1
|
da Silva Bortoleti BT, Camargo PG, Gonçalves MD, Tomiotto-Pellissier F, Silva TF, Concato VM, Detoni MB, Bidóia DL, da Silva Lima CH, Rodrigues CR, Bispo MDLF, de Macedo FC, Conchon-Costa I, Miranda-Sapla MM, Wowk PF, Pavanelli WR. Effect of a thiohydantoin salt derived from l-Arginine on Leishmania amazonensis and infected cells: Insights from biological effects to molecular docking interactions. Chem Biol Interact 2024; 403:111216. [PMID: 39218371 DOI: 10.1016/j.cbi.2024.111216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/12/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Leishmaniasis is a neglected tropical disease caused by parasites of the genus Leishmania and is responsible for more than 1 million new cases and 70,000 deaths annually worldwide. Treatment has high costs, toxicity, complex and long administration time, several adverse effects, and drug-resistant strains, therefore new therapies are urgently needed. Synthetic compounds have been highlighted in the medicinal chemistry field as a strong option for drug development against different diseases. Organic salts (OS) have multiple biological activities, including activity against protozoa such as Leishmania spp. This study aimed to investigate the in vitro leishmanicidal activity and death mechanisms of a thiohydantoin salt derived from l-arginine (ThS) against Leishmania amazonensis. We observed that ThS treatment inhibited promastigote proliferation, increased ROS production, phosphatidylserine exposure and plasma membrane permeabilization, loss of mitochondrial membrane potential, lipid body accumulation, autophagic vacuole formation, cell cycle alteration, and morphological and ultrastructural changes, showing parasites death. Additionally, ThS presents low cytotoxicity in murine macrophages (J774A.1), human monocytes (THP-1), and sheep erythrocytes. ThS in vitro cell treatment reduced the percentage of infected macrophages and the number of amastigotes per macrophage by increasing ROS production and reducing TNF-α levels. These results highlight the potential of ThS among thiohydantoins, mainly related to the arginine portion, as a leishmanicidal drug for future drug strategies for leishmaniasis treatment. Notably, in silico investigation of key targets from L. amazonensis, revealed that a ThS compound from the l-arginine amino acid strongly interacts with arginase (ARG) and TNF-α converting enzyme (TACE), suggesting its potential as a Leishmania inhibitor.
Collapse
Affiliation(s)
- Bruna Taciane da Silva Bortoleti
- Biosciences and Biotechnology Postgraduate Program, Carlos Chagas Institute, (ICC/Fiocruz/PR), Curitiba, Paraná, Brazil; State University of Londrina (UEL/PR), Laboratory of Immunoparasitology, Londrina, Paraná, Brazil
| | - Priscila Goes Camargo
- Federal University of Rio de Janeiro, Faculty of Pharmacy, Rio de Janeiro, Rio de Janeiro, Brazil; State University of Londrina (UEL/PR), Chemistry Department, Londrina, Paraná, Brazil
| | - Manoela Daiele Gonçalves
- State University of Londrina (UEL/PR), Laboratory of Biotransformation and Phytochemistry, Londrina, Paraná, Brazil
| | - Fernanda Tomiotto-Pellissier
- Biosciences and Biotechnology Postgraduate Program, Carlos Chagas Institute, (ICC/Fiocruz/PR), Curitiba, Paraná, Brazil; State University of Londrina (UEL/PR), Laboratory of Immunoparasitology, Londrina, Paraná, Brazil
| | - Taylon Felipe Silva
- State University of Londrina (UEL/PR), Laboratory of Immunoparasitology, Londrina, Paraná, Brazil
| | - Virginia Marcia Concato
- State University of Londrina (UEL/PR), Laboratory of Immunoparasitology, Londrina, Paraná, Brazil
| | - Mariana Barbosa Detoni
- State University of Londrina (UEL/PR), Laboratory of Immunoparasitology, Londrina, Paraná, Brazil
| | - Danielle Larazin Bidóia
- State University of Londrina (UEL/PR), Laboratory of Immunoparasitology, Londrina, Paraná, Brazil
| | | | - Carlos Rangel Rodrigues
- Federal University of Rio de Janeiro, Faculty of Pharmacy, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Ivete Conchon-Costa
- State University of Londrina (UEL/PR), Laboratory of Immunoparasitology, Londrina, Paraná, Brazil
| | | | - Pryscilla Fanini Wowk
- Carlos Chagas Institute (ICC/Fiocruz/PR), Molecular Immunology and Cellular Group, Curitiba, Paraná, Brazil.
| | - Wander Rogério Pavanelli
- State University of Londrina (UEL/PR), Laboratory of Immunoparasitology, Londrina, Paraná, Brazil.
| |
Collapse
|
2
|
Howell J, Omwenga S, Jimenez M, Hammarton TC. Analysis of the Leishmania mexicana promastigote cell cycle using imaging flow cytometry provides new insights into cell cycle flexibility and events of short duration. PLoS One 2024; 19:e0311367. [PMID: 39361666 PMCID: PMC11449296 DOI: 10.1371/journal.pone.0311367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/17/2024] [Indexed: 10/05/2024] Open
Abstract
Promastigote Leishmania mexicana have a complex cell division cycle characterised by the ordered replication of several single-copy organelles, a prolonged S phase and rapid G2 and cytokinesis phases, accompanied by cell cycle stage-associated morphological changes. Here we exploit these morphological changes to develop a high-throughput and semi-automated imaging flow cytometry (IFC) pipeline to analyse the cell cycle in live L. mexicana. Firstly, we demonstrate that, unlike several other DNA stains, Vybrant™ DyeCycle™ Orange (DCO) is non-toxic and enables quantitative DNA imaging in live promastigotes. Secondly, by tagging the orphan spindle kinesin, KINF, with mNeonGreen, we describe KINF's cell cycle-dependent expression and localisation. Then, by combining manual gating of DCO DNA intensity profiles with automated masking and morphological measurements of parasite images, visual determination of the number of flagella per cell, and automated masking and analysis of mNG:KINF fluorescence, we provide a newly detailed description of L. mexicana promastigote cell cycle events that, for the first time, includes the durations of individual G2, mitosis and post-mitosis phases, and identifies G1 cells within the first 12 minutes of the new cell cycle. Our custom-developed masking and gating scheme allowed us to identify elusive G2 cells and to demonstrate that the CDK-inhibitor, flavopiridol, arrests cells in G2 phase, rather than mitosis, providing proof-of-principle of the utility of IFC for drug mechanism-of-action studies. Further, the high-throughput nature of IFC allowed the close examination of promastigote cytokinesis, revealing considerable flexibility in both the timing of cytokinesis initiation and the direction of furrowing, in contrast to the related kinetoplastid parasite, Trypanosoma brucei and many other cell types. Our new pipeline offers many advantages over traditional methods of cell cycle analysis such as fluorescence microscopy and flow cytometry and paves the way for novel high-throughput analysis of Leishmania cell division.
Collapse
Affiliation(s)
- Jessie Howell
- James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Sulochana Omwenga
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| | - Melanie Jimenez
- Biomedical Engineering Department, University of Strathclyde, Glasgow, United Kingdom
| | - Tansy C. Hammarton
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
3
|
Tagliazucchi L, Pinetti D, Genovese F, Malpezzi G, Perea Martinez A, Manzano JI, García-Hernández R, Cole AR, Kwon BR, Aiello D, Brooks BW, Thoré ESJ, Bertram MG, Gamarro F, Costi MP. Deciphering Host-Parasite Interplay in Leishmania Infection through a One Health View of Proteomics Studies on Drug Resistance. ACS Infect Dis 2024; 10:3202-3221. [PMID: 39088331 PMCID: PMC11520909 DOI: 10.1021/acsinfecdis.4c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 08/03/2024]
Abstract
Recent efforts in the study of vector-borne parasitic diseases (VBPDs) have emphasized an increased consideration for preventing drug resistance and promoting the environmental safety of drugs, from the beginning of the drug discovery pipeline. The intensive use of the few available antileishmanial drugs has led to the spreading of hyper-resistant Leishmania infantum strains, resulting in a chronic burden of the disease. In the present work, we have investigated the biochemical mechanisms of resistance to antimonials, paromomycin, and miltefosine in three drug-resistant parasitic strains from human clinical isolates, using a whole-cell mass spectrometry proteomics approach. We identified 14 differentially expressed proteins that were validated with their transcripts. Next, we employed functional association networks to identify parasite-specific proteins as potential targets for novel drug discovery studies. We used SeqAPASS analysis to predict susceptibility based on the evolutionary conservation of protein drug targets across species. MATH-domain-containing protein, adenosine triphosphate (ATP)-binding cassette B2, histone H4, calpain-like cysteine peptidase, and trypanothione reductase emerged as top candidates. Overall, this work identifies new biological targets for designing drugs to prevent the development of Leishmania drug resistance, while aligning with One Health principles that emphasize the interconnected health of people, animals, and ecosystems.
Collapse
Affiliation(s)
- Lorenzo Tagliazucchi
- Department
of Life Sciences, University of Modena and
Reggio Emilia, Via Campi 103, 41125 Modena, Italy
- Clinical
and Experimental Medicine (CEM) PhD Program, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Diego Pinetti
- Centro
Interdipartimentale Grandi Strumenti (CIGS), University of Modena and Reggio Emilia, Via Campi 213/A, 41125 Modena, Italy
| | - Filippo Genovese
- Centro
Interdipartimentale Grandi Strumenti (CIGS), University of Modena and Reggio Emilia, Via Campi 213/A, 41125 Modena, Italy
| | - Giulia Malpezzi
- Department
of Life Sciences, University of Modena and
Reggio Emilia, Via Campi 103, 41125 Modena, Italy
- Clinical
and Experimental Medicine (CEM) PhD Program, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Ana Perea Martinez
- Instituto
de Parasitología y Biomedicina “Lopez-Neyra (IPBLN-CSIC)”, Avda. del Conocimiento 17, 18016 Armilla, Granada, Spain
| | - José I. Manzano
- Instituto
de Parasitología y Biomedicina “Lopez-Neyra (IPBLN-CSIC)”, Avda. del Conocimiento 17, 18016 Armilla, Granada, Spain
| | - Raquel García-Hernández
- Instituto
de Parasitología y Biomedicina “Lopez-Neyra (IPBLN-CSIC)”, Avda. del Conocimiento 17, 18016 Armilla, Granada, Spain
| | - Alexander R. Cole
- Environmental
Health Science Program, Department of Environmental Science, Baylor University, One Bear Place, Waco, Texas 97344, United States
| | - Ba Reum Kwon
- Environmental
Health Science Program, Department of Environmental Science, Baylor University, One Bear Place, Waco, Texas 97344, United States
| | - Daniele Aiello
- Department
of Life Sciences, University of Modena and
Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Bryan W. Brooks
- Environmental
Health Science Program, Department of Environmental Science, Baylor University, One Bear Place, Waco, Texas 97344, United States
| | - Eli S. J. Thoré
- Department
of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, 907 36 Umeå, Sweden
- TRANSfarm-Science,
Engineering, & Technology Group, KU
Leuven, Bijzondereweg
12, 3360 Lovenjoel, Belgium
| | - Michael G. Bertram
- Department
of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, 907 36 Umeå, Sweden
- Department
of Zoology, Stockholm University, Svante Arrhenius väg 18b, 114 18 Stockholm, Sweden
- School
of Biological Sciences, Monash University, 25 Rainforest Walk, 3800 Melbourne, Australia
| | - Francisco Gamarro
- Instituto
de Parasitología y Biomedicina “Lopez-Neyra (IPBLN-CSIC)”, Avda. del Conocimiento 17, 18016 Armilla, Granada, Spain
| | - Maria Paola Costi
- Department
of Life Sciences, University of Modena and
Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| |
Collapse
|
4
|
Bieber BV, Lockett SG, Glasser SK, St Clair FA, Portillo NO, Adler LS, Povelones ML. Genetic modification of the bee parasite Crithidia bombi for improved visualization and protein localization. Exp Parasitol 2024; 262:108789. [PMID: 38762201 DOI: 10.1016/j.exppara.2024.108789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/02/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Crithidia bombi is a trypanosomatid parasite that infects several species of bumble bees (Bombus spp.), by adhering to their intestinal tract. Crithidia bombi infection impairs learning and reduces survival of workers and the fitness of overwintering queens. Although there is extensive research on the ecology of this host-pathogen system, we understand far less about the mechanisms that mediate internal infection dynamics. Crithidia bombi infects hosts by attaching to the hindgut via the flagellum, and one previous study found that a nectar secondary compound removed the flagellum, preventing attachment. However, approaches that allow more detailed observation of parasite attachment and growth would allow us to better understand factors mediating this host-pathogen relationship. We established techniques for genetic manipulation and visualization of cultured C. bombi. Using constructs established for Crithidia fasciculata, we successfully generated C. bombi cells expressing ectopic fluorescent transgenes using two different selectable markers. To our knowledge, this is the first genetic modification of this species. We also introduced constructs that label the mitochondrion and nucleus of the parasite, showing that subcellular targeting signals can function across parasite species to highlight specific organelles. Finally, we visualized fluorescently tagged parasites in vitro in both their swimming and attached forms, and in vivo in bumble bee (Bombus impatiens) hosts. Expanding our cell and molecular toolkit for C. bombi will help us better understand how factors such as host diet, immune system, and physiology mediate outcomes of infection by these common parasites.
Collapse
Affiliation(s)
| | - Sarah G Lockett
- Department of Biology, Villanova University, Villanova, PA, 19085, USA
| | - Sonja K Glasser
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Faith A St Clair
- Department of Biology, Villanova University, Villanova, PA, 19085, USA
| | - Neida O Portillo
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Lynn S Adler
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Megan L Povelones
- Department of Biology, Villanova University, Villanova, PA, 19085, USA.
| |
Collapse
|
5
|
Carreira de Paula J, García Olmedo P, Gómez-Moracho T, Buendía-Abad M, Higes M, Martín-Hernández R, Osuna A, de Pablos LM. Promastigote EPS secretion and haptomonad biofilm formation as evolutionary adaptations of trypanosomatid parasites for colonizing honeybee hosts. NPJ Biofilms Microbiomes 2024; 10:27. [PMID: 38514634 PMCID: PMC10957890 DOI: 10.1038/s41522-024-00492-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024] Open
Abstract
Bees are major pollinators involved in the maintenance of all terrestrial ecosystems. Biotic and abiotic factors placing these insects at risk is a research priority for ecological and agricultural sustainability. Parasites are one of the key players of this global decline and the study of their mechanisms of action is essential to control honeybee colony losses. Trypanosomatid parasites and particularly the Lotmaria passim are widely spread in honeybees, however their lifestyle is poorly understood. In this work, we show how these parasites are able to differentiate into a new parasitic lifestyle: the trypanosomatid biofilms. Using different microscopic techniques, we demonstrated that the secretion of Extracellular Polymeric Substances by free-swimming unicellular promastigote forms is a prerequisite for the generation and adherence of multicellular biofilms to solid surfaces in vitro and in vivo. Moreover, compared to human-infective trypanosomatid parasites our study shows how trypanosomatid parasites of honeybees increases their resistance and thus resilience to drastic changes in environmental conditions such as ultralow temperatures and hypoosmotic shock, which would explain their success thriving within or outside their hosts. These results set up the basis for the understanding of the success of this group of parasites in nature and to unveil the impact of such pathogens in honeybees, a keystones species in most terrestrial ecosystems.
