1
|
Yuan L, Wang D, Chen J, Lyu Y, Feng E, Zhang Y, Liu X, Wang H. Genome Sequence and Phenotypic Analysis of a Protein Lysis-Negative, Attenuated Anthrax Vaccine Strain. BIOLOGY 2023; 12:biology12050645. [PMID: 37237459 DOI: 10.3390/biology12050645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/30/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023]
Abstract
Bacillus anthracis is a Gram-positive bacterium that causes the zoonotic disease anthrax. Here, we studied the characteristic phenotype and virulence attenuation of the putative No. II vaccine strain, PNO2, which was reportedly introduced from the Pasteur Institute in 1934. Characterization of the strain showed that, compared with the control strain, A16Q1, the attenuated PNO2 (PNO2D1) was phospholipase-positive, with impaired protein hydrolysis and significantly reduced sporulation. Additionally, PNO2D1 significantly extended the survival times of anthrax-challenged mice. An evolutionary tree analysis revealed that PNO2D1 was not a Pasteur strain but was more closely related to a Tsiankovskii strain. A database comparison revealed a seven-base insertion mutation in the nprR gene. Although it did not block nprR transcription, the insertion mutation resulted in the premature termination of protein translation. nprR deletion of A16Q1 resulted in a nonproteolytic phenotype that could not sporulate. The database comparison revealed that the abs gene is also prone to mutation, and the abs promoter activity was much lower in PNO2D1 than in A16Q1. Low abs expression may be an important reason for the decreased virulence of PNO2D1.
Collapse
Affiliation(s)
- Lu Yuan
- College of Food Science and Technology, Shanghai Ocean University, 999 Hucheng Huan Road, Nanhui New City, Shanghai 201306, China
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Dongshu Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
- Laboratory of Advanced Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Jie Chen
- College of Food Science and Technology, Shanghai Ocean University, 999 Hucheng Huan Road, Nanhui New City, Shanghai 201306, China
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Yufei Lyu
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
- Laboratory of Advanced Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Erling Feng
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Yan Zhang
- College of Food Science and Technology, Shanghai Ocean University, 999 Hucheng Huan Road, Nanhui New City, Shanghai 201306, China
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Xiankai Liu
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
- Laboratory of Advanced Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Hengliang Wang
- College of Food Science and Technology, Shanghai Ocean University, 999 Hucheng Huan Road, Nanhui New City, Shanghai 201306, China
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| |
Collapse
|
2
|
Wang Y, Jiang N, Wang B, Tao H, Zhang X, Guan Q, Liu C. Integrated Transcriptomic and Proteomic Analyses Reveal the Role of NprR in Bacillus anthracis Extracellular Protease Expression Regulation and Oxidative Stress Responses. Front Microbiol 2020; 11:590851. [PMID: 33362738 PMCID: PMC7756075 DOI: 10.3389/fmicb.2020.590851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/18/2020] [Indexed: 12/18/2022] Open
Abstract
NprR is a protein of Bacillus anthracis that exhibits moonlighting functions as either a phosphatase or a neutral protease regulator that belongs to the RNPP family. We previously observed that the extracellular protease activity of an nprR deletion mutant significantly decreased within in vitro cultures. To identify the genes within the regulatory network of nprR that contribute to its protease activity, integrated transcriptomic and proteomic analyses were conducted here by comparing the nprR deletion mutant and parent strains. A total of 366 differentially expressed genes (DEGs) between the strains were observed via RNA-seq analysis. In addition, label-free LC-MS/MS analysis revealed 503 differentially expressed proteins (DEPs) within the intracellular protein fraction and 213 extracellular DEPs with significant expressional differences between the strains. The majority of DEGs and DEPs were involved in environmental information processing and metabolism. Integrated transcriptomic and proteomic analyses indicated that oxidation-reduction-related GO terms for intracellular DEPs and endopeptidase-related GO terms for extracellular DEPs were significantly enriched in the mutant strain. Notably, many genes involved in protease activity were largely downregulated in the nprR deletion mutant cultures. Moreover, western blot analysis revealed that the major extracellular neutral protease Npr599 was barely expressed in the nprR deletion mutant strain. The mutant also exhibited impaired degradation of protective antigen, which is a major B. anthracis toxin component, thereby resulting in higher protein yields. Concomitantly, another global transcriptional regulator, SpxA1, was also dramatically downregulated in the nprR deletion mutant, resulting in higher sensitivity to oxidative and disulfide stress. These data consequently indicate that NprR is a transcriptional regulator that controls genes whose products function as extracellular proteases and also is involved in oxidative stress responses. This study thus contributes to a more comprehensive understanding of the biological function of NprR, and especially in the middle growth stages of B. anthracis.
