1
|
Rajangam SL, Narasimhan MK. Current treatment strategies for targeting virulence factors and biofilm formation in Acinetobacter baumannii. Future Microbiol 2024; 19:941-961. [PMID: 38683166 PMCID: PMC11290764 DOI: 10.2217/fmb-2023-0263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/20/2024] [Indexed: 05/01/2024] Open
Abstract
A higher prevalence of Acinetobacter baumannii infections and mortality rate has been reported recently in hospital-acquired infections (HAI). The biofilm-forming capability of A. baumannii makes it an extremely dangerous pathogen, especially in device-associated hospital-acquired infections (DA-HAI), thereby it resists the penetration of antibiotics. Further, the transmission of the SARS-CoV-2 virus was exacerbated in DA-HAI during the epidemic. This review specifically examines the complex interconnections between several components and genes that play a role in the biofilm formation and the development of infections. The current review provides insights into innovative treatments and therapeutic approaches to combat A. baumannii biofilm-related infections, thereby ultimately improving patient outcomes and reducing the burden of HAI.
Collapse
Affiliation(s)
- Seetha Lakshmi Rajangam
- Department of Genetic Engineering, School of Bioengineering, College of Engineering & Technology, SRM Institute of Science & Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Manoj Kumar Narasimhan
- Department of Genetic Engineering, School of Bioengineering, College of Engineering & Technology, SRM Institute of Science & Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| |
Collapse
|
2
|
Yeung YWS, Ma Y, Liu SY, Pun WH, Chua SL. Prevalence of alcohol-tolerant and antibiotic-resistant bacterial pathogens on public hand sanitizer dispensers. J Hosp Infect 2022; 127:26-33. [PMID: 35690267 PMCID: PMC9176178 DOI: 10.1016/j.jhin.2022.05.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 11/28/2022]
Abstract
Background Since the advent of the COVID-19 pandemic, alcohol-based hand sanitizer dispensers (HSDs) have been installed in most public and clinical settings for hygiene purposes and convenient application. Aim To determine whether sanitizer-tolerant bacterial pathogens can colonize HSDs, spreading diseases and antibiotic resistance. Methods Sampling was conducted from operational automatic HSDs, specifically the dispensing nozzle in direct contact with sanitizer. Culture-dependent cultivation of bacteria and MALDI-TOF were employed to assess microbiological contamination. Bacterial isolates were selected for rapid killing and biofilm eradication assays with alcohol treatment. Antibiotic minimum inhibitory concentration assays were performed according to the Clinical and Laboratory Standards Institute guidelines. Virulence potential of bacterial isolates was evaluated in the Caenorhadbitis elegans infection model. Findings Nearly 50% of HSDs from 52 locations, including clinical settings, food industry, and public spaces, contain microbial contamination at 103–106 bacteria/mL. Bacterial identification revealed Bacillus cereus as the most frequent pathogen (29%), while Enterobacter cloacae was the only Gram-negative bacterial pathogen (2%). Selecting B. cereus and E. cloacae isolates for further evaluation, these isolates and associated biofilms were found to be tolerant to alcohol with survival up to 70%. They possessed resistance to various antibiotic classes, with higher virulence than laboratory strains in the C. elegans infection model. Conclusion HSDs serve as potential breeding grounds for dissemination of pathogens and antibiotic resistance across unaware users. Proper HSD maintenance will ensure protection of public health and sustainable use of sanitizing alcohols, to prevent emergence of alcohol-resistant pathogens.
Collapse
Affiliation(s)
- Yoyo Wing Suet Yeung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR China
| | - Yeping Ma
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR China
| | - Sylvia Yang Liu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR China
| | | | - Song Lin Chua
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR China; State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR China; Research Centre for Deep Space Explorations (RCDSE), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR China; Shenzhen Key Laboratory of Food Biological Safety Control.
| |
Collapse
|
3
|
Lin Y, Xu X, Maróti G, Strube ML, Kovács ÁT. Adaptation and phenotypic diversification of Bacillus thuringiensis biofilm are accompanied by fuzzy spreader morphotypes. NPJ Biofilms Microbiomes 2022; 8:27. [PMID: 35418164 PMCID: PMC9007996 DOI: 10.1038/s41522-022-00292-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/19/2022] [Indexed: 11/12/2022] Open
Abstract
Bacillus cereus group (Bacillus cereus sensu lato) has a diverse ecology, including various species that produce biofilms on abiotic and biotic surfaces. While genetic and morphological diversification enables the adaptation of multicellular communities, this area remains largely unknown in the Bacillus cereus group. In this work, we dissected the experimental evolution of Bacillus thuringiensis 407 Cry- during continuous recolonization of plastic beads. We observed the evolution of a distinct colony morphotype that we named fuzzy spreader (FS) variant. Most multicellular traits of the FS variant displayed higher competitive ability versus the ancestral strain, suggesting an important role for diversification in the adaptation of B. thuringiensis to the biofilm lifestyle. Further genetic characterization of FS variant revealed the disruption of a guanylyltransferase gene by an insertion sequence (IS) element, which could be similarly observed in the genome of a natural isolate. The evolved FS and the deletion mutant in the guanylyltransferase gene (Bt407ΔrfbM) displayed similarly altered aggregation and hydrophobicity compared to the ancestor strain, suggesting that the adaptation process highly depends on the physical adhesive forces.
Collapse
Affiliation(s)
- Yicen Lin
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Xinming Xu
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Gergely Maróti
- Institute of Plant Biology, Biological Research Center, ELKH, 6726, Szeged, Hungary
| | - Mikael Lenz Strube
- Bacterial Ecophysiology and Biotechnology Group, DTU Bioengineering, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Ákos T Kovács
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, 2800, Lyngby, Denmark.
| |
Collapse
|
4
|
Hayta EN, Rickert CA, Lieleg O. Topography quantifications allow for identifying the contribution of parental strains to physical properties of co-cultured biofilms. Biofilm 2021; 3:100044. [PMID: 33665611 PMCID: PMC7902895 DOI: 10.1016/j.bioflm.2021.100044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 12/17/2022] Open
Abstract
Most biofilm research has so far focused on investigating biofilms generated by single bacterial strains. However, such single-species biofilms are rare in nature where bacteria typically coexist with other microorganisms. Although, from a biological view, the possible interactions occurring between different bacteria are well studied, little is known about what determines the material properties of a multi-species biofilm. Here, we ask how the co-cultivation of two B. subtilis strains affects certain important biofilm properties such as surface topography and wetting behavior. We find that, even though each daughter colony typically resembles one of the parent colonies in terms of morphology and wetting, it nevertheless exhibits a significantly different surface topography. Yet, this difference is only detectable via a quantitative metrological analysis of the biofilm surface. Furthermore, we show that this difference is due to the presence of bacteria belonging to the 'other' parent strain, which does not dominate the biofilm features. The findings presented here may pinpoint new strategies for how biofilms with hybrid properties could be generated from two different bacterial strains. In such engineered biofilms, it might be possible to combine desired properties from two strains by co-cultivation.
