1
|
Albuquerque-Wendt A, McCoy C, Neish R, Dobramysl U, Alagöz Ç, Beneke T, Cowley SA, Crouch K, Wheeler RJ, Mottram JC, Gluenz E. TransLeish: Identification of membrane transporters essential for survival of intracellular Leishmania parasites in a systematic gene deletion screen. Nat Commun 2025; 16:299. [PMID: 39747086 PMCID: PMC11696137 DOI: 10.1038/s41467-024-55538-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
For the protozoan parasite Leishmania, completion of its life cycle requires sequential adaptation of cellular physiology and nutrient scavenging mechanisms to the different environments of a sand fly alimentary tract and the acidic mammalian host cell phagolysosome. Transmembrane transporters are the gatekeepers of intracellular environments, controlling the flux of solutes and ions across membranes. To discover which transporters are vital for survival as intracellular amastigote forms, we carried out a systematic loss-of-function screen of the L. mexicana transportome. A total of 312 protein components of small molecule carriers, ion channels and pumps were identified and targeted in a CRISPR-Cas9 gene deletion screen in the promastigote form, yielding 188 viable null mutants. Forty transporter deletions caused significant loss of fitness in macrophage and mouse infections. A striking example is the Vacuolar H+ ATPase (V-ATPase), which, unexpectedly, was dispensable for promastigote growth in vitro but essential for survival of the disease-causing amastigotes.
Collapse
Affiliation(s)
- Andreia Albuquerque-Wendt
- School of Infection and Immunity, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK
- University of Oxford, Sir William Dunn School of Pathology, South Parks Road, Oxford, OX1 3RE, UK
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira 100, 1349-008, Lisbon, Portugal
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland
| | - Ciaran McCoy
- University of Oxford, Sir William Dunn School of Pathology, South Parks Road, Oxford, OX1 3RE, UK
- Animal Physiology and Neurobiology, KU Leuven, 3000, Leuven, Belgium
| | - Rachel Neish
- York Biomedical Research Institute, Department of Biology, University of York, York, YO10 5DD, UK
| | - Ulrich Dobramysl
- Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Çağla Alagöz
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Tom Beneke
- University of Oxford, Sir William Dunn School of Pathology, South Parks Road, Oxford, OX1 3RE, UK
- Department of Cell and Developmental Biology, Biocentre, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Sally A Cowley
- James and Lillian Martin Centre for Stem Cell Research, Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Kathryn Crouch
- School of Infection and Immunity, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Richard J Wheeler
- Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Jeremy C Mottram
- York Biomedical Research Institute, Department of Biology, University of York, York, YO10 5DD, UK
| | - Eva Gluenz
- School of Infection and Immunity, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK.
- University of Oxford, Sir William Dunn School of Pathology, South Parks Road, Oxford, OX1 3RE, UK.
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland.
| |
Collapse
|
2
|
Tagliazucchi L, Pinetti D, Genovese F, Malpezzi G, Perea Martinez A, Manzano JI, García-Hernández R, Cole AR, Kwon BR, Aiello D, Brooks BW, Thoré ESJ, Bertram MG, Gamarro F, Costi MP. Deciphering Host-Parasite Interplay in Leishmania Infection through a One Health View of Proteomics Studies on Drug Resistance. ACS Infect Dis 2024; 10:3202-3221. [PMID: 39088331 PMCID: PMC11520909 DOI: 10.1021/acsinfecdis.4c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 08/03/2024]
Abstract
Recent efforts in the study of vector-borne parasitic diseases (VBPDs) have emphasized an increased consideration for preventing drug resistance and promoting the environmental safety of drugs, from the beginning of the drug discovery pipeline. The intensive use of the few available antileishmanial drugs has led to the spreading of hyper-resistant Leishmania infantum strains, resulting in a chronic burden of the disease. In the present work, we have investigated the biochemical mechanisms of resistance to antimonials, paromomycin, and miltefosine in three drug-resistant parasitic strains from human clinical isolates, using a whole-cell mass spectrometry proteomics approach. We identified 14 differentially expressed proteins that were validated with their transcripts. Next, we employed functional association networks to identify parasite-specific proteins as potential targets for novel drug discovery studies. We used SeqAPASS analysis to predict susceptibility based on the evolutionary conservation of protein drug targets across species. MATH-domain-containing protein, adenosine triphosphate (ATP)-binding cassette B2, histone H4, calpain-like cysteine peptidase, and trypanothione reductase emerged as top candidates. Overall, this work identifies new biological targets for designing drugs to prevent the development of Leishmania drug resistance, while aligning with One Health principles that emphasize the interconnected health of people, animals, and ecosystems.
Collapse
Affiliation(s)
- Lorenzo Tagliazucchi
- Department
of Life Sciences, University of Modena and
Reggio Emilia, Via Campi 103, 41125 Modena, Italy
- Clinical
and Experimental Medicine (CEM) PhD Program, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Diego Pinetti
- Centro
Interdipartimentale Grandi Strumenti (CIGS), University of Modena and Reggio Emilia, Via Campi 213/A, 41125 Modena, Italy
| | - Filippo Genovese
- Centro
Interdipartimentale Grandi Strumenti (CIGS), University of Modena and Reggio Emilia, Via Campi 213/A, 41125 Modena, Italy
| | - Giulia Malpezzi
- Department
of Life Sciences, University of Modena and
Reggio Emilia, Via Campi 103, 41125 Modena, Italy
- Clinical
and Experimental Medicine (CEM) PhD Program, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Ana Perea Martinez
- Instituto
de Parasitología y Biomedicina “Lopez-Neyra (IPBLN-CSIC)”, Avda. del Conocimiento 17, 18016 Armilla, Granada, Spain
| | - José I. Manzano
- Instituto
de Parasitología y Biomedicina “Lopez-Neyra (IPBLN-CSIC)”, Avda. del Conocimiento 17, 18016 Armilla, Granada, Spain
| | - Raquel García-Hernández
- Instituto
de Parasitología y Biomedicina “Lopez-Neyra (IPBLN-CSIC)”, Avda. del Conocimiento 17, 18016 Armilla, Granada, Spain
| | - Alexander R. Cole
- Environmental
Health Science Program, Department of Environmental Science, Baylor University, One Bear Place, Waco, Texas 97344, United States
| | - Ba Reum Kwon
- Environmental
Health Science Program, Department of Environmental Science, Baylor University, One Bear Place, Waco, Texas 97344, United States
| | - Daniele Aiello
- Department
of Life Sciences, University of Modena and
Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Bryan W. Brooks
- Environmental
Health Science Program, Department of Environmental Science, Baylor University, One Bear Place, Waco, Texas 97344, United States
| | - Eli S. J. Thoré
- Department
of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, 907 36 Umeå, Sweden
- TRANSfarm-Science,
Engineering, & Technology Group, KU
Leuven, Bijzondereweg
12, 3360 Lovenjoel, Belgium
| | - Michael G. Bertram
- Department
of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, 907 36 Umeå, Sweden
- Department
of Zoology, Stockholm University, Svante Arrhenius väg 18b, 114 18 Stockholm, Sweden
- School
of Biological Sciences, Monash University, 25 Rainforest Walk, 3800 Melbourne, Australia
| | - Francisco Gamarro
- Instituto
de Parasitología y Biomedicina “Lopez-Neyra (IPBLN-CSIC)”, Avda. del Conocimiento 17, 18016 Armilla, Granada, Spain
| | - Maria Paola Costi
- Department
of Life Sciences, University of Modena and
Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| |
Collapse
|
3
|
Reyes-López M, Aguirre-Armenta B, Piña-Vázquez C, de la Garza M, Serrano-Luna J. Hemoglobin uptake and utilization by human protozoan parasites: a review. Front Cell Infect Microbiol 2023; 13:1150054. [PMID: 37360530 PMCID: PMC10289869 DOI: 10.3389/fcimb.2023.1150054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
The protozoan disease is a major global health concern. Amoebiasis, leishmaniasis, Chagas disease, and African sleeping sickness affect several million people worldwide, leading to millions of deaths annually and immense social and economic problems. Iron is an essential nutrient for nearly all microbes, including invading pathogens. The majority of iron in mammalian hosts is stored intracellularly in proteins, such as ferritin and hemoglobin (Hb). Hb, present in blood erythrocytes, is a very important source of iron and amino acids for pathogenic microorganisms ranging from bacteria to eukaryotic pathogens, such as worms, protozoa, yeast, and fungi. These organisms have developed adequate mechanisms to obtain Hb or its byproducts (heme and globin) from the host. One of the major virulence factors identified in parasites is parasite-derived proteases, essential for host tissue degradation, immune evasion, and nutrient acquisition. The production of Hb-degrading proteases is a Hb uptake mechanism that degrades globin in amino acids and facilitates heme release. This review aims to provide an overview of the Hb and heme-uptake mechanisms utilized by human pathogenic protozoa to survive inside the host.