Collapse
Affiliation(s)
- Yanchun Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Na Jiang
- Beijing Fisheries Research Institute, Beijing, China
| | - Bowen Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Haoxia Tao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Xin Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Qing Guan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Chunjie Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
3
|
The Whi2p-Psr1p/Psr2p complex regulates interference competition and expansion of cells with competitive advantage in yeast colonies. Proc Natl Acad Sci U S A 2020; 117:15123-15131. [PMID: 32541056 DOI: 10.1073/pnas.1922076117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Yeast form complex highly organized colonies in which cells undergo spatiotemporal phenotypic differentiation in response to local gradients of nutrients, metabolites, and specific signaling molecules. Colony fitness depends on cell interactions, cooperation, and the division of labor between differentiated cell subpopulations. Here, we describe the regulation and dynamics of the expansion of papillae that arise during colony aging, which consist of cells that overcome colony regulatory rules and disrupt the synchronized colony structure. We show that papillae specifically expand within the U cell subpopulation in differentiated colonies. Papillae emerge more frequently in some strains than in others. Genomic analyses further revealed that the Whi2p-Psr1p/Psr2p complex (WPPC) plays a key role in papillae expansion. We show that cells lacking a functional WPPC have a sizable interaction-specific fitness advantage attributable to production of and resistance to a diffusible compound that inhibits growth of other cells. Competitive superiority and high relative fitness of whi2 and psr1psr2 strains are particularly pronounced in dense spatially structured colonies and are independent of TORC1 and Msn2p/Msn4p regulators previously associated with the WPPC function. The WPPC function, described here, might be a regulatory mechanism that balances cell competition and cooperation in dense yeast populations and, thus, contributes to cell synchronization, pattern formation, and the expansion of cells with a competitive fitness advantage.
Collapse
|
4
|
Multiple and Overlapping Functions of Quorum Sensing Proteins for Cell Specialization in Bacillus Species. J Bacteriol 2020; 202:JB.00721-19. [PMID: 32071096 DOI: 10.1128/jb.00721-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In bacterial populations, quorum sensing (QS) systems participate in the regulation of specialization processes and regulate collective behaviors that mediate interactions and allow survival of the species. In Gram-positive bacteria, QS systems of the RRNPP family (Rgg, Rap, NprR, PlcR, and PrgX) consist of intracellular receptors and their cognate signaling peptides. Two of these receptors, Rap and NprR, have regained attention in Bacillus subtilis and the Bacillus cereus group. Some Rap proteins, such as RapH and Rap60, are multifunctional and/or redundant in function, linking the specialization processes of sporulation and competence, as well as global expression changes in the transition phase in B. subtilis NprR, an evolutionary intermediate between Rap and RRNPP transcriptional activators, is a bifunctional regulator that modulates sporulation initiation and activates nutrient scavenging genes. In this review, we discuss how these receptors switch between functions and connect distinct signaling pathways. Based on structural evidence, we propose that RapH and Rap60 should be considered moonlighting proteins. Additionally, we analyze an evolutionary and ecological perspective to understand the multifunctionality and functional redundancy of these regulators in both Bacillus spp. and non-Bacillus Firmicutes Understanding the mechanistic, structural, ecological, and evolutionary basis for the multifunctionality and redundancy of these QS systems is a key step for achieving the development of innovative technologies for health and agriculture.
Collapse
|
5
|
pheS* as a counter-selectable marker for marker-free genetic manipulations in Bacillus anthracis. J Microbiol Methods 2018; 151:35-38. [PMID: 29859216 DOI: 10.1016/j.mimet.2018.05.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 05/18/2018] [Accepted: 05/29/2018] [Indexed: 12/28/2022]
Abstract
Several genetic tools have been developed for use in Bacillus anthracis, but there is still a need for a more marker-free gene inactivation protocols. Thus, we report a method to generate unmarked mutations in B. anthracis. This approach was based on the counter-selectable pheS* gene with assistance by the I-SceI homing endonuclease. Using this strategy, the NprR gene, a transcriptional activator of B. anthracis, was deleted at an extremely high efficiency. Our study indicates that mutated pheS is a useful counter-selective marker to design a valuable genetic tool for in-frame and unmarked gene deletions of B. anthracis.
