1
|
Narh Mensah DL, Wingfield BD, Coetzee MPA. Two distinct non-ribosomal peptide synthetase-independent siderophore synthetase gene clusters identified in Armillaria and other species in the Physalacriaceae. G3 (BETHESDA, MD.) 2023; 13:jkad205. [PMID: 37843963 PMCID: PMC10700112 DOI: 10.1093/g3journal/jkad205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/28/2023] [Indexed: 10/18/2023]
Abstract
Siderophores are important for ferric iron solubilization, sequestration, transportation, and storage, especially under iron-limiting conditions such as aerobic conditions at high pH. Siderophores are mainly produced by non-ribosomal peptide synthetase-dependent siderophore pathway, non-ribosomal peptide synthetase-independent siderophore synthetase pathway, or the hybrid non-ribosomal peptide synthetases/non-ribosomal peptide synthetases-independent siderophore pathway. Outcompeting or inhibition of plant pathogens, alteration of host defense mechanisms, and alteration of plant-fungal interactions have been associated with fungal siderophores. To understand these mechanisms in fungi, studies have been conducted on siderophore biosynthesis by ascomycetes with limited focus on the basidiomycetes. Armillaria includes several species that are pathogens of woody plants and trees important to agriculture, horticulture, and forestry. The aim of this study was to investigate the presence of non-ribosomal peptide synthetases-independent siderophore synthetase gene cluster(s) in genomes of Armillaria species using a comparative genomics approach. Iron-dependent growth and siderophore biosynthesis in strains of selected Armillaria spp. were also evaluated in vitro. Two distinct non-ribosomal peptide synthetases-independent siderophore synthetase gene clusters were identified in all the genomes. All non-ribosomal peptide synthetases-independent siderophore synthetase genes identified putatively encode Type A' non-ribosomal peptide synthetases-independent siderophore synthetases, most of which have IucA_IucC and FhuF-like transporter domains at their N- and C-terminals, respectively. The effect of iron on culture growth varied among the strains studied. Bioassays using the CAS assay on selected Armillaria spp. revealed in vitro siderophore biosynthesis by all strains irrespective of added FeCl3 concentration. This study highlights some of the tools that Armillaria species allocate to iron homeostasis. The information generated from this study may in future aid in developing molecular based methods to control these phytopathogens.
Collapse
Affiliation(s)
- Deborah L Narh Mensah
- Departments of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa
- CSIR—Food Research Institute, Microbiology and Mushroom Research Division, P. O. Box, M20, Accra, Ghana
| | - Brenda D Wingfield
- Departments of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Martin P A Coetzee
- Departments of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa
| |
Collapse
|
2
|
Jing H, Liu Z, Chen J, Ho CL. Elucidation of Iron(III) Bioleaching Properties of Gram-Positive Bacteria. ACS OMEGA 2022; 7:37212-37220. [PMID: 36312424 PMCID: PMC9608414 DOI: 10.1021/acsomega.2c03413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Microbial-based iron reduction is an emerging technology used as an alternative to conventional chemical-based iron reduction. The iron reduction in kaolin refinement is vital for enhancing its commercial value. Extensive studies on microbial-based iron reduction mainly focus on Gram-negative bacteria, whereas little is understood about Gram-positive bacteria's mechanism and potential application. This study aims to investigate the iron-reducing mechanism of two Gram-positive bacterial isolates, Bacillus cereus (B. cereus) and Staphylococcus aureus (S. aureus). By varying the growth environment of bacteria and monitoring the biochemical changes during the process of iron reduction, the results show that Gram-positive bacterial iron reduction performance depends on the medium composition, differing from Gram-negative bacteria-based reduction processes. Nitrogen-rich medium facilitates the microbial basification of the medium, where the alkaline conditions impact the microbial iron reduction process by altering the gene expression involved in intracellular pH homeostasis and microbial growth. This discovery will contribute to the mineral refining processes and promote the development of microbial-based bioprocesses for ore purification, while also laying the foundation for investigating other Gram-positive bacterial iron-reducing ability.
