1
|
Hartley S, Bao G, Russo A, Zagdoun M, Chevallier S, Lofaso F, Leotard A, Azabou E. Self-administered non-invasive vagus nerve stimulation therapy for severe pharmacoresistant restless legs syndrome: outcomes at 6 months. J Sleep Res 2024; 33:e14066. [PMID: 37846650 DOI: 10.1111/jsr.14066] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/18/2023]
Abstract
Severe pharmacoresistant restless legs syndrome (RLS) is difficult to manage and a source of suffering to patients. We studied the effectiveness at 6 months of an innovative treatment: transauricular vagus nerve stimulation (taVNS) in the left cymba concha in a case series of 15 patients, 53% male, mean (SD) age 62.7 (12.3) years with severe pharmacoresistant RLS (mean [SD] International Restless Legs Rating Scale [IRLS] score of 31.9 [2.9]) at baseline. Following an 8-week non-randomised hospital-based study with eight 1-h sessions of taVNS, patients were trained to administer taVNS at home and were followed up for 6 months. The primary outcome measure was the IRLS score, secondary outcome measures were quality of life, mood disorders using the Hospital Anxiety and Depression scale (HAD) subscales for depression (HADD) and anxiety (HADA). At the 6-month follow-up 13/15 patients continued to use weekly taVNS. Symptom severity decreased (mean [SD] IRLS score 22.2 [9.32] at 6 months, p = 0.0005). Four of the 15 patients had an IRLS score of <20 at 6 months and two an IRLS score of 5. Quality of life significantly improved compared to baseline (mean [SD] score at baseline 49.3 [18.1] versus 65.66 [22.58] at 6 months, p = 0.0005) as did anxiety and depression symptoms (mean [SD] HADA score at baseline 8.9 [5.4] versus 7.53 [4.42] at 6 months, p = 0.029; and HADD score at baseline 5.2 [4.5] versus 4.73 [4.44] at 6 months, p = 0.03). Treatment was well tolerated, and no adverse events were reported. Our case series shows a potential role for self-administered taVNS in patients with severe pharmacoresistant RLS. Randomised controlled trials are needed to confirm the utility of taVNS.
Collapse
Affiliation(s)
- Sarah Hartley
- Sleep Unit, Department of Physiology, Raymond Poincaré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Guillaume Bao
- Clinical Neurophysiology and Neuromodulation Unit, SMART_VNS Platform, Department of Physiology, Raymond Poincaré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Laboratory of Infection and Inflammation (2I) INSERM UMR 1173, University of Versailles Saint-Quentin-en-Yvelines (UVSQ), Paris-Saclay University, Paris, France
| | - Ashley Russo
- Clinical Neurophysiology and Neuromodulation Unit, SMART_VNS Platform, Department of Physiology, Raymond Poincaré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Laboratory of Infection and Inflammation (2I) INSERM UMR 1173, University of Versailles Saint-Quentin-en-Yvelines (UVSQ), Paris-Saclay University, Paris, France
| | - Marine Zagdoun
- Clinical Neurophysiology and Neuromodulation Unit, SMART_VNS Platform, Department of Physiology, Raymond Poincaré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Laboratory of Infection and Inflammation (2I) INSERM UMR 1173, University of Versailles Saint-Quentin-en-Yvelines (UVSQ), Paris-Saclay University, Paris, France
| | - Sylvain Chevallier
- Versailles Engineering Systems Laboratory (LISV), University of Versailles Saint-Quentin-en-Yvelines (UVSQ), Vélizy, France
| | - Frédéric Lofaso