Collapse
|
6
|
Neiditch MB, Capodagli GC, Prehna G, Federle MJ. Genetic and Structural Analyses of RRNPP Intercellular Peptide Signaling of Gram-Positive Bacteria. Annu Rev Genet 2017; 51:311-333. [PMID: 28876981 PMCID: PMC6588834 DOI: 10.1146/annurev-genet-120116-023507] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bacteria use diffusible chemical messengers, termed pheromones, to coordinate gene expression and behavior among cells in a community by a process known as quorum sensing. Pheromones of many gram-positive bacteria, such as Bacillus and Streptococcus, are small, linear peptides secreted from cells and subsequently detected by sensory receptors such as those belonging to the large family of RRNPP proteins. These proteins are cytoplasmic pheromone receptors sharing a structurally similar pheromone-binding domain that functions allosterically to regulate receptor activity. X-ray crystal structures of prototypical RRNPP members have provided atomic-level insights into their mechanism and regulation by pheromones. This review provides an overview of RRNPP prototype signaling; describes the structure-function of this protein family, which is spread widely among gram-positive bacteria; and suggests approaches to target RRNPP systems in order to manipulate beneficial and harmful bacterial behaviors.
Collapse
Affiliation(s)
- Matthew B Neiditch
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103, USA; ,
| | - Glenn C Capodagli
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103, USA; ,
| | - Gerd Prehna
- Center for Structural Biology, Research Resources Center and Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois 60607, USA;
| | - Michael J Federle
- Department of Medicinal Chemistry and Pharmacognosy and Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, USA;
| |
Collapse
|
7
|
Cabrera R, Rodríguez-Romero A, Guarneros G, de la Torre M. New insights into the interaction between the quorum-sensing receptor NprR and its DNA target, or the response regulator Spo0F. FEBS Lett 2016; 590:3243-53. [PMID: 27543719 DOI: 10.1002/1873-3468.12371] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/10/2016] [Accepted: 08/12/2016] [Indexed: 11/08/2022]
Abstract
The NprR protein and NprRB signaling peptide comprise a bifunctional quorum-sensing system from the Bacillus cereus group that is involved in transcriptional activation through DNA-binding and in sporulation initiation by binding to Spo0F. We characterized in vitro the direct interactions established by NprR that may be relevant for performing its two functions. Apo-NprR interacted with Spo0F, but not with the target DNA. The NprRB signaling peptide SSKPDIVG that binds strongly to Apo-NprR, failed to bind and disrupt the NprR-Spo0F complex. Finally, the NprR-NprRB complex bound both to Spo0F and the target DNA with similar affinity. Based on our findings, we propose that rather than a switch triggered by NprRB, the NprR/NprRB ratio and the availability of Spo0F binding sites define the function of NprR.
Collapse
Affiliation(s)
- Rosina Cabrera
- Centro de Investigación en Alimentación y Desarrollo A. C., Hermosillo, Mexico
| | - Adela Rodríguez-Romero
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
| | - Gabriel Guarneros
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Mayra de la Torre
- Centro de Investigación en Alimentación y Desarrollo A. C., Hermosillo, Mexico.
| |
Collapse
|
8
|
Tagel M, Tavita K, Hõrak R, Kivisaar M, Ilves H. A novel papillation assay for the identification of genes affecting mutation rate in Pseudomonas putida and other pseudomonads. Mutat Res 2016; 790:41-55. [PMID: 27447898 DOI: 10.1016/j.mrfmmm.2016.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 06/06/2023]
Abstract
Formation of microcolonies (papillae) permits easy visual screening of mutational events occurring in single colonies of bacteria. In this study, we have established a novel papillation assay employable in a wide range of pseudomonads including Pseudomonas aeruginosa and Pseudomonas putida for monitoring mutation frequency in distinct colonies. With the aid of this assay, we conducted a genome-wide search for the factors affecting mutation frequency in P. putida. Screening ∼27,000 transposon mutants for increased mutation frequency allowed us to identify 34 repeatedly targeted genes. In addition to genes involved in DNA replication and repair, we identified genes participating in metabolism and transport of secondary metabolites, cell motility, and cell wall synthesis. The highest effect on mutant frequency was observed when truA (tRNA pseudouridine synthase), mpl (UDP-N-acetylmuramate-alanine ligase) or gacS (multi-sensor hybrid histidine kinase) were inactivated. Inactivation of truA elevated the mutant frequency only in growing cells, while the deficiency of gacS affected mainly stationary-phase mutagenesis. Thus, our results demonstrate the feasibility of the assay for isolating mutants with elevated mutagenesis in growing as well as stationary-phase bacteria.