Collapse
Affiliation(s)
- Elif N. Hayta
- Munich School of Bioengineering and Department of Mechanical Engineering, Technical University of Munich, 85748, Garching, Germany
- Center for Protein Assemblies (CPA), Technical University of Munich, Ernst-Otto-Fischer Straße 8, 85748, Garching, Germany
| | - Carolin A. Rickert
- Munich School of Bioengineering and Department of Mechanical Engineering, Technical University of Munich, 85748, Garching, Germany
- Center for Protein Assemblies (CPA), Technical University of Munich, Ernst-Otto-Fischer Straße 8, 85748, Garching, Germany
| | - Oliver Lieleg
- Munich School of Bioengineering and Department of Mechanical Engineering, Technical University of Munich, 85748, Garching, Germany
- Center for Protein Assemblies (CPA), Technical University of Munich, Ernst-Otto-Fischer Straße 8, 85748, Garching, Germany
| |
Collapse
|
5
|
Gómez-Pérez D, Chaudhry V, Kemen A, Kemen E. Amyloid Proteins in Plant-Associated Microbial Communities. Microb Physiol 2021; 31:88-98. [PMID: 34107493 DOI: 10.1159/000516014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/17/2021] [Indexed: 11/19/2022]
Abstract
Amyloids have proven to be a widespread phenomenon rather than an exception. Many proteins presenting the hallmarks of this characteristic beta sheet-rich folding have been described to date. Particularly common are functional amyloids that play an important role in the promotion of survival and pathogenicity in prokaryotes. Here, we describe important developments in amyloid protein research that relate to microbe-microbe and microbe-host interactions in the plant microbiome. Starting with biofilms, which are a broad strategy for bacterial persistence that is extremely important for plant colonization. Microbes rely on amyloid-based mechanisms to adhere and create a protective coating that shelters them from external stresses and promotes cooperation. Another strategy generally carried out by amyloids is the formation of hydrophobic surface layers. Known as hydrophobins, these proteins coat the aerial hyphae and spores of plant pathogenic fungi, as well as certain bacterial biofilms. They contribute to plant virulence through promoting dissemination and infectivity. Furthermore, antimicrobial activity is an interesting outcome of the amyloid structure that has potential application in medicine and agriculture. There are many known antimicrobial amyloids released by animals and plants; however, those produced by bacteria or fungi remain still largely unknown. Finally, we discuss amyloid proteins with a more indirect mode of action in their host interactions. These include virulence-promoting harpins, signaling transduction that functions through amyloid templating, and root nodule bacteria proteins that promote plant-microbe symbiosis. In summary, amyloids are an interesting paradigm for their many functional mechanisms linked to bacterial survival in plant-associated microbial communities.
Collapse
Affiliation(s)
| | | | - Ariane Kemen
- ZMBP/IMIT, University of Tübingen, Tübingen, Germany
| | - Eric Kemen
- ZMBP/IMIT, University of Tübingen, Tübingen, Germany
| |
Collapse
|
6
|
A native conjugative plasmid confers potential selective advantages to plant growth-promoting Bacillus velezensis strain GH1-13. Commun Biol 2021; 4:582. [PMID: 33990691 PMCID: PMC8121941 DOI: 10.1038/s42003-021-02107-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/13/2021] [Indexed: 02/04/2023] Open
Abstract
The conjugative plasmid (pBV71) possibly confers a selective advantage to Bacillus velezensis strain GH1-13, although a selective marker gene is yet to be identified. Here we show that few non-mucoid wild-type GH1-13 cells are spontaneously converted to mucoid variants with or without the loss of pBV71. Mucoid phenotypes, which contain or lack the plasmid, become sensitive to bacitracin, gramicidin, selenite, and tellurite. Using the differences in antibiotic resistance and phenotype, we isolated a reverse complement (COM) and a transconjugant of strain FZB42 with the native pBV71. Transformed COM and FZB42p cells were similar to the wild-type strain GH1-13 with high antibiotic resistance and slow growth rates on lactose compared to those of mucoid phenotypes. RT-PCR analysis revealed that the expression of plasmid-encoded orphan aspartate phosphatase (pRapD) was coordinated with a new quorum-sensing (QS) cassette of RapF2-PhrF2 present in the chromosome of strain GH1-13, but not in strain FZB42. Multi-omics analysis on wild-type and plasmid-cured cells of strain GH1-13 suggested that the conjugative plasmid expression has a crucial role in induction of early envelope stress response that promotes cell morphogenesis, biofilm formation, catabolite repression, and biosynthesis of extracellular-matrix components and antibiotics for protection of host cell during exponential phase.
Collapse
|
7
|
Shemesh M, Ostrov I. Role of Bacillus species in biofilm persistence and emerging antibiofilm strategies in the dairy industry. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:2327-2336. [PMID: 31975392 DOI: 10.1002/jsfa.10285] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/28/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Biofilm-forming Bacillus species are often involved in persistent contamination and spoilage of dairy products. They therefore present a major microbiological challenge in the field of dairy food quality and safety. Due to their substantial physiological versatility, Bacillus species can survive in various parts of dairy manufacturing plants, leading to a high risk of product spoilage and potential dissemination of foodborne diseases. Furthermore, biofilm and heat-resistant spore formation make these bacteria challenging to eliminate. Thus, some strategies have been employed to remove, prevent, or delay the formation of Bacillus biofilms in the dairy industry, but with limited success. Lack of understanding of the Bacillus biofilm structure and behavior in conditions relevant to dairy-associated environments could partially account for this situation. The current paper reviews dairy-associated biofilm formation by Bacillus species, with particular attention to the role of biofilm in Bacillus species adaptation and survival in a dairy processing environment. Relevant model systems are discussed for the development of novel antimicrobial approaches to improve the quality of dairy food. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Moshe Shemesh
- Department of Food Sciences, Institute for Postharvest Technology and Food Sciences, Agricultural Research Organization (ARO), The Volcani Center, Rishon LeZion, Israel
| | - Ievgeniia Ostrov
- Department of Food Sciences, Institute for Postharvest Technology and Food Sciences, Agricultural Research Organization (ARO), The Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
8
|
Falcón García C, Kretschmer M, Lozano-Andrade CN, Schönleitner M, Dragoŝ A, Kovács ÁT, Lieleg O. Metal ions weaken the hydrophobicity and antibiotic resistance of Bacillus subtilis NCIB 3610 biofilms. NPJ Biofilms Microbiomes 2020; 6:1. [PMID: 31908831 PMCID: PMC6941983 DOI: 10.1038/s41522-019-0111-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/03/2019] [Indexed: 02/06/2023] Open
Abstract
Surface superhydrophobicity makes bacterial biofilms very difficult to fight, and it is a combination of their matrix composition and complex surface roughness which synergistically protects these biomaterials from wetting. Although trying to eradicate biofilms with aqueous (antibiotic) solutions is common practice, this can be a futile approach if the biofilms have superhydrophobic properties. To date, there are not many options available to reduce the liquid repellency of biofilms or to prevent this material property from developing. Here, we present a solution to this challenge. We demonstrate how the addition of metal ions such as copper and zinc during or after biofilm formation can render the surface of otherwise superhydrophobic B. subtilis NCIB 3610 biofilms completely wettable. As a result of this procedure, these smoother, hydrophilic biofilms are more susceptible to aqueous antibiotics solutions. Our strategy proposes a scalable and widely applicable step in a multi-faceted approach to eradicate biofilms.