- Sleep Unit, Department of Physiology, Raymond Poincaré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Clinical Neurophysiology and Neuromodulation Unit, SMART_VNS Platform, Department of Physiology, Raymond Poincaré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Laboratory « End:icap », INSERM UMR 1179, University of Versailles Saint-Quentin-en-Yvelines (UVSQ), Paris-Saclay University, Paris, France
| | - Antoine Leotard
- Sleep Unit, Department of Physiology, Raymond Poincaré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Laboratory « End:icap », INSERM UMR 1179, University of Versailles Saint-Quentin-en-Yvelines (UVSQ), Paris-Saclay University, Paris, France
| | - Eric Azabou
- Clinical Neurophysiology and Neuromodulation Unit, SMART_VNS Platform, Department of Physiology, Raymond Poincaré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Laboratory of Infection and Inflammation (2I) INSERM UMR 1173, University of Versailles Saint-Quentin-en-Yvelines (UVSQ), Paris-Saclay University, Paris, France
| |
Collapse
|
2
|
Wen X, Yu X, Huo R, Yan QX, Wu D, Feng Y, Li Y, Sun X, Li XY, Sun J, Li KX, Li QY, Han LM, Lu XL, Liu Y, Shou W, Li BY. Serotonin-Mediated Cardiac Analgesia via Ah-Type Baroreceptor Activation Contributes to Silent Angina and Asymptomatic Infarction. Neuroscience 2019; 411:150-163. [DOI: 10.1016/j.neuroscience.2019.05.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 12/14/2022]
|
3
|
Ciesielczyk K, Furgała A, Dobrek Ł, Juszczak K, Thor P. Altered sympathovagal balance and pain hypersensitivity in TNBS-induced colitis. Arch Med Sci 2017; 13:246-255. [PMID: 28144278 PMCID: PMC5206355 DOI: 10.5114/aoms.2015.55147] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/19/2015] [Indexed: 01/29/2023] Open
Abstract
INTRODUCTION Pain hypersensitivity, abnormal motility and autonomic dysfunction contribute to functional symptoms of inflammatory bowel disease (IBD). MATERIAL AND METHODS The aim of this study was to assess: nociceptive thresholds for mechanical allodynia (MA) and thermal hyperalgesia (TH), intestinal motility (distal colonic transit and emptying), and cardiac autonomic neuropathy (indices of heart rate variability - HRV) in male Wistar rats with experimental trinitrobenzene sulfonic acid (TNBS) induced colitis. To identify a potential vagal contribution the bilateral subdiaphragmatic vagotomy (SDV) was performed. RESULTS Experimental colitis resulted in a significant decrease in pain threshold (MA 23.60 ±2.12, p < 0.001, TH 8.51 ±1.49, p < 0.001), reduced expulsion time (6.2 ±3.5, p < 0,01) and increase in the sympathetic autonomic activity (LFnu 32.54 ±21.16, p < 0.03). The animals with diminished vagal integrity presented with reduced gastrointestinal motility (39.8 ±25.1, p < 0.01) and a decrease in the parasympathetic high-frequency domain of HRV (HFnu 55.37 ±22.80, p < 0.002). The vagotomized rats with colitis showed the strongest nociceptive response (MA 22.46 ±3.02, p < 0.004; TH 7.99 ±1.12, p < 0.003) as well as significant changes in sympatho-vagal balance on HRV testing (LFnu 28.25 ±14.66, p < 0.04; HFnu 71.34 ±14.55, p < 0.04). CONCLUSIONS The relationship between the cardiovascular and gastrointestinal system is modulated by neural, hormonal and inflammatory factors. This leads to dysregulation of the brain-gut interactions in the course of IBD. Sensitization and visceral-somatic convergence trigger pain hypersensitivity and autonomic sympathovagal imbalance. While integral vagal innervation impacts analgesic mechanisms via modulation of the immune response, SDV raises sympathetic activity and induces excessive hyperalgesia.