Collapse
Affiliation(s)
- Mari Tagel
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Kairi Tavita
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Rita Hõrak
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Maia Kivisaar
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Heili Ilves
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.
| |
Collapse
|
9
|
Poupel O, Moyat M, Groizeleau J, Antunes LCS, Gribaldo S, Msadek T, Dubrac S. Transcriptional Analysis and Subcellular Protein Localization Reveal Specific Features of the Essential WalKR System in Staphylococcus aureus. PLoS One 2016; 11:e0151449. [PMID: 26999783 PMCID: PMC4801191 DOI: 10.1371/journal.pone.0151449] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 02/29/2016] [Indexed: 11/21/2022] Open
Abstract
The WalKR two-component system, controlling cell wall metabolism, is highly conserved among Bacilli and essential for cell viability. In Staphylococcus aureus, walR and walK are followed by three genes of unknown function: walH, walI and walJ. Sequence analysis and transcript mapping revealed a unique genetic structure for this locus in S. aureus: the last gene of the locus, walJ, is transcribed independently, whereas transcription of the tetra-cistronic walRKHI operon occurred from two independent promoters located upstream from walR. Protein topology analysis and protein-protein interactions in E. coli as well as subcellular localization in S. aureus allowed us to show that WalH and WalI are membrane-bound proteins, which associate with WalK to form a complex at the cell division septum. While these interactions suggest that WalH and WalI play a role in activity of the WalKR regulatory pathway, deletion of walH and/or walI did not have a major effect on genes whose expression is strongly dependent on WalKR or on associated phenotypes. No effect of WalH or WalI was seen on tightly controlled WalKR regulon genes such as sle1 or saouhsc_00773, which encodes a CHAP-domain amidase. Of the genes encoding the two major S. aureus autolysins, AtlA and Sle1, only transcription of atlA was increased in the ΔwalH or ΔwalI mutants. Likewise, bacterial autolysis was not increased in the absence of WalH and/or WalI and biofilm formation was lowered rather than increased. Our results suggest that contrary to their major role as WalK inhibitors in B. subtilis, the WalH and WalI proteins have evolved a different function in S. aureus, where they are more accessory. A phylogenomic analysis shows a striking conservation of the 5 gene wal cluster along the evolutionary history of Bacilli, supporting the key importance of this signal transduction system, and indicating that the walH and walI genes were lost in the ancestor of Streptococcaceae, leading to their atypical 3 wal gene cluster, walRKJ.