Collapse
Affiliation(s)
- Jéssica Carreira de Paula
- Department of Parasitology, Biochemical and Molecular Parasitology Group CTS-183, University of Granada, Granada, Spain
- Institute of Biotechnology, University of Granada, Granada, Spain
| | - Pedro García Olmedo
- Department of Parasitology, Biochemical and Molecular Parasitology Group CTS-183, University of Granada, Granada, Spain
- Institute of Biotechnology, University of Granada, Granada, Spain
| | - Tamara Gómez-Moracho
- Department of Parasitology, Biochemical and Molecular Parasitology Group CTS-183, University of Granada, Granada, Spain
- Institute of Biotechnology, University of Granada, Granada, Spain
| | - María Buendía-Abad
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), IRIAF - Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, Spain
- Instituto de Recursos Humanos para la Ciencia y la Tecnología, Fundación Parque Científico y Tecnológico de Castilla-La Mancha, 02006, Albacete, Spain
| | - Mariano Higes
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), IRIAF - Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, Spain
- Instituto de Recursos Humanos para la Ciencia y la Tecnología, Fundación Parque Científico y Tecnológico de Castilla-La Mancha, 02006, Albacete, Spain
| | - Raquel Martín-Hernández
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), IRIAF - Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, Spain
- Instituto de Recursos Humanos para la Ciencia y la Tecnología, Fundación Parque Científico y Tecnológico de Castilla-La Mancha, 02006, Albacete, Spain
| | - Antonio Osuna
- Department of Parasitology, Biochemical and Molecular Parasitology Group CTS-183, University of Granada, Granada, Spain
- Institute of Biotechnology, University of Granada, Granada, Spain
| | - Luis Miguel de Pablos
- Department of Parasitology, Biochemical and Molecular Parasitology Group CTS-183, University of Granada, Granada, Spain.
- Institute of Biotechnology, University of Granada, Granada, Spain.
| |
Collapse
|
6
|
Sozanschi A, Asiki H, Amaral M, de Castro Levatti EV, Tempone AG, Wheeler RJ, Anderson EA. Synthesis and Evaluation of (Bis)benzyltetrahydroisoquinoline Alkaloids as Antiparasitic Agents. JACS AU 2024; 4:847-854. [PMID: 38425909 PMCID: PMC10900488 DOI: 10.1021/jacsau.4c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 03/02/2024]
Abstract
Visceral leishmaniasis and Chagas disease are neglected tropical diseases (NTDs) that severely impact the developing world. With current therapies suffering from poor efficacy and safety profiles as well as emerging resistance, new drug leads are direly needed. In this work, 26 alkaloids (9 natural and 17 synthetic) belonging to the benzyltetrahydroisoquinoline (BI) family were evaluated against both the pro/trypomastigote and amastigote forms of the parasites Leishmania infantum and Trypanosoma cruzi, the causative agents of these diseases. These alkaloids were synthesized via an efficient and modular enantioselective approach based on Bischler-Napieralski cyclization/Noyori asymmetric transfer hydrogenation to build the tetrahydroisoquinoline core. The bis-benzyltetrahydroisoquinoline (BBI) alkaloids were prepared using an Ullmann coupling of two BI units to form the biaryl ether linkage, which enabled a comprehensive survey of the influence of BI stereochemistry on bioactivity. Preliminary studies into the mechanism of action against Leishmania mexicana demonstrate that these compounds interfere with the cell cycle, potentially through inhibition of kinetoplast division, which may offer opportunities to identify a new target/mechanism of action. Three of the synthesized alkaloids showed promising druglike potential, meeting the Drugs for Neglected Disease initiative (DNDi) criteria for a hit against Chagas disease.
Collapse
Affiliation(s)
- Ana Sozanschi
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Hannah Asiki
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
- Peter
Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford , OX1 3SY, U.K.
| | - Maiara Amaral
- Laboratory
of Pathophysiology, Butantan Institute, Av. Vital Brazil, 1500, 05503-900 São Paulo, Brazil
- Instituto
de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, 05403-000 São Paulo, Brazil
| | | | - Andre G. Tempone
- Laboratory
of Pathophysiology, Butantan Institute, Av. Vital Brazil, 1500, 05503-900 São Paulo, Brazil
| | - Richard J. Wheeler
- Peter
Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford , OX1 3SY, U.K.
| | - Edward A. Anderson
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| |
Collapse
|
7
|
Hair M, Yanase R, Moreira-Leite F, Wheeler RJ, Sádlová J, Volf P, Vaughan S, Sunter JD. Whole cell reconstructions of Leishmania mexicana through the cell cycle. PLoS Pathog 2024; 20:e1012054. [PMID: 38416776 PMCID: PMC10927142 DOI: 10.1371/journal.ppat.1012054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/11/2024] [Accepted: 02/15/2024] [Indexed: 03/01/2024] Open
Abstract
The unicellular parasite Leishmania has a precisely defined cell architecture that is inherited by each subsequent generation, requiring a highly coordinated pattern of duplication and segregation of organelles and cytoskeletal structures. A framework of nuclear division and morphological changes is known from light microscopy, yet this has limited resolution and the intrinsic organisation of organelles within the cell body and their manner of duplication and inheritance is unknown. Using volume electron microscopy approaches, we have produced three-dimensional reconstructions of different promastigote cell cycle stages to give a spatial and quantitative overview of organelle positioning, division and inheritance. The first morphological indications seen in our dataset that a new cell cycle had begun were the assembly of a new flagellum, the duplication of the contractile vacuole and the increase in volume of the nucleus and kinetoplast. We showed that the progression of the cytokinesis furrow created a specific pattern of membrane indentations, while our analysis of sub-pellicular microtubule organisation indicated that there is likely a preferred site of new microtubule insertion. The daughter cells retained these indentations in their cell body for a period post-abscission. By comparing cultured and sand fly derived promastigotes, we found an increase in the number and overall volume of lipid droplets in the promastigotes from the sand fly, reflecting a change in their metabolism to ensure transmissibility to the mammalian host. Our insights into the cell cycle mechanics of Leishmania will support future molecular cell biology analyses of these parasites.
Collapse
Affiliation(s)
- Molly Hair
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Ryuji Yanase
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Flávia Moreira-Leite
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Richard John Wheeler
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Jovana Sádlová
- Department of Parasitology, Charles University, Prague, Czech Republic
| | - Petr Volf
- Department of Parasitology, Charles University, Prague, Czech Republic
| | - Sue Vaughan
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Jack Daniel Sunter
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| |
Collapse
|
8
|
Perin LR, Parreira LA, Barcelos ECS, Santos MFC, Menini L, Gomes DDO, Careta FDP. In vitro effect of alpha-bisabolol and its synthetic derivatives on macrophages, promastigotes, and amastigotes of Leishmania amazonensis and Leishmania infantum. Nat Prod Res 2023:1-6. [PMID: 38013219 DOI: 10.1080/14786419.2023.2288232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
Cutaneous and visceral leishmaniasis are public health problems in Africa, Asia, Europe, and America. The treatment has a high cost and toxicity. Thus, this work aims to evaluate the leishmanicidal activity of alpha-bisabolol and its three synthetic derivatives, P1, P2, and P3, on the promastigotes and amastigotes Leishmania infantum and L. amazonensis forms. Alpha-bisabolol showed the lowest IC50 with 3.43 for L. amazonensis promastigotes, while P1 was the most toxic for L. infantum with an IC50 of 9.10. The derivative P3 was better for the amastigote form, with an IC50 of 3.39 for L. amazonensis. All the compounds effectively decreased the intracellular load of amastigote and its ability to turn promastigote again. Thus, alpha-bisabolol and its three synthetic derivatives were effective in their leishmanicidal activity. Therefore, it can be an option for developing new treatments against leishmaniasis.
Collapse
Affiliation(s)
- Livia Reisen Perin
- Departamento de Medicina Veterinária, Universidade Federal do Espírito Santo, Alegre, Brasil
| | - Luciana Alves Parreira
- Departamento de Química e Física, Universidade Federal do Espírito Santo, Alegre, Brasil
| | | | | | - Luciano Menini
- Instituto Federal do Espírito Santo/Campus de Alegre, Alegre, Brasil
| | - Daniel de Oliveira Gomes
- Núcleo de Doenças Infecciosas/Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitória, Brasil
| | | |
Collapse
|
9
|
Chauhan R, Tiwari M, Chaudhary A, Sharan Thakur R, Pande V, Das J. Chemokines: A key driver for inflammation in protozoan infection. Int Rev Immunol 2023; 43:211-228. [PMID: 37980574 DOI: 10.1080/08830185.2023.2281566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/16/2023] [Indexed: 11/21/2023]
Abstract
Chemokines belong to the group of small proteins within the cytokine family having strong chemo-attractant properties. In most cases, the strong immuno-modulatory role of chemokines is crucial for generating the immune response against pathogens in various protozoan diseases. In this review, we have given a brief update on the classification, characterization, homeostasis, transcellular migration, and immuno-modulatory role of chemokines. Here we will evaluate the potential role of chemokines and their regulation in various protozoan diseases. There is a significant direct relationship between parasitic infection and the recruitment of effector cells of the immune response. Chemokines play an indispensable role in mediating several defense mechanisms against infection, such as leukocyte recruitment and the generation of innate and cell-mediated immunity that aids in controlling/eliminating the pathogen. This process is controlled by the chemotactic movement of chemokines induced as a primary host immune response. We have also addressed that chemokine expressions during infection are time-dependent and orchestrated in a systematic pattern that ultimately assists in generating a protective immune response. Taken together, this review provides a systematic understanding of the complexity of chemokines profiles during protozoan disease conditions and the rationale of targeting chemokines for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Rubika Chauhan
- Parasite-Host Biology, National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Mrinalini Tiwari
- Parasite-Host Biology, National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Amrendra Chaudhary
- Parasite-Host Biology, National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Reva Sharan Thakur
- Parasite-Host Biology, National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Veena Pande
- Biotechnology Department, Kumaun University, Nainital, India
| | - Jyoti Das
- Parasite-Host Biology, National Institute of Malaria Research, Dwarka, New Delhi, India
| |
Collapse
|
10
|
Campbell PC, de Graffenried CL. Morphogenesis in Trypanosoma cruzi epimastigotes proceeds via a highly asymmetric cell division. PLoS Negl Trop Dis 2023; 17:e0011731. [PMID: 37917723 PMCID: PMC10656021 DOI: 10.1371/journal.pntd.0011731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/17/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023] Open
Abstract
Trypanosoma cruzi is a protist parasite that is the causative agent of Chagas disease, a neglected tropical disease endemic to the Americas. T. cruzi cells are highly polarized and undergo morphological changes as they cycle within their insect and mammalian hosts. Work on related trypanosomatids has described cell division mechanisms in several life-cycle stages and identified a set of essential morphogenic proteins that serve as markers for key events during trypanosomatid division. Here, we use Cas9-based tagging of morphogenic genes, live-cell imaging, and expansion microscopy to study the cell division mechanism of the insect-resident epimastigote form of T. cruzi, which represents an understudied trypanosomatid morphotype. We find that T. cruzi epimastigote cell division is highly asymmetric, producing one daughter cell that is significantly smaller than the other. Daughter cell division rates differ by 4.9 h, which may be a consequence of this size disparity. Many of the morphogenic proteins identified in T. brucei have altered localization patterns in T. cruzi epimastigotes, which may reflect fundamental differences in the cell division mechanism of this life cycle stage, which widens and shortens the cell body to accommodate the duplicated organelles and cleavage furrow rather than elongating the cell body along the long axis of the cell, as is the case in life-cycle stages that have been studied in T. brucei. This work provides a foundation for further investigations of T. cruzi cell division and shows that subtle differences in trypanosomatid cell morphology can alter how these parasites divide.
Collapse
Affiliation(s)
- Paul C. Campbell
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Christopher L. de Graffenried
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
11
|
Salarkia E, Sharifi I, Keyhani A, Tavakoli Oliaee R, Khosravi A, Sharifi F, Bamorovat M, Babaei Z. In silico and in vitro potentials of crocin and amphotericin B on Leishmania major: Multiple synergistic mechanisms of actions. PLoS One 2023; 18:e0291322. [PMID: 37682934 PMCID: PMC10490900 DOI: 10.1371/journal.pone.0291322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
A significant barrier to optimal antileishmanial treatment is low efficacy and the emergence of drug resistance. Multiple approaches were used to monitor and assess crocin (a central component of saffron) mixed with amphotericin B (AmpB) potential in silico and in vitro consequences. The binding behavior of crocin and iNOS was the purpose of molecular docking. The results showed that crocin coupled with AmpB demonstrated a safe combination, extremely antileishmanial, suppressed Leishmania arginase absorption, and increased parasite death. This natural flower component is a robust antioxidant, significantly promoting the expression of the Th1-connected cytokines (IL12p40, IFN-γ, and TNF- α), iNOS, and transcription factors (Elk-1, c-Fos, and STAT-1). In comparison, the expression of the Th2-associated phenotypes (IL-10, IL-4, and TGF-β) was significantly reduced. The leishmanicidal effect of this combination was also mediated through programmed cell death (PCD), as confirmed by the manifestation of phosphatidylserine and cell cycle detention at the sub-GO/G1 phase. In conclusion, crocin with AmpB synergistically exerted in vitro antileishmanial action, generated nitric oxide and reactive oxygen species, modulated Th1, and Th2 phenotypes and transfer factors, enhanced PCD profile and arrested the cell cycle of Leishmania major promastigotes. The main action of crocin and AmpB involved wide-ranging mechanistic insights for conducting other clinical settings as promising drug candidates for cutaneous leishmaniasis. Therefore, this combination could be esteemed as a basis for a potential bioactive component and a logical source for leishmanicidal drug development against CL in future advanced clinical settings.
