1
|
Making Sense of Quorum Sensing at the Intestinal Mucosal Interface. Cells 2022; 11:cells11111734. [PMID: 35681429 PMCID: PMC9179481 DOI: 10.3390/cells11111734] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome can produce metabolic products that exert diverse activities, including effects on the host. Short chain fatty acids and amino acid derivatives have been the focus of many studies, but given the high microbial density in the gastrointestinal tract, other bacterial products such as those released as part of quorum sensing are likely to play an important role for health and disease. In this review, we provide of an overview on quorum sensing (QS) in the gastrointestinal tract and summarise what is known regarding the role of QS molecules such as auto-inducing peptides (AIP) and acyl-homoserine lactones (AHL) from commensal, probiotic, and pathogenic bacteria in intestinal health and disease. QS regulates the expression of numerous genes including biofilm formation, bacteriocin and toxin secretion, and metabolism. QS has also been shown to play an important role in the bacteria–host interaction. We conclude that the mechanisms of action of QS at the intestinal neuro–immune interface need to be further investigated.
Collapse
|
2
|
Błaszczyk K, Gajewska M, Wilczak J, Kamola D, Majewska A, Harasym J, Gromadzka-Ostrowska J. Oral administration of oat beta-glucan preparations of different molecular weight results in regulation of genes connected with immune response in peripheral blood of rats with LPS-induced enteritis. Eur J Nutr 2018; 58:2859-2873. [PMID: 30284595 PMCID: PMC6769091 DOI: 10.1007/s00394-018-1838-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 09/26/2018] [Indexed: 01/05/2023]
Abstract
Purpose Beta-glucans are biologically active polysaccharides having antioxidant, immunomodulatory, and antiinflammatory properties. This study investigated the transcriptomic profile in peripheral blood of rats with LPS-induced enteritis, which were fed a diet supplemented with high- (G1) and low- (G2) molecular-weight oat beta-glucans. Methods Two-color rat gene expression microarrays were applied and the analysis was performed using a common reference design to provide easy means of comparing samples from various experimental conditions against one another. Common reference sample was labeled with cyanine 3 (Cy3) and investigated samples from each experimental group: C-G0 (control group fed semi-synthetic diet), LPS-G0 (LPS-challenged group fed semi-synthetic diet), LPS-G1 (LPS-challenged group fed G1 beta-glucan enriched diet), and LPS-G2 (LPS-challenged group fed G2 beta-glucan enriched diet) were labeled with cyanine 5 (Cy5). Each microarray was performed in quadruplicate. Statistical analysis was performed using one-way ANOVA and Tukey’s HSD post-hoc test (p < 0.05). A multiple testing correction was performed using Benjamini and Hochberg False Discovery Rate < 5%. A quantitative real-time RT-PCR was performed to verify the expression of chosen transcripts. Results The microarray analyses revealed differentially expressed transcripts between: the LPS-G0 and the control groups: C-G0 (138 genes), the LPS-G1 and LPS-G0 groups (533 genes), and the LPS-G2 and LPS-G0 groups (97 genes). Several differentially expressed genes in the beta-glucan-supplemented groups encoded proteins belonging to TLR and NLR signaling pathways, as well as prostaglandin synthesis and regulation pathways. Both beta-glucans up-regulated the expression of Atg10, which belongs to the family of autophagy-related genes, suggesting a possible link between autophagy induction and beta-glucan supplementation. Conclusion The changes in gene expression observed in the peripheral blood indicate that oat beta-glucans exerted a protective effect in rats with an induced inflammatory state caused by LPS challenge. The greater number of differentially expressed genes was observed in group supplemented with G1 beta-glucan, pointing at the differences in the mode of action of high- and low-molecular-weight beta-glucans in the organism. Electronic supplementary material The online version of this article (10.1007/s00394-018-1838-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katarzyna Błaszczyk
- Department of Dietetics, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776, Warsaw, Poland
| | - Małgorzata Gajewska
- Biochemistry Division, Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159, 02-787, Warsaw, Poland.