Collapse
Affiliation(s)
- Katarzyna Ciesielczyk
- Department of Pathophysiology, Jagiellonian University Medical College, Krakow, Poland
| | - Agata Furgała
- Department of Pathophysiology, Jagiellonian University Medical College, Krakow, Poland
| | - Łukasz Dobrek
- Department of Pathophysiology, Jagiellonian University Medical College, Krakow, Poland
| | - Kajetan Juszczak
- Department of Pathophysiology, Jagiellonian University Medical College, Krakow, Poland
| | - Piotr Thor
- Department of Pathophysiology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
4
|
Ritter KE, Southard-Smith EM. Dynamic Expression of Serotonin Receptor 5-HT3A in Developing Sensory Innervation of the Lower Urinary Tract. Front Neurosci 2017; 10:592. [PMID: 28111539 PMCID: PMC5216032 DOI: 10.3389/fnins.2016.00592] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 12/12/2016] [Indexed: 12/12/2022] Open
Abstract
Sensory afferent signaling is required for normal function of the lower urinary tract (LUT). Despite the wide prevalence of bladder dysfunction and pelvic pain syndromes, few effective treatment options are available. Serotonin receptor 5-HT3A is a known mediator of visceral afferent signaling and has been implicated in bladder function. However, basic expression patterns for this gene and others among developing bladder sensory afferents that could be used to inform regenerative efforts aimed at treating deficiencies in pelvic innervation are lacking. To gain greater insight into the molecular characteristics of bladder sensory innervation, we conducted a thorough characterization of Htr3a expression in developing and adult bladder-projecting lumbosacral dorsal root ganglia (DRG) neurons. Using a transgenic Htr3a-EGFP reporter mouse line, we identified 5-HT3A expression at 10 days post coitus (dpc) in neural crest derivatives and in 12 dpc lumbosacral DRG. Using immunohistochemical co-localization we observed Htr3a-EGFP expression in developing lumbosacral DRG that partially coincides with neuropeptides CGRP and Substance P and capsaicin receptor TRPV1. A majority of Htr3a-EGFP+ DRG neurons also express a marker of myelinated Aδ neurons, NF200. There was no co-localization of 5-HT3A with the TRPV4 receptor. We employed retrograde tracing in adult Htr3a-EGFP mice to quantify the contribution of 5-HT3A+ DRG neurons to bladder afferent innervation. We found that 5-HT3A is expressed in a substantial proportion of retrograde traced DRG neurons in both rostral (L1, L2) and caudal (L6, S1) axial levels that supply bladder innervation. Most bladder-projecting Htr3a-EGFP+ neurons that co-express CGRP, Substance P, or TRPV1 are found in L1, L2 DRG, whereas Htr3a-EGFP+, NF200+ bladder-projecting neurons are from the L6, S1 axial levels. Our findings contribute much needed information regarding the development of LUT innervation and highlight the 5-HT3A serotonin receptor as a candidate for future studies of neurally mediated bladder control.
Collapse
Affiliation(s)
- K Elaine Ritter
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine Nashville, TN, USA
| | - E Michelle Southard-Smith
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine Nashville, TN, USA
| |
Collapse
|
5
|
Abstract
The gastrointestinal (GI) system is responsible for the digestion and absorption of ingested food and liquids. Due to the complexity of the GI tract and the substantial volume of material that could be covered under the scope of GI physiology, this chapter briefly reviews the overall function of the GI tract, and discusses the major factors affecting GI physiology and function, including the intestinal microbiota, chronic stress, inflammation, and aging with a focus on the neural regulation of the GI tract and an emphasis on basic brain-gut interactions that serve to modulate the GI tract. GI diseases refer to diseases of the esophagus, stomach, small intestine, colon, and rectum. The major symptoms of common GI disorders include recurrent abdominal pain and bloating, heartburn, indigestion/dyspepsia, nausea and vomiting, diarrhea, and constipation. GI disorders rank among the most prevalent disorders, with the most common including esophageal and swallowing disorders, gastric and peptic ulcer disease, gastroparesis or delayed gastric emptying, irritable bowel syndrome (IBS), and inflammatory bowel disease (IBD). Many GI disorders are difficult to diagnose and their symptoms are not effectively managed. Thus, basic research is required to drive the development of novel therapeutics which are urgently needed. One approach is to enhance our understanding of gut physiology and pathophysiology especially as it relates to gut-brain communications since they have clinical relevance to a number of GI complaints and represent a therapeutic target for the treatment of conditions including inflammatory diseases of the GI tract such as IBD and functional gut disorders such as IBS.