Collapse
Affiliation(s)
- Hao Jing
- Department
of Biomedical Engineering, Southern University
of Science and Technology (SUSTech), Shenzhen518055, China
| | - Zhao Liu
- Department
of Biomedical Engineering, Southern University
of Science and Technology (SUSTech), Shenzhen518055, China
| | - Jun Chen
- Department
of Biomedical Engineering, Southern University
of Science and Technology (SUSTech), Shenzhen518055, China
- Shenzhen
Institute of Synthetic Biology, Shenzhen
Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen518055, China
| | - Chun Loong Ho
- Department
of Biomedical Engineering, Southern University
of Science and Technology (SUSTech), Shenzhen518055, China
- Shenzhen
Institute of Synthetic Biology, Shenzhen
Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen518055, China
| |
Collapse
|
3
|
Négrel S, Brunel JM. Synthesis and Biological Activities of Naturally Functionalized Polyamines: An Overview. Curr Med Chem 2021; 28:3406-3448. [PMID: 33138746 DOI: 10.2174/0929867327666201102114544] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/01/2020] [Accepted: 09/16/2020] [Indexed: 11/22/2022]
Abstract
Recently, extensive researches have emphasized the fact that polyamine conjugates are becoming important in all biological and medicinal fields. In this review, we will focus our attention on natural polyamines and highlight recent progress in both fundamental mechanism studies and interests in the development and application for the therapeutic use of polyamine derivatives.
Collapse
Affiliation(s)
- Sophie Négrel
- Aix Marseille University, Faculty of Pharmacy, UMR-MD1, 27 bd Jean Moulin, 13385 Marseille, France
| | - Jean Michel Brunel
- Aix Marseille University, Faculty of Pharmacy, UMR-MD1, 27 bd Jean Moulin, 13385 Marseille, France
| |
Collapse
|
4
|
Elucidation of Gram-Positive Bacterial Iron(III) Reduction for Kaolinite Clay Refinement. Molecules 2021; 26:molecules26113084. [PMID: 34064160 PMCID: PMC8196777 DOI: 10.3390/molecules26113084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 11/29/2022] Open
Abstract
Recently, microbial-based iron reduction has been considered as a viable alternative to typical chemical-based treatments. The iron reduction is an important process in kaolin refining, where iron-bearing impurities in kaolin clay affects the whiteness, refractory properties, and its commercial value. In recent years, Gram-negative bacteria has been in the center stage of iron reduction research, whereas little is known about the potential use of Gram-positive bacteria to refine kaolin clay. In this study, we investigated the ferric reducing capabilities of five microbes by manipulating the microbial growth conditions. Out of the five, we discovered that Bacillus cereus and Staphylococcus aureus outperformed the other microbes under nitrogen-rich media. Through the biochemical changes and the microbial behavior, we mapped the hypothetical pathway leading to the iron reduction cellular properties, and found that the iron reduction properties of these Gram-positive bacteria rely heavily on the media composition. The media composition results in increased basification of the media that is a prerequisite for the cellular reduction of ferric ions. Further, these changes impact the formation of biofilm, suggesting that the cellular interaction for the iron(III)oxide reduction is not solely reliant on the formation of biofilms. This article reveals the potential development of Gram-positive microbes in facilitating the microbial-based removal of metal contaminants from clays or ores. Further studies to elucidate the corresponding pathways would be crucial for the further development of the field.