Collapse
|
4
|
Gupta D, Singh PK, Yadav PK, Narender T, Patil UK, Jain SK, Chourasia MK. Emerging strategies and challenges of molecular therapeutics in antileishmanial drug development. Int Immunopharmacol 2023; 115:109649. [PMID: 36603357 DOI: 10.1016/j.intimp.2022.109649] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/16/2022] [Accepted: 12/24/2022] [Indexed: 01/05/2023]
Abstract
Molecular therapy refers to targeted therapies based on molecules which have been intelligently directed towards specific biomolecular structures and include small molecule drugs, monoclonal antibodies, proteins and peptides, DNA or RNA-based strategies, targeted chemotherapy and nanomedicines. Molecular therapy is emerging as the most effective strategy to combat the present challenges of life-threatening visceral leishmaniasis, where the successful human vaccine is currently unavailable. Moreover, current chemotherapy-based strategies are associated with the issues of ineffective targeting, unavoidable toxicities, invasive therapies, prolonged treatment, high treatment costs and the development of drug-resistant strains. Thus, the rational approach to antileishmanial drug development primarily demands critical exploration and exploitation of biochemical differences between host and parasite biology, immunocharacteristics of parasite homing, and host-parasite interactions at the molecular/cellular level. Following this, the novel technology-based designing and development of host and/or parasite-targeted therapeutics having leishmanicidal and immunomodulatory activity is utmost essential to improve treatment efficacy. Thus, the present review is focused on immunological and molecular checkpoint targets in host-pathogen interaction, and molecular therapeutic prospects for Leishmania intervention, and the challenges ahead.
Collapse
Affiliation(s)
- Deepak Gupta
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, M.P., India; Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Pankaj K Singh
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India; Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India
| | - Pavan K Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Tadigoppula Narender
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Umesh K Patil
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, M.P., India
| | - Sanjay K Jain
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, M.P., India
| | - Manish K Chourasia
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India.
| |
Collapse
|
5
|
New Insights on Heme Uptake in Leishmania spp. Int J Mol Sci 2022; 23:ijms231810501. [PMID: 36142411 PMCID: PMC9504327 DOI: 10.3390/ijms231810501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/20/2022] Open
Abstract
The protozoan parasite Leishmania, responsible for leishmaniasis, is one of the few aerobic organisms that cannot synthesize the essential molecule heme. Therefore, it has developed specialized pathways to scavenge it from its host. In recent years, some proteins involved in the import of heme, such as LHR1 and LFLVCRB, have been identified, but relevant aspects regarding the process remain unknown. Here, we characterized the kinetics of the uptake of the heme analogue Zn(II) Mesoporphyrin IX (ZnMP) in Leishmania major promastigotes as a model of a parasite causing cutaneous leishmaniasis with special focus on the force that drives the process. We found that ZnMP uptake is an active, inducible, and pH-dependent process that does not require a plasma membrane proton gradient but requires the presence of the monovalent cations Na+ and/or K+. In addition, we demonstrated that this parasite can efflux this porphyrin against a concentration gradient. We also found that ZnMP uptake differs among different dermotropic or viscerotropic Leishmania species and does not correlate with LHR1 or LFLVCRB expression levels. Finally, we showed that these transporters have only partially overlapping functions. Altogether, these findings contribute to a deeper understanding of an important process in the biology of this parasite.
Collapse
|
6
|
Ansari I, Basak R, Mukhopadhyay A. Hemoglobin Endocytosis and Intracellular Trafficking: A Novel Way of Heme Acquisition by Leishmania. Pathogens 2022; 11:585. [PMID: 35631106 PMCID: PMC9143042 DOI: 10.3390/pathogens11050585] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
Leishmania species are causative agents of human leishmaniasis, affecting 12 million people annually. Drugs available for leishmaniasis are toxic, and no vaccine is available. Thus, the major thrust is to identify new therapeutic targets. Leishmania is an auxotroph for heme and must acquire heme from the host for its survival. Thus, the major focus has been to understand the heme acquisition process by the parasites in the last few decades. It is conceivable that the parasite is possibly obtaining heme from host hemoprotein, as free heme is not available in the host. Current understanding indicates that Leishmania internalizes hemoglobin (Hb) through a specific receptor by a clathrin-mediated endocytic process and targets it to the parasite lysosomes via the Rab5 and Rab7 regulated endocytic pathway, where it is degraded to generate intracellular heme that is used by the parasite. Subsequently, intra-lysosomal heme is initially transported to the cytosol and is finally delivered to the mitochondria via different heme transporters. Studies using different null mutant parasites showed that these receptors and transporters are essential for the survival of the parasite. Thus, the heme acquisition process in Leishmania may be exploited for the development of novel therapeutics.
Collapse
Affiliation(s)
| | | | - Amitabha Mukhopadhyay
- Kusuma School of Biological Sciences, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India; (I.A.); (R.B.)
| |
Collapse
|
7
|
Assessing the composition of the plasma membrane of Leishmania (Leishmania) infantum and L. (L.) amazonensis using label-free proteomics. Exp Parasitol 2020; 218:107964. [PMID: 32822697 DOI: 10.1016/j.exppara.2020.107964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 02/03/2023]
Abstract
Protozoan parasites of the genus Leishmania are causative agents of leishmaniasis, a wide range of diseases affecting 12 million people worldwide. The species L. infantum and L. amazonensis are etiologic agents of visceral and cutaneous leishmaniasis, respectively. Most proteome analyses of Leishmania have been carried out on whole-cell extracts, but such an approach tends to underrepresent membrane-associated proteins due to their high hydrophobicity and low solubility. Considering the relevance of this category of proteins in virulence, invasiveness and the host-parasite interface, this study applied label-free proteomics to assess the plasma membrane sub-proteome of L. infantum and L. amazonensis. The number of proteins identified in L. infantum and L. amazonensis promastigotes was 1168 and 1455, respectively. After rigorous data processing and mining, 157 proteins were classified as putative plasma membrane-associated proteins, of which 56 proteins were detected in both species, six proteins were detected only in L. infantum and 39 proteins were exclusive to L. amazonensis. The quantitative analysis revealed that two proteins were more abundant in L. infantum, including the glucose transporter 2, and five proteins were more abundant in L. amazonensis. The identified proteins associated with distinct processes and functions. In this regard, proteins of L. infantum were linked to metabolic processes whereas L. amazonensis proteins were involved in signal transduction. Moreover, transmembrane transport was a significant process among the group of proteins detected in both species and members of the superfamily of ABC transporters were highly represented. Interestingly, some proteins of this family were solely detected in L. amazonensis, such as ABCA9. GP63, a well-known virulence factor, was the only GPI-anchored protein identified in the membrane preparations of both species. Finally, we found several proteins with uncharacterized functions, including differentially abundant ones, highlighting a gap in the study of Leishmania proteins. Proteins characterization could provide a better biological understanding of these parasites and deliver new possibilities regarding the discovery of therapeutic targets, drug resistance and vaccine candidates.
Collapse
|
8
|
Cabello-Donayre M, Orrego LM, Herráez E, Vargas P, Martínez-García M, Campos-Salinas J, Pérez-Victoria I, Vicente B, Marín JJG, Pérez-Victoria JM. Leishmania heme uptake involves LmFLVCRb, a novel porphyrin transporter essential for the parasite. Cell Mol Life Sci 2020; 77:1827-1845. [PMID: 31372684 PMCID: PMC11104922 DOI: 10.1007/s00018-019-03258-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 01/05/2023]
Abstract
Leishmaniasis comprises a group of neglected diseases caused by the protozoan parasite Leishmania spp. As is the case for other trypanosomatid parasites, Leishmania is auxotrophic for heme and must scavenge this essential compound from its human host. In mammals, the SLC transporter FLVCR2 mediates heme import across the plasma membrane. Herein we identify and characterize Leishmania major FLVCRb (LmFLVCRb), the first member of the FLVCR family studied in a non-metazoan organism. This protein localizes to the plasma membrane of the parasite and is able to bind heme. LmFLVCRb levels in Leishmania, which are modulated by overexpression thereof or the abrogation of an LmFLVCRb allele, correlate with the ability of the parasite to take up porphyrins. Moreover, injection of LmFLVCRb cRNA to Xenopus laevis oocytes provides these cells with the ability to take up heme. This process is temperature dependent, requires monovalent ions and is inhibited at basic pH, characteristics shared by the uptake of heme by Leishmania parasites. Interestingly, LmFLVCRb is essential as CRISPR/Cas9-mediated knockout parasites were only obtained in the presence of an episomal copy of the gene. In addition, deletion of just one of the alleles of the LmFLVCRb gene markedly impairs parasite replication as intracellular amastigotes as well as its virulence in an in vivo model of cutaneous leishmaniasis. Collectively, these results show that Leishmania parasites can rescue heme through plasma membrane transporter LFLVCRb, which could constitute a novel target for therapeutic intervention against Leishmania and probably other trypanosomatid parasites in which FLVCR genes are also present.
Collapse
Affiliation(s)
- María Cabello-Donayre
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Granada, Spain
| | - Lina M Orrego
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Granada, Spain
| | - Elisa Herráez
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Paola Vargas
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Granada, Spain
| | - Marta Martínez-García
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Granada, Spain
| | - Jenny Campos-Salinas
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Granada, Spain
| | - Ignacio Pérez-Victoria
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, PTS Granada, Granada, Spain
| | - Belén Vicente
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - José J G Marín
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - José M Pérez-Victoria
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Granada, Spain.
| |
Collapse
|
9
|
Laranjeira-Silva MF, Hamza I, Pérez-Victoria JM. Iron and Heme Metabolism at the Leishmania-Host Interface. Trends Parasitol 2020; 36:279-289. [PMID: 32005611 DOI: 10.1016/j.pt.2019.12.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/27/2019] [Accepted: 12/27/2019] [Indexed: 02/07/2023]
Abstract
Species of the protozoan Leishmania are causative agents of human leishmaniasis, a disease that results in significant death, disability, and disfigurement around the world. The parasite is transmitted to a mammalian host by a sand fly vector where it develops as an intracellular parasite within macrophages. This process requires the acquisition of nutritional iron and heme from the host as Leishmania lacks the capacity for de novo heme synthesis and does not contain cytosolic iron-storage proteins. Proteins involved in Leishmania iron and heme transport and metabolism have been identified and shown to be crucial for the parasite's growth and replication within the host. Consequently, a detailed understanding of how these parasites harness host pathways for survival may lay the foundation for promising new therapeutic intervention against leishmaniasis.