Collapse
|
6
|
Browning KN. Role of central vagal 5-HT3 receptors in gastrointestinal physiology and pathophysiology. Front Neurosci 2015; 9:413. [PMID: 26578870 PMCID: PMC4625078 DOI: 10.3389/fnins.2015.00413] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 10/15/2015] [Indexed: 12/21/2022] Open
Abstract
Vagal neurocircuits are vitally important in the co-ordination and modulation of GI reflexes and homeostatic functions. 5-hydroxytryptamine (5-HT; serotonin) is critically important in the regulation of several of these autonomic gastrointestinal (GI) functions including motility, secretion and visceral sensitivity. While several 5-HT receptors are involved in these physiological responses, the ligand-gated 5-HT3 receptor appears intimately involved in gut-brain signaling, particularly via the afferent (sensory) vagus nerve. 5-HT is released from enterochromaffin cells in response to mechanical or chemical stimulation of the GI tract which leads to activation of 5-HT3 receptors on the terminals of vagal afferents. 5-HT3 receptors are also present on the soma of vagal afferent neurons, including GI vagal afferent neurons, where they can be activated by circulating 5-HT. The central terminals of vagal afferents also exhibit 5-HT3 receptors that function to increase glutamatergic synaptic transmission to second order neurons of the nucleus tractus solitarius within the brainstem. While activation of central brainstem 5-HT3 receptors modulates visceral functions, it is still unclear whether central vagal neurons, i.e., nucleus of the tractus solitarius (NTS) and dorsal motor nucleus of the vagus (DMV) neurons themselves also display functional 5-HT3 receptors. Thus, activation of 5-HT3 receptors may modulate the excitability and activity of gastrointestinal vagal afferents at multiple sites and may be involved in several physiological and pathophysiological conditions, including distention- and chemical-evoked vagal reflexes, nausea, and vomiting, as well as visceral hypersensitivity.
Collapse
Affiliation(s)
- Kirsteen N Browning
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine Hershey, PA, USA
| |
Collapse
|
7
|
Effects of auricular-plaster therapy on pain and serum levels of cortisol and IL-6 after cesarean section. Int J Nurs Sci 2015. [DOI: 10.1016/j.ijnss.2015.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
8
|
de Theije CGM, van den Elsen LWJ, Willemsen LEM, Milosevic V, Korte-Bouws GAH, Lopes da Silva S, Broersen LM, Korte SM, Olivier B, Garssen J, Kraneveld AD. Dietary long chain n-3 polyunsaturated fatty acids prevent impaired social behaviour and normalize brain dopamine levels in food allergic mice. Neuropharmacology 2014; 90:15-22. [PMID: 25445491 DOI: 10.1016/j.neuropharm.2014.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/09/2014] [Accepted: 11/04/2014] [Indexed: 01/13/2023]
Abstract
Allergy is suggested to exacerbate impaired behaviour in children with neurodevelopmental disorders. We have previously shown that food allergy impaired social behaviour in mice. Dietary fatty acid composition may affect both the immune and nervous system. The aim of this study was to assess the effect of n-3 long chain polyunsaturated fatty acids (n-3 LCPUFA) on food allergy-induced impaired social behaviour and associated deficits in prefrontal dopamine (DA) in mice. Mice were fed either control or n-3 LCPUFA-enriched diet before and during sensitization with whey. Social behaviour, acute allergic skin response and serum immunoglobulins were assessed. Monoamine levels were measured in brain and intestine and fatty acid content in brain. N-3 LCPUFA prevented impaired social behaviour of allergic mice. Moreover, n-3 LCPUFA supplementation increased docosahexaenoic acid (DHA) incorporation into the brain and restored reduced levels of prefrontal DA and its metabolites 3,4-dihydroxyphenylacetic acid, 3-methoxytyramine and homovanillic acid in allergic mice. In addition to these brain effects, n-3 LCPUFA supplementation reduced the allergic skin response and restored decreased intestinal levels of serotonin metabolite 5-hydroxyindoleacetic acid in allergic mice. N-3 LCPUFA may have beneficial effects on food allergy-induced deficits in social behaviour, either indirectly by reducing the allergic response and restoring intestinal 5-HT signalling, or directly by DHA incorporation into neuronal membranes, affecting the DA system. Therefore, it is of interest to further investigate the relevance of food allergy-enhanced impairments in social behaviour in humans and the potential benefits of dietary n-3 LCPUFA supplementation.