Collapse
|
5
|
Rhizobiales-Specific RirA Represses a Naturally "Synthetic" Foreign Siderophore Gene Cluster To Maintain Sinorhizobium-Legume Mutualism. mBio 2021; 13:e0290021. [PMID: 35130720 PMCID: PMC8822346 DOI: 10.1128/mbio.02900-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Iron homeostasis is strictly regulated in cellular organisms. The Rhizobiales order enriched with symbiotic and pathogenic bacteria has evolved a lineage-specific regulator, RirA, responding to iron fluctuations. However, the regulatory role of RirA in bacterium-host interactions remains largely unknown. Here, we report that RirA is essential for mutualistic interactions of Sinorhizobium fredii with its legume hosts by repressing a gene cluster directing biosynthesis and transport of petrobactin siderophore. Genes encoding an inner membrane ABC transporter (fat) and the biosynthetic machinery (asb) of petrobactin siderophore are sporadically distributed in Gram-positive and Gram-negative bacteria. An outer membrane siderophore receptor gene (fprA) was naturally assembled with asb and fat, forming a long polycistron in S. fredii. An indigenous regulation cascade harboring an inner membrane protease (RseP), a sigma factor (FecI), and its anti-sigma protein (FecR) were involved in direct activation of the fprA-asb-fat polycistron. Operons harboring fecI and fprA-asb-fat, and those encoding the indigenous TonB-ExbB-ExbD complex delivering energy to the outer membrane transport activity, were directly repressed by RirA under iron-replete conditions. The rirA deletion led to upregulation of these operons and iron overload in nodules, impaired intracellular persistence, and symbiotic nitrogen fixation of rhizobia. Mutualistic defects of the rirA mutant can be rescued by blocking activities of this naturally "synthetic" circuit for siderophore biosynthesis and transport. These findings not only are significant for understanding iron homeostasis of mutualistic interactions but also provide insights into assembly and integration of foreign machineries for biosynthesis and transport of siderophores, horizontal transfer of which is selected in microbiota. IMPORTANCE Iron is a public good explored by both eukaryotes and prokaryotes. The abundant ferric form is insoluble under neutral and basic pH conditions, and many bacteria secrete siderophores forming soluble ferric siderophore complexes, which can be then taken up by specific receptors and transporters. Siderophore biosynthesis and uptake machineries can be horizontally transferred among bacteria in nature. Despite increasing attention on the importance of siderophores in host-microbiota interactions, the regulatory integration process of transferred siderophore biosynthesis and transport genes is poorly understood in an evolutionary context. By focusing on the mutualistic rhizobium-legume symbiosis, here, we report how a naturally synthetic foreign siderophore gene cluster was integrated with the rhizobial indigenous regulation cascade, which is essential for maintaining mutualistic interactions.
Collapse
|
6
|
Garber AI, Nealson KH, Okamoto A, McAllister SM, Chan CS, Barco RA, Merino N. FeGenie: A Comprehensive Tool for the Identification of Iron Genes and Iron Gene Neighborhoods in Genome and Metagenome Assemblies. Front Microbiol 2020; 11:37. [PMID: 32082281 PMCID: PMC7005843 DOI: 10.3389/fmicb.2020.00037] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/09/2020] [Indexed: 01/15/2023] Open
Abstract
Iron is a micronutrient for nearly all life on Earth. It can be used as an electron donor and electron acceptor by iron-oxidizing and iron-reducing microorganisms and is used in a variety of biological processes, including photosynthesis and respiration. While it is the fourth most abundant metal in the Earth's crust, iron is often limiting for growth in oxic environments because it is readily oxidized and precipitated. Much of our understanding of how microorganisms compete for and utilize iron is based on laboratory experiments. However, the advent of next-generation sequencing and surge in publicly available sequence data has made it possible to probe the structure and function of microbial communities in the environment. To bridge the gap between our understanding of iron acquisition, iron redox cycling, iron storage, and magnetosome formation in model microorganisms and the plethora of sequence data available from environmental studies, we have created a comprehensive database of hidden Markov models (HMMs) based on genes related to iron acquisition, storage, and reduction/oxidation in Bacteria and Archaea. Along with this database, we present FeGenie, a bioinformatics tool that accepts genome and metagenome assemblies as input and uses our comprehensive HMM database to annotate provided datasets with respect to iron-related genes and gene neighborhood. An important contribution of this tool is the efficient identification of genes involved in iron oxidation and dissimilatory iron reduction, which have been largely overlooked by standard annotation pipelines. We validated FeGenie against a selected set of 28 isolate genomes and showcase its utility in exploring iron genes present in 27 metagenomes, 4 isolate genomes from human oral biofilms, and 17 genomes from candidate organisms, including members of the candidate phyla radiation. We show that FeGenie accurately identifies iron genes in isolates. Furthermore, analysis of metagenomes using FeGenie demonstrates that the iron gene repertoire and abundance of each environment is correlated with iron richness. While this tool will not replace the reliability of culture-dependent analyses of microbial physiology, it provides reliable predictions derived from the most up-to-date genetic markers. FeGenie's database will be maintained and continually updated as new genes are discovered. FeGenie is freely available: https://github.com/Arkadiy-Garber/FeGenie.