Collapse
Affiliation(s)
- Carolina Falcón García
- Department of Mechanical Engineering and Munich School of Bioengineering, Technical University of Munich, Boltzmannstraße 11, 85748 Garching, Germany
| | - Martin Kretschmer
- Department of Mechanical Engineering and Munich School of Bioengineering, Technical University of Munich, Boltzmannstraße 11, 85748 Garching, Germany
| | - Carlos N. Lozano-Andrade
- Bacterial Interactions and Evolution Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800 Kongens Lyngby, Denmark
| | - Markus Schönleitner
- Department of Mechanical Engineering and Munich School of Bioengineering, Technical University of Munich, Boltzmannstraße 11, 85748 Garching, Germany
| | - Anna Dragoŝ
- Bacterial Interactions and Evolution Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800 Kongens Lyngby, Denmark
| | - Ákos T. Kovács
- Bacterial Interactions and Evolution Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800 Kongens Lyngby, Denmark
| | - Oliver Lieleg
- Department of Mechanical Engineering and Munich School of Bioengineering, Technical University of Munich, Boltzmannstraße 11, 85748 Garching, Germany
| |
Collapse
|
9
|
Kjeldgaard B, Listian SA, Ramaswamhi V, Richter A, Kiesewalter HT, Kovács ÁT. Fungal hyphae colonization by Bacillus subtilis relies on biofilm matrix components. Biofilm 2019; 1:100007. [PMID: 33447794 PMCID: PMC7798453 DOI: 10.1016/j.bioflm.2019.100007] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/15/2019] [Accepted: 10/19/2019] [Indexed: 02/07/2023] Open
Abstract
Bacteria interact with their environment including microbes and higher eukaryotes. The ability of bacteria and fungi to affect each other are defined by various chemical, physical and biological factors. During physical association, bacterial cells can directly attach and settle on the hyphae of various fungal species. Such colonization of mycelia was proposed to be dependent on biofilm formation by the bacteria, but the essentiality of the biofilm matrix was not represented before. Here, we demonstrate that secreted biofilm matrix components of the soil-dwelling bacterium, Bacillus subtilis are essential for the establishment of a dense bacterial population on the hyphae of the filamentous black mold fungus, Aspergillus niger and the basidiomycete mushroom, Agaricus bisporus. We further illustrate that these matrix components can be shared among various mutants highlighting the community shaping impact of biofilm formers on bacteria-fungi interactions.
Collapse
Affiliation(s)
- Bodil Kjeldgaard
- Bacterial Interactions and Evolution Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Stevanus A Listian
- Bacterial Interactions and Evolution Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Valliyammai Ramaswamhi
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Anne Richter
- Bacterial Interactions and Evolution Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark.,Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Heiko T Kiesewalter
- Bacterial Interactions and Evolution Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ákos T Kovács
- Bacterial Interactions and Evolution Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark.,Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
10
|
Devi S, Kiesewalter HT, Kovács R, Frisvad JC, Weber T, Larsen TO, Kovács ÁT, Ding L. Depiction of secondary metabolites and antifungal activity of Bacillus velezensis DTU001. Synth Syst Biotechnol 2019; 4:142-149. [PMID: 31508511 PMCID: PMC6719288 DOI: 10.1016/j.synbio.2019.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 12/25/2022] Open
Abstract
For a safe and sustainable environment, effective microbes as biocontrol agents are in high demand. We have isolated a new Bacillus velezensis strain DTU001, investigated its antifungal spectrum, sequenced its genome, and uncovered the production of lipopeptides in HPLC-HRMS analysis. To test the antifungal efficacy, extracts of B. velezensis DTU001 was tested against a range of twenty human or plant pathogenic fungi. We demonstrate that inhibitory potential of B. velezensis DTU001 against selected fungi is superior in comparison to single lipopeptide, either iturin or fengycin. The isolate showed analogous biofilm formation to other closely related Bacilli. To further support the biocontrol properties of the isolate, coculture with Candida albicans demonstrated that B. velezensis DTU001 exhibited excellent antiproliferation effect against C. albicans. In summary, the described isolate is a potential antifungal agent with a broad antifungal spectrum that might assist our aims to avoid hazardous pathogenic fungi and provide alternative to toxicity caused by chemicals.
Collapse
Affiliation(s)
- Sagarika Devi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | - Heiko T. Kiesewalter
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | - Renátó Kovács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary
| | - Jens Christian Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | - Tilmann Weber
- Center for Biosustainability, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | - Thomas Ostenfeld Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | - Ákos T. Kovács
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | - Ling Ding
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| |
Collapse
|
11
|
Kovács ÁT, Dragoš A. Evolved Biofilm: Review on the Experimental Evolution Studies of Bacillus subtilis Pellicles. J Mol Biol 2019; 431:4749-4759. [PMID: 30769118 DOI: 10.1016/j.jmb.2019.02.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 01/21/2019] [Accepted: 02/04/2019] [Indexed: 12/25/2022]
Abstract
For several decades, laboratory evolution has served as a powerful method to manipulate microorganisms and to explore long-term dynamics in microbial populations. Next to canonical Escherichia coli planktonic cultures, experimental evolution has expanded into alternative cultivation methods and species, opening the doors to new research questions. Bacillus subtilis, the spore-forming and root-colonizing bacterium, can easily develop in the laboratory as a liquid-air interface colonizing pellicle biofilm. Here, we summarize recent findings derived from this tractable experimental model. Clonal pellicle biofilms of B. subtilis can rapidly undergo morphological and genetic diversification creating new ecological interactions, for example, exploitation by biofilm non-producers. Moreover, long-term exposure to such matrix non-producers can modulate cooperation in biofilms, leading to different phenotypic heterogeneity pattern of matrix production with larger subpopulation of "ON" cells. Alternatively, complementary variants of biofilm non-producers, each lacking a distinct matrix component, can engage in a genetic division of labor, resulting in superior biofilm productivity compared to the "generalist" wild type. Nevertheless, inter-genetic cooperation appears to be evanescent and rapidly vanquished by individual biofilm formation strategies altering the amount or the properties of the remaining matrix component. Finally, fast-evolving mobile genetic elements can unpredictably shift intra-species interactions in B. subtilis biofilms. Understanding evolution in clonal biofilm populations will facilitate future studies in complex multispecies biofilms that are more representative of nature.
Collapse
Affiliation(s)
- Ákos T Kovács
- Bacterial Interactions and Evolution Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Anna Dragoš
- Bacterial Interactions and Evolution Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
12
|
Estrela S, Libby E, Van Cleve J, Débarre F, Deforet M, Harcombe WR, Peña J, Brown SP, Hochberg ME. Environmentally Mediated Social Dilemmas. Trends Ecol Evol 2019; 34:6-18. [DOI: 10.1016/j.tree.2018.10.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 12/11/2022]
|
13
|
Falcón García C, Stangl F, Götz A, Zhao W, Sieber SA, Opitz M, Lieleg O. Topographical alterations render bacterial biofilms susceptible to chemical and mechanical stress. Biomater Sci 2019; 7:220-232. [DOI: 10.1039/c8bm00987b] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Treatment with concentrated ethanol, saline or glucose solutions smoothens biofilm surface topography and initially superhydrophobic/omniphobic biofilms are rendered hydrophilic.
