1
|
Sharma G, Yao AI, Smaldone GT, Liang J, Long M, Facciotti MT, Singer M. Global gene expression analysis of the Myxococcus xanthus developmental time course. Genomics 2020; 113:120-134. [PMID: 33276008 DOI: 10.1016/j.ygeno.2020.11.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/06/2020] [Accepted: 11/29/2020] [Indexed: 12/14/2022]
Abstract
To accurately identify the genes and pathways involved in the initiation of the Myxococcus xanthus multicellular developmental program, we have previously reported a method of growing vegetative populations as biofilms within a controllable environment. Using a modified approach to remove up to ~90% rRNAs, we report a comprehensive transcriptional analysis of the M. xanthus developmental cycle while comparing it with the vegetative biofilms grown in rich and poor nutrients. This study identified 1522 differentially regulated genes distributed within eight clusters during development. It also provided a comprehensive overview of genes expressed during a nutrient-stress response, specific development time points, and during development initiation and regulation. We identified several differentially expressed genes involved in key central metabolic pathways suggesting their role in regulating myxobacterial development. Overall, this study will prove an important resource for myxobacterial researchers to delineate the regulatory and functional pathways responsible for development from those of the general nutrient stress response.
Collapse
Affiliation(s)
- Gaurav Sharma
- Department of Microbiology and Molecular Genetics, University of California - Davis, One Shields Avenue, Davis, CA 95616, United States of America; Institute of Bioinformatics and Applied Biotechnology, Electronic City, Bengaluru, Karnataka, India
| | - Andrew I Yao
- Department of Biomedical Engineering, University of California-Davis, One Shields Avenue, Davis, CA 95616, United States of America; Genome Center, University of California-Davis, One Shields Avenue, Davis CA 95616 Zymergen, Inc., Emeryville, CA, United States of America
| | - Gregory T Smaldone
- Department of Microbiology and Molecular Genetics, University of California - Davis, One Shields Avenue, Davis, CA 95616, United States of America
| | - Jennifer Liang
- Department of Microbiology and Molecular Genetics, University of California - Davis, One Shields Avenue, Davis, CA 95616, United States of America
| | - Matt Long
- Department of Microbiology and Molecular Genetics, University of California - Davis, One Shields Avenue, Davis, CA 95616, United States of America
| | - Marc T Facciotti
- Department of Biomedical Engineering, University of California-Davis, One Shields Avenue, Davis, CA 95616, United States of America; Genome Center, University of California-Davis, One Shields Avenue, Davis CA 95616 Zymergen, Inc., Emeryville, CA, United States of America
| | - Mitchell Singer
- Department of Microbiology and Molecular Genetics, University of California - Davis, One Shields Avenue, Davis, CA 95616, United States of America.
| |
Collapse
|
2
|
Peng R, Chen JH, Feng WW, Zhang Z, Yin J, Li ZS, Li YZ. Error-prone DnaE2 Balances the Genome Mutation Rates in Myxococcus xanthus DK1622. Front Microbiol 2017; 8:122. [PMID: 28203231 PMCID: PMC5285347 DOI: 10.3389/fmicb.2017.00122] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 01/17/2017] [Indexed: 11/24/2022] Open
Abstract
dnaE is an alpha subunit of the tripartite protein complex of DNA polymerase III that is responsible for the replication of bacterial genome. The dnaE gene is often duplicated in many bacteria, and the duplicated dnaE gene was reported dispensable for cell survivals and error-prone in DNA replication in a mystery. In this study, we found that all sequenced myxobacterial genomes possessed two dnaE genes. The duplicate dnaE genes were both highly conserved but evolved divergently, suggesting their importance in myxobacteria. Using Myxococcus xanthus DK1622 as a model, we confirmed that dnaE1 (MXAN_5844) was essential for cell survival, while dnaE2 (MXAN_3982) was dispensable and encoded an error-prone enzyme for replication. The deletion of dnaE2 had small effects on cellular growth and social motility, but significantly decreased the development and sporulation abilities, which could be recovered by the complementation of dnaE2. The expression of dnaE1 was always greatly higher than that of dnaE2 in either the growth or developmental stage. However, overexpression of dnaE2 could not make dnaE1 deletable, probably due to their protein structural and functional divergences. The dnaE2 overexpression not only improved the growth, development and sporulation abilities, but also raised the genome mutation rate of M. xanthus. We argued that the low-expressed error-prone DnaE2 played as a balancer for the genome mutation rates, ensuring low mutation rates for cell adaptation in new environments but avoiding damages from high mutation rates to cells.
