shown to be overexpressed, using confocal microscopy analysis, in bacterial cells. The protein expression caused cell death in E. coli AG1 strain suggesting the protein was functional. The His-tag HolinGFP protein was purified using cobalt affinity column and was eluted in the presence of different non-ionic detergents DDM (n-dodecyl-ß-d-maltoside), LDAO (Lauryldimethylamine-oxide), OG (n-octyl β-d-glucopyranoside) and C12E9 (dodecyl nonaoxyethylene ether). HolinGFP existed predominantly as a dimer in LDAO in Superdex S200 gel filtration chromatography. Circular dichroism and fluorescence spectroscopy of the fluorescent HolinGFP in all four detergents (C12E9, DDM, LDAO, and OG) confirmed the folded state. Both dithiobis succinimidyl propionate and gluteraldehyde crosslinking revealed the existence of higher order oligomers and dimers. HolinGFP has been functionally and biophysically characterised and is being explored for crystallographic structure determination.
Collapse
Affiliation(s)
- K V Srividhya
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021 Tamilnadu India
| | | |
Collapse
|
35
|
Jin M, Ye T, Zhang X. Roles of bacteriophage GVE2 endolysin in host lysis at high temperatures. Microbiology (Reading) 2013; 159:1597-1605. [DOI: 10.1099/mic.0.067611-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Min Jin
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Ting Ye
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xiaobo Zhang
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
36
|
Abstract
Lambdoid phage 21 uses a pinholin-signal anchor release endolysin strategy to effect temporally regulated host lysis. In this strategy, the pinholin S(21)68 accumulates harmlessly in the bilayer until suddenly triggering to form lethal membrane lesions, consisting of S(21)68 heptamers with central pores <2 nm in diameter. The membrane depolarization caused by these pores activates the muralytic endolysin, R(21), leading immediately to peptidoglycan degradation. The lethal S(21)68 complexes have been designated as pinholes to distinguish from the micrometer-scale holes formed by canonical holins. Here, we used GFP fusions of WT and mutant forms of S(21)68 to show that the holin accumulates uniformly throughout the membrane until the time of triggering, when it suddenly redistributes into numerous small foci (rafts). Raft formation correlates with the depletion of the proton motive force, which is indicated by the potential-sensitive dye bis-(1,3-dibutylbarbituric acid)pentamethine oxonol. By contrast, GFP fusions of either antiholin variant irsS(21)68, which only forms inactive dimers, or nonlethal mutant S(21)68(S44C), which is blocked at an activated dimer stage of the pinhole formation pathway, were both blocked in a state of uniform distribution. In addition, fluorescence recovery after photobleaching revealed that, although the antiholin irsS(21)68-GFP fusion was highly mobile in the membrane (even when the proton motive force was depleted), more than one-half of the S(21)68-GFP molecules were immobile, and the rest were in mobile states with a much lower diffusion rate than the rate of irsS(21)68-GFP. These results suggest a model in which, after transiting into an oligomeric state, S(21)68 migrates into rafts with heterogeneous sizes, within which the final pinholes form.
Collapse
|
37
|
Abstract
Y is the putative holin gene of the paradigm coliphage P2 and encodes a 93-amino-acid protein. Y is predicted to be an integral membrane protein that adopts an N-out C-in membrane topology with 3 transmembrane domains (TMDs) and a highly charged C-terminal cytoplasmic tail. The same features are observed in the canonical class I lambda holin, the S105 protein of phage lambda, which controls lysis by forming holes in the plasma membrane at a programmed time. S105 has been the subject of intensive genetic, cellular, and biochemical analyses. Although Y is not related to S105 in its primary structure, its characterization might prove useful in discerning the essential traits for holin function. Here, we used physiological and genetic approaches to show that Y exhibits the essential holin functional criteria, namely, allele-specific delayed-onset lethality and sensitivity to the energization of the membrane. Taken together, these results suggest that class I holins share a set of unusual features that are needed for their remarkable ability to program the end of the phage infection cycle with precise timing. However, Y holin function requires the integrity of its short cytoplasmic C-terminal domain, unlike for S105. Finally, instead of encoding a second translational product of Y as an antiholin, as shown for lambda S107, the P2 lysis cassette encodes another predicted membrane protein, LysA, which is shown here to have a Y-specific antiholin character.
Collapse
|
38
|
Catalão MJ, Gil F, Moniz-Pereira J, São-José C, Pimentel M. Diversity in bacterial lysis systems: bacteriophages show the way. FEMS Microbiol Rev 2012; 37:554-71. [PMID: 23043507 DOI: 10.1111/1574-6976.12006] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 08/20/2012] [Accepted: 09/25/2012] [Indexed: 11/29/2022] Open
Abstract
Bacteriophages have developed multiple host cell lysis strategies to promote release of descendant virions from infected bacteria. This review is focused on the lysis mechanisms employed by tailed double-stranded DNA bacteriophages, where new developments have recently emerged. These phages seem to use a least common denominator to induce lysis, the so-called holin-endolysin dyad. Endolysins are cell wall-degrading enzymes whereas holins form 'holes' in the cytoplasmic membrane at a precise scheduled time. The latter function was long viewed as essential to provide a pathway for endolysin escape to the cell wall. However, recent studies have shown that phages can also exploit the host cell secretion machinery to deliver endolysins to their target and subvert the bacterial autolytic arsenal to effectively accomplish lysis. In these systems the membrane-depolarizing holin function still seems to be essential to activate secreted endolysins. New lysis players have also been uncovered that promote degradation of particular bacterial cell envelopes, such as that of mycobacteria.
Collapse
Affiliation(s)
- Maria João Catalão
- Centro de Patogénese Molecular, Unidade dos Retrovírus e Infecções Associadas, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | | | | | | | | |
Collapse
|
39
|
Abstract
Phage holins are small, lethal membrane proteins of two general types: canonical holins, like λ S105, which oligomerizes and forms large membrane holes of unprecedented size; and pinholins, like S(21) 68 of lambdoid phage 21, which forms homo-heptameric channels, or pinholes, with a lumen of <2 nm. Pinholes depolarize the membrane, leading to activation of secreted endolysins and murein degradation. S(21) 68 has two transmembrane domains, TMD1 and TMD2. TMD2 alone lines the pinhole, making heterotypic interactions involving two surfaces, A and B. Mutational analysis on S(21) 68 suggested that S(21) 68 initially forms inactive dimer, with TMD1 inhibiting TMD2 both in cis and trans. When TMD1 exits the membrane to the periplasm, it liberates TMD2 to participate in the pathway to pinhole formation. In this study, further mutational analysis suggests a refined pinhole formation pathway, with the existence of at least two intermediate states. We propose that the pathway begins in the activated dimer state, with a homotypic TMD2 interface involving the A surface. Evidence is presented for a further oligomeric state involving a heterotypic A:B interaction. Moreover, the data suggest that a glycine-zipper motif present in the A interface of TMD2 is involved in every stage downstream of the inactive dimer.
Collapse
Affiliation(s)
- Ting Pang
- Department of Biochemistry and Biophysics, 2128 TAMU, Texas A&M University, College Station, TX 77843-2128, USA
| | | | | |
Collapse
|