Collapse
Affiliation(s)
- Ehsan Salarkia
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Keyhani
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Razieh Tavakoli Oliaee
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Khosravi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Sharifi
- Research Center of Tropical and Infectious Diseases Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Bamorovat
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Babaei
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
12
|
Teh-Poot CF, Dzul-Huchim VM, Mercado JM, Villanueva-Lizama LE, Bottazzi ME, Jones KM, Tsai FTF, Cruz-Chan JV. A short-term method to evaluate anti-leishmania drugs by inhibition of stage differentiation in Leishmania mexicana using flow cytometry. Exp Parasitol 2023; 249:108519. [PMID: 37004860 PMCID: PMC10231665 DOI: 10.1016/j.exppara.2023.108519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Leishmaniasis is a vector-borne neglected tropical disease caused by the Leishmania spp. Parasite. The disease is transmitted to humans and animals by the bite of infected female sandflies during the ingestion of bloodmeal. Because current drug treatments induce toxicity and parasite resistance, there is an urgent need to evaluate new drugs. Most therapeutics target the differentiation of promastigotes to amastigotes, which is necessary to maintain Leishmania infection. However, in vitro assays are laborious, time-consuming, and depend on the experience of the technician. In this study, we aimed to establish a short-term method to assess the differentiation status of Leishmania mexicana (L. mexicana) using flow cytometry. Here, we showed that flow cytometry provides a rapid means to quantify parasite differentiation in cell culture as reliably as light microscopy. Interestingly, we found using flow cytometry that miltefosine reduced promastigote-to-amastigote differentiation of L. mexicana. We conclude that flow cytometry provides a means to rapidly assay the efficacy of small molecules or natural compounds as potential anti-leishmanials.
Collapse
Affiliation(s)
- Christian Florian Teh-Poot
- Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Victor Manuel Dzul-Huchim
- Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Jonathan M Mercado
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Liliana Estefanía Villanueva-Lizama
- Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, Mexico; Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA; Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Maria Elena Bottazzi
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA; Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA; Department of Biochemistry and Molecular Biology, and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kathryn M Jones
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA; Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA; Department of Biochemistry and Molecular Biology, and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Francis T F Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA; Department of Biochemistry and Molecular Biology, and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Julio Vladimir Cruz-Chan
- Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, Mexico; Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA; Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
13
|
Campbell PC, de Graffenried CL. Morphogenesis in Trypanosoma cruzi epimastigotes proceeds via a highly asymmetric cell division. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.542100. [PMID: 37293088 PMCID: PMC10245916 DOI: 10.1101/2023.05.24.542100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Trypanosoma cruzi is a protist parasite that is the causative agent of Chagas' disease, a neglected tropical disease endemic to the Americas. T. cruzi cells are highly polarized and undergo morphological changes as they cycle within their insect and mammalian hosts. Work on related trypanosomatids has described cell division mechanisms in several life-cycle stages and identified a set of essential morphogenic proteins that serve as markers for key events during trypanosomatid division. Here, we use Cas9-based tagging of morphogenic genes, live-cell imaging, and expansion microscopy to study the cell division mechanism of the insect-resident epimastigote form of T. cruzi, which represents an understudied trypanosomatid morphotype. We find that T. cruzi epimastigote cell division is highly asymmetric, producing one daughter cell that is significantly smaller than the other. Daughter cell division rates differ by 4.9 h, which may be a consequence of this size disparity. Many of the morphogenic proteins identified in T. brucei have altered localization patterns in T. cruzi epimastigoes, which may reflect fundamental differences in the cell division mechanism of this life cycle stage, which widens and shortens the cell body to accommodate the duplicated organelles and cleavage furrow rather than elongating the cell body along the long axis of the cell, as is the case in life-cycle stages that have been studied in T. brucei. This work provides a foundation for further investigations of T. cruzi cell division and shows that subtle differences in trypansomatid cell morphology can alter how these parasites divide.
Collapse
Affiliation(s)
- Paul C. Campbell
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | | |
Collapse
|
14
|
Moreira POL, Nogueira PM, Monte-Neto RL. Next-Generation Leishmanization: Revisiting Molecular Targets for Selecting Genetically Engineered Live-Attenuated Leishmania. Microorganisms 2023; 11:microorganisms11041043. [PMID: 37110466 PMCID: PMC10145799 DOI: 10.3390/microorganisms11041043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/07/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Despite decades of research devoted to finding a vaccine against leishmaniasis, we are still lacking a safe and effective vaccine for humans. Given this scenario, the search for a new prophylaxis alternative for controlling leishmaniasis should be a global priority. Inspired by leishmanization-a first generation vaccine strategy where live L. major parasites are inoculated in the skin to protect against reinfection-live-attenuated Leishmania vaccine candidates are promising alternatives due to their robust elicited protective immune response. In addition, they do not cause disease and could provide long-term protection upon challenge with a virulent strain. The discovery of a precise and easy way to perform CRISPR/Cas-based gene editing allowed the selection of safer null mutant live-attenuated Leishmania parasites obtained by gene disruption. Here, we revisited molecular targets associated with the selection of live-attenuated vaccinal strains, discussing their function, their limiting factors and the ideal candidate for the next generation of genetically engineered live-attenuated Leishmania vaccines to control leishmaniasis.
Collapse
Affiliation(s)
- Paulo O L Moreira
- Biotechnology Applied to Pathogens (BAP), Instituto René Rachou, Fundação Oswaldo Cruz, Fiocruz Minas, Belo Horizonte 30190-009, Brazil
| | - Paula M Nogueira
- Biotechnology Applied to Pathogens (BAP), Instituto René Rachou, Fundação Oswaldo Cruz, Fiocruz Minas, Belo Horizonte 30190-009, Brazil
| | - Rubens L Monte-Neto
- Biotechnology Applied to Pathogens (BAP), Instituto René Rachou, Fundação Oswaldo Cruz, Fiocruz Minas, Belo Horizonte 30190-009, Brazil
| |
Collapse
|
15
|
Feineis D, Bringmann G. Asian Ancistrocladus Lianas as Creative Producers of Naphthylisoquinoline Alkaloids. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 119:1-335. [PMID: 36587292 DOI: 10.1007/978-3-031-10457-2_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This book describes a unique class of secondary metabolites, the mono- and dimeric naphthylisoquinoline alkaloids. They occur in lianas of the paleotropical Ancistrocladaceae and Dioncophyllaceae families, exclusively. Their unprecedented structures include stereogenic centers and rotationally hindered, and thus likewise stereogenic, axes. Extended recent investigations on six Ancistrocladus species from Asia, as reported in this review, shed light on their fascinating phytochemical productivity, with over 100 such intriguing natural products. This high chemodiversity arises from a likewise unique biosynthesis from acetate-malonate units, following a novel polyketidic pathway to plant-derived isoquinoline alkaloids. Some of the compounds show most promising antiparasitic activities. Likewise presented are strategies for the regio- and stereoselective total synthesis of the alkaloids, including the directed construction of the chiral axis.
Collapse
Affiliation(s)
- Doris Feineis
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
16
|
Giraldo M, Upegui YA, Higuita-Castro JL, Gonzalez LA, Gutierrez S, Pulido SA, Robledo SM. Effect of the variation in the extracellular concentration of l-arginine in the physiology of Leishmania (Viannia) braziliensis and its susceptibility to some antileishmanial drugs. Exp Parasitol 2022; 242:108395. [PMID: 36179851 DOI: 10.1016/j.exppara.2022.108395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/04/2022]
Abstract
The knowledge about amino acid metabolism in trypanosomatids is a valuable source of new therapeutic targets. l-arginine is an essential amino acid for Leishmania parasites, and it participates in the synthesis of polyamines, a group of essential nutrients used for nucleic acids, proteins biosynthesis, and redox modulation necessary for proliferation. In the present study, we evaluated the effect of changes in the availability of this amino acid on promastigotes and intracellular amastigotes on U937 macrophages and showed that the absence of l-arginine in culture medium negatively influences the growth and infectivity of Leishmania (Viannia) braziliensis, causing a decrease in the percentage of the infected cells and parasite load tested through light microscopy. In addition, the absence of l-arginine resulted in the parasite's inability to regulate its reactive oxygen species (ROS) production, which persisted for up to 24 h by flow cytometry following the probe H2DCF-DA dye. Moreover, the differentiation of promastigote to amastigote in axenic culture was more significant at low concentrations of l-arginine suggesting that this depletion induces a stress environment to increase this transformation under axenic conditions. No association was established between the availability of l-arginine and the effectiveness of antileishmanial drugs. All these results confirm the importance of l-arginine in L. braziliensis life cycle vital processes, such as its replication and infectivity, as documented in other Leishmania species. Based on these results, we proposed that the l-arginine uptake/metabolism route is possible in exploring new antileishmanial drugs.
Collapse
Affiliation(s)
- Manuela Giraldo
- PECET, Facultad de Medicina, Universidad de Antioquia-UdeA, Medellín, 050010474, Colombia
| | - Yulieth A Upegui
- PECET, Facultad de Medicina, Universidad de Antioquia-UdeA, Medellín, 050010474, Colombia
| | - Jorge L Higuita-Castro
- PECET, Facultad de Medicina, Universidad de Antioquia-UdeA, Medellín, 050010474, Colombia
| | - Luis A Gonzalez
- QOPN Grupo Química Orgánica de Productos Naturales, Instituto de Química, Universidad de Antioquia, Medellín, 050010474, Colombia
| | - Sneider Gutierrez
- PECET, Facultad de Medicina, Universidad de Antioquia-UdeA, Medellín, 050010474, Colombia
| | - Sergio A Pulido
- PECET, Facultad de Medicina, Universidad de Antioquia-UdeA, Medellín, 050010474, Colombia
| | - Sara M Robledo
- PECET, Facultad de Medicina, Universidad de Antioquia-UdeA, Medellín, 050010474, Colombia.
| |
Collapse
|
17
|
Saini I, Joshi J, Kaur S. Unwelcome prevalence of leishmaniasis with several other infectious diseases. Int Immunopharmacol 2022; 110:109059. [DOI: 10.1016/j.intimp.2022.109059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022]
|
18
|
Santos FA, Cruz GS, Vieira FA, Queiroz BR, Freitas CD, Mesquita FP, Souza PF. Systematic Review of Antiprotozoal Potential of Antimicrobial Peptides. Acta Trop 2022; 236:106675. [DOI: 10.1016/j.actatropica.2022.106675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/01/2022]
|
19
|
Zakharova A, Albanaz ATS, Opperdoes FR, Škodová-Sveráková I, Zagirova D, Saura A, Chmelová L, Gerasimov ES, Leštinová T, Bečvář T, Sádlová J, Volf P, Lukeš J, Horváth A, Butenko A, Yurchenko V. Leishmania guyanensis M4147 as a new LRV1-bearing model parasite: Phosphatidate phosphatase 2-like protein controls cell cycle progression and intracellular lipid content. PLoS Negl Trop Dis 2022; 16:e0010510. [PMID: 35749562 PMCID: PMC9232130 DOI: 10.1371/journal.pntd.0010510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/17/2022] [Indexed: 12/11/2022] Open
Abstract
Leishmaniasis is a parasitic vector-borne disease caused by the protistan flagellates of the genus Leishmania. Leishmania (Viannia) guyanensis is one of the most common causative agents of the American tegumentary leishmaniasis. It has previously been shown that L. guyanensis strains that carry the endosymbiotic Leishmania RNA virus 1 (LRV1) cause more severe form of the disease in a mouse model than those that do not. The presence of the virus was implicated into the parasite's replication and spreading. In this respect, studying the molecular mechanisms of cellular control of viral infection is of great medical importance. Here, we report ~30.5 Mb high-quality genome assembly of the LRV1-positive L. guyanensis M4147. This strain was turned into a model by establishing the CRISPR-Cas9 system and ablating the gene encoding phosphatidate phosphatase 2-like (PAP2L) protein. The orthologue of this gene is conspicuously absent from the genome of an unusual member of the family Trypanosomatidae, Vickermania ingenoplastis, a species with mostly bi-flagellated cells. Our analysis of the PAP2L-null L. guyanensis showed an increase in the number of cells strikingly resembling the bi-flagellated V. ingenoplastis, likely as a result of the disruption of the cell cycle, significant accumulation of phosphatidic acid, and increased virulence compared to the wild type cells.
Collapse
Affiliation(s)
- Alexandra Zakharova
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Amanda T. S. Albanaz
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Fred R. Opperdoes
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Ingrid Škodová-Sveráková
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Diana Zagirova
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Andreu Saura
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Lˇubomíra Chmelová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Evgeny S. Gerasimov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Tereza Leštinová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tomáš Bečvář
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jovana Sádlová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Anton Horváth
- Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Anzhelika Butenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
20
|
Prat-Luri B, Neal C, Passelli K, Ganga E, Amore J, Firmino-Cruz L, Petrova TV, Müller AJ, Tacchini-Cottier F. The C5a-C5aR1 complement axis is essential for neutrophil recruitment to draining lymph nodes via high endothelial venules in cutaneous leishmaniasis. Cell Rep 2022; 39:110777. [PMID: 35508133 DOI: 10.1016/j.celrep.2022.110777] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/24/2022] [Accepted: 04/11/2022] [Indexed: 01/02/2023] Open
Abstract
Neutrophils are specialized innate immune cells known for their ability to fight pathogens. However, the mechanisms of neutrophil trafficking to lymph nodes are not fully clear. Using a murine model of dermal infection with Leishmania parasites, we observe a transient neutrophil influx in draining lymph nodes despite sustained recruitment to the infection site. Cell-tracking experiments, together with intravital two-photon microscopy, indicate that neutrophil recruitment to draining lymph nodes occurs minimally through lymphatics from the infected dermis, but mostly through blood vessels via high endothelial venules. Mechanistically, neutrophils do not respond to IL-1β or macrophage-derived molecules. Instead, they are guided by the C5a-C5aR1 axis, using L-selectin and integrins, to extravasate into the draining lymph node parenchyma. We also report that C5, the C5a precursor, is locally produced in the draining lymph node by lymphatic endothelial cells. Our data establish and detail organ-specific mechanisms of neutrophil trafficking.