| | - Jacek Wilczak
- Dietetics Division, Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159, 02-787, Warsaw, Poland
| | - Dariusz Kamola
- Dietetics Division, Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159, 02-787, Warsaw, Poland
| | - Alicja Majewska
- Biochemistry Division, Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159, 02-787, Warsaw, Poland
| | - Joanna Harasym
- BIO-REF@LAB, Department of Biotechnology and Food Analysis, Faculty of Engineering and Economics, Wrocław University of Economics, Komandorska 118/120, 53-345, Wrocław, Poland
| | - Joanna Gromadzka-Ostrowska
- Department of Dietetics, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776, Warsaw, Poland
| |
Collapse
|
3
|
Suchecka D, Harasym J, Wilczak J, Gromadzka-Ostrowska J. Hepato- and gastro- protective activity of purified oat 1-3, 1-4-β-d-glucans of different molecular weight. Int J Biol Macromol 2016; 91:1177-85. [PMID: 27344948 DOI: 10.1016/j.ijbiomac.2016.06.062] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/16/2016] [Accepted: 06/19/2016] [Indexed: 11/16/2022]
Abstract
Protective and antioxidant properties of highly purified oat β-glucans of high and low molecular weight in liver and stomach were evaluated. The novelty in approach was to determine whether dietary β-glucans affect the parameters of oxidative stress directly in the stomach and indirectly in the liver, especially in inflammation states. Physicochemical properties e.g. viscoelastic was found as strictly dependent from molecular weight of oat β-glucans hence its metabolic activity could also show dependence. Three groups of rats were fed control diet and diet supplemented with low and high molecular weights oat β-glucans. Animals were divided into controls and individuals with experimentally induced intestinal inflammation. Most active in increasing of total antioxidant status was low molecular weight β-glucan. High molecular weight β-glucan supplementation inhibits lipid oxidation the most in LPS treated animals. The results obtained from experiment encourage for dietary intervention with oat β-glucans for stomach and liver protection during existing enteritis.
Collapse
Affiliation(s)
- Dominika Suchecka
- Chair of Nutritional Physiology, Department of Dietetics, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences (SGGW), ul. Nowoursynowska 166, 02-787 Warsaw, Poland.
| | - Joanna Harasym
- Bio-Ref Laboratory, Food Biotechnology Department, Faculty of Engineering and Economics, Wroclaw University of Economics, ul. Komandorska 118/120, 53-345 Wrocław, Poland
| | - Jacek Wilczak
- Division of Dietetics, Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), ul. Nowoursynowska 166, 02-787 Warsaw, Poland
| | - Joanna Gromadzka-Ostrowska
- Chair of Nutritional Physiology, Department of Dietetics, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences (SGGW), ul. Nowoursynowska 166, 02-787 Warsaw, Poland
| |
Collapse
|
4
|
Wilczak J, Błaszczyk K, Kamola D, Gajewska M, Harasym JP, Jałosińska M, Gudej S, Suchecka D, Oczkowski M, Gromadzka-Ostrowska J. The effect of low or high molecular weight oat beta-glucans on the inflammatory and oxidative stress status in the colon of rats with LPS-induced enteritis. Food Funct 2016; 6:590-603. [PMID: 25520199 DOI: 10.1039/c4fo00638k] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
PURPOSE The aim of the study was to investigate the protective effect of low and high molecular weight beta-glucans on the chosen immunological parameters, markers of antioxidative potential in rats' colon tissue, the number of lactic acid bacteria (LAB) and the concentration of short-chain fatty acids (SCFA) in rats' faeces. METHODS The experiment was carried out on 72 8-week old male Sprague-Dawley rats: control (n = 36) and experimental (n = 36). In half of the animals from each group enteritis was induced by LPS (10 mg kg(-1)). Rats from the experimental group were divided into two groups receiving high (GI) or low (GII) molecular weight beta-glucans for 6 consecutive weeks. RESULTS LPS evoked enteritis in all the treated animals, manifested by changes in the levels of IL-10, IL-12 and TNF-alpha, as well as in the number of intraepithelial lymphocytes (IELs) and lamina propria lymphocytes (LPLs) in the colon tissue. Dietary supplementation with beta-glucans following LPS treatment partially reversed this effect. The changes in SCFA concentration were noted, indicating an improvement of the fermentation process in the colon. This effect coincided with an increased number of LAB, pointing at the prebiotic properties of beta-glucans. The positive influence of beta-glucans was also manifested by the improved values of antioxidative potential markers (TAS, SOD, GR and GPx activity, TBARS concentration), noted especially in rats with LPS-induced enteritis. This influence was more pronounced in the case of low molecular weight oat beta-glucan (GII). CONCLUSIONS The present study showed a positive effect of beta-glucans, especially the low molecular weight form, on the colon tissue of healthy rats, as well as animals with LPS-induced enteritis.
