1
|
Kasprzak A, Adamek A. Role of the Ghrelin System in Colitis and Hepatitis as Risk Factors for Inflammatory-Related Cancers. Int J Mol Sci 2022; 23:ijms231911188. [PMID: 36232490 PMCID: PMC9569806 DOI: 10.3390/ijms231911188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 02/05/2023] Open
Abstract
It is not known exactly what leads to the development of colorectal cancer (CRC) and hepatocellular carcinoma (HCC), but there are specific risk factors that increase the probability of their occurrence. The unclear pathogenesis, too-late diagnosis, poor prognosis as a result of high recurrence and metastasis rates, and repeatedly ineffective therapy of both cancers continue to challenge both basic science and practical medicine. The ghrelin system, which is comprised of ghrelin and alternative peptides (e.g., obestatin), growth hormone secretagogue receptors (GHS-Rs), and ghrelin-O-acyl-transferase (GOAT), plays an important role in the physiology and pathology of the gastrointestinal (GI) tract. It promotes various physiological effects, including energy metabolism and amelioration of inflammation. The ghrelin system plays a role in the pathogenesis of inflammatory bowel diseases (IBDs), which are well known risk factors for the development of CRC, as well as inflammatory liver diseases which can trigger the development of HCC. Colitis-associated cancer serves as a prototype of inflammation-associated cancers. Little is known about the role of the ghrelin system in the mechanisms of transformation of chronic inflammation to low- and high-grade dysplasia, and, finally, to CRC. HCC is also associated with chronic inflammation and fibrosis arising from different etiologies, including alcoholic and nonalcoholic fatty liver diseases (NAFLD), and/or hepatitis B (HBV) and hepatitis C virus (HCV) infections. However, the exact role of ghrelin in the progression of the chronic inflammatory lesions into HCC is still unknown. The aim of this review is to summarize findings on the role of the ghrelin system in inflammatory bowel and liver diseases in order to better understand the impact of this system on the development of inflammatory-related cancers, namely CRC and HCC.
Collapse
Affiliation(s)
- Aldona Kasprzak
- Department of Histology and Embryology, University of Medical Sciences, Święcicki Street 6, 60-781 Poznań, Poland
- Correspondence: ; Tel.: +48-61-8546441; Fax: +48-61-8546440
| | - Agnieszka Adamek
- Department of Infectious Diseases, Hepatology and Acquired Immunodeficiencies, University of Medical Sciences, Szwajcarska Street 3, 61-285 Poznań, Poland
| |
Collapse
|
2
|
Liu S, Chen S, Ren J, Li B, Qin B. Ghrelin protects retinal ganglion cells against rotenone via inhibiting apoptosis, restoring mitochondrial function, and activating AKT-mTOR signaling. Neuropeptides 2018; 67:63-70. [PMID: 29174113 DOI: 10.1016/j.npep.2017.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 10/25/2017] [Accepted: 11/17/2017] [Indexed: 02/06/2023]
Abstract
Ghrelin, a 28-amino acid peptide hormone, has protective effects on neuronal cells. The present study aimed to examine the neuroprotective effects of ghrelin on the rat retinal ganglion cells in the rotenone-induced in vitro model of Parkinson's disease (PD). Cell viability and cell apoptosis were determined by MTT assay and flow cytometry, respectively. Mitochondrial functions were detected by mitochondrial complex I activity assay and mitochondrial membrane potential (MMP) assay. The mRNA and protein expression levels were determined by qRT-PCR and western blot, respectively. Rotenone significantly suppressed cell viability and increased cell apoptosis, also decreased the mitochondrial complex I activity as well as MMP in rat retinal ganglion cell line (RGC-5). Growth hormone secretagogue receptor (Ghsr) siRNA transfection significantly suppressed the expression of Ghsr in RGC-5 cells. Ghrelin treatment attenuated the effects of rotenone-induced changes in cell viability, cell apoptosis and mitochondrial functions in RGC-5 cells. Post-transcriptional suppression by Ghsr siRNA transfection and treatment with GHS-R antagonist, YIL781, both significantly attenuated the effects of ghrelin in RGC-5 cells. Rotenone decreased the protein levels of Bcl-2 and increased the protein levels of Bax, cleaved caspase-3 and cleaved caspase-9, and this effect was reversed by ghrelin treatment. Ghrelin also prevented the inhibitory effects of rotenone on the AKT-mTOR signaling. The effects of ghrelin on the rotenone-induced changes in apoptosis-related protein levels and AKT-mTOR signaling were attenuated by Ghsr siRNA transfection and treatment with YIL781 in the RGC-5 cells. In addition, both rapamycin and AKT inhibitor IV pre-treatment significantly attenuated the effects of ghrelin on rotenone-induced changes in cell viability and cell apoptosis. In conclusion, ghrelin by acting on the GSH-R to protect rat retinal ganglion cells against rotenone via inhibiting apoptosis and restore mitochondrial functions in RGC-5 cells, and this effect was partially associated with the AKT-mTOR signaling pathway in RGC-5 cells.