Collapse
Affiliation(s)
- Carolina Falcón García
- Department of Mechanical Engineering and Munich School of Bioengineering
- Technical University of Munich
- 85748 Garching
- Germany
| | - Felix Stangl
- Department of Mechanical Engineering and Munich School of Bioengineering
- Technical University of Munich
- 85748 Garching
- Germany
| | - Alexandra Götz
- Center for NanoScience
- Faculty of Physics
- Ludwig-Maximilians-Universität München
- Munich
- Germany
| | - Weining Zhao
- Department of Chemistry
- Chair for Organic Chemistry II
- Technical University of Munich
- 85748 Garching
- Germany
| | - Stephan A. Sieber
- Department of Chemistry
- Chair for Organic Chemistry II
- Technical University of Munich
- 85748 Garching
- Germany
| | - Madeleine Opitz
- Center for NanoScience
- Faculty of Physics
- Ludwig-Maximilians-Universität München
- Munich
- Germany
| | - Oliver Lieleg
- Department of Mechanical Engineering and Munich School of Bioengineering
- Technical University of Munich
- 85748 Garching
- Germany
| |
Collapse
|
14
|
Krawinkel J, Torres-Mapa ML, Mhatre E, Kovács ÁT, Heisterkamp A. Structural damage of Bacillus subtilis biofilms using pulsed laser interaction with gold thin films. JOURNAL OF BIOPHOTONICS 2017; 10:1043-1052. [PMID: 27714933 DOI: 10.1002/jbio.201600146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 06/06/2023]
Abstract
There is a huge interest in developing strategies to effectively eliminate biofilms due to their negative impact in both industrial and clinical settings. In this study, structural damage was induced on two day-old B. subtilis biofilms using the interaction of 532 nm pulsed laser with gold thin films. Radiant exposure of 225 mJ/cm2 induced distinct changes on the surface structure and overall morphology of the matured biofilms after laser irradiation. Moreover, at the radiant exposure used, changes in the colour and viscosity of the biofilm were observed which may indicate a compromised extracellular matrix. Irradiated biofilms in the presence of gold film also showed strong propidium iodide signal which implies an increase in the number of dead bacterial cells after laser treatment. Thus, this laser-based technique is a promising approach in targeting and eradicating matured biofilms attached on surfaces such as medical implants.
Collapse
Affiliation(s)
- Judith Krawinkel
- Institute of Applied Optics, Friedrich-Schiller-University Jena, Froebelsteig 1, 07743, Jena, Germany
| | - Maria Leilani Torres-Mapa
- Institute of Quantum Optics, Gottfried Wilhelm Leibniz University Hannover, Welfengarten 1, 30167, Hannover, Germany
| | - Eisha Mhatre
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich-Schiller-University Jena, Neugasse 23, 07743, Jena, Germany
| | - Ákos T Kovács
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich-Schiller-University Jena, Neugasse 23, 07743, Jena, Germany
| | - Alexander Heisterkamp
- Institute of Quantum Optics, Gottfried Wilhelm Leibniz University Hannover, Welfengarten 1, 30167, Hannover, Germany
| |
Collapse
|
15
|
Dias-Souza MV, Soares DL, dos Santos VL. Comparative study of free and liposome-entrapped chloramphenicol against biofilms of potentially pathogenic bacteria isolated from cooling towers. Saudi Pharm J 2017; 25:999-1004. [PMID: 29158706 PMCID: PMC5681316 DOI: 10.1016/j.jsps.2017.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 03/10/2017] [Indexed: 11/19/2022] Open
Abstract
This study aimed to investigate for the first time the in vitro antibiofilm effectiveness of two chloramphenicol liposome formulations against biofilms of potentially pathogenic bacteria associated to corrosion isolated from the water of cooling towers from a Brazilian industry. Antibiofilm assays with liposomes were performed in 96-wells microtiter plates, and data was compared to free chloramphenicol treatment. Chloramphenicol-loaded liposomes were successfully produced using the dehydration-rehydration method, with vesicle diameters of 131 nm (100 nm membrane extrusion) and 182 nm (200 nm membrane extrusion) assessed by dynamic light scattering. The liposomes obtained by 100 nm membrane extrusion were more effective than 200 nm membrane extrusion vesicles against the biofilms after overnight exposure, and the free drug had no antibiofilm effect. Our study open doors for more investigations on liposome entrapment of antimicrobial compounds such as biocides of industrial use, for controlling biofilm formation in aquatic environments.
Collapse
Affiliation(s)
- Marcus Vinícius Dias-Souza
- Microbiology Department, Biological Sciences Institute, Federal University of Minas Gerais, MG, Brazil
- Corresponding author at: Microbiology Department, Biological Sciences Institute, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG 31270-901, Brazil.Microbiology DepartmentBiological Sciences InstituteUniversidade Federal de Minas GeraisAv. Antônio Carlos6627 - PampulhaBelo HorizonteMG31270-901Brazil
| | - Daniel Lucas Soares
- Microbiology Department, Biological Sciences Institute, Federal University of Minas Gerais, MG, Brazil
- Faculty of Pharmacy, Federal University of Minas Gerais, MG, Brazil
| | - Vera Lúcia dos Santos
- Microbiology Department, Biological Sciences Institute, Federal University of Minas Gerais, MG, Brazil
| |
Collapse
|
16
|
Presence of Calcium Lowers the Expansion of Bacillus subtilis Colony Biofilms. Microorganisms 2017; 5:microorganisms5010007. [PMID: 28212310 PMCID: PMC5374384 DOI: 10.3390/microorganisms5010007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/02/2017] [Accepted: 02/08/2017] [Indexed: 11/17/2022] Open
Abstract
Robust colony formation by Bacillus subtilis is recognized as one of the sessile, multicellular lifestyles of this bacterium. Numerous pathways and genes are responsible for the architecturally complex colony structure development. Cells in the biofilm colony secrete extracellular polysaccharides (EPS) and protein components (TasA and the hydrophobin BslA) that hold them together and provide a protective hydrophobic shield. Cells also secrete surfactin with antimicrobial as well as surface tension reducing properties that aid cells to colonize the solid surface. Depending on the environmental conditions, these secreted components of the colony biofilm can also promote the flagellum-independent surface spreading of B. subtilis, called sliding. In this study, we emphasize the influence of Ca2+ in the medium on colony expansion of B. subtilis. Interestingly, the availability of Ca2+ has no major impact on the induction of complex colony morphology. However, in the absence of this divalent ion, peripheral cells of the colony expand radially at later stages of development, causing colony size to increase. We demonstrate that the secreted extracellular compounds, EPS, BslA, and surfactin facilitate colony expansion after biofilm maturation. We propose that Ca2+ hinders biofilm colony expansion by modifying the amphiphilic properties of surfactin.
Collapse
|
17
|
Berlanga M, Guerrero R. Living together in biofilms: the microbial cell factory and its biotechnological implications. Microb Cell Fact 2016; 15:165. [PMID: 27716327 PMCID: PMC5045575 DOI: 10.1186/s12934-016-0569-5] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 09/23/2016] [Indexed: 01/18/2023] Open
Abstract
In nature, bacteria alternate between two modes of growth: a unicellular life phase, in which the cells are free-swimming (planktonic), and a multicellular life phase, in which the cells are sessile and live in a biofilm, that can be defined as surface-associated microbial heterogeneous structures comprising different populations of microorganisms surrounded by a self-produced matrix that allows their attachment to inert or organic surfaces. While a unicellular life phase allows for bacterial dispersion and the colonization of new environments, biofilms allow sessile cells to live in a coordinated, more permanent manner that favors their proliferation. In this alternating cycle, bacteria accomplish two physiological transitions via differential gene expression: (i) from planktonic cells to sessile cells within a biofilm, and (ii) from sessile to detached, newly planktonic cells. Many of the innate characteristics of biofilm bacteria are of biotechnological interest, such as the synthesis of valuable compounds (e.g., surfactants, ethanol) and the enhancement/processing of certain foods (e.g., table olives). Understanding the ecology of biofilm formation will allow the design of systems that will facilitate making products of interest and improve their yields.