Collapse
Affiliation(s)
- Ran Peng
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University Jinan, China
| | - Jiang-He Chen
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University Jinan, China
| | - Wan-Wan Feng
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University Jinan, China
| | - Zheng Zhang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University Jinan, China
| | - Jun Yin
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University Jinan, China
| | - Ze-Shuo Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University Jinan, China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University Jinan, China
| |
Collapse
|
3
|
Molecular Mechanisms of Signaling in Myxococcus xanthus Development. J Mol Biol 2016; 428:3805-30. [DOI: 10.1016/j.jmb.2016.07.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/30/2016] [Accepted: 07/08/2016] [Indexed: 11/19/2022]
|
4
|
Abstract
Large cell size is not restricted to a particular bacterial lifestyle, dispersal method, or cell envelope type. What is conserved among the very large bacteria are the quantity and arrangement of their genomic resources. All large bacteria described to date appear to be highly polyploid. This review focuses on Epulopiscium sp. type B, which maintains tens of thousands of genome copies throughout its life cycle. Only a tiny proportion of mother cell DNA is inherited by intracellular offspring, but surprisingly DNA replication takes place in the terminally differentiated mother cell as offspring grow. Massive polyploidy supports the acquisition of unstable genetic elements normally not seen in essential genes. Further studies of how large bacteria manage their genomic resources will provide insight into how simple cellular modifications can support unusual lifestyles and exceptional cell forms.
Collapse
Affiliation(s)
- Esther R Angert
- Department of Microbiology, Cornell University, Ithaca, New York 14853, USA.
| |
Collapse
|
5
|
Combinatorial regulation by MrpC2 and FruA involves three sites in the fmgE promoter region during Myxococcus xanthus development. J Bacteriol 2011; 193:2756-66. [PMID: 21441502 DOI: 10.1128/jb.00205-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Starvation causes cells in a dense population of Myxococcus xanthus to change their gliding movements and construct mounds. Short-range C-signaling between rod-shaped cells within mounds induces gene expression that promotes differentiation into spherical spores. Several C-signal-dependent genes have been shown to be regulated by cooperative binding of two transcription factors to the promoter region. These FruA- and MrpC2-regulated genes (designated fmg) each exhibit a different arrangement of binding sites. Here, we describe fmgE, which appears to be regulated by three sites for cooperative binding of FruA and MrpC2. Chromatin immunoprecipitation analysis showed that association of MrpC2 and/or its longer form, MrpC with the fmgE promoter region, depends on FruA, consistent with cooperative binding of the two proteins in vivo. Electrophoretic mobility shift assays with purified His(10)-MrpC2 and FruA-His(6) indicated cooperative binding in vitro to three sites in the fmgE promoter region. The effects of mutations on binding in vitro and on expression of fmgE-lacZ fusions correlated site 1 (at about position -100 relative to the transcriptional start site) with negative regulation and site 2 (just upstream of the promoter) and site 3 (at about position +100) with positive regulation. Site 3 was bound by His(10)-MrpC2 alone, or the combination of His(10)-MrpC2 and FruA-His(6), with the highest affinity, followed by site 1 and then site 2, supporting a model in which site 3 recruits MrpC2 and FruA to the fmgE promoter region, site 1 competes with site 2 for transcription factor binding, and site 2 occupancy is required to activate the promoter but only occurs when C-signaling produces a high concentration of active FruA.
Collapse
|