Collapse
Affiliation(s)
- Olivier Poupel
- Institut Pasteur, Biology of Gram-Positive Pathogens, Department of Microbiology, Paris, France
- CNRS, ERL3526, Paris, France
| | - Mati Moyat
- Institut Pasteur, Biology of Gram-Positive Pathogens, Department of Microbiology, Paris, France
- CNRS, ERL3526, Paris, France
| | - Julie Groizeleau
- Institut Pasteur, Biology of Gram-Positive Pathogens, Department of Microbiology, Paris, France
- CNRS, ERL3526, Paris, France
| | - Luísa C. S. Antunes
- Institut Pasteur, Molecular Biology of Gene in Extremophiles, Department of Microbiology, Paris, France
| | - Simonetta Gribaldo
- Institut Pasteur, Molecular Biology of Gene in Extremophiles, Department of Microbiology, Paris, France
| | - Tarek Msadek
- Institut Pasteur, Biology of Gram-Positive Pathogens, Department of Microbiology, Paris, France
- CNRS, ERL3526, Paris, France
- * E-mail: (TM); (SD)
| | - Sarah Dubrac
- Institut Pasteur, Biology of Gram-Positive Pathogens, Department of Microbiology, Paris, France
- CNRS, ERL3526, Paris, France
- * E-mail: (TM); (SD)
| |
Collapse
|
10
|
Rice AJ, Woo JK, Khan A, Szypulinski MZ, Johnson ME, Lee H, Lee H. Over-expression, purification, and confirmation of Bacillus anthracis transcriptional regulator NprR. Protein Expr Purif 2015; 125:83-9. [PMID: 26344899 DOI: 10.1016/j.pep.2015.08.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/28/2015] [Accepted: 08/31/2015] [Indexed: 12/21/2022]
Abstract
Quorum sensing (QS) has been recognized as an important biological phenomenon in which bacterial cells communicate and coordinate their gene expression and cellular processes with respect to population density. Bacillus anthracis is the etiological agent of fatal pulmonary anthrax infections, and the NprR/NprX QS system may be involved in its pathogenesis. NprR, renamed as aqsR for anthrax quorum sensing Regulator, is a transcriptional regulator that may control the expression of genes required for proliferation and survival. Currently, there is no protocol reported to over-express and purify B. anthracis AqsR. In this study, we describe cloning, purification, and confirmation of functional full-length B. anthracis AqsR protein. The AqsR gene was cloned into the pQE-30 vector with an HRV 3C protease recognition site between AqsR and the N-terminal His6-tag in order to yield near native AqsR after the His-tag cleavage, leaving only two additional amino acid residues at the N-terminus.
Collapse
Affiliation(s)
- Amy J Rice
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, 900 S. Ashland, IL 60607, USA; Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 900 S. Ashland, IL 60607, USA
| | - Jerry K Woo
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, 900 S. Ashland, IL 60607, USA
| | - Attiya Khan
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, 900 S. Ashland, IL 60607, USA
| | - Michael Z Szypulinski
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, 900 S. Ashland, IL 60607, USA
| | - Michael E Johnson
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, 900 S. Ashland, IL 60607, USA; Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 900 S. Ashland, IL 60607, USA
| | - Hyunwoo Lee
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, 900 S. Ashland, IL 60607, USA; Department of Biopharmaceutical Sciences, University of Illinois at Chicago, 900 S. Ashland, IL 60607, USA.
| | - Hyun Lee
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, 900 S. Ashland, IL 60607, USA; Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 900 S. Ashland, IL 60607, USA.
| |
Collapse
|
11
|
Lenhart JS, Pillon MC, Guarné A, Biteen JS, Simmons LA. Mismatch repair in Gram-positive bacteria. Res Microbiol 2015; 167:4-12. [PMID: 26343983 DOI: 10.1016/j.resmic.2015.08.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/14/2015] [Accepted: 08/26/2015] [Indexed: 12/31/2022]
Abstract
DNA mismatch repair (MMR) is responsible for correcting errors formed during DNA replication. DNA polymerase errors include base mismatches and extra helical nucleotides referred to as insertion and deletion loops. In bacteria, MMR increases the fidelity of the chromosomal DNA replication pathway approximately 100-fold. MMR defects in bacteria reduce replication fidelity and have the potential to affect fitness. In mammals, MMR defects are characterized by an increase in mutation rate and by microsatellite instability. In this review, we discuss current advances in understanding how MMR functions in bacteria lacking the MutH and Dam methylase-dependent MMR pathway.
Collapse
Affiliation(s)
- Justin S Lenhart
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States; Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, United States
| | - Monica C Pillon
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Alba Guarné
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
| | - Julie S Biteen
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, United States.