Collapse
Affiliation(s)
- Mercedes Berlanga
- Section Microbiology, Department of Biology, Health and Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, s/n, 08028 Barcelona, Spain
| | - Ricardo Guerrero
- Laboratory of Molecular Microbiology and Antimicrobials, Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona-IDIBELL, Barcelona, Spain
- Barcelona Knowledge Hub, Academia Europaea, Barcelona, Spain
| |
Collapse
|
18
|
Mhatre E, Troszok A, Gallegos-Monterrosa R, Lindstädt S, Hölscher T, Kuipers OP, Kovács ÁT. The impact of manganese on biofilm development of Bacillus subtilis. MICROBIOLOGY-SGM 2016; 162:1468-1478. [PMID: 27267987 DOI: 10.1099/mic.0.000320] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacterial biofilms are dynamic and structurally complex communities, involving cell-to-cell interactions. In recent years, various environmental signals that induce the complex biofilm development of the Gram-positive bacterium Bacillus subtilis have been identified. These signalling molecules are often media components or molecules produced by the cells themselves, as well as those of other interacting species. The responses can also be due to depletion of certain molecules in the vicinity of the cells. Extracellular manganese (Mn2+) is essential for proper biofilm development of B. subtilis. Mn2+ is also a component of practically all laboratory biofilm-promoting media used for B. subtilis. Comparison of complex colony biofilms in the presence or absence of supplemented Mn2+ using microarray analyses revealed that genes involved in biofilm formation are indeed downregulated in the absence of Mn2+. In addition, Mn2+ also affects the transcription of several other genes involved in distinct differentiation pathways of various cellular processes. The effects of Mn2+ on other biofilm-related traits like motility, antimicrobial production, stress and sporulation were followed using fluorescent reporter strains. The global transcriptome and morphology studies highlight the importance of Mn2+ during biofilm development and provide an overview on the expressional changes in colony biofilms in B. subtilis.
Collapse
Affiliation(s)
- Eisha Mhatre
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Agnieszka Troszok
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Ramses Gallegos-Monterrosa
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Stefanie Lindstädt
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Theresa Hölscher
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Oscar P Kuipers
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Ákos T Kovács
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
19
|
Abstract
The dense aggregation of cells on a surface, as seen in biofilms, inevitably results in both environmental and cellular heterogeneity. For example, nutrient gradients can trigger cells to differentiate into various phenotypic states. Not only do cells adapt physiologically to the local environmental conditions, but they also differentiate into cell types that interact with each other. This allows for task differentiation and, hence, the division of labor. In this article, we focus on cell differentiation and the division of labor in three bacterial species: Myxococcus xanthus, Bacillus subtilis, and Pseudomonas aeruginosa. During biofilm formation each of these species differentiates into distinct cell types, in some cases leading to cooperative interactions. The division of labor and the cooperative interactions between cell types are assumed to yield an emergent ecological benefit. Yet in most cases the ecological benefits have yet to be elucidated. A notable exception is M. xanthus, in which cell differentiation within fruiting bodies facilitates the dispersal of spores. We argue that the ecological benefits of the division of labor might best be understood when we consider the dynamic nature of both biofilm formation and degradation.
Collapse
|
20
|
Wang Z, Morales-Acosta MD, Li S, Liu W, Kanai T, Liu Y, Chen YN, Walker FJ, Ahn CH, Leblanc RM, Yan ECY. A narrow amide I vibrational band observed by sum frequency generation spectroscopy reveals highly ordered structures of a biofilm protein at the air/water interface. Chem Commun (Camb) 2016; 52:2956-9. [PMID: 26779572 PMCID: PMC4747675 DOI: 10.1039/c5cc05743d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We characterized BslA, a bacterial biofilm protein, at the air/water interface using vibrational sum frequency generation spectroscopy and observed one of the sharpest amide I bands ever reported. Combining methods of surface pressure measurements, thin film X-ray reflectivity, and atomic force microscopy, we showed extremely ordered BslA at the interface.
Collapse
Affiliation(s)
- Zhuguang Wang
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, USA.
| | - M Daniela Morales-Acosta
- Department of Applied Physics, Yale University, 15 Prospect Street, New Haven, Connecticut 06520, USA
| | - Shanghao Li
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, USA
| | - Wei Liu
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, USA.
| | - Tapan Kanai
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, USA.
| | - Yuting Liu
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, USA.
| | - Ya-Na Chen
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, USA.
| | - Frederick J Walker
- Department of Applied Physics, Yale University, 15 Prospect Street, New Haven, Connecticut 06520, USA
| | - Charles H Ahn
- Department of Applied Physics, Yale University, 15 Prospect Street, New Haven, Connecticut 06520, USA
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, USA
| | - Elsa C Y Yan
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, USA.
| |
Collapse
|
21
|
Grau RR, de Oña P, Kunert M, Leñini C, Gallegos-Monterrosa R, Mhatre E, Vileta D, Donato V, Hölscher T, Boland W, Kuipers OP, Kovács ÁT. A Duo of Potassium-Responsive Histidine Kinases Govern the Multicellular Destiny of Bacillus subtilis. mBio 2015; 6:e00581. [PMID: 26152584 PMCID: PMC4495169 DOI: 10.1128/mbio.00581-15] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/01/2015] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Multicellular biofilm formation and surface motility are bacterial behaviors considered mutually exclusive. However, the basic decision to move over or stay attached to a surface is poorly understood. Here, we discover that in Bacillus subtilis, the key root biofilm-controlling transcription factor Spo0A~Pi (phosphorylated Spo0A) governs the flagellum-independent mechanism of social sliding motility. A Spo0A-deficient strain was totally unable to slide and colonize plant roots, evidencing the important role that sliding might play in natural settings. Microarray experiments plus subsequent genetic characterization showed that the machineries of sliding and biofilm formation share the same main components (i.e., surfactin, the hydrophobin BslA, exopolysaccharide, and de novo-formed fatty acids). Sliding proficiency was transduced by the Spo0A-phosphorelay histidine kinases KinB and KinC. We discovered that potassium, a previously known inhibitor of KinC-dependent biofilm formation, is the specific sliding-activating signal through a thus-far-unnoticed cytosolic domain of KinB, which resembles the selectivity filter sequence of potassium channels. The differential expression of the Spo0A~Pi reporter abrB gene and the different levels of the constitutively active form of Spo0A, Sad67, in Δspo0A cells grown in optimized media that simultaneously stimulate motile and sessile behaviors uncover the spatiotemporal response of KinB and KinC to potassium and the gradual increase in Spo0A~Pi that orchestrates the sequential activation of sliding, followed by sessile biofilm formation and finally sporulation in the same population. Overall, these results provide insights into how multicellular behaviors formerly believed to be antagonistic are coordinately activated in benefit of the bacterium and its interaction with the host. IMPORTANCE Alternation between motile and sessile behaviors is central to bacterial adaptation, survival, and colonization. However, how is the collective decision to move over or stay attached to a surface controlled? Here, we use the model plant-beneficial bacterium Bacillus subtilis to answer this question. Remarkably, we discover that sessile biofilm formation and social sliding motility share the same structural components and the Spo0A regulatory network via sensor kinases, KinB and KinC. Potassium, an inhibitor of KinC-dependent biofilm formation, triggers sliding via a potassium-perceiving cytosolic domain of KinB that resembles the selectivity filter of potassium channels. The spatiotemporal response of these kinases to variable potassium levels and the gradual increase in Spo0A~Pi levels that orchestrates the activation of sliding before biofilm formation shed light on how multicellular behaviors formerly believed to be antagonistic work together to benefit the population fitness.