Collapse
Affiliation(s)
- Shenwen Liu
- Shenzhen Eye Hospital, Affiliated Shenzhen Eye Hospital of Jinan University, Joint College of Optometry, Shenzhen University, Shenzhen Key Laboratory of Ophthalmology, Shenzhen City, Guangdong Province, China
| | - Sheng Chen
- Shenzhen Eye Hospital, Affiliated Shenzhen Eye Hospital of Jinan University, Joint College of Optometry, Shenzhen University, Shenzhen Key Laboratory of Ophthalmology, Shenzhen City, Guangdong Province, China
| | - Jing Ren
- Shenzhen Eye Hospital, Affiliated Shenzhen Eye Hospital of Jinan University, Joint College of Optometry, Shenzhen University, Shenzhen Key Laboratory of Ophthalmology, Shenzhen City, Guangdong Province, China
| | - Baijun Li
- Shenzhen Eye Hospital, Affiliated Shenzhen Eye Hospital of Jinan University, Joint College of Optometry, Shenzhen University, Shenzhen Key Laboratory of Ophthalmology, Shenzhen City, Guangdong Province, China
| | - Bo Qin
- Shenzhen Eye Hospital, Affiliated Shenzhen Eye Hospital of Jinan University, Joint College of Optometry, Shenzhen University, Shenzhen Key Laboratory of Ophthalmology, Shenzhen City, Guangdong Province, China.
| |
Collapse
|
3
|
Abstract
Epidemiological surveys indicate that nutrition in infancy is implicated in the long-term tendency to obesity and that a longer duration of breastfeeding is associated with a protective effect against metabolic disorders later in life. However, the precise cause of this association is not well understood. Recent studies on the compounds present in human breast milk have identified various adipokines, including leptin, adiponectin, resistin, obestatin, nesfatin, ghrelin and apelins. Some of these compounds are involved in the regulation of food intake and energy balance. The presence of these adipokines in breast milk suggests that they may be responsible for the regulation of growth in early infancy and that they could influence the energy balance and development of metabolic disorders in childhood and adulthood.