| | - Lyle A Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
12
|
Cabrera R, Rocha J, Flores V, Vázquez-Moreno L, Guarneros G, Olmedo G, Rodríguez-Romero A, de la Torre M. Regulation of sporulation initiation by NprR and its signaling peptide NprRB: molecular recognition and conformational changes. Appl Microbiol Biotechnol 2014; 98:9399-412. [PMID: 25256619 DOI: 10.1007/s00253-014-6094-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/01/2014] [Accepted: 09/10/2014] [Indexed: 12/17/2022]
Abstract
NprR belongs to the RNPP family of quorum-sensing receptors, a group of intracellular regulators activated directly by signaling oligopeptides in Gram-positive bacteria. In Bacillus thuringiensis (Bt), nprR is located in a transcriptional cassette with nprRB that codes for the precursor of the signaling peptide NprRB. NprR is a transcriptional regulator activated by binding of reimported NprRB; however, several reports suggest that NprR also participates in sporulation but the mechanism is unknown. Our in silico results, based on the structural similarity between NprR from Bt and Spo0F-binding Rap proteins from Bacillus subtilis, suggested that NprR could bind Spo0F to modulate the sporulation phosphorelay in Bt. Deletion of nprR-nprRB cassette from Bt caused a delay in sporulation and defective trigger of the Spo0A∼P-activated genes spoIIA and spoIIIG. The DNA-binding domain of NprR was not necessary for this second function, since truncated NprRΔHTH together with nprRB gene was able to restore the sporulation wild type phenotype in the ΔnprR-nprRB mutant. Fluorescence assays showed direct binding between NprR and Spo0F, supporting that NprR is a bifunctional protein. To understand how the NprR activation by NprRB could result in two different functions, we studied the molecular recognition mechanism between the signaling peptide and the receptor. Using synthetic variants of NprRB, we found that SSKPDIVG displayed the highest affinity (Kd = 7.19 nM) toward the recombinant NprR and demonstrated that recognition involves conformational selection. We propose that the peptide concentration in the cell controls the oligomerization state of the NprR-NprRB complex for switching between its two functions.
Collapse
Affiliation(s)
- Rosina Cabrera
- Centro de Investigación en Alimentación y Desarrollo A. C., Km 0.6 Carretera a La Victoria, 83304, Hermosillo, Sonora, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
DNA helicases have important roles in genome maintenance. The RecD helicase has been well studied as a component of the heterotrimeric RecBCD helicase-nuclease enzyme important for double-strand break repair in Escherichia coli. Interestingly, many bacteria lack RecBC and instead contain a RecD2 helicase, which is not known to function as part of a larger complex. Depending on the organism studied, RecD2 has been shown to provide resistance to a broad range of DNA-damaging agents while also contributing to mismatch repair (MMR). Here we investigated the importance of Bacillus subtilis RecD2 helicase to genome integrity. We show that deletion of recD2 confers a modest increase in the spontaneous mutation rate and that the mutational signature in ΔrecD2 cells is not consistent with an MMR defect, indicating a new function for RecD2 in B. subtilis. To further characterize the role of RecD2, we tested the deletion strain for sensitivity to DNA-damaging agents. We found that loss of RecD2 in B. subtilis sensitized cells to several DNA-damaging agents that can block or impair replication fork movement. Measurement of replication fork progression in vivo showed that forks collapse more frequently in ΔrecD2 cells, supporting the hypothesis that RecD2 is important for normal replication fork progression. Biochemical characterization of B. subtilis RecD2 showed that it is a 5'-3' helicase and that it directly binds single-stranded DNA binding protein. Together, our results highlight novel roles for RecD2 in DNA replication which help to maintain replication fork integrity during normal growth and when forks encounter DNA damage.
Collapse
|
14
|
Yang H, Yung M, Li L, Hoch JA, Ryan CM, Kar UK, Souda P, Whitelegge JP, Miller JH. Evidence that YycJ is a novel 5′–3′ double-stranded DNA exonuclease acting in Bacillus anthracis mismatch repair. DNA Repair (Amst) 2013; 12:334-46. [DOI: 10.1016/j.dnarep.2013.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 01/27/2013] [Accepted: 02/05/2013] [Indexed: 11/29/2022]
|
15
|
Abstract
From microbes to multicellular eukaryotic organisms, all cells contain pathways responsible for genome maintenance. DNA replication allows for the faithful duplication of the genome, whereas DNA repair pathways preserve DNA integrity in response to damage originating from endogenous and exogenous sources. The basic pathways important for DNA replication and repair are often conserved throughout biology. In bacteria, high-fidelity repair is balanced with low-fidelity repair and mutagenesis. Such a balance is important for maintaining viability while providing an opportunity for the advantageous selection of mutations when faced with a changing environment. Over the last decade, studies of DNA repair pathways in bacteria have demonstrated considerable differences between Gram-positive and Gram-negative organisms. Here we review and discuss the DNA repair, genome maintenance, and DNA damage checkpoint pathways of the Gram-positive bacterium Bacillus subtilis. We present their molecular mechanisms and compare the functions and regulation of several pathways with known information on other organisms. We also discuss DNA repair during different growth phases and the developmental program of sporulation. In summary, we present a review of the function, regulation, and molecular mechanisms of DNA repair and mutagenesis in Gram-positive bacteria, with a strong emphasis on B. subtilis.