Collapse
Affiliation(s)
- Roberto R Grau
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas (FCByF), Universidad Nacional de Rosario (UNR)-CONICET, Argentina
| | - Paula de Oña
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas (FCByF), Universidad Nacional de Rosario (UNR)-CONICET, Argentina
| | - Maritta Kunert
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Cecilia Leñini
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas (FCByF), Universidad Nacional de Rosario (UNR)-CONICET, Argentina
| | - Ramses Gallegos-Monterrosa
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University of Jena, Jena, Germany
| | - Eisha Mhatre
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University of Jena, Jena, Germany
| | - Darío Vileta
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas (FCByF), Universidad Nacional de Rosario (UNR)-CONICET, Argentina
| | - Verónica Donato
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas (FCByF), Universidad Nacional de Rosario (UNR)-CONICET, Argentina
| | - Theresa Hölscher
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University of Jena, Jena, Germany
| | - Wilhelm Boland
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Oscar P Kuipers
- Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Ákos T Kovács
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University of Jena, Jena, Germany
| |
Collapse
|
22
|
Abstract
UNLABELLED Volatiles are small air-transmittable chemicals with diverse biological activities. In this study, we showed that volatiles produced by the bacterium Bacillus subtilis had a profound effect on biofilm formation of neighboring B. subtilis cells that grew in proximity but were physically separated. We further demonstrated that one such volatile, acetic acid, is particularly potent in stimulating biofilm formation. Multiple lines of genetic evidence based on B. subtilis mutants that are defective in either acetic acid production or transportation suggest that B. subtilis uses acetic acid as a metabolic signal to coordinate the timing of biofilm formation. Lastly, we investigated how B. subtilis cells sense and respond to acetic acid in regulating biofilm formation. We showed the possible involvement of three sets of genes (ywbHG, ysbAB, and yxaKC), all encoding putative holin-antiholin-like proteins, in cells responding to acetic acid and stimulating biofilm formation. All three sets of genes were induced by acetate. A mutant with a triple mutation of those genes showed a severe delay in biofilm formation, whereas a strain overexpressing ywbHG showed early and robust biofilm formation. Results of our studies suggest that B. subtilis and possibly other bacteria use acetic acid as a metabolic signal to regulate biofilm formation as well as a quorum-sensing-like airborne signal to coordinate the timing of biofilm formation by physically separated cells in the community. IMPORTANCE Volatiles are small, air-transmittable molecules produced by all kingdoms of organisms including bacteria. Volatiles possess diverse biological activities and play important roles in bacteria-bacteria and bacteria-host interactions. Although volatiles can be used as a novel and important way of cell-cell communication due to their air-transmittable nature, little is known about how the volatile-mediated signaling mechanism works. In this study, we demonstrate that the bacterium Bacillus subtilis uses one such volatile, acetic acid, as a quorum-sensing-like signal to coordinate the timing of the formation of structurally complex cell communities, also known as biofilms. We further characterized the molecular mechanisms of how B. subtilis responds to acetic acid in stimulating biofilm formation. Our study also suggests that acetic acid may be used as a volatile signal for cross-species communication.
Collapse
|
23
|
Extracellular matrix structure governs invasion resistance in bacterial biofilms. ISME JOURNAL 2015; 9:1700-9. [PMID: 25603396 DOI: 10.1038/ismej.2014.246] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/07/2014] [Accepted: 11/19/2014] [Indexed: 12/20/2022]
Abstract
Many bacteria are highly adapted for life in communities, or biofilms. A defining feature of biofilms is the production of extracellular matrix that binds cells together. The biofilm matrix provides numerous fitness benefits, including protection from environmental stresses and enhanced nutrient availability. Here we investigate defense against biofilm invasion using the model bacterium Vibrio cholerae. We demonstrate that immotile cells, including those identical to the biofilm resident strain, are completely excluded from entry into resident biofilms. Motile cells can colonize and grow on the biofilm exterior, but are readily removed by shear forces. Protection from invasion into the biofilm interior is mediated by the secreted protein RbmA, which binds mother-daughter cell pairs to each other and to polysaccharide components of the matrix. RbmA, and the invasion protection it confers, strongly localize to the cell lineages that produce it.
Collapse
|
24
|
Fisher TW, Vyas M, He R, Nelson W, Cicero JM, Willer M, Kim R, Kramer R, May GA, Crow JA, Soderlund CA, Gang DR, Brown JK. Comparison of potato and asian citrus psyllid adult and nymph transcriptomes identified vector transcripts with potential involvement in circulative, propagative liberibacter transmission. Pathogens 2014; 3:875-907. [PMID: 25436509 PMCID: PMC4282890 DOI: 10.3390/pathogens3040875] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/18/2014] [Accepted: 10/20/2014] [Indexed: 01/01/2023] Open
Abstract
The potato psyllid (PoP) Bactericera cockerelli (Sulc) and Asian citrus psyllid (ACP) Diaphorina citri Kuwayama are the insect vectors of the fastidious plant pathogen, Candidatus Liberibacter solanacearum (CLso) and Ca. L. asiaticus (CLas), respectively. CLso causes Zebra chip disease of potato and vein-greening in solanaceous species, whereas, CLas causes citrus greening disease. The reliance on insecticides for vector management to reduce pathogen transmission has increased interest in alternative approaches, including RNA interference to abate expression of genes essential for psyllid-mediated Ca. Liberibacter transmission. To identify genes with significantly altered expression at different life stages and conditions of CLso/CLas infection, cDNA libraries were constructed for CLso-infected and -uninfected PoP adults and nymphal instars. Illumina sequencing produced 199,081,451 reads that were assembled into 82,224 unique transcripts. PoP and the analogous transcripts from ACP adult and nymphs reported elsewhere were annotated, organized into functional gene groups using the Gene Ontology classification system, and analyzed for differential in silico expression. Expression profiles revealed vector life stage differences and differential gene expression associated with Liberibacter infection of the psyllid host, including invasion, immune system modulation, nutrition, and development.
Collapse
Affiliation(s)
- Tonja W Fisher
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA.
| | - Meenal Vyas
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA.
| | - Ruifeng He
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA.
| | | | - Joseph M Cicero
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA.
| | - Mark Willer
- BIO5, The University of Arizona, Tucson, AZ 85721, USA.
| | - Ryan Kim
- National Center for Genome Resources, 2935 Rodeo Park Drive East, Santa Fe, NM 87505, USA.
| | - Robin Kramer
- National Center for Genome Resources, 2935 Rodeo Park Drive East, Santa Fe, NM 87505, USA.
| | - Greg A May
- National Center for Genome Resources, 2935 Rodeo Park Drive East, Santa Fe, NM 87505, USA.
| | - John A Crow
- National Center for Genome Resources, 2935 Rodeo Park Drive East, Santa Fe, NM 87505, USA.
| | | | - David R Gang
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA.