Collapse
Affiliation(s)
| | - Iqbal Hamza
- Department of Animal and Avian Sciences, Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA.
| | - José M Pérez-Victoria
- Instituto de Parasitología y Biomedicina 'López-Neyra', CSIC, (IPBLN-CSIC), PTS Granada, Granada, Spain
| |
Collapse
|
10
|
Mach J, Sutak R. Iron in parasitic protists – from uptake to storage and where we can interfere. Metallomics 2020; 12:1335-1347. [DOI: 10.1039/d0mt00125b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A comprehensive review of iron metabolism in parasitic protists and its potential use as a drug target.
Collapse
Affiliation(s)
- Jan Mach
- Department of Parasitology
- Faculty of Science - BIOCEV
- Charles University
- Vestec u Prahy
- Czech Republic
| | - Robert Sutak
- Department of Parasitology
- Faculty of Science - BIOCEV
- Charles University
- Vestec u Prahy
- Czech Republic
| |
Collapse
|
11
|
Morimoto A, Uchida K, Chambers JK, Sato K, Hong J, Sanjoba C, Matsumoto Y, Yamagishi J, Goto Y. Hemophagocytosis induced by Leishmania donovani infection is beneficial to parasite survival within macrophages. PLoS Negl Trop Dis 2019; 13:e0007816. [PMID: 31738750 PMCID: PMC6886864 DOI: 10.1371/journal.pntd.0007816] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 12/02/2019] [Accepted: 09/29/2019] [Indexed: 02/07/2023] Open
Abstract
Visceral leishmaniasis (VL) is caused by parasitic protozoa of the genus Leishmania and is characterized by clinical manifestations such as fever, hepatosplenomegaly and anemia. Hemophagocytosis, the phenomenon of phagocytosis of blood cells by macrophages, is found in VL patients. In a previous study we established an experimental model of VL, reproducing anemia in mice for the first time, and identified hemophagocytosis by heavily infected macrophages in the spleen as a possible cause of anemia. However, the mechanism for parasite-induced hemophagocytosis or its role in parasite survival remained unclear. Here, we established an in vitro model of Leishmania-induced hemophagocytosis to explore the molecules involved in this process. In contrast to naïve RAW264.7 cells (mouse macrophage cell line) which did not uptake freshly isolated erythrocytes, RAW264.7 cells infected with L. donovani showed enhanced phagocytosis of erythrocytes. Additionally, for hemophagocytes found both in vitro and in vivo, the expression of signal regulatory protein α (SIRPα), one of the receptors responsible for the ‘don’t-eat-me’ signal was suppressed by post-transcriptional control. Furthermore, the overlapped phagocytosis of erythrocytes and Leishmania parasites within a given macrophage appeared to be beneficial to the parasites; the in vitro experiments showed a higher number of parasites within macrophages that had been induced to engulf erythrocytes. Together, these results suggest that Leishmania parasites may actively induce hemophagocytosis by manipulating the expression of SIRPα in macrophages/hemophagocytes, in order to secure their parasitism. Parasites can manipulate host immune responses to build favorable environment to them. Because this parasite-driven immune modulation is often linked to symptoms in infected individuals, not only parasiticidal compounds but also immunological interventions limiting such the parasites’ abilities will serve as treatment options. In this study, we studied the mechanism and its role of hemophagocytosis (the phenomenon whereby macrophages engulf erythrocytes) caused by Leishmania donovani, a causative agent of VL. In vitro experiments revealed parasites have ability to directly disrupt macrophage’s recognition of self-cells, and that the induced engulfment of erythrocytes by L. donovani infection is beneficial to the parasites for their intracellular survival. These results suggest that Leishmania parasites actively induce hemophagocytosis by manipulating the ‘don’t-eat-me’ signal in macrophages for their survival. Although it is still to be determined how Leishmania parasites change the ‘don’t-eat-me’ signal in macrophages, our study may facilitate development of an immunotherapy which limits the change and lead to improvement of anemia due to hemophagocytosis as well as control of parasite survival.
Collapse
Affiliation(s)
- Ayako Morimoto
- Laboratory of Molecular Immunology, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Department of Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - James K. Chambers
- Laboratory of Veterinary Pathology, Department of Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kai Sato
- Laboratory of Molecular Immunology, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Jing Hong
- Laboratory of Molecular Immunology, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Chizu Sanjoba
- Laboratory of Molecular Immunology, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yoshitsugu Matsumoto
- Laboratory of Molecular Immunology, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Junya Yamagishi
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Global Station for Zoonosis Control, GI-CoRE, Hokkaido University, Sapporo, Japan
| | - Yasuyuki Goto
- Laboratory of Molecular Immunology, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
12
|
Orrego LM, Cabello-Donayre M, Vargas P, Martínez-García M, Sánchez C, Pineda-Molina E, Jiménez M, Molina R, Pérez-Victoria JM. Heme synthesis through the life cycle of the heme auxotrophic parasite Leishmania major. FASEB J 2019; 33:13367-13385. [PMID: 31553893 DOI: 10.1096/fj.201901274rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heme is an essential molecule synthetized through a broadly conserved 8-step route that has been lost in trypanosomatid parasites. Interestingly, Leishmania reacquired by horizontal gene transfer from γ-proteobacteria the genes coding for the last 3 enzymes of the pathway. Here we show that intracellular amastigotes of Leishmania major can scavenge heme precursors from the host cell to fulfill their heme requirements, demonstrating the functionality of this partial pathway. To dissect its role throughout the L. major life cycle, the significance of L. major ferrochelatase (LmFeCH), the terminal enzyme of the route, was evaluated. LmFeCH expression in a heterologous system demonstrated its activity. Knockout promastigotes lacking lmfech were not able to use the ferrochelatase substrate protoporphyrin IX as a source of heme. In vivo infection of Phlebotomus perniciosus with knockout promastigotes shows that LmFeCH is not required for their development in the sandfly. In contrast, the replication of intracellular amastigotes was hampered in vitro by the deletion of lmfech. However, LmFeCH-/- parasites produced disease in a cutaneous leishmaniasis murine model in a similar way as control parasites. Therefore, although L. major can synthesize de novo heme from macrophage precursors, this activity is dispensable being an unsuited target for leishmaniasis treatment.-Orrego, L. M., Cabello-Donayre, M., Vargas, P., Martínez-García, M., Sánchez, C., Pineda-Molina, E., Jiménez, M., Molina, R., Pérez-Victoria, J. M. Heme synthesis through the life cycle of the heme auxotrophic parasite Leishmania major.
Collapse
Affiliation(s)
- Lina M Orrego
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de la Salud (PTS) Granada, Granada, Spain
| | - María Cabello-Donayre
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de la Salud (PTS) Granada, Granada, Spain
| | - Paola Vargas
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de la Salud (PTS) Granada, Granada, Spain
| | - Marta Martínez-García
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de la Salud (PTS) Granada, Granada, Spain
| | - Clara Sánchez
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de la Salud (PTS) Granada, Granada, Spain
| | - Estela Pineda-Molina
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de la Salud (PTS) Granada, Granada, Spain
| | - Maribel Jiménez
- Unidad de Entomología Médica, Servicio de Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Ricardo Molina
- Unidad de Entomología Médica, Servicio de Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - José M Pérez-Victoria
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de la Salud (PTS) Granada, Granada, Spain
| |
Collapse
|
13
|
Pramanik PK, Alam MN, Roy Chowdhury D, Chakraborti T. Drug Resistance in Protozoan Parasites: An Incessant Wrestle for Survival. J Glob Antimicrob Resist 2019; 18:1-11. [PMID: 30685461 DOI: 10.1016/j.jgar.2019.01.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/04/2019] [Accepted: 01/15/2019] [Indexed: 11/19/2022] Open
Abstract
Nowadays, drug resistance in parasites is considered to be one of the foremost concerns in health and disease management. It is interconnected worldwide and undermines the health of millions of people, threatening to grow worse. Unfortunately, it does not receive serious attention from every corner of society. Consequently, drug resistance in parasites is gradually complicating and challenging the treatment of parasitic diseases. In this context, we have dedicated ourselves to review the incidence of drug resistance in the protozoan parasites Plasmodium, Leishmania, Trypanosoma, Entamoeba and Toxoplasma gondii. Moreover, understanding the role of ATP-binding cassette (ABC) transporters in drug resistance is essential in the control of parasitic diseases. Therefore, we also focused on the involvement of ABC transporters in drug resistance, which will be a superior approach to find ways for better regulation of diseases caused by parasitic infections.
