1
|
Akremi I, Holtappels D, Brabra W, Jlidi M, Hadj Ibrahim A, Ben Ali M, Fortuna K, Ahmed M, Meerbeek BV, Rhouma A, Lavigne R, Ben Ali M, Wagemans J. First Report of Filamentous Phages Isolated from Tunisian Orchards to Control Erwinia amylovora. Microorganisms 2020; 8:microorganisms8111762. [PMID: 33182526 PMCID: PMC7697814 DOI: 10.3390/microorganisms8111762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 01/28/2023] Open
Abstract
Newly discovered Erwinia amylovora phages PEar1, PEar2, PEar4 and PEar6 were isolated from three different orchards in North Tunisia to study their potential as biocontrol agents. Illumina sequencing revealed that the PEar viruses carry a single-strand DNA genome between 6608 and 6801 nucleotides and belong to the Inoviridae, making them the first described filamentous phages of E. amylovora. Interestingly, phage-infected cells show a decreased swimming and swarming motility and a cocktail of the four phages can significantly reduce infection of E. amylovora in a pear bioassay, potentially making them suitable candidates for phage biocontrol.
Collapse
Affiliation(s)
- Ismahen Akremi
- Laboratory of Microbial Biotechnology, Enzymatics and Biomolecules (LBMEB), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour km 6, P.O. Box 1177, Sfax 3018, Tunisia; (I.A.); (W.B.); (M.J.); (A.H.I.); (M.B.A.); (M.B.A.)
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21-Box 2462, 3001 Leuven, Belgium; (D.H.); (K.F.); (R.L.)
| | - Dominique Holtappels
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21-Box 2462, 3001 Leuven, Belgium; (D.H.); (K.F.); (R.L.)
| | - Wided Brabra
- Laboratory of Microbial Biotechnology, Enzymatics and Biomolecules (LBMEB), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour km 6, P.O. Box 1177, Sfax 3018, Tunisia; (I.A.); (W.B.); (M.J.); (A.H.I.); (M.B.A.); (M.B.A.)
- Astrum Biotech, Business Incubator, Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour km 6, P.O. Box 1177, Sfax 3018, Tunisia
| | - Mouna Jlidi
- Laboratory of Microbial Biotechnology, Enzymatics and Biomolecules (LBMEB), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour km 6, P.O. Box 1177, Sfax 3018, Tunisia; (I.A.); (W.B.); (M.J.); (A.H.I.); (M.B.A.); (M.B.A.)
| | - Adel Hadj Ibrahim
- Laboratory of Microbial Biotechnology, Enzymatics and Biomolecules (LBMEB), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour km 6, P.O. Box 1177, Sfax 3018, Tunisia; (I.A.); (W.B.); (M.J.); (A.H.I.); (M.B.A.); (M.B.A.)
| | - Manel Ben Ali
- Laboratory of Microbial Biotechnology, Enzymatics and Biomolecules (LBMEB), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour km 6, P.O. Box 1177, Sfax 3018, Tunisia; (I.A.); (W.B.); (M.J.); (A.H.I.); (M.B.A.); (M.B.A.)
- Astrum Biotech, Business Incubator, Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour km 6, P.O. Box 1177, Sfax 3018, Tunisia
| | - Kiandro Fortuna
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21-Box 2462, 3001 Leuven, Belgium; (D.H.); (K.F.); (R.L.)
| | - Mohammed Ahmed
- Biomaterials Research Group (BIOMAT), Department of Oral Sciences, KU Leuven, Kapucijnenvoer 7-Block A Box 7001, 3000 Leuven, Belgium; (M.A.); (B.V.M.)
- Department of Dental Biomaterials, Tanta University, Biomedical Campus, 32511 Tanta, Gharbia Governorate, Egypt
| | - Bart Van Meerbeek
- Biomaterials Research Group (BIOMAT), Department of Oral Sciences, KU Leuven, Kapucijnenvoer 7-Block A Box 7001, 3000 Leuven, Belgium; (M.A.); (B.V.M.)
| | - Ali Rhouma
- Laboratory of Integrated Olive Production, Olive Tree Institute, BP208 Marhajene City, Tunis 1082, Tunisia;
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21-Box 2462, 3001 Leuven, Belgium; (D.H.); (K.F.); (R.L.)
| | - Mamdouh Ben Ali
- Laboratory of Microbial Biotechnology, Enzymatics and Biomolecules (LBMEB), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour km 6, P.O. Box 1177, Sfax 3018, Tunisia; (I.A.); (W.B.); (M.J.); (A.H.I.); (M.B.A.); (M.B.A.)