| | - Judith K Brown
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
25
|
Identification of ypqP as a New Bacillus subtilis biofilm determinant that mediates the protection of Staphylococcus aureus against antimicrobial agents in mixed-species communities. Appl Environ Microbiol 2014; 81:109-18. [PMID: 25326298 DOI: 10.1128/aem.02473-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In most habitats, microbial life is organized in biofilms, three-dimensional edifices sustained by extracellular polymeric substances that enable bacteria to resist harsh and changing environments. Under multispecies conditions, bacteria can benefit from the polymers produced by other species ("public goods"), thus improving their survival under toxic conditions. A recent study showed that a Bacillus subtilis hospital isolate (NDmed) was able to protect Staphylococcus aureus from biocide action in multispecies biofilms. In this work, we identified ypqP, a gene whose product is required in NDmed for thick-biofilm formation on submerged surfaces and for resistance to two biocides widely used in hospitals. NDmed and S. aureus formed mixed biofilms, and both their spatial arrangement and pathogen protection were mediated by YpqP. Functional ypqP is present in other natural B. subtilis biofilm-forming isolates. However, the gene is disrupted by the SPβ prophage in the weak submerged-biofilm-forming strains NCIB3610 and 168, which are both less resistant than NDmed to the biocides tested. Furthermore, in a 168 laboratory strain cured of the SPβ prophage, the reestablishment of a functional ypqP gene led to increased thickness and resistance to biocides of the associated biofilms. We therefore propose that YpqP is a new and important determinant of B. subtilis surface biofilm architecture, protection against exposure to toxic compounds, and social behavior in bacterial communities.
Collapse
|
26
|
van Gestel J, Weissing FJ, Kuipers OP, Kovács ÁT. Density of founder cells affects spatial pattern formation and cooperation in Bacillus subtilis biofilms. THE ISME JOURNAL 2014; 8:2069-79. [PMID: 24694715 PMCID: PMC4184017 DOI: 10.1038/ismej.2014.52] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/28/2014] [Accepted: 03/04/2014] [Indexed: 11/08/2022]
Abstract
In nature, most bacteria live in surface-attached sedentary communities known as biofilms. Biofilms are often studied with respect to bacterial interactions. Many cells inhabiting biofilms are assumed to express 'cooperative traits', like the secretion of extracellular polysaccharides (EPS). These traits can enhance biofilm-related properties, such as stress resilience or colony expansion, while being costly to the cells that express them. In well-mixed populations cooperation is difficult to achieve, because non-cooperative individuals can reap the benefits of cooperation without having to pay the costs. The physical process of biofilm growth can, however, result in the spatial segregation of cooperative from non-cooperative individuals. This segregation can prevent non-cooperative cells from exploiting cooperative neighbors. Here we examine the interaction between spatial pattern formation and cooperation in Bacillus subtilis biofilms. We show, experimentally and by mathematical modeling, that the density of cells at the onset of biofilm growth affects pattern formation during biofilm growth. At low initial cell densities, co-cultured strains strongly segregate in space, whereas spatial segregation does not occur at high initial cell densities. As a consequence, EPS-producing cells have a competitive advantage over non-cooperative mutants when biofilms are initiated at a low density of founder cells, whereas EPS-deficient cells have an advantage at high cell densities. These results underline the importance of spatial pattern formation for competition among bacterial strains and the evolution of microbial cooperation.
Collapse
Affiliation(s)
- Jordi van Gestel
- Theoretical Biology Group, Centre for Ecological and Evolutionary Studies, University of Groningen, Groningen, The Netherlands
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Franz J Weissing
- Theoretical Biology Group, Centre for Ecological and Evolutionary Studies, University of Groningen, Groningen, The Netherlands
| | - Oscar P Kuipers
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Ákos T Kovács
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University of Jena, Jena, Germany
| |
Collapse
|
27
|
Knockout of extracytoplasmic function sigma factor ECF-10 affects stress resistance and biofilm formation in Pseudomonas putida KT2440. Appl Environ Microbiol 2014; 80:4911-9. [PMID: 24907323 DOI: 10.1128/aem.01291-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas putida is a Gram-negative soil bacterium which is well-known for its versatile lifestyle, controlled by a large repertoire of transcriptional regulators. Besides one- and two-component regulatory systems, the genome of P. putida reveals 19 extracytoplasmic function (ECF) sigma factors involved in the adaptation to changing environmental conditions. In this study, we demonstrate that knockout of extracytoplasmic function sigma factor ECF-10, encoded by open reading frame PP4553, resulted in 2- to 4-fold increased antibiotic resistance to quinolone, β-lactam, sulfonamide, and chloramphenicol antibiotics. In addition, the ECF-10 mutant exhibited enhanced formation of biofilms after 24 h of incubation. Transcriptome analysis using Illumina sequencing technology resulted in the detection of 12 genes differentially expressed (>2-fold) in the ECF-10 knockout mutant strain compared to their levels of expression in wild-type cells. Among the upregulated genes were ttgA, ttgB, and ttgC, which code for the major multidrug efflux pump TtgABC in P. putida KT2440. Investigation of an ECF-10 and ttgA double-knockout strain and a ttgABC-overexpressing strain demonstrated the involvement of efflux pump TtgABC in the stress resistance and biofilm formation phenotypes of the ECF-10 mutant strain, indicating a new role for this efflux pump beyond simple antibiotic resistance in P. putida KT2440.
Collapse
|
28
|
Mhatre E, Monterrosa RG, Kovács AT. From environmental signals to regulators: modulation of biofilm development in Gram-positive bacteria. J Basic Microbiol 2014; 54:616-32. [PMID: 24771632 DOI: 10.1002/jobm.201400175] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 03/30/2014] [Indexed: 12/22/2022]
Abstract
Bacterial lifestyle is influenced by environmental signals, and many differentiation processes in bacteria are governed by the threshold concentrations of molecules present in their niche. Biofilm is one such example where bacteria in their sessile state adapt to a lifestyle that causes several adaptive alterations in the population. Here, a brief overview is given on a variety of environmental signals that bias biofilm development in Gram-positive bacteria, including nutrient conditions, self- and heterologously produced substances, like quorum sensing and host produced molecules. The Gram-positive model organism, Bacillus subtilis is a superb example to illustrate how distinct signals activate sensor proteins that integrate the environmental signals towards global regulators related to biofilm formation. The role of reduced oxygen level, polyketides, antimicrobials, plant secreted carbohydrates, plant cell derived polymers, glycerol, and osmotic conditions are discussed during the transcriptional activation of biofilm related genes in B. subtilis.
Collapse
Affiliation(s)
- Eisha Mhatre
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | | | | |
Collapse
|
29
|
İrigül-Sönmez Ö, Köroğlu TE, Öztürk B, Kovács ÁT, Kuipers OP, Yazgan-Karataş A. In Bacillus subtilis LutR is part of the global complex regulatory network governing the adaptation to the transition from exponential growth to stationary phase. Microbiology (Reading) 2014; 160:243-260. [DOI: 10.1099/mic.0.064675-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The lutR gene, encoding a product resembling a GntR-family transcriptional regulator, has previously been identified as a gene required for the production of the dipeptide antibiotic bacilysin in Bacillus subtilis. To understand the broader regulatory roles of LutR in B. subtilis, we studied the genome-wide effects of a lutR null mutation by combining transcriptional profiling studies using DNA microarrays, reverse transcription quantitative PCR, lacZ fusion analyses and gel mobility shift assays. We report that 65 transcriptional units corresponding to 23 mono-cistronic units and 42 operons show altered expression levels in lutR mutant cells, as compared with lutR
+ wild-type cells in early stationary phase. Among these, 11 single genes and 25 operons are likely to be under direct control of LutR. The products of these genes are involved in a variety of physiological processes associated with the onset of stationary phase in B. subtilis, including degradative enzyme production, antibiotic production and resistance, carbohydrate utilization and transport, nitrogen metabolism, phosphate uptake, fatty acid and phospholipid biosynthesis, protein synthesis and translocation, cell-wall metabolism, energy production, transfer of mobile genetic elements, induction of phage-related genes, sporulation, delay of sporulation and cannibalism, and biofilm formation. Furthermore, an electrophoretic mobility shift assay performed in the presence of both SinR and LutR revealed a close overlap between the LutR and SinR targets. Our data also revealed a significant overlap with the AbrB regulon. Together, these findings reveal that LutR is part of the global complex, interconnected regulatory systems governing adaptation of bacteria to the transition from exponential growth to stationary phase.