Collapse
Affiliation(s)
- Pijush Kanti Pramanik
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Md Nur Alam
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Dibyapriya Roy Chowdhury
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Tapati Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India.
| |
Collapse
|
14
|
Lechuga GC, Pereira MCS, Bourguignon SC. Heme metabolism as a therapeutic target against protozoan parasites. J Drug Target 2018; 27:767-779. [DOI: 10.1080/1061186x.2018.1536982] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Guilherme Curty Lechuga
- Laboratório de Interação celular e molecular, Departamento de Biologia Celular e Molecular, Universidade Federal Fluminense, Rua Outeiro São João Batista, Rio de Janeiro, Brazil
- Fundação Oswaldo Cruz, Laboratório de Ultraestrutura Celular, Rio de Janeiro, Brazil
- Instituto de Biologia, Programa de Pós-graduação em Ciências e Biotecnologia (PPBI), Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | - Mirian C. S. Pereira
- Fundação Oswaldo Cruz, Laboratório de Ultraestrutura Celular, Rio de Janeiro, Brazil
| | - Saulo C. Bourguignon
- Laboratório de Interação celular e molecular, Departamento de Biologia Celular e Molecular, Universidade Federal Fluminense, Rua Outeiro São João Batista, Rio de Janeiro, Brazil
- Instituto de Biologia, Programa de Pós-graduação em Ciências e Biotecnologia (PPBI), Universidade Federal Fluminense, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Jardim A, Hardie DB, Boitz J, Borchers CH. Proteomic Profiling of Leishmania donovani Promastigote Subcellular Organelles. J Proteome Res 2018; 17:1194-1215. [PMID: 29332401 DOI: 10.1021/acs.jproteome.7b00817] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To facilitate a greater understanding of the biological processes in the medically important Leishmania donovani parasite, a combination of differential and density-gradient ultracentrifugation techniques were used to achieve a comprehensive subcellular fractionation of the promastigote stage. An in-depth label-free proteomic LC-MS/MS analysis of the density gradients resulted in the identification of ∼50% of the Leishmania proteome (3883 proteins detected), which included ∼645 integral membrane proteins and 1737 uncharacterized proteins. Clustering and subcellular localization of proteins was based on a subset of training Leishmania proteins with known subcellular localizations that had been determined using biochemical, confocal microscopy, or immunoelectron microscopy approaches. This subcellular map will be a valuable resource that will help dissect the cell biology and metabolic processes associated with specific organelles of Leishmania and related kinetoplastids.
Collapse
Affiliation(s)
- Armando Jardim
- Institute of Parasitology, Macdonald Campus, McGill University , 21111 Lakeshore Road, Saine-Anne-de-Bellevue, Québec H9X 3V9, Canada
| | - Darryl B Hardie
- University of Victoria -Genome British Columbia Proteomics Centre , #3101-4464 Markham Street, Vancouver Island Technology Park, Victoria, British Columbia V8Z7X8, Canada
| | - Jan Boitz
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University , Portland, Oregon 97239, United States
| | - Christoph H Borchers
- University of Victoria -Genome British Columbia Proteomics Centre , #3101-4464 Markham Street, Vancouver Island Technology Park, Victoria, British Columbia V8Z7X8, Canada.,Department of Biochemistry and Biophysics, University of North Carolina , 120 Mason Farm Road, Campus Box 7260 Third Floor, Genetic Medicine Building, Chapel Hill, North Carolina 27599, United States.,Department of Biochemistry and Microbiology, University of Victoria , Petch Building, Room 270d, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada.,Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University , 3755 Côte Ste-Catherine Road, Montreal, Quebec H3T 1E2, Canada.,Proteomics Centre, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University , 3755 Côte Ste-Catherine Road, Montreal, Quebec H3T 1E2, Canada
| |
Collapse
|
16
|
Gazanion E, Vergnes B. Protozoan Parasite Auxotrophies and Metabolic Dependencies. EXPERIENTIA SUPPLEMENTUM (2012) 2018; 109:351-375. [PMID: 30535605 DOI: 10.1007/978-3-319-74932-7_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Diseases caused by protozoan parasites have a major impact on world health. These early branching eukaryotes cause significant morbidity and mortality in humans and livestock. During evolution, protozoan parasites have evolved toward complex life cycles in multiple host organisms with different nutritional resources. The conservation of functional metabolic pathways required for these successive environments is therefore a prerequisite for parasitic lifestyle. Nevertheless, parasitism drives genome evolution toward gene loss and metabolic dependencies (including strict auxotrophy), especially for obligatory intracellular parasites. In this chapter, we will compare and contrast how protozoan parasites have perfected this metabolic adaptation by focusing on specific auxotrophic pathways and scavenging strategies used by clinically relevant apicomplexan and trypanosomatid parasites to access host's nutritional resources. We will further see how these metabolic dependencies have in turn been exploited for therapeutic purposes against these human pathogens.
Collapse
Affiliation(s)
- Elodie Gazanion
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Baptiste Vergnes
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France.
| |
Collapse
|
17
|
Profiling gene expression of antimony response genes in Leishmania (Viannia) panamensis and infected macrophages and its relationship with drug susceptibility. Acta Trop 2017; 176:355-363. [PMID: 28843396 DOI: 10.1016/j.actatropica.2017.08.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 08/04/2017] [Accepted: 08/17/2017] [Indexed: 12/31/2022]
Abstract
The mechanisms of Leishmania resistance to antimonials have been primarily determined in experimentally derived Leishmania strains. However, their participation in the susceptibility phenotype in field isolates has not been conclusively established. Being an intracellular parasite, the activity of antileishmanials is dependent on internalization of drugs into host cells and effective delivery to the intracellular compartments inhabited by the parasite. In this study we quantified and comparatively analyzed the gene expression of nine molecules involved in mechanisms of xenobiotic detoxification and Leishmania resistance to antimonial drugs in resistant and susceptible laboratory derived and clinical L.(Viannia) panamensis strains(n=19). In addition, we explored the impact of Leishmania susceptibility to antimonials on the expression of macrophage gene products having putative functions in transport, accumulation and metabolism of antimonials. As previously shown for other Leishmania species, a trend of increased abcc3 and lower aqp-1 expression was observed in the laboratory derived Sb-resistant L.(V.) panamensis line. However, this was not found in clinical strains, in which the expression of abca2 was significantly higher in resistant strains as both, promastigotes and intracellular amastigotes. The effect of drug susceptibility on host cell gene expression was evaluated on primary human macrophages from patients with cutaneous leishmaniasis (n=17) infected ex-vivo with the matched L.(V.) panamensis strains isolated at diagnosis, and in THP-1 cells infected with clinical strains (n=6) and laboratory adapted L.(V.) panamensis lines. Four molecules, abcb1 (p-gp), abcb6, aqp-9 and mt2a were differentially modulated by drug resistant and susceptible parasites, and among these, a consistent and significantly increased expression of the xenobiotic scavenging molecule mt2a was observed in macrophages infected with Sb-susceptible L. (V.) panamensis. Our results substantiate that different mechanisms of drug resistance operate in laboratory adapted and clinical Leishmania strains, and provide evidence that parasite-mediated modulation of host cell gene expression of molecules involved in drug transport and metabolism could contribute to the mechanisms of drug resistance and susceptibility in Leishmania.
Collapse
|
18
|
Horáková E, Changmai P, Vancová M, Sobotka R, Van Den Abbeele J, Vanhollebeke B, Lukeš J. The Trypanosoma brucei TbHrg protein is a heme transporter involved in the regulation of stage-specific morphological transitions. J Biol Chem 2017; 292:6998-7010. [PMID: 28232490 DOI: 10.1074/jbc.m116.762997] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 02/21/2017] [Indexed: 12/27/2022] Open
Abstract
The human parasite Trypanosoma brucei does not synthesize heme de novo and instead relies entirely on heme supplied by its vertebrate host or its insect vector, the tsetse fly. In the host bloodstream T. brucei scavenges heme via haptoglobin-hemoglobin (HpHb) receptor-mediated endocytosis occurring in the flagellar pocket. However, in the procyclic developmental stage, in which T. brucei is confined to the tsetse fly midgut, this receptor is apparently not expressed, suggesting that T. brucei takes up heme by a different, unknown route. To define this alternative route, we functionally characterized heme transporter TbHrg in the procyclic stage. RNAi-induced down-regulation of TbHrg in heme-limited culture conditions resulted in slower proliferation, decreased cellular heme, and marked changes in cellular morphology so that the cells resemble mesocyclic trypomastigotes. Nevertheless, the TbHrg KO developed normally in the tsetse flies at rates comparable with wild-type cells. T. brucei cells overexpressing TbHrg displayed up-regulation of the early procyclin GPEET and down-regulation of the late procyclin EP1, two proteins coating the T. brucei surface in the procyclic stage. Light microscopy of immunostained TbHrg indicated localization to the flagellar membrane, and scanning electron microscopy revealed more intense TbHrg accumulation toward the flagellar pocket. Based on these findings, we postulate that T. brucei senses heme levels via the flagellar TbHrg protein. Heme deprivation in the tsetse fly anterior midgut might represent an environmental stimulus involved in the transformation of this important human parasite, possibly through metabolic remodeling.