Collapse
Affiliation(s)
- Borja Prat-Luri
- Department of Immunobiology, WHO Collaborative Center for Research and Training in Immunology, University of Lausanne, Epalinges, Switzerland.
| | - Christopher Neal
- Department of Immunobiology, WHO Collaborative Center for Research and Training in Immunology, University of Lausanne, Epalinges, Switzerland
| | - Katiuska Passelli
- Department of Immunobiology, WHO Collaborative Center for Research and Training in Immunology, University of Lausanne, Epalinges, Switzerland
| | - Emma Ganga
- Department of Immunobiology, WHO Collaborative Center for Research and Training in Immunology, University of Lausanne, Epalinges, Switzerland
| | - Jonas Amore
- Otto-von-Guericke-University Magdeburg and Helmholtz Centre for Infection Research Braunschweig, Magdeburg, Germany
| | - Luan Firmino-Cruz
- Department of Immunobiology, WHO Collaborative Center for Research and Training in Immunology, University of Lausanne, Epalinges, Switzerland
| | - Tatiana V Petrova
- Department of Oncology, University of Lausanne, Epalinges, Switzerland; Ludwig Institute for Cancer Research Lausanne, Epalinges, Switzerland
| | - Andreas J Müller
- Otto-von-Guericke-University Magdeburg and Helmholtz Centre for Infection Research Braunschweig, Magdeburg, Germany
| | - Fabienne Tacchini-Cottier
- Department of Immunobiology, WHO Collaborative Center for Research and Training in Immunology, University of Lausanne, Epalinges, Switzerland.
| |
Collapse
|
21
|
Al Kufi SGJH, Emmerson J, Rosenqvist H, Garcia CMM, Rios-Szwed DO, Wiese M. Absence of DEATH kinesin is fatal for Leishmania mexicana amastigotes. Sci Rep 2022; 12:3266. [PMID: 35228627 PMCID: PMC8885694 DOI: 10.1038/s41598-022-07412-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/16/2022] [Indexed: 01/04/2023] Open
Abstract
AbstractKinesins are motor proteins present in organisms from protists to mammals playing important roles in cell division, intracellular organisation and flagellum formation and maintenance. Leishmania mexicana is a protozoan parasite of the order Kinetoplastida causing human cutaneous leishmaniasis. Kinetoplastida genome sequence analyses revealed a large number of kinesins showing sequence and structure homology to eukaryotic kinesins. Here, we investigate the L. mexicana kinesin LmxKIN29 (LmxM.29.0350), also called DEATH kinesin. The activated MAP kinase LmxMPK3, a kinase affecting flagellum length in Leishmania, is able to phosphorylate recombinant full length LmxKIN29 at serine 554. Insect promastigote LmxKIN29 Leishmania null mutants showed no obvious phenotype. However, in mouse infection experiments, the null mutants were unable to cause the disease, whereas LmxKIN29 add-backs and single allele knockouts caused footpad lesions. Localisation using promastigotes expressing GFP-tagged LmxKIN29 revealed that the kinesin is predominantly found in between the nucleus and the flagellar pocket, while in dividing cells the GFP-fusion protein was found at the anterior and posterior ends of the cells indicating a role in cytokinesis. The inability to cause lesions in infected animals and the amino acid sequence divergence from mammalian kinesins suggests that LmxKIN29 is a potential drug target against leishmaniasis.
Collapse
|
22
|
Synthesis and characterization of zinc derivatized 3, 5-dihydroxy 4', 7-dimethoxyflavone and its anti leishmaniasis activity against Leishmania donovani. Biometals 2022; 35:285-301. [PMID: 35141791 DOI: 10.1007/s10534-022-00364-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 01/07/2022] [Indexed: 12/30/2022]
Abstract
This study reports the synthesis and characterization of zinc derivatized 3,5-dihydroxy 4', 7- dimethoxyflavone (DHDM-Zn) compound for the development of new antileishmanial agents. The interaction studies of DHDM with zinc were carried out by UV spectra and fluorescence spectra analysis. Characterization of the complex was further accomplished by multi-spectroscopic techniques such as FTIR, Raman, HRMS, NMR, FESEM-EDX. The morphological and topographical studies of synthesized DHDM-Zn were carried out using FESEM with EDX. Further, it was demonstrated that DHDM-Zn exhibited an excellent in vitro antagonistic effect against the promastigote form of L. donovani. In addition, the possible mechanisms of promastigote L. donovani cell death, by involvement of derivatized compound in arrest of the cell cycle in the G1 phase and residual cell count reduction were investigated. Promastigote growth kinetics performed in the presence of the derivatized compound revealed a slow growth rate. The combination of growth kinetics and cell cycle analysis, made it possible to interpret and classify the cause of leishmanial cell death accurately. These results support that zinc derivatized complex (DHDM-Zn) might work as a lead compound for designing and developing a new antileishmanial drug.
Collapse
|
23
|
Muniz RS, Campbell PC, Sladewski TE, Renner LD, de Graffenried CL. Revealing spatio-temporal dynamics with long-term trypanosomatid live-cell imaging. PLoS Pathog 2022; 18:e1010218. [PMID: 35041719 PMCID: PMC8797261 DOI: 10.1371/journal.ppat.1010218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/28/2022] [Accepted: 12/17/2021] [Indexed: 11/19/2022] Open
Abstract
Trypanosoma brucei, the causative agent of human African trypanosomiasis, is highly motile and must be able to move in all three dimensions for reliable cell division. These characteristics make long-term microscopic imaging of live T. brucei cells challenging, which has limited our understanding of important cellular events. To address this issue, we devised an imaging approach that confines cells in small volumes within cast agarose microwells that can be imaged continuously for up to 24 h. Individual T. brucei cells were imaged through multiple rounds of cell division with high spatial and temporal resolution. We developed a strategy that employs in-well “sentinel” cells to monitor potential imaging toxicity during loss-of-function experiments such as small-molecule inhibition and RNAi. Using our approach, we show that the asymmetric daughter cells produced during T. brucei division subsequently divide at different rates, with the old-flagellum daughter cell dividing first. The flagellar detachment phenotype that appears during inhibition of the Polo-like kinase homolog TbPLK occurs in a stepwise fashion, with the new flagellum initially linked by its tip to the old, attached flagellum. We probe the feasibility of a previously proposed “back-up” cytokinetic mechanism and show that cells that initiate this process do not appear to complete cell division. This live-cell imaging method will provide a novel avenue for studying a wide variety of cellular events in trypanosomatids that have previously been inaccessible.
Collapse
Affiliation(s)
- Richard S. Muniz
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Paul C. Campbell
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Thomas E. Sladewski
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Lars D. Renner
- Leibniz Institute of Polymer Research and the Max Bergmann Center of Biomaterials, Dresden, Germany
| | - Christopher L. de Graffenried
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
24
|
de Oliveira BCD, Assis LHC, Shiburah ME, Paiva SC, Fontes VS, de Oliveira LS, da Silva VL, da Silva MS, Cano MIN. Synchronization of Leishmania amazonensis Cell Cycle Using Hydroxyurea. Methods Mol Biol 2022; 2579:127-135. [PMID: 36045203 DOI: 10.1007/978-1-0716-2736-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Leishmania spp. comprises a group of protozoan parasites that affect millions of people around the world. Understanding the main cell cycle-dependent events could provide an important route for developing specific therapies since some factors involved in cell cycle control may have low similarity relative to their homologs in mammals. Furthermore, accurate cell cycle-dependent analyses often require many cells, which can be achieved through cell cycle synchronization. Here, we described a useful method to synchronize procyclic promastigote forms of Leishmania amazonensis using hydroxyurea (HU) and the analysis of its DNA content profile. This approach can be extended to other trypanosomatids, such as Trypanosoma cruzi or Trypanosoma brucei, and provides an effective method for arresting more than 80% of cells at the G1/S phase transition.
Collapse
Affiliation(s)
- Beatriz C D de Oliveira
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Luiz H C Assis
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Mark E Shiburah
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Stephany C Paiva
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Veronica S Fontes
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Leilane S de Oliveira
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Vitor L da Silva
- DNA Replication and Repair Laboratory (DRRL), Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Marcelo S da Silva
- DNA Replication and Repair Laboratory (DRRL), Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| | - Maria Isabel N Cano
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
25
|
Passos ADO, Assis LHC, Ferri YG, da Silva VL, da Silva MS, Cano MIN. The Trypanosomatids Cell Cycle: A Brief Report. Methods Mol Biol 2022; 2579:25-34. [PMID: 36045195 DOI: 10.1007/978-1-0716-2736-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Trypanosomatids are protozoan parasites among which are the etiologic agents of various infectious diseases in humans, such as Trypanosoma cruzi (causative agent of Chagas disease), Trypanosoma brucei (causative agent of sleeping sickness), and species of the genus Leishmania (causative agents of leishmaniases). The cell cycle in these organisms presents a sequence of events conserved throughout evolution. However, these parasites also have unique characteristics that confer some peculiarities related to the cell cycle phases. This review compares general and peculiar aspects of the cell cycle in the replicative forms of trypanosomatids. Moreover, a brief discussion about the possible cross-talk between telomeres and the cell cycle is presented. Finally, we intend to open a discussion on how a profound understanding of the cell cycle would facilitate the search for potential targets for developing antiparasitic therapies that could help millions of people worldwide.
Collapse
Affiliation(s)
- Arthur de Oliveira Passos
- DNA Replication and Repair Laboratory (DRRL), Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Luiz H C Assis
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Yete G Ferri
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Vitor L da Silva
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Marcelo S da Silva
- DNA Replication and Repair Laboratory (DRRL), Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| | - Maria Isabel N Cano
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
26
|
de Oliveira BCD, Shiburah ME, Paiva SC, Vieira MR, Morea EGO, da Silva MS, Alves CDS, Segatto M, Gutierrez-Rodrigues F, Borges JC, Calado RT, Cano MIN. Possible Involvement of Hsp90 in the Regulation of Telomere Length and Telomerase Activity During the Leishmania amazonensis Developmental Cycle and Population Proliferation. Front Cell Dev Biol 2021; 9:713415. [PMID: 34778247 PMCID: PMC8581162 DOI: 10.3389/fcell.2021.713415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/29/2021] [Indexed: 12/29/2022] Open
Abstract
The Leishmania developmental cycle comprises three main life forms in two hosts, indicating that the parasite is continually challenged due to drastic environmental changes. The disruption of this cycle is critical for discovering new therapies to eradicate leishmaniasis, a neglected disease that affects millions worldwide. Telomeres, the physical ends of chromosomes, maintain genome stability and cell proliferation and are potential antiparasitic drug targets. Therefore, understanding how telomere length is regulated during parasite development is vital. Here, we show that telomeres form clusters spread in the nucleoplasm of the three parasite life forms. We also observed that amastigotes telomeres are shorter than metacyclic and procyclic promastigotes and that in parasites with continuous in vitro passages, telomere length increases over time. These observed differences in telomere length among parasite’s life stages were not due to lack/inhibition of telomerase since enzyme activity was detected in all parasite life stages, although the catalysis was temperature-dependent. These data led us to test if, similar to other eukaryotes, parasite telomere length maintenance could be regulated by Hsp83, the ortholog of Hsp90 in trypanosomatids, and Leishmania (LHsp90). Parasites were then treated with the Hsp90 inhibitor 17AAG. The results showed that 17AAG disturbed parasite growth, induced accumulation into G2/M phases, and telomere shortening in a time-dependent manner. It has also inhibited procyclic promastigote’s telomerase activity. Besides, LHsp90 interacts with the telomerase TERT component as shown by immunoprecipitation, strongly suggesting a new role for LHsp90 as a parasite telomerase component involved in controlling telomere length maintenance and parasite life span.
Collapse
Affiliation(s)
- Beatriz C D de Oliveira
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), São Paulo, Brazil
| | - Mark E Shiburah
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), São Paulo, Brazil
| | - Stepany C Paiva
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), São Paulo, Brazil
| | - Marina R Vieira
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), São Paulo, Brazil
| | - Edna Gicela O Morea
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), São Paulo, Brazil
| | - Marcelo Santos da Silva
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), São Paulo, Brazil
| | - Cristiane de Santis Alves
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), São Paulo, Brazil
| | | | | | - Júlio C Borges
- São Carlos Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Rodrigo T Calado
- Hemocentro da Faculdade de Medicina de Ribeirão Preto, Universidade of São Paulo, São Paulo, Brazil
| | - Maria Isabel N Cano
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), São Paulo, Brazil
| |
Collapse
|
27
|
Assis LHC, Andrade-Silva D, Shiburah ME, de Oliveira BCD, Paiva SC, Abuchery BE, Ferri YG, Fontes VS, de Oliveira LS, da Silva MS, Cano MIN. Cell Cycle, Telomeres, and Telomerase in Leishmania spp.: What Do We Know So Far? Cells 2021; 10:cells10113195. [PMID: 34831418 PMCID: PMC8621916 DOI: 10.3390/cells10113195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 12/18/2022] Open
Abstract
Leishmaniases belong to the inglorious group of neglected tropical diseases, presenting different degrees of manifestations severity. It is caused by the transmission of more than 20 species of parasites of the Leishmania genus. Nevertheless, the disease remains on the priority list for developing new treatments, since it affects millions in a vast geographical area, especially low-income people. Molecular biology studies are pioneers in parasitic research with the aim of discovering potential targets for drug development. Among them are the telomeres, DNA–protein structures that play an important role in the long term in cell cycle/survival. Telomeres are the physical ends of eukaryotic chromosomes. Due to their multiple interactions with different proteins that confer a likewise complex dynamic, they have emerged as objects of interest in many medical studies, including studies on leishmaniases. This review aims to gather information and elucidate what we know about the phenomena behind Leishmania spp. telomere maintenance and how it impacts the parasite’s cell cycle.