Collapse
Affiliation(s)
- Arkadiy I. Garber
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
- Department of Earth Sciences, University of Delaware, Newark, DE, United States
| | - Kenneth H. Nealson
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Akihiro Okamoto
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Sean M. McAllister
- School of Marine Science and Policy, University of Delaware, Newark, DE, United States
| | - Clara S. Chan
- Department of Earth Sciences, University of Delaware, Newark, DE, United States
- School of Marine Science and Policy, University of Delaware, Newark, DE, United States
| | - Roman A. Barco
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Nancy Merino
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| |
Collapse
|
7
|
Petrobactin Protects against Oxidative Stress and Enhances Sporulation Efficiency in Bacillus anthracis Sterne. mBio 2018; 9:mBio.02079-18. [PMID: 30401780 PMCID: PMC6222121 DOI: 10.1128/mbio.02079-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bacillus anthracis causes the disease anthrax, which is transmitted via its dormant, spore phase. However, conversion from bacillus to spore is a complex, energetically costly process that requires many nutrients, including iron. B. anthracis requires the siderophore petrobactin to scavenge iron from host environments. We show that, in the Sterne strain, petrobactin is required for efficient sporulation, even when ample iron is available. The petrobactin biosynthesis operon is expressed during sporulation, and petrobactin is biosynthesized during growth in high-iron sporulation medium, but instead of being exported, the petrobactin remains intracellular to protect against oxidative stress and improve sporulation. It is also required for full growth and sporulation in blood (bovine), an essential step for anthrax transmission between mammalian hosts. Bacillus anthracis is a Gram-positive bacillus that under conditions of environmental stress, such as low nutrients, can convert from a vegetative bacillus to a highly durable spore that enables long-term survival. The sporulation process is regulated by a sequential cascade of dedicated transcription factors but requires key nutrients to complete, one of which is iron. Iron acquisition by the iron-scavenging siderophore petrobactin is required for vegetative growth of B. anthracis under iron-depleted conditions and in the host. However, the extent to which petrobactin is involved in spore formation is unknown. This work shows that efficient in vitro sporulation of B. anthracis requires petrobactin, that the petrobactin biosynthesis operon (asbA to -F) is induced prior to sporulation, and that the siderophore itself associates with spores. Petrobactin is also required for oxidative stress protection during late-stage growth and for wild-type levels of sporulation in sporulation medium. Sporulation in bovine blood was found to be petrobactin dependent. Collectively, the in vitro contributions of petrobactin to sporulation as well as growth imply that petrobactin may be required for B. anthracis transmission via the spore during natural infections, in addition to its key known functions during active anthrax infections.
Collapse
|
8
|
Grim KP, San Francisco B, Radin JN, Brazel EB, Kelliher JL, Párraga Solórzano PK, Kim PC, McDevitt CA, Kehl-Fie TE. The Metallophore Staphylopine Enables Staphylococcus aureus To Compete with the Host for Zinc and Overcome Nutritional Immunity. mBio 2017; 8:e01281-17. [PMID: 29089427 PMCID: PMC5666155 DOI: 10.1128/mbio.01281-17] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/27/2017] [Indexed: 12/18/2022] Open
Abstract
During infection, the host sequesters essential nutrients, such as zinc, to combat invading microbes. Despite the ability of the immune effector protein calprotectin to bind zinc with subpicomolar affinity, Staphylococcus aureus is able to successfully compete with the host for zinc. However, the zinc importers expressed by S. aureus remain unknown. Our investigations have revealed that S. aureus possesses two importers, AdcABC and CntABCDF, which are induced in response to zinc limitation. While AdcABC is similar to known zinc importers in other bacteria, CntABCDF has not previously been associated with zinc acquisition. Concurrent loss of the two systems severely impairs the ability of S. aureus to obtain zinc and grow in zinc-limited environments. Further investigations revealed that the Cnt system is responsible for the ability of S. aureus to compete with calprotectin for zinc in culture and contributes to acquisition of zinc during infection. The cnt locus also enables S. aureus to produce the broad-spectrum metallophore staphylopine. Similarly to the Cnt transporter, loss of staphylopine severely impairs the ability of S. aureus to resist host-imposed