Collapse
Affiliation(s)
- Caroline G M de Theije
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
| | - Lieke W J van den Elsen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Linette E M Willemsen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Vanja Milosevic
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Gerdien A H Korte-Bouws
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Sofia Lopes da Silva
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands; Nutricia Research, Uppsalalaan 12, 3584 CT, Utrecht, The Netherlands
| | - Laus M Broersen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands; Nutricia Research, Uppsalalaan 12, 3584 CT, Utrecht, The Netherlands
| | - S Mechiel Korte
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Berend Olivier
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands; Nutricia Research, Uppsalalaan 12, 3584 CT, Utrecht, The Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| |
Collapse
|
9
|
Li H, Hu S, Zhang J, Zhou J, Ran H, Tang Y, Chen J, Wang Y. Effects and mechanisms of auricular electroacupuncture on visceral pain induced by colorectal distension in conscious rats. Acupunct Med 2014; 32:472-7. [PMID: 25193927 DOI: 10.1136/acupmed-2014-010575] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To investigate the effects and mechanisms of action of auricular electroacupuncture (AEA) on visceral pain induced by colorectal distension (CRD). METHODS Twenty-nine female Sprague-Dawley rats were randomly divided into four groups: control; untreated CRD; CRD+AEA; and CRD+sham electroacupuncture (SEA). An electromyogram (EMG) was recorded for 120 min in the conscious state. After a 30 min baseline recording, CRD was performed in untreated CRD, AEA and SEA groups and lasted for 90 min. AEA and SEA were started at 30 min and lasted for 30 min. The EMG was recorded and analysed to evaluate the severity of visceral pain, indicated by the magnitude of the vasomotor response (VMR). mRNA expression of the 5-hydroxytryptamine 1a (5-HT1a) receptor was measured separately in the colon and raphe nuclei using real-time fluorescent quantitative PCR. RESULTS No differences were seen in the baseline EMG among the four groups (p>0.05). During pre-stimulation, VMR magnitude in the CRD, AEA and SEA groups increased compared with that in the control group (p<0.05). During stimulation, the VMR magnitude was significantly decreased in AEA but not SEA groups relative to the (untreated) CRD group. Similarly, mRNA expression of the 5-HT1a receptor in both the colon and raphe nuclei was lower in AEA but not SEA groups compared with the CRD group (p<0.05). CONCLUSIONS AEA can ameliorate CRD-induced visceral pain in rats, and increase mRNA expression of the 5-HT1a receptor peripherally (in the colon) and centrally (in the raphe nuclei), suggesting a serotonergic mechanism of action.