Collapse
Affiliation(s)
- Eva Horáková
- From the Institute of Parasitology, Biology Center, Czech Academy of Sciences, 37005 České Budějovice (Budweis), Czech Republic
| | - Piya Changmai
- From the Institute of Parasitology, Biology Center, Czech Academy of Sciences, 37005 České Budějovice (Budweis), Czech Republic
| | - Marie Vancová
- From the Institute of Parasitology, Biology Center, Czech Academy of Sciences, 37005 České Budějovice (Budweis), Czech Republic.,Faculty of Sciences, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic
| | - Roman Sobotka
- Faculty of Sciences, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic.,Institute of Microbiology, Czech Academy of Sciences, 37981 Třeboň, Czech Republic
| | - Jan Van Den Abbeele
- Department of Biomedical Sciences, Unit of Veterinary Protozoology, Institute of Tropical Medicine, B2000 Antwerp, Belgium
| | - Benoit Vanhollebeke
- Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, B6041 Gosselies, Belgium, and
| | - Julius Lukeš
- From the Institute of Parasitology, Biology Center, Czech Academy of Sciences, 37005 České Budějovice (Budweis), Czech Republic, .,Faculty of Sciences, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic.,Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada
| |
Collapse
|
19
|
Cabello-Donayre M, Malagarie-Cazenave S, Campos-Salinas J, Gálvez FJ, Rodríguez-Martínez A, Pineda-Molina E, Orrego LM, Martínez-García M, Sánchez-Cañete MP, Estévez AM, Pérez-Victoria JM. Trypanosomatid parasites rescue heme from endocytosed hemoglobin through lysosomal HRG transporters. Mol Microbiol 2016; 101:895-908. [PMID: 27328668 DOI: 10.1111/mmi.13430] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2016] [Indexed: 12/24/2022]
Abstract
Pathogenic trypanosomatid parasites are auxotrophic for heme and they must scavenge it from their human host. Trypanosoma brucei (responsible for sleeping sickness) and Leishmania (leishmaniasis) can fulfill heme requirement by receptor-mediated endocytosis of host hemoglobin. However, the mechanism used to transfer hemoglobin-derived heme from the lysosome to the cytosol remains unknown. Here we provide strong evidence that HRG transporters mediate this essential step. In bloodstream T. brucei, TbHRG localizes to the endolysosomal compartment where endocytosed hemoglobin is known to be trafficked. TbHRG overexpression increases cytosolic heme levels whereas its downregulation is lethal for the parasites unless they express the Leishmania orthologue LmHR1. LmHR1, known to be an essential plasma membrane protein responsible for the uptake of free heme in Leishmania, is also present in its acidic compartments which colocalize with endocytosed hemoglobin. Moreover, LmHR1 levels modulated by its overexpression or the abrogation of an LmHR1 allele correlate with the mitochondrial bioavailability of heme from lysosomal hemoglobin. In addition, using heme auxotrophic yeasts we show that TbHRG and LmHR1 transport hemoglobin-derived heme from the digestive vacuole to the cytosol. Collectively, these results show that trypanosomatid parasites rescue heme from endocytosed hemoglobin through endolysosomal HRG transporters, which could constitute novel drug targets.
Collapse
Affiliation(s)
- María Cabello-Donayre
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Avda. del Conocimiento s/n, Granada, 18016, Spain
| | - Sophie Malagarie-Cazenave
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Avda. del Conocimiento s/n, Granada, 18016, Spain
| | - Jenny Campos-Salinas
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Avda. del Conocimiento s/n, Granada, 18016, Spain
| | - Francisco J Gálvez
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Avda. del Conocimiento s/n, Granada, 18016, Spain
| | - Alba Rodríguez-Martínez
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Avda. del Conocimiento s/n, Granada, 18016, Spain
| | - Estela Pineda-Molina
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Avda. del Conocimiento s/n, Granada, 18016, Spain
| | - Lina M Orrego
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Avda. del Conocimiento s/n, Granada, 18016, Spain
| | - Marta Martínez-García
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Avda. del Conocimiento s/n, Granada, 18016, Spain
| | - María P Sánchez-Cañete
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Avda. del Conocimiento s/n, Granada, 18016, Spain
| | - Antonio M Estévez
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Avda. del Conocimiento s/n, Granada, 18016, Spain
| | - José M Pérez-Victoria
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Avda. del Conocimiento s/n, Granada, 18016, Spain.
| |
Collapse
|
20
|
Abstract
Iron is an essential cofactor for many basic metabolic pathways in pathogenic microbes and their hosts. It is also dangerous as it can catalyse the production of reactive free radicals. This dual character makes the host can either limit iron availability to invading microbes or exploit iron to induce toxicity to pathogens. Successful pathogens, including Leishmania species, must possess mechanisms to circumvent host's iron limitation and iron-induced toxicity in order to survive. In this review, we discuss the regulation of iron metabolism in the setting of infection and delineate the iron acquisition strategies used by Leishmania parasites and their subversions to host iron metabolism to overcome host's iron-related defences.
Collapse
|
21
|
The Trypanosoma cruzi Protein TcHTE Is Critical for Heme Uptake. PLoS Negl Trop Dis 2016; 10:e0004359. [PMID: 26752206 PMCID: PMC4713871 DOI: 10.1371/journal.pntd.0004359] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 12/14/2015] [Indexed: 01/08/2023] Open
Abstract
Trypanosoma cruzi, the etiological agent of Chagas' disease, presents nutritional requirements for several metabolites. It requires heme for the biosynthesis of several heme-proteins involved in essential metabolic pathways like mitochondrial cytochromes and respiratory complexes, as well as enzymes involved in the biosynthesis of sterols and unsaturated fatty acids. However, this parasite lacks a complete route for its synthesis. In view of these facts, T. cruzi has to incorporate heme from the environment during its life cycle. In other words, their hosts must supply the heme for heme-protein synthesis. Although the acquisition of heme is a fundamental issue for the parasite's replication and survival, how this cofactor is imported and distributed is poorly understood. In this work, we used different fluorescent heme analogs to explore heme uptake along the different life-cycle stages of T. cruzi, showing that this parasite imports it during its replicative stages: the epimastigote in the insect vector and the intracellular amastigote in the mammalian host. Also, we identified and characterized a T. cruzi protein (TcHTE) with 55% of sequence similarity to LHR1 (protein involved in L. amazonensis heme transport), which is located in the flagellar pocket, where the transport of nutrients proceeds in trypanosomatids. We postulate TcHTE as a protein involved in improving the efficiency of the heme uptake or trafficking in T. cruzi.
Collapse
|
22
|
Martínez-García M, Campos-Salinas J, Cabello-Donayre M, Pineda-Molina E, Gálvez FJ, Orrego LM, Sánchez-Cañete MP, Malagarie-Cazenave S, Koeller DM, Pérez-Victoria JM. LmABCB3, an atypical mitochondrial ABC transporter essential for Leishmania major virulence, acts in heme and cytosolic iron/sulfur clusters biogenesis. Parasit Vectors 2016; 9:7. [PMID: 26728034 PMCID: PMC4700571 DOI: 10.1186/s13071-015-1284-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/23/2015] [Indexed: 11/24/2022] Open
Abstract
Background Mitochondria play essential biological functions including the synthesis and trafficking of porphyrins and iron/sulfur clusters (ISC), processes that in mammals involve the mitochondrial ATP-Binding Cassette (ABC) transporters ABCB6 and ABCB7, respectively. The mitochondrion of pathogenic protozoan parasites such as Leishmania is a promising goal for new therapeutic approaches. Leishmania infects human macrophages producing the neglected tropical disease known as leishmaniasis. Like most trypanosomatid parasites, Leishmania is auxotrophous for heme and must acquire porphyrins from the host. Methods LmABCB3, a new Leishmania major protein with significant sequence similarity to human ABCB6/ABCB7, was identified and characterized using bioinformatic tools. Fluorescent microscopy was used to determine its cellular localization, and its level of expression was modulated by molecular genetic techniques. Intracellular in vitro assays were used to demonstrate its role in amastigotes replication, and an in vivo mouse model was used to analyze its role in virulence. Functional characterization of LmABCB3 was carried out in Leishmania promastigotes and Saccharomyces cerevisiae. Structural analysis of LmABCB3 was performed using molecular modeling software. Results LmABCB3 is an atypical ABC half-transporter that has a unique N-terminal extension not found in any other known ABC protein. This extension is required to target LmABCB3 to the mitochondrion and includes a potential metal-binding domain. We have shown that LmABCB3 interacts with porphyrins and is required for the mitochondrial synthesis of heme from a host precursor. We also present data supporting a role for LmABCB3 in the biogenesis of cytosolic ISC, essential cofactors for cell viability in all three kingdoms of life. LmABCB3 fully complemented the severe growth defect shown in yeast lacking ATM1, an orthologue of human ABCB7 involved in exporting from the mitochondria a gluthatione-containing compound required for the generation of cytosolic ISC. Indeed, docking analyzes performed with a LmABCB3 structural model using trypanothione, the main thiol in this parasite, as a ligand showed how both, LmABCB3 and yeast ATM1, contain a similar thiol-binding pocket. Additionally, we show solid evidence suggesting that LmABCB3 is an essential gene as dominant negative inhibition of LmABCB3 is lethal for the parasite. Moreover, the abrogation of only one allele of the gene did not impede promastigote growth in axenic culture but prevented the replication of intracellular amastigotes and the virulence of the parasites in a mouse model of cutaneous leishmaniasis. Conclusions Altogether our results present the previously undescribed LmABCB3 as an unusual mitochondrial ABC transporter essential for Leishmania survival through its role in the generation of heme and cytosolic ISC. Hence, LmABCB3 could represent a novel target to combat leishmaniasis. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-1284-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marta Martínez-García
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, PTS Granada, Granada, Spain.
| | - Jenny Campos-Salinas
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, PTS Granada, Granada, Spain.
| | - María Cabello-Donayre
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, PTS Granada, Granada, Spain.
| | - Estela Pineda-Molina
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, PTS Granada, Granada, Spain.
| | - Francisco J Gálvez
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, PTS Granada, Granada, Spain.
| | - Lina M Orrego
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, PTS Granada, Granada, Spain.