Collapse
Affiliation(s)
- Gönül Çatlı
- Katip Çelebi University Faculty of Medicine, Department of Pediatric Endocrinology, İzmir, Turkey. E-ma-il:
| | - Nihal Olgaç Dündar
- Katip Çelebi University Faculty of Medicine, Department of Pediatric Neurology, İzmir, Turkey
| | - Bumin Nuri Dündar
- Katip Çelebi University Faculty of Medicine, Department of Pediatric Endocrinology, İzmir, Turkey
,* Address for Correspondence: Katip Çelebi University Faculty of Medicine, Department of Pediatric Endocrinology, İzmir, Turkey Phone: +90 232 469 6969 E-mail:
| |
Collapse
|
4
|
Savino F, Lupica MM, Liguori SA, Fissore MF, Silvestro L. Ghrelin and feeding behaviour in preterm infants. Early Hum Dev 2012; 88 Suppl 1:S51-5. [PMID: 22285781 DOI: 10.1016/j.earlhumdev.2011.12.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The importance of early life events in the development of metabolic diseases is well recognized. Early postnatal environment, including nutrition, is key to future health, and this is particularly true for preterm infants. It is important that these infants receive sufficient nutrients to prevent growth restriction and promote neurodevelopment, while minimizing predisposition to metabolic diseases later in life. Feeding habits are the fundamental elements of nutrition and are influenced by many factors, including personal and familial habits, socioeconomic status, and cultural environment. In the last decades, there has been an important scientific interest toward the comprehension of the molecular and neural mechanisms regulating appetite. In these networks, act many peptide hormones produced in brain or gut, among which ghrelin is important because of its action in the short-term regulation of food intake and the long-term regulation of body weight. Ghrelin stimulates appetite and plays a role in regulating feeding behaviour. Ghrelin levels vary from fetal life through to early adulthood, with the highest levels observed in the very early years. Cord ghrelin levels have been evaluated in term and preterm newborns and high ghrelin levels have been observed in small-for-gestational age newborns and in newborns with intrauterine growth restriction. Moreover, ghrelin has been detected in term and preterm human breast milk, suggesting that it may play a role in the development of neuroendocrine pathways regulating appetite and energy homeostasis in early life. However, more research is required to better define ghrelin's role in breast milk and on feeding behaviour.
Collapse
Affiliation(s)
- Francesco Savino
- Department of Paediatrics, Regina Margherita Children's Hospital, University of Turin, Italy.
| | | | | | | | | |
Collapse
|
5
|
Breast milk hormones and regulation of glucose homeostasis. Int J Pediatr 2011; 2011:803985. [PMID: 21760816 PMCID: PMC3133796 DOI: 10.1155/2011/803985] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 02/28/2011] [Indexed: 01/22/2023] Open
Abstract
Growing evidence suggests that a complex relationship exists between the central nervous system and peripheral organs involved in energy homeostasis. It consists in the balance between food intake and energy expenditure and includes the regulation of nutrient levels in storage organs, as well as in blood, in particular blood glucose. Therefore, food intake, energy expenditure, and glucose homeostasis are strictly connected to each other. Several hormones, such as leptin, adiponectin, resistin, and ghrelin, are involved in this complex regulation. These hormones play a role in the regulation of glucose metabolism and are involved in the development of obesity, diabetes, and metabolic syndrome. Recently, their presence in breast milk has been detected, suggesting that they may be involved in the regulation of growth in early infancy and could influence the programming of energy balance later in life. This paper focuses on hormones present in breast milk and their role in glucose homeostasis.
Collapse
|
6
|
Abstract
Studies have shown that the early life environment affects feeding behaviour, food intake and energy balance in later life, suggesting there is a link between foetal and infant growth and the risk of metabolic disorders in adulthood. Although there is an evident epidemiological association between low birth weight and adult-onset diseases, the incidence of metabolic diseases in adulthood among people who were born prematurely is still unknown. Considerable advances have been made during the last years in the scientific knowledge of the benefits of early nutrition, such as breastfeeding, on health and well-being later in life. Nutritional researchers have focussed their attention on the biological characteristics of human breast milk, which represents the main source of nutrients in the first months of life for breastfed infants. Recently, leptin and ghrelin have been detected in the breast milk of mothers of term and preterm infants. Adiponectin and resistin, present in term human milk, have not been investigated in the breast milk of mothers of preterm infants. These hormones are involved in the regulation of energy balance and may have a role in the regulation of growth and development in the neonatal period and infancy, as well as long-term effects on metabolic programming. Leptin, adiponectin and resistin have been found at lower levels in pre-term infants compared with term newborns, whereas there seems to be no difference in ghrelin levels. Future research is necessary to clarify the role of hormones present in breast milk for identifying potential short- and long-term effects of breastfeeding on the health of children born prematurely.