Collapse
Affiliation(s)
- Öykü İrigül-Sönmez
- Molecular Biology, Biotechnology and Genetics Research Center (MOBGAM) and Molecular Biology and Genetics Department, 34469, Istanbul Technical University, Istanbul, Turkey
| | - Türkan E. Köroğlu
- Molecular Biology, Biotechnology and Genetics Research Center (MOBGAM) and Molecular Biology and Genetics Department, 34469, Istanbul Technical University, Istanbul, Turkey
| | - Büşra Öztürk
- Molecular Biology, Biotechnology and Genetics Research Center (MOBGAM) and Molecular Biology and Genetics Department, 34469, Istanbul Technical University, Istanbul, Turkey
| | - Ákos T. Kovács
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Oscar P. Kuipers
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Ayten Yazgan-Karataş
- Molecular Biology, Biotechnology and Genetics Research Center (MOBGAM) and Molecular Biology and Genetics Department, 34469, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
30
|
Romero D. Bacterial determinants of the social behavior of Bacillus subtilis. Res Microbiol 2013; 164:788-98. [PMID: 23791621 DOI: 10.1016/j.resmic.2013.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 05/23/2013] [Indexed: 10/26/2022]
Abstract
Bacteria utilize sophisticated cellular machinery to sense environmental changes and coordinate the most appropriate response. Fine sensors located on cell surfaces recognize a myriad of triggers and initiate genetic cascades leading to activation or repression of certain groups of genes. Structural elements such as pilli, exopolysaccharides and flagella are also exposed at the cell surface and contribute to modulating the intimate interaction with surfaces and host cells. This review will cover the latest advances in our understanding of the biology and functionality of these bacterial determinants within the context of biofilm formation of Bacillus subtilis.
Collapse
Affiliation(s)
- Diego Romero
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain.
| |
Collapse
|
31
|
Exopolymer diversity and the role of levan in Bacillus subtilis biofilms. PLoS One 2013; 8:e62044. [PMID: 23637960 PMCID: PMC3637382 DOI: 10.1371/journal.pone.0062044] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 03/15/2013] [Indexed: 11/23/2022] Open
Abstract
Exopolymeric substances (EPS) are important for biofilm formation and their chemical composition may influence biofilm properties. To explore these relationships the chemical composition of EPS from Bacillus subtilis NCIB 3610 biofilms grown in sucrose-rich (SYM) and sucrose-poor (MSgg and Czapek) media was studied. We observed marked differences in composition of EPS polymers isolated from all three biofilms or from spent media below the biofilms. The polysaccharide levan dominated the EPS of SYM grown biofilms, while EPS from biofilms grown in sucrose-poor media contained significant amounts of proteins and DNA in addition to polysaccharides. The EPS polymers differed also in size with very large polymers (Mw>2000 kDa) found only in biofilms, while small polymers (Mw<200 kD) dominated in the EPS isolated from spent media. Biofilms of the eps knockout were significantly thinner than those of the tasA knockout in all media. The biofilm defective phenotypes of tasA and eps mutants were, however, partially compensated in the sucrose-rich SYM medium. Sucrose supplementation of Czapek and MSgg media increased the thickness and stability of biofilms compared to non-supplemented controls. Since sucrose is essential for synthesis of levan and the presence of levan was confirmed in all biofilms grown in media containing sucrose, this study for the first time shows that levan, although not essential for biofilm formation, can be a structural and possibly stabilizing component of B. subtilis floating biofilms. In addition, we propose that this polysaccharide, when incorporated into the biofilm EPS, may also serve as a nutritional reserve.
Collapse
|
32
|
Martínez-Gil M, Quesada JM, Ramos-González MI, Soriano MI, de Cristóbal RE, Espinosa-Urgel M. Interplay between extracellular matrix components of Pseudomonas putida biofilms. Res Microbiol 2013; 164:382-9. [PMID: 23562948 DOI: 10.1016/j.resmic.2013.03.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 03/19/2013] [Indexed: 11/28/2022]
Abstract
The extracellular matrix of bacterial biofilms has at least two key functions: to serve as a structural scaffold for the multicellular community, and to play a protective role against external stress. In this work, we report a compensatory effect whereby Pseudomonas putida reacts to the lack of either of the two main surface proteins involved in biofilm formation, LapA and LapF, by increasing expression and production of a species-specific EPS. Elevated levels of the second messenger molecule cyclic di-GMP alter the balance of extracellular matrix components, and the phenotypes of lapA and lapF mutants under these conditions are indicative of direct interactions taking place between large secreted proteins and exopolysaccharides. Our data suggest the existence of a mechanism by which bacteria would sense alterations in the composition of the extracellular matrix, leading to changes in expression of the different elements.
Collapse
Affiliation(s)
- Marta Martínez-Gil
- Department of Environmental Protection, Estación Experimental Del Zaidín, CSIC, Profesor Albareda, 1. Granada 18008, Spain.
| | | | | | | | | | | |
Collapse
|
33
|
Pedrido ME, de Oña P, Ramirez W, Leñini C, Goñi A, Grau R. Spo0A links de novo fatty acid synthesis to sporulation and biofilm development in Bacillus subtilis. Mol Microbiol 2012; 87:348-67. [PMID: 23170957 DOI: 10.1111/mmi.12102] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2012] [Indexed: 11/25/2022]
Abstract
During sporulation in Bacillus subtilis, the committed-cell undergoes substantial membrane rearrangements to generate two cells of different sizes and fates: the mother cell and the forespore. Here, we demonstrate that the master transcription factor Spo0A reactivates lipid synthesis during development. Maximal Spo0A-dependent lipid synthesis occurs during the key stages of asymmetric division and forespore engulfment. Spo0A reactivates the accDA operon that encodes the carboxylase component of the acetyl-CoA carboxylase enzyme, which catalyses the first and rate-limiting step in de novo lipid biosynthesis, malonyl-CoA formation. The disruption of the Spo0A-binding box in the promoter region of accDA impairs its transcriptional reactivation and blocks lipid synthesis. The Spo0A-insensitive accDA(0A) cells were proficient in planktonic growth but defective in sporulation (σ(E) activation) and biofilm development (cell cluster formation and water repellency). Exogenous fatty acid supplementation to accDA(0A) cells overcomes their inability to synthesize lipids during development and restores sporulation and biofilm proficiencies. The transient exclusion of the lipid synthesis regulon from the forespore and the known compartmentalization of Spo0A and ACP in the mother cell suggest that de novo lipid synthesis is confined to the mother cell. The significance of the Spo0A-controlled de novo lipid synthesis during B. subtilis development is discussed.
Collapse
Affiliation(s)
- María E Pedrido
- Departamento de Microbiología, Universidad Nacional de Rosario, CONICET, Argentina
| | | | | | | | | | | |
Collapse
|