| | - María P Sánchez-Cañete
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, PTS Granada, Granada, Spain.
| | | | - David M Koeller
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR, USA.
| | - José M Pérez-Victoria
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, PTS Granada, Granada, Spain.
| |
Collapse
|
23
|
Rocco-Machado N, Cosentino-Gomes D, Meyer-Fernandes JR. Modulation of Na+/K+ ATPase Activity by Hydrogen Peroxide Generated through Heme in L. amazonensis. PLoS One 2015; 10:e0129604. [PMID: 26070143 PMCID: PMC4466535 DOI: 10.1371/journal.pone.0129604] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 05/11/2015] [Indexed: 01/02/2023] Open
Abstract
Leishmania amazonensis is a protozoan parasite that occurs in many areas of Brazil and causes skin lesions. Using this parasite, our group showed the activation of Na+/K+ ATPase through a signaling cascade that involves the presence of heme and protein kinase C (PKC) activity. Heme is an important biomolecule that has pro-oxidant activity and signaling capacity. Reactive oxygen species (ROS) can act as second messengers, which are required in various signaling cascades. Our goal in this work is to investigate the role of hydrogen peroxide (H2O2) generated in the presence of heme in the Na+/K+ ATPase activity of L. amazonensis. Our results show that increasing concentrations of heme stimulates the production of H2O2 in a dose-dependent manner until a concentration of 2.5 μM heme. To confirm that the effect of heme on the Na+/K+ ATPase is through the generation of H2O2, we measured enzyme activity using increasing concentrations of H2O2 and, as expected, the activity increased in a dose-dependent manner until a concentration of 0.1 μM H2O2. To investigate the role of PKC in this signaling pathway, we observed the production of H2O2 in the presence of its activator phorbol 12-myristate 13-acetate (PMA) and its inhibitor calphostin C. Both showed no effect on the generation of H2O2. Furthermore, we found that PKC activity is increased in the presence of H2O2, and that in the presence of calphostin C, H2O2 is unable to activate the Na+/K+ ATPase. 100 μM of Mito-TEMPO was capable of abolishing the stimulatory effect of heme on Na+/K+ ATPase activity, indicating that mitochondria might be the source of the hydrogen peroxide production induced by heme. The modulation of L. amazonensis Na+/K+ ATPase by H2O2 opens new possibilities for understanding the signaling pathways of this parasite.
Collapse
Affiliation(s)
- Nathália Rocco-Machado
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil
- Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil
- * E-mail: (JRMF); (NRM)
| | - Daniela Cosentino-Gomes
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil
- Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil
| | - José Roberto Meyer-Fernandes
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil
- Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil
- * E-mail: (JRMF); (NRM)
| |
Collapse
|
24
|
Renberg RL, Yuan X, Samuel TK, Miguel DC, Hamza I, Andrews NW, Flannery AR. The Heme Transport Capacity of LHR1 Determines the Extent of Virulence in Leishmania amazonensis. PLoS Negl Trop Dis 2015; 9:e0003804. [PMID: 26001191 PMCID: PMC4441390 DOI: 10.1371/journal.pntd.0003804] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/01/2015] [Indexed: 12/14/2022] Open
Abstract
Leishmania spp. are trypanosomatid parasites that replicate intracellularly in macrophages, causing serious human morbidity and mortality throughout the world. Trypanosomatid protozoa cannot synthesize heme, so must acquire this essential cofactor from their environment. Earlier studies identified LHR1 as a Leishmania amazonensis transmembrane protein that mediates heme uptake. Null mutants of LHR1 are not viable and single knockout strains have reduced virulence, but very little is known about the properties of LHR1 directly associated with heme transport. Here, we use functional assays in Saccharomyces cerevisiae to show that specific tyrosine residues within the first three predicted transmembrane domains of LHR1 are required for efficient heme uptake. These tyrosines are unique to LHR1, consistent with the low similarity between LHR1 and its corresponding homologs in C. elegans and human. Substitution of these tyrosines in LHR1 resulted in varying degrees of heme transport inhibition, phenotypes that closely mirrored the impaired ability of L. amazonensis to replicate as intracellular amastigotes in macrophages and generate cutaneous lesions in mice. Taken together, our results imply that the mechanism for heme transport by LHR1 is distinctive and may have adapted to secure heme, a limiting cofactor, inside the host. Since LHR1 is significantly divergent from the human heme transporter HRG1, our findings lay the groundwork for selective targeting of LHR1 by small molecule antagonists. Leishmania are protozoan parasites that infect humans and replicate intracellularly in macrophages, cells normally engaged in protecting the host from pathogens. These parasites have several strategies to survive inside the hostile environment of the host macrophage, and one of these strategies involves heme acquisition. Heme is an iron-containing molecule that is essential for many cellular functions. Unlike mammalian cells, Leishmania parasites cannot synthesize heme, so must acquire it from the host cell. In earlier work we found that the parasites express a surface protein, LHR1, which transports heme into the parasites. In this study we identified specific amino acids in LHR1 that are required for heme transport. When expressed in yeast cells, LHR1 carrying these mutations had defects in heme transport that were equivalent to the inhibition in virulence observed when these proteins were expressed in Leishmania and tested in macrophage and mouse infection assays. These critical amino acids do not exist in the human heme transporter, indicating that LHR1 is a promising target for the development of specific drugs for the treatment of leishmaniasis and possibly other serious parasitic diseases, such as Chagas’ disease and sleeping sickness.
Collapse
Affiliation(s)
- Rebecca L. Renberg
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Xiaojing Yuan
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, United States of America
| | - Tamika K. Samuel
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, United States of America
| | - Danilo C. Miguel
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Iqbal Hamza
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, United States of America
| | - Norma W. Andrews
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- * E-mail: ,
| | - Andrew R. Flannery
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- PathSensors, Inc., Baltimore, Maryland, United States of America
| |
Collapse
|
25
|
Pei J, Li W, Kinch LN, Grishin NV. Conserved evolutionary units in the heme-copper oxidase superfamily revealed by novel homologous protein families. Protein Sci 2014; 23:1220-34. [PMID: 24931479 DOI: 10.1002/pro.2503] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 06/11/2014] [Indexed: 01/04/2023]
Abstract
The heme-copper oxidase (HCO) superfamily includes HCOs in aerobic respiratory chains and nitric oxide reductases (NORs) in the denitrification pathway. The HCO/NOR catalytic subunit has a core structure consisting of 12 transmembrane helices (TMHs) arranged in three-fold rotational pseudosymmetry, with six conserved histidines for heme and metal binding. Using sensitive sequence similarity searches, we detected a number of novel HCO/NOR homologs and named them HCO Homology (HCOH) proteins. Several HCOH families possess only four TMHs that exhibit the most pronounced similarity to the last four TMHs (TMHs 9-12) of HCOs/NORs. Encoded by independent genes, four-TMH HCOH proteins represent a single evolutionary unit (EU) that relates to each of the three homologous EUs of HCOs/NORs comprising TMHs 1-4, TMHs 5-8, and TMHs 9-12. Single-EU HCOH proteins could form homotrimers or heterotrimers to maintain the general structure and ligand-binding sites defined by the HCO/NOR catalytic subunit fold. The remaining HCOH families, including NnrS, have 12-TMHs and three EUs. Most three-EU HCOH proteins possess two conserved histidines and could bind a single heme. Limited experimental studies and genomic context analysis suggest that many HCOH proteins could function in the denitrification pathway and in detoxification of reactive molecules such as nitric oxide. HCO/NOR catalytic subunits exhibit remarkable structural similarity to the homotrimers of MAPEG (membrane-associated proteins in eicosanoid and glutathione metabolism) proteins. Gene duplication, fusion, and fission likely play important roles in the evolution of HCOs/NORs and HCOH proteins.
Collapse
Affiliation(s)
- Jimin Pei
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| | | | | | | |
Collapse
|
26
|
Ben-Othman R, Flannery AR, Miguel DC, Ward DM, Kaplan J, Andrews NW. Leishmania-mediated inhibition of iron export promotes parasite replication in macrophages. PLoS Pathog 2014; 10:e1003901. [PMID: 24497831 PMCID: PMC3907422 DOI: 10.1371/journal.ppat.1003901] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 12/10/2013] [Indexed: 12/20/2022] Open
Abstract
Leishmania parasites infect macrophages, cells that play an important role in organismal iron homeostasis. By expressing ferroportin, a membrane protein specialized in iron export, macrophages release iron stored intracellularly into the circulation. Iron is essential for the intracellular replication of Leishmania, but how the parasites compete with the iron export function of their host cell is unknown. Here, we show that infection with Leishmania amazonensis inhibits ferroportin expression in macrophages. In a TLR4-dependent manner, infected macrophages upregulated transcription of hepcidin, a peptide hormone that triggers ferroportin degradation. Parasite replication was inhibited in hepcidin-deficient macrophages and in wild type macrophages overexpressing mutant ferroportin that is resistant to hepcidin-induced degradation. Conversely, intracellular growth was enhanced by exogenously added hepcidin, or by expression of dominant-negative ferroportin. Importantly, dominant-negative ferroportin and macrophages from flatiron mice, a mouse model for human type IV hereditary hemochromatosis, restored the infectivity of mutant parasite strains defective in iron acquisition. Thus, inhibition of ferroportin expression is a specific strategy used by L. amazonensis to inhibit iron export and promote their own intracellular growth.