Collapse
|
16
|
Rocha J, Flores V, Cabrera R, Soto-Guzmán A, Granados G, Juaristi E, Guarneros G, de la Torre M. Evolution and some functions of the NprR-NprRB quorum-sensing system in the Bacillus cereus group. Appl Microbiol Biotechnol 2011; 94:1069-78. [PMID: 22159892 DOI: 10.1007/s00253-011-3775-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 11/17/2011] [Accepted: 11/20/2011] [Indexed: 11/30/2022]
Abstract
Quorum-sensing (QS) is a bacterial mechanism for regulation of gene expression in response to cell density. In Gram-positive bacteria, oligopeptides are the signaling molecules to elicit QS. The RNPP protein family (Rap, NprR, PlcR, and PrgX) are intracellular QS receptors that bind directly to their specific signaling peptide for regulating the transcription of several genes. NprR is the activator of a neutral protease in Bacillus subtilis, and it has been recently related to sporulation, cry genes transcription and extracellular protease activity in strains from the B. cereus group. In the B. thuringiensis genome, downstream nprR, a gene encoding a putative QS signaling propeptide (nprRB) was found. We hypothesized that the nprR and nprRB co-evolved because of their coordinated function in the B. cereus group. A phylogenetic tree of nucleotide sequences of nprR revealed six pherotypes, each corresponding to one putative mature NprRB sequence. The nprR tree does not match the current taxonomic grouping of the B. cereus group or the phylogenetic arrangement obtained when using MLST markers from the same strains. SKPDI and other synthetic peptides encoded in the nprRB gene from B. thuringiensis serovar thuringiensis strain 8741 had effect on temporal regulation of sporulation and expression of a cry1Aa'Z transcriptional fusion, but those peptides that stimulated earlier detection of spores decreased cry1Aa expression suggesting that NprR may either activate or repress the transcription of different genes.
Collapse
Affiliation(s)
- Jorge Rocha
- Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera a La Victoria Km 0.6, Hermosillo, Sonora, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Yang H, Yung M, Sikavi C, Miller JH. The role of Bacillus anthracis RecD2 helicase in DNA mismatch repair. DNA Repair (Amst) 2011; 10:1121-30. [DOI: 10.1016/j.dnarep.2011.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 08/17/2011] [Accepted: 08/18/2011] [Indexed: 02/07/2023]
|
18
|
Perchat S, Dubois T, Zouhir S, Gominet M, Poncet S, Lemy C, Aumont-Nicaise M, Deutscher J, Gohar M, Nessler S, Lereclus D. A cell-cell communication system regulates protease production during sporulation in bacteria of the Bacillus cereus group. Mol Microbiol 2011; 82:619-33. [PMID: 21958299 DOI: 10.1111/j.1365-2958.2011.07839.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In sporulating Bacillus, major processes like virulence gene expression and sporulation are regulated by communication systems involving signalling peptides and regulators of the RNPP family. We investigated the role of one such regulator, NprR, in bacteria of the Bacillus cereus group. We show that NprR is a transcriptional regulator whose activity depends on the NprX signalling peptide. In association with NprX, NprR activates the transcription of an extracellular protease gene (nprA) during the first stage of the sporulation process. The transcription start site of the nprA gene has been identified and the minimal region necessary for full activation has been characterized by promoter mutagenesis. We demonstrate that the NprX peptide is secreted, processed and then reimported within the bacterial cell. Once inside the cell, the mature form of NprX, presumably the SKPDIVG heptapeptide, directly binds to NprR allowing nprA transcription. Alignment of available NprR sequences from different species of the B. cereus group defines seven NprR clusters associated with seven NprX heptapeptide classes. This cell-cell communication system was found to be strain-specific with a possible cross-talk between some pherotypes. The phylogenic relationship between NprR and NprX suggests a coevolution of the regulatory protein and its signalling peptide.
Collapse
|