- Astrum Biotech, Business Incubator, Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour km 6, P.O. Box 1177, Sfax 3018, Tunisia
| | - Jeroen Wagemans
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21-Box 2462, 3001 Leuven, Belgium; (D.H.); (K.F.); (R.L.)
- Correspondence: ; Tel.: +32-1637-4622
| |
Collapse
|
3
|
Abstract
The filamentous bacteriophage IKe is one of many nonenveloped bacterial viruses that encapsulate a circular single-stranded viral genome in the phage capsid shell. The shell of IKe is comprised of about 3,100 copies of the IKe major coat protein. Atomic-resolution structures of filamentous phages are scarce, and the structure of the single-stranded DNA is a matter of debate. Our cryo-electron microscopy structure of the filamentous bacteriophage IKe at a resolution of 3.4 Å provides atomic details on the structure of the major coat protein, the symmetry of the capsid shell, and the key interactions driving its assembly. We propose a model for the conformation of the circular single-stranded DNA core and the interactions between the capsid shell and inner DNA core. The filamentous bacteriophage IKe infects Escherichia coli cells bearing IncN pili. We report the cryo-electron microscopy structure of the micrometer-long IKe viral particle at a resolution of 3.4 Å. The major coat protein [protein 8 (p8)] consists of 47 residues that fold into a ∼68-Å-long helix. An atomic model of the coat protein was built. Five p8 helices in a horizontal layer form a pentamer, and symmetrically neighboring p8 layers form a right-handed helical cylinder having a rise per pentamer of 16.77 Å and a twist of 38.52°. The inner surface of the capsid cylinder is positively charged and has direct interactions with the encapsulated circular single-stranded DNA genome, which has an electron density consistent with an unusual left-handed helix structure. Similar to capsid structures of other filamentous viruses, strong capsid packing in the IKe particle is maintained by hydrophobic residues. Despite having a different length and large sequence differences from other filamentous phages, π–π interactions were found between Tyr9 of one p8 and Trp29 of a neighboring p8 in IKe that are similar to interactions observed in phage M13, suggesting that, despite sequence divergence, overall structural features are maintained.
Collapse
|
4
|
Duché D, Houot L. Similarities and Differences between Colicin and Filamentous Phage Uptake by Bacterial Cells. EcoSal Plus 2019; 8. [PMID: 30681066 PMCID: PMC11573288 DOI: 10.1128/ecosalplus.esp-0030-2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Indexed: 06/09/2023]
Abstract
Gram-negative bacteria have evolved a complex envelope to adapt and survive in a broad range of ecological niches. This physical barrier is the first line of defense against noxious compounds and viral particles called bacteriophages. Colicins are a family of bactericidal proteins produced by and toxic to Escherichia coli and closely related bacteria. Filamentous phages have a complex structure, composed of at least five capsid proteins assembled in a long thread-shaped particle, that protects the viral DNA. Despite their difference in size and complexity, group A colicins and filamentous phages both parasitize multiprotein complexes of their sensitive host for entry. They first bind to a receptor located at the surface of the target bacteria before specifically recruiting components of the Tol system to cross the outer membrane and find their way through the periplasm. The Tol system is thought to use the proton motive force of the inner membrane to maintain outer membrane integrity during the life cycle of the cell. This review describes the sequential docking mechanisms of group A colicins and filamentous phages during their uptake by their bacterial host, with a specific focus on the translocation step, promoted by interactions with the Tol system.
Collapse
Affiliation(s)
- Denis Duché
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université-CNRS, 13402 Marseille, France
| | - Laetitia Houot
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université- CNRS, 13402 Marseille, France
| |
Collapse
|
6
|
Marvin DA, Symmons MF, Straus SK. Structure and assembly of filamentous bacteriophages. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 114:80-122. [PMID: 24582831 DOI: 10.1016/j.pbiomolbio.2014.02.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 02/09/2014] [Indexed: 12/24/2022]
Abstract
Filamentous bacteriophages are interesting paradigms in structural molecular biology, in part because of the unusual mechanism of filamentous phage assembly. During assembly, several thousand copies of an intracellular DNA-binding protein bind to each copy of the replicating phage DNA, and are then displaced by membrane-spanning phage coat proteins as the nascent phage is extruded through the bacterial plasma membrane. This complicated process takes place without killing the host bacterium. The bacteriophage is a semi-flexible worm-like nucleoprotein filament. The virion comprises a tube of several thousand identical major coat protein subunits around a core of single-stranded circular DNA. Each protein subunit is a polymer of about 50 amino-acid residues, largely arranged in an α-helix. The subunits assemble into a helical sheath, with each subunit oriented at a small angle to the virion axis and interdigitated with neighbouring subunits. A few copies of "minor" phage proteins necessary for infection and/or extrusion of the virion are located at each end of the completed virion. Here we review both the structure of the virion and aspects of its function, such as the way the virion enters the host, multiplies, and exits to prey on further hosts. In particular we focus on our understanding of the way the components of the virion come together during assembly at the membrane. We try to follow a basic rule of empirical science, that one should chose the simplest theoretical explanation for experiments, but be prepared to modify or even abandon this explanation as new experiments add more detail.