Collapse
Affiliation(s)
- Luiz H. C. Assis
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.H.C.A.); (D.A.-S.); (M.E.S.); (B.C.D.d.O.); (S.C.P.); (V.S.F.); (L.S.d.O.)
| | - Débora Andrade-Silva
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.H.C.A.); (D.A.-S.); (M.E.S.); (B.C.D.d.O.); (S.C.P.); (V.S.F.); (L.S.d.O.)
| | - Mark E. Shiburah
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.H.C.A.); (D.A.-S.); (M.E.S.); (B.C.D.d.O.); (S.C.P.); (V.S.F.); (L.S.d.O.)
| | - Beatriz C. D. de Oliveira
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.H.C.A.); (D.A.-S.); (M.E.S.); (B.C.D.d.O.); (S.C.P.); (V.S.F.); (L.S.d.O.)
| | - Stephany C. Paiva
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.H.C.A.); (D.A.-S.); (M.E.S.); (B.C.D.d.O.); (S.C.P.); (V.S.F.); (L.S.d.O.)
| | - Bryan E. Abuchery
- DNA Replication and Repair Laboratory (DRRL), Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (B.E.A.); (Y.G.F.)
| | - Yete G. Ferri
- DNA Replication and Repair Laboratory (DRRL), Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (B.E.A.); (Y.G.F.)
| | - Veronica S. Fontes
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.H.C.A.); (D.A.-S.); (M.E.S.); (B.C.D.d.O.); (S.C.P.); (V.S.F.); (L.S.d.O.)
| | - Leilane S. de Oliveira
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.H.C.A.); (D.A.-S.); (M.E.S.); (B.C.D.d.O.); (S.C.P.); (V.S.F.); (L.S.d.O.)
| | - Marcelo S. da Silva
- DNA Replication and Repair Laboratory (DRRL), Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (B.E.A.); (Y.G.F.)
- Correspondence: (M.S.d.S.); (M.I.N.C.)
| | - Maria Isabel N. Cano
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.H.C.A.); (D.A.-S.); (M.E.S.); (B.C.D.d.O.); (S.C.P.); (V.S.F.); (L.S.d.O.)
- Correspondence: (M.S.d.S.); (M.I.N.C.)
| |
Collapse
|
28
|
Bortoleti BTDS, Gonçalves MD, Tomiotto-Pellissier F, Camargo PG, Assolini JP, Concato VM, Detoni MB, Bidóia DL, Bispo MDLF, Lima CHDS, de Macedo FC, Conchon-Costa I, Miranda-Sapla MM, Wowk PF, Pavanelli WR. Investigation of the antileishmanial activity and mechanisms of action of acetyl-thiohydantoins. Chem Biol Interact 2021; 351:109690. [PMID: 34637778 DOI: 10.1016/j.cbi.2021.109690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 09/28/2021] [Accepted: 10/07/2021] [Indexed: 12/20/2022]
Abstract
The currently available treatment options for leishmaniasis are associated with high costs, severe side effects, and high toxicity. In previous studies, thiohydantoins demonstrated some pharmacological activities and were shown to be potential hit compounds with antileishmanial properties. The present study further explored the antileishmanial effect of acetyl-thiohydantoins against Leishmania amazonensis and determined the main processes involved in parasite death. We observed that compared to thiohydantoin nuclei, acetyl-thiohydantoin treatment inhibited the proliferation of promastigotes. This treatment caused alterations in cell cycle progression and parasite size and caused morphological and ultrastructural changes. We then investigated the mechanisms involved in the death of the protozoan; there was an increase in ROS production, phosphatidylserine exposure, and plasma membrane permeabilization and a loss of mitochondrial membrane potential, resulting in an accumulation of lipid bodies and the formation of autophagic vacuoles on these parasites and confirming an apoptosis-like process. In intracellular amastigotes, selected acetyl-thiohydantoins reduced the percentage of infected macrophages and the number of amastigotes/macrophages by increasing ROS production and reducing TNF-α levels. Moreover, thiohydantoins did not induce cytotoxicity in murine macrophages (J774A.1), human monocytes (THP-1), or sheep erythrocytes. In silico and in vitro analyses showed that acetyl-thiohydantoins exerted in vitro antileishmanial effects on L. amazonensis promastigotes in apoptosis-like and amastigote forms by inducing ROS production and reducing TNF-α levels, indicating that they are good candidates for drug discovery studies in leishmaniasis treatment. Additionally, we carried out molecular docking analyses of acetyl-thiohydantoins on two important targets of Leishmania amazonensis: arginase and TNF-alpha converting enzyme. The results suggested that the acetyl groups in the N1-position of the thiohydantoin ring and the ring itself could be pharmacophoric groups due to their affinity for binding amino acid residues at the active site of both enzymes via hydrogen bond interactions. These results demonstrate that thiohydantoins are promising hit compounds that could be used as antileishmanial agents.
Collapse
Affiliation(s)
- Bruna Taciane da Silva Bortoleti
- Biosciences and Biotechnology Postgraduate Program, Carlos Chagas Institute, (ICC/Fiocruz/PR), Curitiba, Paraná, Brazil; State University of Londrina (UEL/PR), Laboratory of Immunoparasitology, Londrina, Paraná, Brazil
| | - Manoela Daiele Gonçalves
- State University of Londrina (UEL/PR), Laboratory of Biotransformation and Phytochemistry, Londrina, Paraná, Brazil
| | - Fernanda Tomiotto-Pellissier
- Biosciences and Biotechnology Postgraduate Program, Carlos Chagas Institute, (ICC/Fiocruz/PR), Curitiba, Paraná, Brazil; State University of Londrina (UEL/PR), Laboratory of Immunoparasitology, Londrina, Paraná, Brazil
| | - Priscila Goes Camargo
- State University of Londrina (UEL/PR), Laboratory of Research on Bioactive Molecules, Londrina, Paraná, Brazil
| | - João Paulo Assolini
- State University of Londrina (UEL/PR), Laboratory of Immunoparasitology, Londrina, Paraná, Brazil
| | - Virginia Marcia Concato
- State University of Londrina (UEL/PR), Laboratory of Immunoparasitology, Londrina, Paraná, Brazil
| | - Mariana Barbosa Detoni
- State University of Londrina (UEL/PR), Laboratory of Immunoparasitology, Londrina, Paraná, Brazil
| | - Danielle Larazin Bidóia
- State University of Londrina (UEL/PR), Laboratory of Immunoparasitology, Londrina, Paraná, Brazil
| | | | | | - Fernando Cesar de Macedo
- State University of Londrina (UEL/PR), Laboratory of Research on Bioactive Molecules, Londrina, Paraná, Brazil
| | - Ivete Conchon-Costa
- State University of Londrina (UEL/PR), Laboratory of Immunoparasitology, Londrina, Paraná, Brazil
| | | | | | - Wander Rogério Pavanelli
- State University of Londrina (UEL/PR), Laboratory of Immunoparasitology, Londrina, Paraná, Brazil.
| |
Collapse
|
29
|
Gorilak P, Pružincová M, Vachova H, Olšinová M, Schmidt Cernohorska M, Varga V. Expansion microscopy facilitates quantitative super-resolution studies of cytoskeletal structures in kinetoplastid parasites. Open Biol 2021; 11:210131. [PMID: 34465213 PMCID: PMC8437234 DOI: 10.1098/rsob.210131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Expansion microscopy (ExM) has become a powerful super-resolution method in cell biology. It is a simple, yet robust approach, which does not require any instrumentation or reagents beyond those present in a standard microscopy facility. In this study, we used kinetoplastid parasites Trypanosoma brucei and Leishmania major, which possess a complex, yet well-defined microtubule-based cytoskeleton, to demonstrate that this method recapitulates faithfully morphology of structures as previously revealed by a combination of sophisticated electron microscopy (EM) approaches. Importantly, we also show that due to the rapidness of image acquisition and three-dimensional reconstruction of cellular volumes ExM is capable of complementing EM approaches by providing more quantitative data. This is demonstrated on examples of less well-appreciated microtubule structures, such as the neck microtubule of T. brucei or the pocket, cytosolic and multivesicular tubule-associated microtubules of L. major. We further demonstrate that ExM enables identifying cell types rare in a population, such as cells in mitosis and cytokinesis. Three-dimensional reconstruction of an entire volume of these cells provided details on the morphology of the mitotic spindle and the cleavage furrow. Finally, we show that established antibody markers of major cytoskeletal structures function well in ExM, which together with the ability to visualize proteins tagged with small epitope tags will facilitate studies of the kinetoplastid cytoskeleton.
Collapse
Affiliation(s)
- Peter Gorilak
- Laboratory of Cell Motility, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, Prague, 14220, Czech Republic,Charles University, Faculty of Science, Albertov 6, Prague, 128 00, Czech Republic
| | - Martina Pružincová
- Laboratory of Cell Motility, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, Prague, 14220, Czech Republic
| | - Hana Vachova
- Laboratory of Cell Motility, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, Prague, 14220, Czech Republic
| | - Marie Olšinová
- IMCF at BIOCEV, Faculty of Science, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Marketa Schmidt Cernohorska
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, Prague, 14220, Czech Republic
| | - Vladimir Varga
- Laboratory of Cell Motility, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, Prague, 14220, Czech Republic
| |
Collapse
|
30
|
Buendía-Abad M, García-Palencia P, de Pablos LM, Alunda JM, Osuna A, Martín-Hernández R, Higes M. First description of Lotmaria passim and Crithidia mellificae haptomonad stages in the honeybee hindgut. Int J Parasitol 2021; 52:65-75. [PMID: 34416272 DOI: 10.1016/j.ijpara.2021.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 12/22/2022]
Abstract
The remodelling of flagella into attachment structures is a common and important event in the trypanosomatid life cycle. Lotmaria passim and Crithidia mellificae can parasitize Apis mellifera, and as a result they might have a significant impact on honeybee health. However, there are details of their life cycle and the mechanisms underlying their pathogenicity in this host that remain unclear. Here we show that both L. passim promastigotes and C. mellificae choanomastigotes differentiate into haptomonad stages covering the ileum and rectum of honeybees. These haptomonad cells remain attached to the host surface via zonular hemidesmosome-like structures, as revealed by transmission electron microscopy. This work describes for the first known time the haptomonad morphotype of these species and their hemidesmosome-like attachments in A. mellifera, a key trait used by other trypanosomatid species to proliferate in the insect host hindgut.
Collapse
Affiliation(s)
- María Buendía-Abad
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), IRIAF - Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, Spain.
| | - Pilar García-Palencia
- Departamento de Medicina Veterinaria y Cirugía Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Luis Miguel de Pablos
- Departamento de Parasitología, Grupo de Bioquímica y Parasitología Molecular CTS-183, Universidad de Granada, Granada, Spain
| | - José María Alunda
- Departamento de Sanidad Animal, Grupo ICPVet, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Antonio Osuna
- Departamento de Parasitología, Grupo de Bioquímica y Parasitología Molecular CTS-183, Universidad de Granada, Granada, Spain
| | - Raquel Martín-Hernández
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), IRIAF - Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, Spain; Instituto de Recursos Humanos para la Ciencia y la Tecnología (INCRECYT-FEDER), Fundación Parque Científico y Tecnológico de Castilla - La Mancha, Albacete, Spain
| | - Mariano Higes
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), IRIAF - Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, Spain
| |
Collapse
|
31
|
A specific basal body linker protein provides the connection function for basal body inheritance in trypanosomes. Proc Natl Acad Sci U S A 2021; 118:2014040118. [PMID: 33597294 DOI: 10.1073/pnas.2014040118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Centrioles and basal bodies (CBBs) are found in physically linked pairs, and in mammalian cells intercentriole connections (G1-G2 tether and S-M linker) regulate centriole duplication and function. In trypanosomes BBs are not associated with the spindle and function in flagellum/cilia nucleation with an additional role in mitochondrial genome (kinetoplast DNA [kDNA]) segregation. Here, we describe BBLP, a BB/pro-BB (pBB) linker protein in Trypanosoma brucei predicted to be a large coiled-coil protein conserved in the kinetoplastida. Colocalization with the centriole marker SAS6 showed that BBLP localizes between the BB/pBB pair, throughout the cell cycle, with a stronger signal in the old flagellum BB/pBB pair. Importantly, RNA interference (RNAi) depletion of BBLP leads to a conspicuous splitting of the BB/pBB pair associated only with the new flagellum. BBLP RNAi is lethal in the bloodstream form of the parasite and perturbs mitochondrial kDNA inheritance. Immunogold labeling confirmed that BBLP is localized to a cytoskeletal component of the BB/pBB linker, and tagged protein induction showed that BBLP is incorporated de novo in both new and old flagella BB pairs of dividing cells. We show that the two aspects of CBB disengagement-loss of orthogonal orientation and ability to separate and move apart-are consistent but separable events in evolutionarily diverse cells and we provide a unifying model explaining centriole/BB linkage differences between such cells.
Collapse
|
32
|
Corrales RM, Vaselek S, Neish R, Berry L, Brunet CD, Crobu L, Kuk N, Mateos-Langerak J, Robinson DR, Volf P, Mottram JC, Sterkers Y, Bastien P. The kinesin of the flagellum attachment zone in Leishmania is required for cell morphogenesis, cell division and virulence in the mammalian host. PLoS Pathog 2021; 17:e1009666. [PMID: 34143858 PMCID: PMC8244899 DOI: 10.1371/journal.ppat.1009666] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/30/2021] [Accepted: 05/24/2021] [Indexed: 11/20/2022] Open
Abstract
Leishmania parasites possess a unique and complex cytoskeletal structure termed flagellum attachment zone (FAZ) connecting the base of the flagellum to one side of the flagellar pocket (FP), an invagination of the cell body membrane and the sole site for endocytosis and exocytosis. This structure is involved in FP architecture and cell morphogenesis, but its precise role and molecular composition remain enigmatic. Here, we characterized Leishmania FAZ7, the only known FAZ protein containing a kinesin motor domain, and part of a clade of trypanosomatid-specific kinesins with unknown functions. The two paralogs of FAZ7, FAZ7A and FAZ7B, display different localizations and functions. FAZ7A localizes at the basal body, while FAZ7B localizes at the distal part of the FP, where the FAZ structure is present in Leishmania. While null mutants of FAZ7A displayed normal growth rates, the deletion of FAZ7B impaired cell growth in both promastigotes and amastigotes of Leishmania. The kinesin activity is crucial for its function. Deletion of FAZ7B resulted in altered cell division, cell morphogenesis (including flagellum length), and FP structure and function. Furthermore, knocking out FAZ7B induced a mis-localization of two of the FAZ proteins, and disrupted the molecular organization of the FP collar, affecting the localization of its components. Loss of the kinesin FAZ7B has important consequences in the insect vector and mammalian host by reducing proliferation in the sand fly and pathogenicity in mice. Our findings reveal the pivotal role of the only FAZ kinesin as part of the factors important for a successful life cycle of Leishmania. Leishmania are flagellated trypanosomatid parasites causing worldwide human and animal diseases. As ’divergent eukaryotes’, their biology presents unique features and structures, of which the specific functions constitute potential drug targets. Among others, they possess a unique cytoskeletal structure termed the flagellum attachment zone (FAZ) attaching the base of their flagellum to one side of the flagellar pocket (FP), which is the sole site for endocytosis and exocytosis. The FP together with other unique flagellum-associated structures are crucial for parasite survival, but the functioning of this whole remains largely enigmatic. Leishmania also possess an expanded repertoire of kinesins (>55), including two trypanosomatid-specific families. Here, we show that the deletion of the sole kinesin among FAZ proteins disrupts cell morphogenesis, FP organisation and cell division. Furthermore, the ability to proliferate in the insect vector and mammalian host is reduced in parasites lacking the kinesin FAZ7B. This study helps elucidate the factors contributing to the successful lifecycle and pathogenicity of the parasite. It also highlights the functional diversification of motor proteins during evolution.