zinc starvation, both in culture and during infection. Further investigations revealed that together staphylopine and the Cnt importer function analogously to siderophore-based iron acquisition systems in order to facilitate zinc acquisition by S. aureus Analogous systems are found in a broad range of Gram-positive and Gram-negative bacterial pathogens, suggesting that this new type of zinc importer broadly contributes to the ability of bacteria to cause infection.IMPORTANCE A critical host defense against infection is the restriction of zinc availability. Despite the subpicomolar affinity of the immune effector calprotectin for zinc, Staphylococcus aureus can successfully compete for this essential metal. Here, we describe two zinc importers, AdcABC and CntABCDF, possessed by S. aureus, the latter of which has not previously been associated with zinc acquisition. The ability of S. aureus to compete with the host for zinc is dependent on CntABCDF and the metallophore staphylopine, both in culture and during infection. These results expand the mechanisms utilized by bacteria to obtain zinc, beyond Adc-like systems, and demonstrate that pathogens utilize strategies similar to siderophore-based iron acquisition to obtain other essential metals during infection. The staphylopine synthesis machinery is present in a diverse collection of bacteria, suggesting that this new family of zinc importers broadly contributes to the ability of numerous pathogens to cause infection.
Collapse
Affiliation(s)
- Kyle P Grim
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Brian San Francisco
- Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jana N Radin
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Erin B Brazel
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Jessica L Kelliher
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Paola K Párraga Solórzano
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Departamento de Ciencias de la Vida, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| | - Philip C Kim
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Christopher A McDevitt
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Thomas E Kehl-Fie
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
9
|
Abstract
Bacillus anthracis—a Gram-positive, spore-forming bacterium—causes anthrax, a highly lethal disease with high bacteremia titers. Such rapid growth requires ample access to nutrients, including iron. However, access to this critical metal is heavily restricted in mammals, which requires B. anthracis to employ petrobactin, an iron-scavenging small molecule known as a siderophore. Petrobactin biosynthesis is mediated by asb gene products, and import of the iron-bound (holo)-siderophore into the bacterium has been well studied. In contrast, little is known about the mechanism of petrobactin export following its production in B. anthracis cells. Using a combination of bioinformatics data, gene deletions, and laser ablation electrospray ionization mass spectrometry (LAESI-MS), we identified a resistance-nodulation-cell division (RND)-type transporter, termed ApeX, as a putative petrobactin exporter. Deletion of apeX abrogated export of intact petrobactin, which accumulated inside the cell. However, growth of ΔapeX mutants in iron-depleted medium was not affected, and virulence in mice was not attenuated. Instead, petrobactin components were determined to be exported through a different protein, which enables iron transport sufficient for growth, albeit with a slightly lower affinity for iron. This is the first report to identify a functional siderophore exporter in B. anthracis and the in vivo functionality of siderophore components. Moreover, this is the first application of LAESI-MS to sample a virulence factor/metabolite directly from bacterial culture media and cell pellets of a human pathogen. Bacillus anthracis requires iron for growth and employs the siderophore petrobactin to scavenge this trace metal during infections. While we understand much about petrobactin biosynthesis and ferric petrobactin import, how apo-petrobactin (iron free) is exported remains unknown. This study used a combination of bioinformatics, genetics, and mass spectrometry to identify the petrobactin exporter. After screening 17 mutants with mutations of candidate exporter genes, we identified the apo-petrobactin exporter (termed ApeX) as a member of the resistance-nodulation-cell division (RND) family of transporters. In the absence of ApeX, petrobactin accumulates inside the cell while continuing to export petrobactin components that are capable of transporting iron. Thus, the loss of ApeX does not affect the ability of B. anthracis to cause disease in mice. This has implications for treatment strategies designed to target and control pathogenicity of B. anthracis in humans.