Collapse
Affiliation(s)
- Jacek Wilczak
- Division of Dietetics, Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Błaszczyk K, Wilczak J, Harasym J, Gudej S, Suchecka D, Królikowski T, Lange E, Gromadzka-Ostrowska J. Impact of low and high molecular weight oat beta-glucan on oxidative stress and antioxidant defense in spleen of rats with LPS induced enteritis. Food Hydrocoll 2015. [DOI: 10.1016/j.foodhyd.2015.05.025] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Suchecka D, Harasym J, Wilczak J, Gajewska M, Oczkowski M, Gudej S, Błaszczyk K, Kamola D, Filip R, Gromadzka-Ostrowska J. Antioxidative and anti-inflammatory effects of high beta-glucan concentration purified aqueous extract from oat in experimental model of LPS-induced chronic enteritis. J Funct Foods 2015. [DOI: 10.1016/j.jff.2014.12.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
7
|
Vagal pathways for microbiome-brain-gut axis communication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 817:115-33. [PMID: 24997031 DOI: 10.1007/978-1-4939-0897-4_5] [Citation(s) in RCA: 307] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is now strong evidence from animal studies that gut microorganism can activate the vagus nerve and that such activation plays a critical role in mediating effects on the brain and behaviour. The vagus appears to differentiate between non-pathogenic and potentially pathogenic bacteria even in the absence of overt inflammation and vagal pathways mediate signals that can induce both anxiogenic and anxiolytic effects, depending on the nature of the stimulus. Certain vagal signals from the gut can instigate an anti-inflammatory reflex with afferent signals to the brain activating an efferent response, releasing mediators including acetylcholine that, through an interaction with immune cells, attenuates inflammation. This immunomodulatory role of the vagus nerve may also have consequences for modulation of brain function and mood.What is currently lacking are relevant data on the electrophysiology of the system. Certainly, important advances in our understanding of the gut-brain and microbiome- gut-brain axis will come from studies of how distinct microbial and nutritional stimuli activate the vagus and the nature of the signals transmitted to the brain that lead to differential changes in the neurochemistry of the brain and behaviour.Understanding the induction and transmission of signals in the vagus nerve may have important implications for the development of microbial-or nutrition based therapeutic strategies for mood disorders.
Collapse
|
8
|
Abstract
The gastrointestinal tract is innervated by several distinct populations of neurons, whose cell bodies either reside within (intrinsic) or outside (extrinsic) the gastrointestinal wall. Normally, most individuals are unaware of the continuous, complicated functions of these neurons. However, for patients with gastrointestinal disorders, such as IBD and IBS, altered gastrointestinal motility, discomfort and pain are common, debilitating symptoms. Although bouts of intestinal inflammation underlie the symptoms associated with IBD, increasing preclinical and clinical evidence indicates that infection and inflammation are also key risk factors for the development of other gastrointestinal disorders. Notably, a strong correlation exists between prior exposure to gut infection and symptom occurrence in IBS. This Review discusses the evidence for neuroplasticity (structural, synaptic or intrinsic changes that alter neuronal function) affecting gastrointestinal function. Such changes are evident during inflammation and, in many cases, long after healing of the damaged tissues, when the nervous system fails to reset back to normal. Neuroplasticity within distinct populations of neurons has a fundamental role in the aberrant motility, secretion and sensation associated with common clinical gastrointestinal disorders. To find appropriate therapeutic treatments for these disorders, the extent and time course of neuroplasticity must be fully appreciated.
Collapse
|
9
|
Ochoa-Cortes F, Ramos-Lomas T, Miranda-Morales M, Spreadbury I, Ibeakanma C, Barajas-Lopez C, Vanner S. Bacterial cell products signal to mouse colonic nociceptive dorsal root ganglia neurons. Am J Physiol Gastrointest Liver Physiol 2010; 299:G723-32. [PMID: 20576919 DOI: 10.1152/ajpgi.00494.2009] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This study examined whether bacterial cell products that might gain access to the intestinal interstitium could activate mouse colonic nociceptive dorsal root ganglion (DRG) neurons using molecular and electrophysiological recording techniques. Colonic projecting neurons were identified by using the retrograde tracer fast blue and Toll-like receptor (TLR) 1, 2, 3, 4, 5, 6, 9, adapter proteins Md-1 and Md-2, and MYD88 mRNA expression was observed in laser-captured fast blue-labeled neurons. Ultrapure LPS 1 microg/ml phosphorylated p65 NF-kappaB subunits increased transcript for TNF-alpha and IL-1beta and stimulated secretion of TNF-alpha from acutely dissociated DRG neurons. In current-clamp recordings from colonic DRG neurons, chronic incubation (24 h) of ultrapure LPS significantly increased neuronal excitability. In acute studies, 3-min superfusion of standard-grade LPS (3-30 microg/ml) reduced the rheobase by up to 40% and doubled action potential discharge rate. The LPS effects were not significantly different in TLR4 knockout mice compared with wild-type mice. In contrast to standard-grade LPS, acute application of ultrapure LPS did not increase neuronal excitability in whole cell recordings or afferent nerve recordings from colonic mesenteric nerves. However, acute application of bacterial lysate (Escherichia coli NLM28) increased action potential discharge over 60% compared with control medium. Moreover, lysate also activated afferent discharge from colonic mesenteric nerves, and this was significantly increased in chronic dextran sulfate sodium salt mice. These data demonstrate that bacterial cell products can directly activate colonic DRG neurons leading to production of inflammatory cytokines by neurons and increased excitability. Standard-grade LPS may also have actions independent of TLR signaling.
Collapse
|