Collapse
Affiliation(s)
- Rosa Milagros Corrales
- Research Unit “MiVEGEC”, University of Montpellier, CNRS, IRD, Academic Hospital (CHU) of Montpellier, Montpellier, France
- * E-mail: (RMC); (PB)
| | - Slavica Vaselek
- Department of Parasitology, Charles University, Prague, Czech Republic
| | - Rachel Neish
- York Biomedical Research Institute and Department of Biology, University of York, York, United Kingdom
| | - Laurence Berry
- Research Unit “LPHI” (Laboratory of Pathogen Host Interactions), University of Montpellier, CNRS, Montpellier, France
| | - Camille D. Brunet
- Research Unit “MiVEGEC”, University of Montpellier, CNRS, IRD, Academic Hospital (CHU) of Montpellier, Montpellier, France
| | - Lucien Crobu
- Research Unit “MiVEGEC”, University of Montpellier, CNRS, IRD, Academic Hospital (CHU) of Montpellier, Montpellier, France
| | - Nada Kuk
- Research Unit “MiVEGEC”, University of Montpellier, CNRS, IRD, Academic Hospital (CHU) of Montpellier, Montpellier, France
| | | | - Derrick R. Robinson
- Research Unit “Fundamental Microbiology and Pathogenicity”, “Protist Parasite Cytoskeleton (ProParaCyto)”, University of Bordeaux, UMR 5234, CNRS, Bordeaux, France
| | - Petr Volf
- Department of Parasitology, Charles University, Prague, Czech Republic
| | - Jeremy C. Mottram
- York Biomedical Research Institute and Department of Biology, University of York, York, United Kingdom
| | - Yvon Sterkers
- Research Unit “MiVEGEC”, University of Montpellier, CNRS, IRD, Academic Hospital (CHU) of Montpellier, Montpellier, France
| | - Patrick Bastien
- Research Unit “MiVEGEC”, University of Montpellier, CNRS, IRD, Academic Hospital (CHU) of Montpellier, Montpellier, France
- * E-mail: (RMC); (PB)
| |
Collapse
|
33
|
Halliday C, de Castro-Neto A, Alcantara CL, Cunha-E-Silva NL, Vaughan S, Sunter JD. Trypanosomatid Flagellar Pocket from Structure to Function. Trends Parasitol 2021; 37:317-329. [PMID: 33308952 DOI: 10.1016/j.pt.2020.11.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
The trypanosomatids Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp. are flagellate eukaryotic parasites that cause serious diseases in humans and animals. These parasites have cell shapes defined by a subpellicular microtubule array and all share a number of important cellular features. One of these is the flagellar pocket, an invagination of the cell membrane around the proximal end of the flagellum, which is an important organelle for endo/exocytosis. The flagellar pocket plays a crucial role in parasite pathogenicity and persistence in the host and has a great influence on cell morphogenesis and cell division. Here, we compare the morphology and function of the flagellar pockets between different trypanosomatids, with their life cycles and ecological niches likely influencing these differences.
Collapse
Affiliation(s)
- Clare Halliday
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Artur de Castro-Neto
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Carolina L Alcantara
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Narcisa L Cunha-E-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Sue Vaughan
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Jack D Sunter
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK.
| |
Collapse
|
34
|
Papadaki A, Tziouvara O, Kotopouli A, Koumarianou P, Doukas A, Rios P, Tardieux I, Köhn M, Boleti H. The Leishmania donovani LDBPK_220120.1 Gene Encodes for an Atypical Dual Specificity Lipid-Like Phosphatase Expressed in Promastigotes and Amastigotes; Substrate Specificity, Intracellular Localizations, and Putative Role(s). Front Cell Infect Microbiol 2021; 11:591868. [PMID: 33842381 PMCID: PMC8027504 DOI: 10.3389/fcimb.2021.591868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
The intracellular protozoan parasites of the Leishmania genus are responsible for Leishmaniases, vector borne diseases with a wide range of clinical manifestations. Leishmania (L.) donovani causes visceral leishmaniasis (kala azar), the most severe of these diseases. Along their biological cycle, Leishmania parasites undergo distinct developmental transitions including metacyclogenesis and differentiation of metacyclic promastigotes (MPs) to amastigotes. Metacyclogenesis inside the phlebotomine sandfly host's midgut converts the procyclic dividing promastigotes to non-dividing infective MPs eventually injected into the skin of mammalian hosts and phagocytosed by macrophages where the MPs are converted inside modified phagolysosomes to the intracellular amastigotes. These developmental transitions involve dramatic changes in cell size and shape and reformatting of the flagellum requiring thus membrane and cytoskeleton remodeling in which phosphoinositide (PI) signaling and metabolism must play central roles. This study reports on the LDBPK_220120.1 gene, the L. donovani ortholog of LmjF.22.0250 from L. major that encodes a phosphatase from the "Atypical Lipid Phosphatases" (ALPs) enzyme family. We confirmed the expression of the LDBPK_220120.1 gene product in both L. donovani promastigotes and axenic amastigotes and showed that it behaves in vitro as a Dual Specificity P-Tyr and monophosphorylated [PI(3)P and PI(4)P] PI phosphatase and therefore named it LdTyrPIP_22 (Leishmaniad onovani Tyrosine PI Phosphatase, gene locus at chromosome 22). By immunofluorescence confocal microscopy we localized the LdTyrPIP_22 in several intracellular sites in the cell body of L. donovani promastigotes and amastigotes and in the flagellum. A temperature and pH shift from 25°C to 37°C and from pH 7 to 5.5, induced a pronounced recruitment of LdTyrPIP_22 epitopes to the flagellar pocket and a redistribution around the nucleus. These results suggest possible role(s) for this P-Tyr/PI phosphatase in the regulation of processes initiated or upregulated by this temperature/pH shift that contribute to the developmental transition from MPs to amastigotes inside the mammalian host macrophages.
Collapse
Affiliation(s)
- Amalia Papadaki
- Intracellular Parasitism Laboratory, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | - Olympia Tziouvara
- Intracellular Parasitism Laboratory, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | - Anastasia Kotopouli
- Intracellular Parasitism Laboratory, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | - Petrina Koumarianou
- Intracellular Parasitism Laboratory, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece.,Light Microscopy Unit, Hellenic Pasteur Institute, Athens, Greece
| | - Anargyros Doukas
- Intracellular Parasitism Laboratory, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | - Pablo Rios
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Isabelle Tardieux
- Team «Biomechanics of Host Parasite Interactions», Institut for Advanced BioSciences, Univ. Grenoble Alpes, Inserm U1209 - CNRS UMR 5309, 38700 La Tronche, France
| | - Maja Köhn
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Haralabia Boleti
- Intracellular Parasitism Laboratory, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece.,Light Microscopy Unit, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
35
|
Oliveira MJAD, Villegas GME, Motta FD, Fabela-Sánchez O, Espinosa-Roa A, Fotoran WL, Peixoto JC, Tano FT, Lugão AB, Vásquez PAS. Influence of gamma radiation on Amphotericin B incorporated in PVP hydrogel as an alternative treatment for cutaneous leishmaniosis. Acta Trop 2021; 215:105805. [PMID: 33387468 DOI: 10.1016/j.actatropica.2020.105805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/02/2020] [Accepted: 12/21/2020] [Indexed: 10/22/2022]
Abstract
Amphotericin B (Amph-B) is an antifungal drug used intravenously for the treatment of leishmaniasis. Side-effects from Amph-B treatment can arise such as cardiac arrhythmia and renal dysfunctions, which will lead to discontinuation of treatment. Unfortunately, patients in endemic countries do not have access to alternative therapies. The objective of this study was to analyze the effects of Cobalt-60 gamma irradiation on crosslinking polymeric hydrogels (Hydg) and the incorporation of Amph-B into the gel as a controlled-release drug delivery alternative. Polyvinylpyrrolidone (PVP)/Amph-B solutions were irradiated with 15 kGy at 0 °C and 25 °C. The drug's stability was ascertained by UV-visible spectrometry, liquid chromatography/mass spectrometry and proton nuclear magnetic resonance. Irradiated Hydg/Amph-B achieved similar stability to the standard Amph-B solution and was enough to promote hydrogel crosslinking. In vitro trials were carried out to ensure Amph-B was still biologically active after irradiation. The results from flow cytometry and MTT assay show that Amph-B had an IC50 = 16.7 nM. A combination of Hydg at 1.324 gmL-1 and Amph-B at 25.1 nM for 24 h lead to the greatest inhibition of L. amazonensis promastigotes, and could be used as an alternative treatment method for cutaneous leishmaniosis.
Collapse
|
36
|
Baker N, Catta-Preta CMC, Neish R, Sadlova J, Powell B, Alves-Ferreira EVC, Geoghegan V, Carnielli JBT, Newling K, Hughes C, Vojtkova B, Anand J, Mihut A, Walrad PB, Wilson LG, Pitchford JW, Volf P, Mottram JC. Systematic functional analysis of Leishmania protein kinases identifies regulators of differentiation or survival. Nat Commun 2021; 12:1244. [PMID: 33623024 PMCID: PMC7902614 DOI: 10.1038/s41467-021-21360-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/13/2021] [Indexed: 01/31/2023] Open
Abstract
Differentiation between distinct stages is fundamental for the life cycle of intracellular protozoan parasites and for transmission between hosts, requiring stringent spatial and temporal regulation. Here, we apply kinome-wide gene deletion and gene tagging in Leishmania mexicana promastigotes to define protein kinases with life cycle transition roles. Whilst 162 are dispensable, 44 protein kinase genes are refractory to deletion in promastigotes and are likely core genes required for parasite replication. Phenotyping of pooled gene deletion mutants using bar-seq and projection pursuit clustering reveal functional phenotypic groups of protein kinases involved in differentiation from metacyclic promastigote to amastigote, growth and survival in macrophages and mice, colonisation of the sand fly and motility. This unbiased interrogation of protein kinase function in Leishmania allows targeted investigation of organelle-associated signalling pathways required for successful intracellular parasitism.
Collapse
Affiliation(s)
- N Baker
- York Biomedical Research Institute, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - C M C Catta-Preta
- York Biomedical Research Institute, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - R Neish
- York Biomedical Research Institute, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - J Sadlova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - B Powell
- Department of Mathematics, University of York, York, UK
| | - E V C Alves-Ferreira
- York Biomedical Research Institute, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - V Geoghegan
- York Biomedical Research Institute, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - J B T Carnielli
- York Biomedical Research Institute, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - K Newling
- Department of Biology, University of York, York, UK
| | - C Hughes
- York Biomedical Research Institute, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - B Vojtkova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - J Anand
- York Biomedical Research Institute, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - A Mihut
- Department of Biology, University of York, York, UK
| | - P B Walrad
- York Biomedical Research Institute, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - L G Wilson
- York Biomedical Research Institute, University of York, York, UK
- Department of Physics, University of York, York, UK
| | - J W Pitchford
- Department of Biology, University of York, York, UK
- Department of Mathematics, University of York, York, UK
| | - P Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - J C Mottram
- York Biomedical Research Institute, University of York, York, UK.
- Department of Biology, University of York, York, UK.
| |
Collapse
|
37
|
Tabrizi F, Seyyed Tabaei SJ, Ali Ahmadi N, Arefi Oskouie A. A Nuclear Magnetic Resonance-Based Metabolomic Study to Identify Metabolite Differences between Iranian Isolates of Leishmania major and Leishmania tropica. IRANIAN JOURNAL OF MEDICAL SCIENCES 2021; 46:43-51. [PMID: 33487791 PMCID: PMC7812499 DOI: 10.30476/ijms.2019.82120.0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Background Cutaneous leishmaniasis caused by Leishmania species (L. spp) is one of the most important parasitic diseases in humans. To gain information on the metabolite variations and biochemical pathways between L. spp, we used the comparative metabolome of metacyclic promastigotes in the Iranian isolates of L. major and L. tropica by proton nuclear magnetic resonance (1H-NMR). Methods L. tropica and L. major were collected from three areas of Iran, namely Gonbad, Mashhad, and Bam, between 2017 and 2018, and were cultured. The metacyclic promastigote of each species was separated, and cell metabolites were extracted. 1H-NMR spectroscopy was applied, and the data were processed using ProMatab in MATLAB (version 7.8.0.347). Multivariate statistical analyses, including the principal component analysis and the orthogonal projections to latent structures discriminant analysis, were performed to identify the discriminative metabolites between the two L. spp. Metabolites with variable influences in projection values of more than one and a P value of less than 0.05 were marked as significant differences. Results A set of metabolites were detected, and 24 significantly differentially expressed metabolites were found between the metacyclic forms of L. major and L. tropica isolates. The top differential metabolites were methionine, aspartate, betaine, and acetylcarnitine, which were increased more in L. tropica than L. major (P<0.005), whereas asparagine, 3-hydroxybutyrate, L-proline, and kynurenine were increased significantly in L. major (P<0.01). The significantly altered metabolites were involved in eight metabolic pathways. Conclusion Metabolomics, as an invaluable technique, yielded significant metabolites, and their biochemical pathways related to the metacyclic promastigotes of L. major and L. tropica. The findings offer greater insights into parasite biology and how pathogens adapt to their hosts.