Collapse
Affiliation(s)
- D A Marvin
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK.
| | - M F Symmons
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - S K Straus
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada.
| |
Collapse
|
7
|
Kim D, Park J, Kim SJ, Soh YM, Kim HM, Oh BH, Song JJ. Brucella immunogenic BP26 forms a channel-like structure. J Mol Biol 2013; 425:1119-26. [PMID: 23353825 DOI: 10.1016/j.jmb.2013.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/31/2012] [Accepted: 01/14/2013] [Indexed: 11/29/2022]
Abstract
An outer membrane protein BP26/OMP28 of Brucella, BP26, is identified as a major immunodominant antigen and widely used as a diagnostic marker and for vaccination against Brucellosis. BP26 belongs to the family of proteins that contains a SIMPL (signaling molecule that associates with the mouse pelle-like kinase) domain, whose structure and function have been unknown. Here, we present the crystal structure of BP26 revealing that 16 BP26 molecules form a novel channel-like assembly as also shown by electron microscopy analysis. Eight BP26 molecules forming a ring structure contain a hole at the center of the octamer, and another octamer interacts with each other to form a channel having a large internal cavity. BP26 is found to be structurally similar to a bacteriophage protein involved in infection, implicating that BP26 might function during Brucella infection. In addition, the BP26 structure suggests that the protein functions as a multimeric channel-like form and provides a canonical model for the SIMPL domains.
Collapse
Affiliation(s)
- Daegeun Kim
- Department of Biological Sciences, KI for the BioCentury, KAIST, 335 Gwahangno, Daejeon 305-701, Korea
| | | | | | | | | | | | | |
Collapse
|
8
|
Ford CG, Kolappan S, Phan HTH, Waldor MK, Winther-Larsen HC, Craig L. Crystal structures of a CTXphi pIII domain unbound and in complex with a Vibrio cholerae TolA domain reveal novel interaction interfaces. J Biol Chem 2012; 287:36258-72. [PMID: 22942280 DOI: 10.1074/jbc.m112.403386] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vibrio cholerae colonize the small intestine where they secrete cholera toxin, an ADP-ribosylating enzyme that is responsible for the voluminous diarrhea characteristic of cholera disease. The genes encoding cholera toxin are located on the genome of the filamentous bacteriophage, CTXϕ, that integrates as a prophage into the V. cholerae chromosome. CTXϕ infection of V. cholerae requires the toxin-coregulated pilus and the periplasmic protein TolA. This infection process parallels that of Escherichia coli infection by the Ff family of filamentous coliphage. Here we demonstrate a direct interaction between the N-terminal domain of the CTXϕ minor coat protein pIII (pIII-N1) and the C-terminal domain of TolA (TolA-C) and present x-ray crystal structures of pIII-N1 alone and in complex with TolA-C. The structures of CTXϕ pIII-N1 and V. cholerae TolA-C are similar to coliphage pIII-N1 and E. coli TolA-C, respectively, yet these proteins bind via a distinct interface that in E. coli TolA corresponds to a colicin binding site. Our data suggest that the TolA binding site on pIII-N1 of CTXϕ is accessible in the native pIII protein. This contrasts with the Ff family phage, where the TolA binding site on pIII is blocked and requires a pilus-induced unfolding event to become exposed. We propose that CTXϕ pIII accesses the periplasmic TolA through retraction of toxin-coregulated pilus, which brings the phage through the outer membrane pilus secretin channel. These data help to explain the process by which CTXϕ converts a harmless marine microbe into a deadly human pathogen.
Collapse
Affiliation(s)
- Christopher G Ford
- Department of Molecular Biology and Biochemistry Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | | | | | | | | | | |
Collapse
|