Collapse
Affiliation(s)
- Han Li
- Department of Acupuncture and Moxibustion, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shasha Hu
- Department of Acupuncture and Moxibustion, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jianbin Zhang
- Department of Acuology, The Second Clinical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jingzhu Zhou
- Department of Acupuncture and Moxibustion, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongxing Ran
- Department of Acupuncture and Moxibustion, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yichun Tang
- Department of Acuology, The Second Clinical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jiande Chen
- Division of Gastroenterology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Yinping Wang
- Department of Acupuncture and Moxibustion, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
10
|
Wang X, Liang H, Zhou C, Xu M, Xu L. Sensitization induces hypersensitivity in trigeminal nerve. Clin Exp Allergy 2012; 42:1638-42. [PMID: 23106664 DOI: 10.1111/j.1365-2222.2012.04051.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- X. Wang
- Department of Neurosurgery; Institute of Surgery Research, Daping Hospital, Third Military Medical University; Chongqing; China
| | - H. Liang
- Department of Neurosurgery; Institute of Surgery Research, Daping Hospital, Third Military Medical University; Chongqing; China
| | - C. Zhou
- Department of Neurosurgery; Institute of Surgery Research, Daping Hospital, Third Military Medical University; Chongqing; China
| | - M. Xu
- Department of Neurosurgery; Institute of Surgery Research, Daping Hospital, Third Military Medical University; Chongqing; China
| | - L. Xu
- Department of Neurosurgery; Institute of Surgery Research, Daping Hospital, Third Military Medical University; Chongqing; China
| |
Collapse
|
11
|
JCM-16021, a Chinese Herbal Formula, Attenuated Visceral Hyperalgesia in TNBS-Induced Postinflammatory Irritable Bowel Syndrome through Reducing Colonic EC Cell Hyperplasia and Serotonin Availability in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:239638. [PMID: 22719782 PMCID: PMC3376539 DOI: 10.1155/2012/239638] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 03/25/2012] [Accepted: 04/12/2012] [Indexed: 02/06/2023]
Abstract
The present study aimed to investigate the analgesic effect of JCM-16021, a revised traditional Chinese herbal formula, on postinflammatory irritable bowel syndrome (PI-IBS) in rats. The trinitrobenzene sulfonic (TNBS) acid-induced PI-IBS model rats were orally administrated with different doses of JCM-16021 (1.2, 2.4, and 4.8 g/kg/d) for 14 consecutive days. The results showed that JCM-16021 treatment dose-dependently attenuated visceral hyperalgesia in PI-IBS rats. Further, the colonic enterochromaffin (EC) cell number, serotonin (5-HT) content, tryptophan hydroxylase expression, and mechanical-stimuli-induced 5-HT release were significantly ameliorated. Moreover, the decreased levels of mucosal cytokines in PI-IBS, especially the helper T-cell type 1- (T(h)1-) related cytokine TNF-α, were also elevated after JCM-16021 treatment. These data demonstrate that the analgesic effect of JCM-16021 on TNBS-induced PI-IBS rats may be medicated via reducing colonic EC cell hyperplasia and 5-HT availability.
Collapse
|
12
|
Tang YH, Xu SC, Wu P. Irritable bowel syndrome and food allergy. Shijie Huaren Xiaohua Zazhi 2012; 20:389-393. [DOI: 10.11569/wcjd.v20.i5.389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a kind of functional gastrointestinal disease characterized by abdominal pain or discomfort associated with changes in bowel habits. The alternating symptoms of IBS seriously affect the patients' quality of life. Some studies have found that food could cause or aggravate the symptoms of IBS possibly by inducing food allergy and food intolerance. However, the specific mechanisms have not been established yet. Currently there are "bacterial 'toxin' hypothesis", "immune or inflammatory response hypothesis" and "physical or chemical irritation hypothesis" explaining the role of food in the pathogenesis of IBS. It has been known that food factors play a very important role in the pathogenesis of IBS. This article reviews food allergy and the possible mechanisms, diagnosis and treatment of IBS caused by food.