Collapse
Affiliation(s)
- Fatemeh Tabrizi
- Department of Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyyed Javad Seyyed Tabaei
- Department of Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nayeb Ali Ahmadi
- Proteomics Research Center, School of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afsaneh Arefi Oskouie
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Opperdoes FR, Butenko A, Zakharova A, Gerasimov ES, Zimmer SL, Lukeš J, Yurchenko V. The Remarkable Metabolism of Vickermania ingenoplastis: Genomic Predictions. Pathogens 2021; 10:68. [PMID: 33466586 PMCID: PMC7828693 DOI: 10.3390/pathogens10010068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 11/16/2022] Open
Abstract
A recently redescribed two-flagellar trypanosomatid Vickermania ingenoplastis is insensitive to the classical inhibitors of respiration and thrives under anaerobic conditions. Using genomic and transcriptomic data, we analyzed its genes of the core metabolism and documented that subunits of the mitochondrial respiratory complexes III and IV are ablated, while those of complexes I, II, and V are all present, along with an alternative oxidase. This explains the previously reported conversion of glucose to acetate and succinate by aerobic fermentation. Glycolytic pyruvate is metabolized to acetate and ethanol by pyruvate dismutation, whereby a unique type of alcohol dehydrogenase (shared only with Phytomonas spp.) processes an excess of reducing equivalents formed under anaerobic conditions, leading to the formation of ethanol. Succinate (formed to maintain the glycosomal redox balance) is converted to propionate by a cyclic process involving three enzymes of the mitochondrial methyl-malonyl-CoA pathway, via a cyclic process, which results in the formation of additional ATP. The unusual structure of the V. ingenoplastis genome and its similarity with that of Phytomonas spp. imply their relatedness or convergent evolution. Nevertheless, a critical difference between these two trypanosomatids is that the former has significantly increased its genome size by gene duplications, while the latter streamlined its genome.
Collapse
Affiliation(s)
- Fred R. Opperdoes
- De Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Anzhelika Butenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (A.B.); (A.Z.)
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic;
| | - Alexandra Zakharova
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (A.B.); (A.Z.)
| | - Evgeny S. Gerasimov
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia;
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, 119435 Moscow, Russia
| | - Sara L. Zimmer
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, MN 558812, USA;
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic;
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice (Budweis), Czech Republic
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (A.B.); (A.Z.)
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, 119435 Moscow, Russia
| |
Collapse
|
39
|
Hzounda Fokou JB, Dize D, Etame Loe GM, Nko'o MHJ, Ngene JP, Ngoule CC, Boyom FF. Anti-leishmanial and anti-trypanosomal natural products from endophytes. Parasitol Res 2021; 120:785-796. [PMID: 33409640 DOI: 10.1007/s00436-020-07035-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/22/2020] [Indexed: 11/26/2022]
Abstract
Leishmania spp. and Trypanosoma cruzi are parasites belonging to the Trypanosomatidae family and the causative agents for two very important neglected tropical diseases (NTDs), namely leishmaniasis and trypanosomiasis, respectively. Together, they affect millions of people worldwide and the number of cases is constantly rising; thus, further effort on identifying and developing non-toxic, affordable and effective new drug is urgently needed to overcome this alarming situation. Exploring natural products from fungal and bacterial origin remains hitherto a valuable approach to find new hits and candidates for the development of new drugs against these protozoal human infections. Endophytes, which are microorganisms (fungal and bacterial) inhabiting plant tissues, represent a promising source, as they hold potential to produce a high number of distinct chemical scaffolds. These structurally diverse natural products have previously been successfully tested against a wide range of pathogenic microorganisms. The present review provides an update of endophytic compounds exerting anti-trypanosomal and anti-leishmanial effects and their predicted pharmacokinetic properties.
Collapse
Affiliation(s)
- Jean Baptiste Hzounda Fokou
- Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, PO Box 2701, Douala, Cameroon.
- Antimicrobial & Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, University of Yaoundé I, PO Box 812, Yaoundé, Cameroon.
| | - Darline Dize
- Antimicrobial & Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, University of Yaoundé I, PO Box 812, Yaoundé, Cameroon
| | - Gisele Marguerite Etame Loe
- Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, PO Box 2701, Douala, Cameroon
| | - Moise Henri Julien Nko'o
- Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, PO Box 2701, Douala, Cameroon
| | - Jean Pierre Ngene
- Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, PO Box 2701, Douala, Cameroon
| | - Charles Christian Ngoule
- Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, PO Box 2701, Douala, Cameroon
| | - Fabrice Fekam Boyom
- Antimicrobial & Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, University of Yaoundé I, PO Box 812, Yaoundé, Cameroon
| |
Collapse
|
40
|
Nocua PA, Requena JM, Puerta CJ. Identification of the interactomes associated with SCD6 and RBP42 proteins in Leishmania braziliensis. J Proteomics 2020; 233:104066. [PMID: 33296709 DOI: 10.1016/j.jprot.2020.104066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/16/2020] [Accepted: 11/29/2020] [Indexed: 02/04/2023]
Abstract
Leishmania are protozoan parasites responsible for leishmaniasis. These parasites present a precise gene regulation that allows them to survive different environmental conditions during their digenetic life cycle. This adaptation depends on the regulation of the expression of a wide variety of genes, which occurs, mainly at the post-transcriptional level. This differential gene expression is achieved by mechanisms based mainly in RNA binding proteins that regulate the translation and/or stability of mRNA targets by interaction with cis elements principally located in the untranslated regions (UTR). In recent studies, our group identified and characterized two proteins, SCD6 and RBP42, as RNA binding proteins in Leishmania braziliensis. To find clues about the cellular processes in which these proteins are involved, this work was aimed to determine the SCD6- and RBP42-interacting proteins (interactome) in L. braziliensis promastigotes. For this purpose, after an in vivo UV cross-linking, cellular extracts were used to immunoprecipitated, by specific antibodies, protein complexes in which SCD6 or RBP42 were present. Protein mass spectrometry analysis of the immunoprecipitated proteins identified 96 proteins presumably associated with SCD6 and 173 proteins associated with RBP42. Notably, a significant proportion of the identified proteins were shared in both interactomes, indicating a possible functional relationship between SCD6 and RBP42. Remarkably, many of the proteins identified in the SCD6 and RBP42 interactomes are related to RNA metabolism and translation processes, and many of them have been described as components of ribonucleoprotein (RNP) granules in Leishmania and related trypanosomatids. Thus, these results support a role of SCD6 and RBP42 in the assembly and/or function of mRNA-protein complexes, participating in the fate (decay/accumulation/translation) of L. braziliensis transcripts. SIGNIFICANCE: Parasites of the Leishmania genus present a particular regulation of gene expression, operating mainly at the post-transcriptional level, surely aimed to modulate quickly both mRNA and protein levels to survive the sudden environmental changes that occur during a parasite's life cycle as it moves from one host to another. This regulation of gene expression processes would be governed by the interaction of mRNA with RNA binding proteins. Nevertheless, the entirety of protein networks involved in these regulatory processes is far from being understood. In this regard, our work is contributing to stablish protein networks in which the L. braziliensis SCD6 and RBP42 proteins are involved; these proteins, in previous works, have been described as RNA binding proteins and found to participate in gene regulation in different cells and organisms. Additionally, our data point out a possible functional relationship between SCD6 and RBP42 proteins as constituents of mRNA granules, like processing bodies or stress granules, which are essential structures in the regulation of gene expression. This knowledge could provide a new approach for the development of therapeutic targets to control Leishmania infections.
Collapse
Affiliation(s)
- Paola A Nocua
- Laboratorio de Parasitología Molecular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia; Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.
| | - José M Requena
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.
| | - Concepción J Puerta
- Laboratorio de Parasitología Molecular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.
| |
Collapse
|
41
|
Halliday C, Yanase R, Catta-Preta CMC, Moreira-Leite F, Myskova J, Pruzinova K, Volf P, Mottram JC, Sunter JD. Role for the flagellum attachment zone in Leishmania anterior cell tip morphogenesis. PLoS Pathog 2020; 16:e1008494. [PMID: 33091070 PMCID: PMC7608989 DOI: 10.1371/journal.ppat.1008494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 11/03/2020] [Accepted: 09/23/2020] [Indexed: 11/25/2022] Open
Abstract
The shape and form of the flagellated eukaryotic parasite Leishmania is sculpted to its ecological niches and needs to be transmitted to each generation with great fidelity. The shape of the Leishmania cell is defined by the sub-pellicular microtubule array and the positioning of the nucleus, kinetoplast and the flagellum within this array. The flagellum emerges from the anterior end of the cell body through an invagination of the cell body membrane called the flagellar pocket. Within the flagellar pocket the flagellum is laterally attached to the side of the flagellar pocket by a cytoskeletal structure called the flagellum attachment zone (FAZ). During the cell cycle single copy organelles duplicate with a new flagellum assembling alongside the old flagellum. These are then segregated between the two daughter cells by cytokinesis, which initiates at the anterior cell tip. Here, we have investigated the role of the FAZ in the morphogenesis of the anterior cell tip. We have deleted the FAZ filament protein, FAZ2 and investigated its function using light and electron microscopy and infection studies. The loss of FAZ2 caused a disruption to the membrane organisation at the anterior cell tip, resulting in cells that were connected to each other by a membranous bridge structure between their flagella. Moreover, the FAZ2 null mutant was unable to develop and proliferate in sand flies and had a reduced parasite burden in mice. Our study provides a deeper understanding of membrane-cytoskeletal interactions that define the shape and form of an individual cell and the remodelling of that form during cell division. Leishmania are parasites that cause leishmaniasis in humans with symptoms ranging from mild cutaneous lesions to severe visceral disease. The life cycle of these parasites alternates between the human host and the sand fly vector, with distinct forms in both. These different forms have different cell shapes that are adapted for survival in these different environments. Leishmania parasites have an elongated cell shape with a flagellum extending from one end and this shape is due to a protein skeleton beneath the cell membrane. This skeleton is made up of different units one of which is called the flagellum attachment zone (FAZ), that connects the flagellum to the cell body. We have found that one of the proteins in the FAZ called FAZ2 is important for generating the shape of the cell at the point where the flagellum exits the cell. When we deleted FAZ2 we found that the cell membrane at the end of the cell was distorted resulting in unusual connections between the flagella of different cells. We found that the disruption to the cell shape reduces the ability of the parasite to infect mice and develop in the sand fly, which shows the importance of the parasite shape.
Collapse
Affiliation(s)
- Clare Halliday
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Ryuji Yanase
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | | | - Flavia Moreira-Leite
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Jitka Myskova
- Department of Parasitology, Charles University, Prague, Czech Republic
| | | | - Petr Volf
- Department of Parasitology, Charles University, Prague, Czech Republic
| | - Jeremy C. Mottram
- York Biomedical Research Institute and Department of Biology, University of York, York, United Kingdom
| | - Jack D. Sunter
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
42
|
Li SJ, Zhang X, Lukeš J, Li BQ, Wang JF, Qu LH, Hide G, Lai DH, Lun ZR. Novel organization of mitochondrial minicircles and guide RNAs in the zoonotic pathogen Trypanosoma lewisi. Nucleic Acids Res 2020; 48:9747-9761. [PMID: 32853372 PMCID: PMC7515712 DOI: 10.1093/nar/gkaa700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 08/06/2020] [Accepted: 08/11/2020] [Indexed: 01/01/2023] Open
Abstract
Kinetoplastid flagellates are known for several unusual features, one of which is their complex mitochondrial genome, known as kinetoplast (k) DNA, composed of mutually catenated maxi- and minicircles. Trypanosoma lewisi is a member of the Stercorarian group of trypanosomes which is, based on human infections and experimental data, now considered a zoonotic pathogen. By assembling a total of 58 minicircle classes, which fall into two distinct categories, we describe a novel type of kDNA organization in T. lewisi. RNA-seq approaches allowed us to map the details of uridine insertion and deletion editing events upon the kDNA transcriptome. Moreover, sequencing of small RNA molecules enabled the identification of 169 unique guide (g) RNA genes, with two differently organized minicircle categories both encoding essential gRNAs. The unprecedented organization of minicircles and gRNAs in T. lewisi broadens our knowledge of the structure and expression of the mitochondrial genomes of these human and animal pathogens. Finally, a scenario describing the evolution of minicircles is presented.
Collapse
Affiliation(s)
- Su-Jin Li
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, and Key Laboratory of Tropical Diseases Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
| | - Xuan Zhang
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, and Key Laboratory of Tropical Diseases Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences and Faculty of Science, University of South Bohemia, České Budějovice (Budweis) 37005, Czech Republic
| | - Bi-Qi Li
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, and Key Laboratory of Tropical Diseases Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
| | - Ju-Feng Wang
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, and Key Laboratory of Tropical Diseases Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
| | - Liang-Hu Qu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
| | - Geoff Hide
- Ecosystems and Environment Research Centre and Biomedical Research Centre, School of Science, Engineering and Environment, University of Salford, Salford, UK
| | - De-Hua Lai
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, and Key Laboratory of Tropical Diseases Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
| | - Zhao-Rong Lun
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, and Key Laboratory of Tropical Diseases Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
- Ecosystems and Environment Research Centre and Biomedical Research Centre, School of Science, Engineering and Environment, University of Salford, Salford, UK
| |
Collapse
|
43
|
Rashidi S, Kalantar K, Fernandez-Rubio C, Anvari E, Nguewa P, Hatam G. Chitin binding protein as a possible RNA binding protein in Leishmania parasites. Pathog Dis 2020; 78:5735439. [PMID: 32053190 DOI: 10.1093/femspd/ftaa007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 02/12/2020] [Indexed: 12/17/2022] Open
Abstract
Leishmaniasis includes a broad spectrum of pathological outcomes in humans caused by protozoan parasites from the genus Leishmania. In recent years, proteomic techniques have introduced novel proteins with critical functions in Leishmania parasites. Based on our report of a Chitin binding protein (CBP) in our previous immunoproteomic study, this article suggests that CBP might be an RNA binding protein (RBP) in Leishmania parasites. RBPs, as key regulatory factors, have a role in post-transcriptional gene regulation. The presence of RBPs in Leishmania parasites has not been considered so far; however, this study aims to open a new venue regarding RBPs in Leishmania parasites. Confirming CBP as an RBP in Leishmania parasites, exploring other RBPs and their functions might lead to interesting issues in leishmaniasis. In fact, due to the regulatory role of RBPs in different diseases including cancers and their further classification as therapeutic targets, the emerging evaluation of CBP and RBPs from Leishmania parasites may allow the discovery of novel and effective drugs against leishmaniasis.