Collapse
|
10
|
Hagan AK, Carlson PE, Hanna PC. Flying under the radar: The non-canonical biochemistry and molecular biology of petrobactin from Bacillus anthracis. Mol Microbiol 2016; 102:196-206. [PMID: 27425635 DOI: 10.1111/mmi.13465] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2016] [Indexed: 01/01/2023]
Abstract
The dramatic, rapid growth of Bacillus anthracis that occurs during systemic anthrax implies a crucial requirement for the efficient acquisition of iron. While recent advances in our understanding of B. anthracis iron acquisition systems indicate the use of strategies similar to other pathogens, this review focuses on unique features of the major siderophore system, petrobactin. Ways that petrobactin differs from other siderophores include: A. unique ferric iron binding moieties that allow petrobactin to evade host immune proteins; B. a biosynthetic operon that encodes enzymes from both major siderophore biosynthesis classes; C. redundancy in membrane transport systems for acquisition of Fe-petrobactin holo-complexes; and, D. regulation that appears to be controlled predominately by sensing the host-like environmental signals of temperature, CO2 levels and oxidative stress, as opposed to canonical sensing of intracellular iron levels. We argue that these differences contribute in meaningful ways to B. anthracis pathogenesis. This review will also outline current major gaps in our understanding of the petrobactin iron acquisition system, some projected means for exploiting current knowledge, and potential future research directions.
Collapse
Affiliation(s)
- A K Hagan
- Department of Microbiology and Immunology, University of Michigan Medical School, 1150 W. Medical Center Drive, 6703 Medical Science Building II, Ann Arbor, MI, 48109
| | - P E Carlson
- Laboratory of Mucosal Pathogens and Cellular Immunity, Division of Bacterial, Parasitic, and Allergenic Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Building 52/72; Rm 3306, Silver Spring, MD, 20993
| | - P C Hanna
- Department of Microbiology and Immunology, University of Michigan Medical School, 1150 W. Medical Center Drive, 6703 Medical Science Building II, Ann Arbor, MI, 48109.
| |
Collapse
|
11
|
Hayrapetyan H, Siezen R, Abee T, Nierop Groot M. Comparative Genomics of Iron-Transporting Systems in Bacillus cereus Strains and Impact of Iron Sources on Growth and Biofilm Formation. Front Microbiol 2016; 7:842. [PMID: 27375568 PMCID: PMC4896950 DOI: 10.3389/fmicb.2016.00842] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/20/2016] [Indexed: 12/18/2022] Open
Abstract
Iron is an important element for bacterial viability, however it is not readily available in most environments. We studied the ability of 20 undomesticated food isolates of Bacillus cereus and two reference strains for capacity to use different (complex) iron sources for growth and biofilm formation. Studies were performed in media containing the iron scavenger 2,2-Bipyridine. Transcriptome analysis using B. cereus ATCC 10987 indeed showed upregulation of predicted iron transporters in the presence of 2,2-Bipyridine, confirming that iron was depleted upon its addition. Next, the impact of iron sources on growth performance of the 22 strains was assessed and correlations between growth stimulation and presence of putative iron transporter systems in the genome sequences were analyzed. All 22 strains effectively used Fe citrate and FeCl3 for growth, and possessed genes for biosynthesis of the siderophore bacillibactin, whereas seven strains lacked genes for synthesis of petrobactin. Hemoglobin could be used by all strains with the exception of one strain that lacked functional petrobactin and IlsA systems. Hemin could be used by the majority of the tested strains (19 of 22). Notably, transferrin, ferritin, and lactoferrin were not commonly used by B. cereus for growth, as these iron sources could be used by 6, 3, and 2 strains, respectively. Furthermore, biofilm formation was found to be affected by the type of iron source used, including stimulation of biofilms at liquid-air interphase (FeCl3 and Fe citrate) and formation of submerged type biofilms (hemin and lactoferrin). Our results show strain variability in the genome-encoded repertoire of iron-transporting systems and differences in efficacy to use complex iron sources for growth and biofilm formation. These features may affect B. cereus survival and persistence in specific niches.