Collapse
|
13
|
Yan N, Cao B, Xu J, Hao C, Zhang X, Li Y. Glutamatergic activation of anterior cingulate cortex mediates the affective component of visceral pain memory in rats. Neurobiol Learn Mem 2011; 97:156-64. [PMID: 22107830 DOI: 10.1016/j.nlm.2011.11.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 11/03/2011] [Accepted: 11/07/2011] [Indexed: 11/24/2022]
Abstract
Studies of both humans and animals suggest that anterior cingulate cortex (ACC) is important for processing pain perception. We identified that perigenul ACC (pACC) sensitization and enhanced visceral pain in a visceral hypersensitive rat in previous studies. Pain contains both sensory and affective dimensions. Teasing apart the mechanisms that control the neural pathways mediating pain affect and sensation in nociceptive behavioral response is a challenge. In this study, using a rodent visceral pain assay that combines the colorectal distension (CRD)-induced visceromotor response (VMR) with the conditioning place avoidance (CPA), we measured a learned behavior that directly reflects the affective component of visceral pain. When CRD was paired with a distinct environment context, the rats spent significantly less time in this compartment on the post-conditioning test days as compared with the pre-conditioning day. Effects were lasted for 14 days. Bilateral pACC lesion significantly reduced CPA scores without reducing acute visceral pain behaviors (CRD-induced VMR). Bilateral administration of non-NMDA receptor antagonist CNQX or NMDA receptor antagonist AP5 into the pACC decreased the CPA scores. AP5 or CNQX at dose of 400 mM produced about 70% inhibition of CRD-CPA in the day 1, 4 and 7, and completely abolished the CPA in the day 14 after conditioning. We concluded that neurons in the pACC are necessary for the "aversiveness" of visceral nociceptor stimulation. pACC activation is critical for the memory processing involved in long-term negative affective state and prediction of aversive stimuli by contextual cue.
Collapse
Affiliation(s)
- Ni Yan
- Neuroscience Research Laboratory, Department of Biology and Chemistry, City University of Hong Kong, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
14
|
Zhang LY, Dong X, Liu ZL, Mo JZ, Fang JY, Xiao SD, Li Y, Chen SL. Luminal serotonin time-dependently modulates vagal afferent driven antinociception in response to colorectal distention in rats. Neurogastroenterol Motil 2011; 23:62-9, e6. [PMID: 20723070 DOI: 10.1111/j.1365-2982.2010.01589.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Compelling evidence shows that vagal afferents mediate antinociception in response to visceral insults. Our recent findings implied that luminal serotonin (5-hydroxytryptamine, 5-HT) might mediate chronic food allergen sensitized visceral hyperalgesia, in which vagal afferents might be implicated. Here, to test this hypothesis, we investigated the effects of luminal infused 5-HT on visceral nociception and the involvement of vagal antinociceptive pathway. METHODS The vagus-intact or vagotomized rats were given acute intraluminally or intraperitoneally administered 5-HT, or chronic luminal infusion of 5-HT. The visceromotor response (VMR) to colorectal distension (CRD) was electrophysiologically recorded. KEY RESULTS Acute intraluminal infusion of 5-HT (10 or 100 nmol) significantly attenuated VMR to CRD, while systemic administered 5-HT at similar doses resulted in markedly augmented nociception. Pretreatment with luminal application of granisetron or lidocaine, or pharmacological depletion of endogenous 5-HT with injection of p-chlorophenylalanine, a 5-HT synthesis inhibitor, and subdiaphragmatic vagotomy or functional deafferentation with capsaicin abolished the effect of luminal (but not systemic) 5-HT. Chronic infusion of 5-HT (10 nmol d(-1) for 5 days) produced gradual augmentation of baseline VMR. And, the VMR to CRD after 5-HT infusion decreased on day 1 and 2, then gradually increased from day 3. Surgical vagotomy or daily preperfusion with granisetron canceled these time-dependent patterns. CONCLUSIONS & INFERENCES Luminal 5-HT time-dependently modulates vagal afferent driven antinociception. Acute infusion of 5-HT attenuates visceral nociception via activation of vagal afferent 5-HT type 3 receptors (5-HT(3)Rs)within intestinal mucosa; while chronic luminal 5-HT caused gradually developed visceral hyperalgesia, which may also involve vagal 5-HT(3)Rs.
Collapse
Affiliation(s)
- L Y Zhang
- Department of Gastroenterology, Renji Hospital, Shanghai Institute of Digestive Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|