Collapse
Affiliation(s)
- Sajad Rashidi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kurosh Kalantar
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Celia Fernandez-Rubio
- University of Navarra, ISTUN Instituto de Salud Tropical, IdiSNa, Department of Microbiology and Parasitology. c/ Irunlarrea 1, 31008 Pamplona, Spain
| | - Enayat Anvari
- Department of Physiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Paul Nguewa
- University of Navarra, ISTUN Instituto de Salud Tropical, IdiSNa, Department of Microbiology and Parasitology. c/ Irunlarrea 1, 31008 Pamplona, Spain
| | - Gholamreza Hatam
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
44
|
Histone deacetylases inhibitors as new potential drugs against Leishmania braziliensis, the main causative agent of new world tegumentary leishmaniasis. Biochem Pharmacol 2020; 180:114191. [PMID: 32777278 DOI: 10.1016/j.bcp.2020.114191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022]
Abstract
The protozoan parasite Leishmania braziliensis is a major causative agent of the neglected tropical diseases Cutaneous and Mucocutaneous Leishmaniases in the New World. There are no vaccines to prevent the infection and the treatment relies on few drugs that often display high toxicity and costs. Thus, chemotherapeutic alternatives are required. Histone Deacetylases (HDACs) are epigenetic enzymes involved in the control of chromatin structure. In this work, we tested an in-house library of 78 hydroxamic acid derivatives as putative inhibitors of L. braziliensis HDACs (HDACi). The compounds were evaluated in relation to the toxicity to the host cell macrophage and to the leishmanicidal effect against L. braziliensis during in vitro infection. Eight HDACi showed significant leishmanicidal effects and the top 5 compounds showed effective concentrations (EC50) in the range of 4.38 to 10.21 μM and selectivity indexes (SI) from of 6 to 21.7. Analyses by Transmission Electron Microscopy (TEM) indicated induction of apoptotic cell death of L. braziliensis amastigotes with a necrotic phenotype. An altered chromatin condensation pattern and cellular disorganization of intracellular amastigotes was also observed. A tight connection between the mitochondrion and nuclear protrusions, presumably of endoplasmic reticulum origin, was found in parasites but not in the host cell. In flow cytometry (FC) analyses, HDACi promoted parasite cell cycle arrest in the G2-M phase and no changes were found in macrophages. In addition, the direct effect of HDACi against the promastigotes showed apoptosis as the main mechanism of cell death. The FC results corroborate the TEM analyses indicating that the HDACi lead to changes in the cell cycle and induction of apoptosis of L. braziliensis. The production of nitric oxide by the infected macrophages was not altered after treatment with the top 5 compounds. Taken together, our results evidenced new HDACi as promising agents for the development of new treatments for American Tegumentary Leishmaniasis caused by L. braziliensis.
Collapse
|
45
|
Saha A, Bhattacharjee A, Vij A, Das PK, Bhattacharya A, Biswas A. Evaluation of Modulators of cAMP-Response in Terms of Their Impact on Cell Cycle and Mitochondrial Activity of Leishmania donovani. Front Pharmacol 2020; 11:782. [PMID: 32670055 PMCID: PMC7326082 DOI: 10.3389/fphar.2020.00782] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/12/2020] [Indexed: 12/16/2022] Open
Abstract
With the identification of novel cAMP binding effector molecules in Trypanosoma, the role of cAMP in kinetoplastida parasites gained an intriguing breakthrough. Despite earlier demonstrations of the role of cAMP in the survival of Leishmania during macrophage infection, there is essential need to specifically clarify the involvement of cAMP in various cellular processes in the parasite. In this context, we sought to gain a comprehensive understanding of the effect of cAMP analogs and cAMP-cyclic nucleotide phosphodiesterase (PDE) inhibitors on proliferation of log phase parasites. Administration of both hydrolyzable (8-pCPT-cAMP) and nonhydrolyzable analogs (Sp-8-pCPT-cAMPS) of cAMP resulted in a significant decrease of Leishmania proliferation. Among the various PDE inhibitors, etazolate was found to be potently antiproliferative. BrdU cell proliferation and K/N/F-enumeration microscopic study revealed that both cAMP analogs and selective PDE inhibitors resulted in significant cell cycle arrest at G1 phase with reduced S-phase population. Furthermore, careful examination of the flagellar motility patterns revealed significantly reduced coordinated forward flagellar movement of the promastigotes with a concomitant decrease in cellular ATP levels. Alongside, 8-pCPT-cAMP and PDE inhibitors etazolate and trequinsin showed marked reduction in mitochondrial membrane potential. Treatment of etazolate at subcytotoxic concentration to infected macrophages significantly reduced parasite burden, and administration of etazolate to Leishmania-infected BALB/c mice showed reduced liver and spleen parasite burden. Collectively, these results imply involvement of cAMP in various crucial processes paving the avenue for developing potent antileishmanial agent.
Collapse
Affiliation(s)
- Amrita Saha
- Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Anindita Bhattacharjee
- Department of Zoology, Cell and Molecular Biology Laboratory, University of Kalyani, Kalyani, India
| | - Amit Vij
- Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Pijush K. Das
- Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Arijit Bhattacharya
- Department of Microbiology, School of Life Sciences and Biotechnology, Adamas University, Kolkata, India
| | - Arunima Biswas
- Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
46
|
Elucidating the possible mechanism of action of some pathogen box compounds against Leishmania donovani. PLoS Negl Trop Dis 2020; 14:e0008188. [PMID: 32275665 PMCID: PMC7176276 DOI: 10.1371/journal.pntd.0008188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 04/22/2020] [Accepted: 03/02/2020] [Indexed: 12/19/2022] Open
Abstract
Leishmaniasis is one of the Neglected Tropical Diseases (NTDs) which is closely associated with poverty and has gained much relevance recently due to its opportunistic coinfection with HIV. It is a protozoan zoonotic disease transmitted by a dipteran Phlebotomus, Lutzomyia/ Sergentomyia sandfly; during blood meals on its vertebrate intermediate hosts. It is a four-faceted disease with its visceral form being more deadly if left untreated. It is endemic across the tropics and sub-tropical regions of the world. It can be considered the third most important NTD after malaria and lymphatic filariasis. Currently, there are numerous drawbacks on the fight against leishmaniasis which includes: non-availability of vaccines, limited availability of drugs, high cost of mainstay drugs and parasite resistance to current treatments. In this study, we screened the antileishmanial activity, selectivity, morphological alterations, cell cycle progression and apoptotic potentials of six Pathogen box compounds from Medicine for Malaria Venture (MMV) against Leishmania donovani promastigotes and amastigotes. From this study, five of the compounds showed great promise as lead chemotherapeutics based on their high selectivity against the Leishmania donovani parasite when tested against the murine mammalian macrophage RAW 264.7 cell line (with a therapeutic index ranging between 19–914 (promastigotes) and 1–453 (amastigotes)). The cell cycle progression showed growth arrest at the G0-G1 phase of mitotic division, with an indication of apoptosis induced by two (2) of the pathogen box compounds tested. Our findings present useful information on the therapeutic potential of these compounds in leishmaniasis. We recommend further in vivo studies on these compounds to substantiate observations made in the in vitro study. There are numerous drawbacks in the fight against leishmaniasis which includes difficulty in drug administration, lengthy time of treatment, high toxicity, adverse side effects, high cost of drugs and increasing parasite resistance to treatment. These have made the search for new antileishmanial chemotherapeutics very essential. The Medicine for Malaria Venture (MMV) with the aim of accelerating drug development for poverty-related diseases has assembled some 400 diverse, drug-like molecules active against neglected diseases called the Pathogen box compounds. Thus, in this study we explored the antileishmanial potency and elucidated some possible mechanisms of action of some of the compounds against the Leishmania donovani parasites. The six compounds studied caused a distortion in the mitochondrion morphology, loss of kinetoplastid DNA and eventual nuclear degeneration upon treatment for 72 hours. Parasites treated with two of the cytocidal compounds MMV676057 (E03C) and MMV688942 (D06A) showed no significant programmed cell death due to apoptosis when compared to the untreated parasites but rather showed a cell cycle growth arrest in the G0-G1 and S-phases.
Collapse
|
47
|
Touching the Surface: Diverse Roles for the Flagellar Membrane in Kinetoplastid Parasites. Microbiol Mol Biol Rev 2020; 84:84/2/e00079-19. [PMID: 32238446 DOI: 10.1128/mmbr.00079-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
While flagella have been studied extensively as motility organelles, with a focus on internal structures such as the axoneme, more recent research has illuminated the roles of the flagellar surface in a variety of biological processes. Parasitic protists of the order Kinetoplastida, which include trypanosomes and Leishmania species, provide a paradigm for probing the role of flagella in host-microbe interactions and illustrate that this interface between the flagellar surface and the host is of paramount importance. An increasing body of knowledge indicates that the flagellar membrane serves a multitude of functions at this interface: attachment of parasites to tissues within insect vectors, close interactions with intracellular organelles of vertebrate cells, transactions between flagella from different parasites, junctions between the flagella and the parasite cell body, emergence of nanotubes and exosomes from the parasite directed to either host or microbial targets, immune evasion, and sensing of the extracellular milieu. Recent whole-organelle or genome-wide studies have begun to identify protein components of the flagellar surface that must mediate these diverse host-parasite interactions. The increasing corpus of knowledge on kinetoplastid flagella will likely prove illuminating for other flagellated or ciliated pathogens as well.
Collapse
|
48
|
Sykes ML, Hilko DH, Kung LI, Poulsen SA, Avery VM. Investigation of pyrimidine nucleoside analogues as chemical probes to assess compound effects on the proliferation of Trypanosoma cruzi intracellular parasites. PLoS Negl Trop Dis 2020; 14:e0008068. [PMID: 32163414 PMCID: PMC7112222 DOI: 10.1371/journal.pntd.0008068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 04/01/2020] [Accepted: 01/15/2020] [Indexed: 02/05/2023] Open
Abstract
Trypanosoma cruzi parasites utilise de novo pyrimidine biosynthesis to produce DNA and survive within mammalian host cells. This pathway can be hijacked to assess the replication of intracellular parasites with the exogenous addition of a DNA specific probe. To identify suitable probe compounds for this application, a collection of pyrimidine nucleoside analogues was assessed for incorporation into T. cruzi intracellular amastigote DNA using image-based technology and script-based analysis. Associated mammalian cell toxicity of these compounds was also determined against both the parasite host cells (3T3 cells) and HEK293 cells. Incorporation of 5-ethynyl-2′-deoxyuridine (EdU) into parasite DNA was the most effective of the probes tested, with minimal growth inhibition observed following either two or four hours EdU exposure. EdU was subsequently utilised as a DNA probe, followed by visualisation with click chemistry to a fluorescent azide, to assess the impact of drugs and compounds with previously demonstrated activity against T. cruzi parasites, on parasite replication. The inhibitory profiles of these molecules highlight the benefit of this approach for identifying surviving parasites post-treatment in vitro and classifying compounds as either fast or slow-acting. F-ara-EdU resulted in <50% activity observed against T. cruzi amastigotes following 48 hours incubation, at 73 μM. Collectively, this supports the further development of pyrimidine nucleosides as chemical probes to investigate replication of the parasite T. cruzi. Chagas disease occurs within 21 countries in the Americas, causes over 10, 000 deaths per year and a further 25 million people are at risk of being infected. The cause of Chagas disease is Trypanosoma cruzi, a single celled protozoan parasite, which enters the bloodstream of a host by the bite of a “kissing bug”. In advanced disease stages, the parasite hides in heart and gut tissue and is difficult to treat. Identifying the replicative ability of these parasites is important to understanding Chagas disease progression and the effectiveness of compounds and drugs for treatment. By testing a panel of nucleoside analogues that may incorporate into DNA during synthesis, we developed an image-based method with a fluorescently-labelled DNA probe to identify replicating parasites. This method has effectively shown that drugs used to treat the parasite are able to clear intracellular infection, whilst a compound that was not efficacious in clinical trials leaves replicating T. cruzi behind. This methodology can be used to understand the action of further compounds and supports the identification of new, less toxic probes to assess intracellular parasite replication.
Collapse
Affiliation(s)
- Melissa Louise Sykes
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia
| | - David Hugh Hilko
- Chemical Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia
| | - Livia Isabella Kung
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia.,Institute of Molecular Health Sciences, ETH Zurich, Switzerland
| | - Sally-Ann Poulsen
- Chemical Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia
| | - Vicky Marie Avery
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia
| |
Collapse
|
49
|
Bertiaux E, Bastin P. Dealing with several flagella in the same cell. Cell Microbiol 2020; 22:e13162. [DOI: 10.1111/cmi.13162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/19/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Eloïse Bertiaux
- Trypanosome Cell Biology Unit INSERM U1201, Institut Pasteur Paris France
- École Doctorale Complexité du Vivant Sorbonne Université Paris France
| | - Philippe Bastin
- Trypanosome Cell Biology Unit INSERM U1201, Institut Pasteur Paris France
| |
Collapse
|
50
|
A quantitative proteomic and bioinformatics analysis of proteins in metacyclogenesis of Leishmania tropica. Acta Trop 2020; 202:105227. [PMID: 31647897 DOI: 10.1016/j.actatropica.2019.105227] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 10/07/2019] [Accepted: 10/18/2019] [Indexed: 02/07/2023]
Abstract
Recently there has a growing interest in MS-based analysis on Leishmania for biology study, host-parasite interaction and drug target discovery. The aims of this study were to analyzed protein profiles in the procyclic and metacyclic stages of L. tropica, and investigate their potential role in metacyclogenesis molecular mechanisms. Sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS) analysis was used to analyze protein profiles in each of procyclic and metacyclic stages. Proteins with a fold change>2 or <0.5 and p < 0.05 were considered to be significantly differentially expressed proteins (DEPs). The DEPs were subjected to gene ontology (GO), KEGG pathway and network analysis using PANTHER and STRING database, respectively. Quantitative real-time PCR of six selected genes validated the proteomic data. We quantified a total of 352 proteins in procyclic and metacyclic cells and 56 differentially expressed proteins (27 up/ 29down-regulated in metacyclic compared to procyclic). On the basis of biological processes in GO, the DEPs were primarily involved in ``metabolic process'' (GO: 0008152) and ``cellular process'' (GO: 0009987). In addition, several enriched GO terms were identified via molecular function, which among them ``catalytic activity'' (GO: 0003824) and ``binding'' (GO: 0005488) were disclosed as top category. The KEGG pathway analysis indicated ``metabolic pathways'' (p-value: 3.80E-08) including 17 genes term as the top pathway in DEPs. These findings bring a new insight in our understanding of the molecular characterization of metacyclogenesis and infective form in L. tropica. Comparative analysis of the proteome of both developmental stages of the L. tropica would help to the identification of proteins candidates for the development of new potential drug targets and vaccines.
Collapse
|