Collapse
Affiliation(s)
- Francesco Savino
- Department of Pediatrics, Regina Margherita Children's Hospital, University of Turin, Piazza Polonia 94, Turin, Italy.
| | | | | |
Collapse
|
7
|
de Armas MGG, Megías SM, Modino SC, Bolaños PI, Guardiola PD, Alvarez TM. [Importance of breastfeeding in the prevalence of metabolic syndrome and degree of childhood obesity]. ACTA ACUST UNITED AC 2010; 56:400-3. [PMID: 19959149 DOI: 10.1016/s1575-0922(09)72709-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 09/15/2009] [Indexed: 11/17/2022]
Abstract
OBJECTIVES To evaluate the relationship between breastfeeding and the prevalence of obesity and metabolic syndrome in a group of obese children and adolescents. MATERIAL AND METHODS We performed a retrospective study in obese children and adolescents treated at the Endocrinology and Nutrition Service of the Hospital de Getafe (Madrid). The variables studied were age, sex, height, weight, body mass index (BMI), waist circumference, waist-height ratio, blood pressure, triglycerides, high-density lipoprotein and fasting glucose. Information was also collected on food received in the first months of life. Breastfeeding was defined as feeding with maternal milk for at least 3 months. The SPSS v.15 statistical package was used. RESULTS A total of 126 patients with obesity were recruited (71 boys and 55 girls) with a mean age of 11.94 +/- 3.12 years. Of these, 117 (92.86%) were morbidly obese (BMI > 97th percentile for age and sex). All patients had a waist circumference > 90th percentile for age and sex. Of the 126 patients evaluated, 36.8% were breastfed for more than 3 months and 63.2% were fed with artificial milk only. Compared with patients fed with artificial milk, those who were breast fed had a lower BMI (31.53 +/- 5.77 vs 32.08 +/- 6.78) and lower waist circumference (95.02 +/- 3.4 vs. 95.69 +/- 3.2 cm), although this difference was not statistically significant. The prevalence of metabolic syndrome in the study population was 19.8%. Within this group, 64% had not been breast fed compared with 36% who had been fed with artificial milk. CONCLUSIONS Breast feeding for at least 3 months was associated with lower levels of obesity, smaller waist circumference and fewer complications related to metabolic syndrome in childhood and adolescence. Sixty-four percent of children with complete metabolic syndrome had received artificial feeding. Further studies are needed to ascertain the impact of breastfeeding on the development of obesity and cardiometabolic risk.
Collapse
|
8
|
Savino F, Fissore MF, Liguori SA, Oggero R. Can hormones contained in mothers' milk account for the beneficial effect of breast-feeding on obesity in children? Clin Endocrinol (Oxf) 2009; 71:757-65. [PMID: 19302580 DOI: 10.1111/j.1365-2265.2009.03585.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nutrition and growth during infancy are an emerging issue because of their potential link to metabolic health disorders in later life. Moreover, prolonged breast-feeding appears to be associated with a lower risk of obesity than formula feeding. Human milk is a source of various hormones and growth factors, namely adipokines (leptin and adiponectin), ghrelin, resistin and obestatin, which are involved in food intake regulation and energy balance. These compounds are either not found in commercial milk formulas or their presence is still controversial. Diet-related differences during infancy in serum levels of factors involved in energy metabolism might explain anthropometric differences and also differences in dietary habits between breast-fed (BF) and formula-fed (FF) infants later in life, and may thus have long-term health consequences. In this context, the recent finding of higher leptin levels and lower ghrelin levels in BF than in FF infants suggests that differences in hormonal values together with different protein intake could account for the differences in growth between BF and FF infants both during infancy and later in life. In this review, we examine the data related to hormones contained in mothers' milk and their potential protective effect on subsequent obesity and metabolic-related disorders.
Collapse
Affiliation(s)
- Francesco Savino
- Department of Pediatrics, Regina Margherita Children's Hospital, University of Turin, 10126 Turin, Italy.
| | | | | | | |
Collapse
|