Collapse
Affiliation(s)
- Rym Ben-Othman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Andrew R. Flannery
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Danilo C. Miguel
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Diane M. Ward
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Jerry Kaplan
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Norma W. Andrews
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
27
|
Dean P, Major P, Nakjang S, Hirt RP, Embley TM. Transport proteins of parasitic protists and their role in nutrient salvage. FRONTIERS IN PLANT SCIENCE 2014; 5:153. [PMID: 24808897 PMCID: PMC4010794 DOI: 10.3389/fpls.2014.00153] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 04/01/2014] [Indexed: 05/02/2023]
Abstract
The loss of key biosynthetic pathways is a common feature of important parasitic protists, making them heavily dependent on scavenging nutrients from their hosts. This is often mediated by specialized transporter proteins that ensure the nutritional requirements of the parasite are met. Over the past decade, the completion of several parasite genome projects has facilitated the identification of parasite transporter proteins. This has been complemented by functional characterization of individual transporters along with investigations into their importance for parasite survival. In this review, we summarize the current knowledge on transporters from parasitic protists and highlight commonalities and differences in the transporter repertoires of different parasitic species, with particular focus on characterized transporters that act at the host-pathogen interface.
Collapse
Affiliation(s)
- Paul Dean
- *Correspondence: Paul Dean and T. Martin Embley, The Medical School, Institute for Cell and Molecular Biosciences, Newcastle University, Catherine Cookson Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK e-mail: ;
| | | | | | | | - T. Martin Embley
- *Correspondence: Paul Dean and T. Martin Embley, The Medical School, Institute for Cell and Molecular Biosciences, Newcastle University, Catherine Cookson Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK e-mail: ;
| |
Collapse
|
28
|
Giardia intestinalis incorporates heme into cytosolic cytochrome b₅. EUKARYOTIC CELL 2013; 13:231-9. [PMID: 24297440 DOI: 10.1128/ec.00200-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The anaerobic intestinal pathogen Giardia intestinalis does not possess enzymes for heme synthesis, and it also lacks the typical set of hemoproteins that are involved in mitochondrial respiration and cellular oxygen stress management. Nevertheless, G. intestinalis may require heme for the function of particular hemoproteins, such as cytochrome b5 (cytb5). We have analyzed the sequences of eukaryotic cytb5 proteins and identified three distinct cytb5 groups: group I, which consists of C-tail membrane-anchored cytb5 proteins; group II, which includes soluble cytb5 proteins; and group III, which comprises the fungal cytb5 proteins. The majority of eukaryotes possess both group I and II cytb5 proteins, whereas three Giardia paralogs belong to group II. We have identified a fourth Giardia cytb5 paralog (gCYTb5-IV) that is rather divergent and possesses an unusual 134-residue N-terminal extension. Recombinant Giardia cytb5 proteins, including gCYTb5-IV, were expressed in Escherichia coli and exhibited characteristic UV-visible spectra that corresponded to heme-loaded cytb5 proteins. The expression of the recombinant gCYTb5-IV in G. intestinalis resulted in the increased import of extracellular heme and its incorporation into the protein, whereas this effect was not observed when gCYTb5-IV containing a mutated heme-binding site was expressed. The electrons for Giardia cytb5 proteins may be provided by the NADPH-dependent Tah18-like oxidoreductase GiOR-1. Therefore, GiOR-1 and cytb5 may constitute a novel redox system in G. intestinalis. To our knowledge, G. intestinalis is the first anaerobic eukaryote in which the presence of heme has been directly demonstrated.
Collapse
|
29
|
Flannery AR, Renberg RL, Andrews NW. Pathways of iron acquisition and utilization in Leishmania. Curr Opin Microbiol 2013; 16:716-21. [PMID: 23962817 DOI: 10.1016/j.mib.2013.07.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 07/24/2013] [Accepted: 07/25/2013] [Indexed: 11/16/2022]
Abstract
Iron is essential for many metabolic pathways, but is toxic in excess. Recent identification of the ferric iron reductase LFR1, the ferrous iron transporter LIT1, and the heme transporter LHR1 greatly advanced our understanding of how Leishmania parasites acquire iron and regulate its uptake. LFR1 and LIT1 have close orthologs in plants, and are required for Leishmania virulence. Consistent with the lack of heme biosynthesis in trypanosomatids, LHR1 and LABCG5, a protein involved in heme salvage from hemoglobin, seem essential for Leishmania survival. LFR1, LIT1 and LHR1 are upregulated under low iron availability, in agreement with the need to prevent excessive iron uptake. Future studies should clarify how Leishmania interacts with the iron homeostasis machinery of its host cell, the macrophage.
Collapse
Affiliation(s)
- Andrew R Flannery
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | | | | |
Collapse
|
30
|
Mittra B, Andrews NW. IRONy OF FATE: role of iron-mediated ROS in Leishmania differentiation. Trends Parasitol 2013; 29:489-96. [PMID: 23948431 DOI: 10.1016/j.pt.2013.07.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 07/16/2013] [Accepted: 07/19/2013] [Indexed: 02/06/2023]
Abstract
The protozoan parasite Leishmania experiences extreme environmental changes as it alternates between insect and mammalian hosts. In some species, differentiation of insect promastigotes into mammalian-infective amastigotes is induced by elevated temperature and low pH, conditions found within macrophage parasitophorous vacuoles (PVs). However, the signaling events controlling amastigote differentiation remain poorly understood. Recent studies revealed a novel role for iron uptake in orchestrating the differentiation of amastigotes, through a mechanism that involves production of reactive oxygen species (ROS) and is independent from pH and temperature changes. ROS are generally thought to be deleterious for pathogens, but it is becoming increasingly apparent that they can also function as signaling molecules regulating Leishmania differentiation, in a process that is tightly controlled by iron availability.
Collapse
Affiliation(s)
- Bidyottam Mittra
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | | |
Collapse
|
31
|
A new ABC half-transporter in Leishmania major is involved in resistance to antimony. Antimicrob Agents Chemother 2013; 57:3719-30. [PMID: 23716044 DOI: 10.1128/aac.00211-13] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The characterization of ABCI4, a new intracellular ATP-binding cassette (ABC) half-transporter in Leishmania major, is described. We show that ABCI4 is involved in heavy metal export, thereby conferring resistance to Pentostam, to Sb(III), and to As(III) and Cd(II). Parasites overexpressing ABCI4 showed a lower mitochondrial toxic effect of antimony by decreasing reactive oxygen species production and maintained higher values of both the mitochondrial electrochemical potential and total ATP levels with respect to controls. The ABCI4 half-transporter forms homodimers as determined by a coimmunoprecipitation assay. A combination of subcellular localization studies under a confocal microscope and a surface biotinylation assay using parasites expressing green fluorescent protein- and FLAG-tagged ABCI4 suggests that the transporter presents a dual localization in both mitochondria and the plasma membrane. Parasites overexpressing ABCI4 present an increased replication in mouse peritoneal macrophages. We have determined that porphyrins are substrates for ABCI4. Consequently, the overexpression of ABCI4 confers resistance to some toxic porphyrins, such as zinc-protoporphyrin, due to the lower accumulation resulting from a significant efflux, as determined using the fluorescent zinc-mesoporphyrin, a validated heme analog. In addition, ABCI4 has a significant ability to efflux thiol after Sb(III) incubation, thus meaning that ABCI4 could be considered to be a potential thiol-X-pump that is able to recognize metal-conjugated thiols. In summary, we have shown that this new ABC transporter is involved in drug sensitivity to antimony and other compounds by efflux as conjugated thiol complexes.
Collapse
|
32
|
Agarwal S, Rastogi R, Gupta D, Patel N, Raje M, Mukhopadhyay A. Clathrin-mediated hemoglobin endocytosis is essential for survival of Leishmania. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1065-77. [DOI: 10.1016/j.bbamcr.2013.01.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 12/21/2012] [Accepted: 01/08/2013] [Indexed: 11/27/2022]
|
33
|
Campos-Salinas J, León-Guerrero D, González-Rey E, Delgado M, Castanys S, Pérez-Victoria JM, Gamarro F. LABCG2, a new ABC transporter implicated in phosphatidylserine exposure, is involved in the infectivity and pathogenicity of Leishmania. PLoS Negl Trop Dis 2013; 7:e2179. [PMID: 23638200 PMCID: PMC3636091 DOI: 10.1371/journal.pntd.0002179] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 03/15/2013] [Indexed: 12/18/2022] Open
Abstract
Leishmaniasis is a neglected disease produced by the intracellular protozoan parasite Leishmania. In the present study, we show that LABCG2, a new ATP-binding cassette half-transporter (ABCG subfamily) from Leishmania, is involved in parasite virulence. Down-regulation of LABCG2 function upon expression of an inactive mutant version of this half-transporter (LABCG2(K/M)) is shown to reduce the translocation of short-chain analogues of phosphatidylserine (PS). This dominant-negative phenotype is specific for the headgroup of the phospholipid, as the movement of phospholipid analogues of phosphatidylcholine, phosphatidylethanolamine or sphingomyelin is not affected. In addition, promastigotes expressing LABCG2(K/M) expose less endogenous PS in the stationary phase than control parasites. Transient exposure of PS at the outer leaflet of the plasma membrane is known to be one of the mechanisms used by Leishmania to infect macrophages and to silence their immune response. Stationary phase/metacyclic promastigotes expressing LABCG2(K/M) are less infective for macrophages and show decreased pathogenesis in a mouse model of cutaneous leishmaniasis. Thus, mice infected with parasites expressing LABCG2(K/M) did not develop any lesion and showed significantly lower inflammation and parasite burden than mice infected with control parasites. Our results indicate that LABCG2 function is required for the externalization of PS in Leishmania promastigotes, a process that is involved in the virulence of the parasite.