Collapse
Affiliation(s)
- Hasmik Hayrapetyan
- Laboratory of Food Microbiology, Wageningen UniversityWageningen, Netherlands; Top Institute of Food and NutritionWageningen, Netherlands
| | - Roland Siezen
- Top Institute of Food and NutritionWageningen, Netherlands; Microbial Bioinformatics, NIZOEde, Netherlands; Center for Molecular and Biomolecular Informatics, Radboud University Medical CentreNijmegen, Netherlands
| | - Tjakko Abee
- Laboratory of Food Microbiology, Wageningen UniversityWageningen, Netherlands; Top Institute of Food and NutritionWageningen, Netherlands
| | - Masja Nierop Groot
- Top Institute of Food and NutritionWageningen, Netherlands; Wageningen UR Food and Biobased ResearchWageningen, Netherlands
| |
Collapse
|
12
|
Carlson PE, Bourgis AET, Hagan AK, Hanna PC. Global gene expression by Bacillus anthracis during growth in mammalian blood. Pathog Dis 2015; 73:ftv061. [PMID: 26316554 DOI: 10.1093/femspd/ftv061] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2015] [Indexed: 01/03/2023] Open
Abstract
During the late stages of systemic anthrax, Bacillus anthracis grows rapidly in the host bloodstream. To identify potential genes necessary for this observed rapid growth, we defined the transcriptional profile of B. anthracis during in vitro growth in bovine blood. Genome-wide transcriptome analysis indicated that B. anthracis undergoes significant changes in its transcriptome profile during growth in blood, including the differential regulation of genes associated both with metabolism and known virulence factors. Collectively, these data provide a framework for future studies identifying specific B. anthracis factors required for growth in the mammalian bloodstream.
Collapse
Affiliation(s)
- Paul E Carlson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48104, USA
| | - Alexandra E T Bourgis
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48104, USA
| | - Ada K Hagan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48104, USA
| | - Philip C Hanna
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48104, USA
| |
Collapse
|
13
|
Sheldon JR, Heinrichs DE. Recent developments in understanding the iron acquisition strategies of gram positive pathogens. FEMS Microbiol Rev 2015; 39:592-630. [DOI: 10.1093/femsre/fuv009] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2015] [Indexed: 12/26/2022] Open
|
14
|
Dhiman A, Bhatnagar S, Kulshreshtha P, Bhatnagar R. Functional characterization of WalRK: A two-component signal transduction system from Bacillus anthracis. FEBS Open Bio 2014; 4:65-76. [PMID: 24490131 PMCID: PMC3907690 DOI: 10.1016/j.fob.2013.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/24/2013] [Accepted: 12/24/2013] [Indexed: 12/20/2022] Open
Abstract
Two-component signal transduction systems (TCS), consisting of a sensor histidine protein kinase and its cognate response regulator, are an important mode of environmental sensing in bacteria. Additionally, they have been found to regulate virulence determinants in several pathogens. Bacillus anthracis, the causative agent of anthrax and a bioterrorism agent, harbours 41 pairs of TCS. However, their role in its pathogenicity has remained largely unexplored. Here, we show that WalRK of B. anthracis forms a functional TCS which exhibits some species-specific functions. Biochemical studies showed that domain variants of WalK, the histidine kinase, exhibit classical properties of autophosphorylation and phosphotransfer to its cognate response regulator WalR. Interestingly, these domain variants also show phosphatase activity towards phosphorylated WalR, thereby making WalK a bifunctional histidine kinase/phosphatase. An in silico regulon determination approach, using a consensus binding sequence from Bacillus subtilis, provided a list of 30 genes that could form a putative WalR regulon in B. anthracis. Further, electrophoretic mobility shift assay was used to show direct binding of purified WalR to the upstream regions of three putative regulon candidates, an S-layer protein EA1, a cell division ABC transporter FtsE and a sporulation histidine kinase KinB3. Our work lends insight into the species-specific functions and mode of action of B. anthracis WalRK. WalRK forms a functional TCS in B. anthracis, expressed throughout the growth phase. WalK variants exhibit autophosphorylation and phosphotransfer to WalR. WalKc variants also show phosphatase activity towards phosphorylated WalR. A potential WalR regulon in B. anthracis was predicted in silico. DNA binding ability was demonstrated for WalR.
Collapse
Affiliation(s)
- Alisha Dhiman
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sonika Bhatnagar
- Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi 110078, India
| | - Parul Kulshreshtha
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rakesh Bhatnagar
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
- Corresponding author. Tel.: +91 1126704079/1126742040; fax: +91 1126742040.
| |
Collapse
|