Collapse
Affiliation(s)
- Jenny Campos-Salinas
- Instituto de Parasitología y Biomedicina “López-Neyra”, CSIC, (IPBLN-CSIC), Parque Tecnológico de Ciencias de la Salud, Armilla, Granada, Spain
| | - David León-Guerrero
- Instituto de Parasitología y Biomedicina “López-Neyra”, CSIC, (IPBLN-CSIC), Parque Tecnológico de Ciencias de la Salud, Armilla, Granada, Spain
| | - Elena González-Rey
- Instituto de Parasitología y Biomedicina “López-Neyra”, CSIC, (IPBLN-CSIC), Parque Tecnológico de Ciencias de la Salud, Armilla, Granada, Spain
| | - Mario Delgado
- Instituto de Parasitología y Biomedicina “López-Neyra”, CSIC, (IPBLN-CSIC), Parque Tecnológico de Ciencias de la Salud, Armilla, Granada, Spain
| | - Santiago Castanys
- Instituto de Parasitología y Biomedicina “López-Neyra”, CSIC, (IPBLN-CSIC), Parque Tecnológico de Ciencias de la Salud, Armilla, Granada, Spain
| | - José M. Pérez-Victoria
- Instituto de Parasitología y Biomedicina “López-Neyra”, CSIC, (IPBLN-CSIC), Parque Tecnológico de Ciencias de la Salud, Armilla, Granada, Spain
| | - Francisco Gamarro
- Instituto de Parasitología y Biomedicina “López-Neyra”, CSIC, (IPBLN-CSIC), Parque Tecnológico de Ciencias de la Salud, Armilla, Granada, Spain
- * E-mail:
| |
Collapse
|
34
|
van Dooren GG, Kennedy AT, McFadden GI. The use and abuse of heme in apicomplexan parasites. Antioxid Redox Signal 2012; 17:634-56. [PMID: 22320355 DOI: 10.1089/ars.2012.4539] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
SIGNIFICANCE Heme is an essential prosthetic group for most life on Earth. It functions in numerous cellular redox reactions, including in antioxidant defenses and at several stages of the electron transport chain in prokaryotes and eukaryotic mitochondria. Heme also functions as a sensor and transport molecule for gases such as oxygen. Heme is a complex organic molecule and can only be synthesized through a multienzyme pathway from simpler precursors. Most free-living organisms synthesize their own heme by a broadly conserved metabolic pathway. Parasites are adept at scavenging molecules from their hosts, and heme is no exception. RECENT ADVANCES In this review we examine recent advances in understanding heme usage and acquisition in Apicomplexa, a group of parasites that include the causative agents of malaria, toxoplasmosis, and several major parasites of livestock. CRITICAL ISSUES Heme is critical to the survival of Apicomplexa, although the functions of heme in these organisms remain poorly understood. Some Apicomplexa likely scavenge heme from their host organisms, while others retain the ability to synthesize heme. Surprisingly, some Apicomplexa may be able to both synthesize and scavenge heme. Several Apicomplexa live in intracellular environments that contain high levels of heme. Since heme is toxic at high concentrations, parasites must carefully regulate intracellular heme levels and develop mechanisms to detoxify excess heme. Indeed, drugs interfering with heme detoxification serve as major antimalarials. FUTURE DIRECTIONS Understanding heme requirements and regulation in apicomplexan parasites promises to reveal multiple targets for much-needed therapeutic intervention against these parasites.
Collapse
Affiliation(s)
- Giel G van Dooren
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| | | | | |
Collapse
|
35
|
Huynh C, Yuan X, Miguel DC, Renberg RL, Protchenko O, Philpott CC, Hamza I, Andrews NW. Heme uptake by Leishmania amazonensis is mediated by the transmembrane protein LHR1. PLoS Pathog 2012; 8:e1002795. [PMID: 22807677 PMCID: PMC3395602 DOI: 10.1371/journal.ppat.1002795] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Accepted: 05/24/2012] [Indexed: 11/21/2022] Open
Abstract
Trypanosomatid protozoan parasites lack a functional heme biosynthetic pathway, so must acquire heme from the environment to survive. However, the molecular pathway responsible for heme acquisition by these organisms is unknown. Here we show that L. amazonensis LHR1, a homolog of the C. elegans plasma membrane heme transporter HRG-4, functions in heme transport. Tagged LHR1 localized to the plasma membrane and to endocytic compartments, in both L. amazonensis and mammalian cells. Heme deprivation in L. amazonensis increased LHR1 transcript levels, promoted uptake of the fluorescent heme analog ZnMP, and increased the total intracellular heme content of promastigotes. Conversely, deletion of one LHR1 allele reduced ZnMP uptake and the intracellular heme pool by approximately 50%, indicating that LHR1 is a major heme importer in L. amazonensis. Viable parasites with correct replacement of both LHR1 alleles could not be obtained despite extensive attempts, suggesting that this gene is essential for the survival of promastigotes. Notably, LHR1 expression allowed Saccharomyces cerevisiae to import heme from the environment, and rescued growth of a strain deficient in heme biosynthesis. Syntenic genes with high sequence identity to LHR1 are present in the genomes of several species of Leishmania and also Trypanosoma cruzi and Trypanosoma brucei, indicating that therapeutic agents targeting this transporter could be effective against a broad group of trypanosomatid parasites that cause serious human disease. The biological activity of many proteins and enzymes requires heme, a large organic ring containing one iron atom at the center. It has been known for several decades that trypanosomatid protozoa lack several enzymes in the heme biosynthetic pathway. Therefore, unlike mammalian cells that can synthesize heme, these unicellular organisms must acquire heme from the environment. However, the mechanism by which this critical co-factor is transported into trypanosomatid parasites was unknown. In this study we identified LHR1, a trans-membrane protein from Leishmania amazonensis that mediates transport of extracellular heme into the parasites. Parasites partially deficient in LHR1 are impaired in heme import, and strains completely deficient do not survive. Genes highly similar to LHR1 are present in several species of trypanosomatid parasites that cause human disease, identifying this transporter as an important target for the development of anti-parasitic drugs.
Collapse
Affiliation(s)
- Chau Huynh
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Xiaojing Yuan
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, United States of America
| | - Danilo C. Miguel
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Rebecca L. Renberg
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Olga Protchenko
- Genetics and Metabolism Section, Liver Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Caroline C. Philpott
- Genetics and Metabolism Section, Liver Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Iqbal Hamza
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, United States of America
| | - Norma W. Andrews
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
36
|
Cupello MP, Souza CFD, Buchensky C, Soares JBRC, Laranja GAT, Coelho MGP, Cricco JA, Paes MC. The heme uptake process in Trypanosoma cruzi epimastigotes is inhibited by heme analogues and by inhibitors of ABC transporters. Acta Trop 2011; 120:211-8. [PMID: 21903090 DOI: 10.1016/j.actatropica.2011.08.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 07/18/2011] [Accepted: 08/20/2011] [Indexed: 10/17/2022]
Abstract
Heme (iron protoporphyrin IX) is an important molecule involved in many biological reactions, including oxygen transport, respiration, photosynthesis and drug detoxification. Trypanosoma cruzi parasites, the etiological agent of Chagas' disease, take up heme from the environment to supply their nutritional needs because they do not synthesize this cofactor. However, the mechanisms involved in heme transport across biological membranes are poorly understood. Indeed, in T. cruzi, no heme transporter has yet been characterized. In the present work, we evaluate the heme uptake processes by T. cruzi epimastigotes using fluorescent heme-analogues. Heme uptake decreased significantly when cells were pretreated with different concentrations of SnPPIX, PdMPIX or ZnMPIX, this observed competition suggests that they are taken up by the same transport system. We studied the growth behavior of epimastigotes using the same heme-analogues and the treatments with SnPPIX or PdMPIX impaired cell growth but when heme was added to the culture medium the observed inhibition was partially reversed. In addition, we tested how the heme uptake processes are affected by the presence of different transporter inhibitors. When the cells were treated with inhibitors and then incubated with heme, heme uptake decreased significantly for all treatments. These results constitute a strong indication for the existence of a protein associated with porphyrin transport in T. cruzi, possibly ATP-binding cassette transporters (ABC-transporter).
Collapse
|
37
|
The Role of Heme and Reactive Oxygen Species in Proliferation and Survival of Trypanosoma cruzi. J Parasitol Res 2011; 2011:174614. [PMID: 22007287 PMCID: PMC3191734 DOI: 10.1155/2011/174614] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 08/15/2011] [Indexed: 11/24/2022] Open
Abstract
Trypanosoma cruzi, the protozoan responsible for Chagas disease, has a complex life cycle comprehending two distinct hosts and a series of morphological and functional transformations. Hemoglobin degradation inside the insect vector releases high amounts of heme, and this molecule is known to exert a number of physiological functions. Moreover, the absence of its complete biosynthetic pathway in T. cruzi indicates heme as an essential molecule for this trypanosomatid survival. Within the hosts, T. cruzi has to cope with sudden environmental changes especially in the redox status and heme is able to increase the basal production of reactive oxygen species (ROS) which can be also produced as byproducts of the parasite aerobic metabolism. In this regard, ROS sensing is likely to be an important mechanism for the adaptation and interaction of these organisms with their hosts. In this paper we discuss the main features of heme and ROS susceptibility in T. cruzi biology.
Collapse
|