1
|
Radler JB, McBride AR, Saha K, Nighot P, Holmes GM. Regional Heterogeneity in Intestinal Epithelial Barrier Permeability and Mesenteric Perfusion After Thoracic Spinal Cord Injury. Dig Dis Sci 2024; 69:3236-3248. [PMID: 39001959 DOI: 10.1007/s10620-024-08537-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/18/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Spinal cord injury (SCI) disrupts intestinal barrier function, thereby increasing antigen permeation and leading to poor outcomes. Despite the intestinal tract's anatomic and physiologic heterogeneity, studies following SCI have not comprehensively addressed intestinal pathophysiology with regional specificity. AIMS AND METHODS We used an experimental model of high thoracic SCI to investigate (1) regional mucosal oxidative stress using dihydroethidium labeling; (2) regional paracellular permeability to small- and large-molecular probes via Ussing chamber; (3) regional intestinal tight junction (TJ) protein expression; and (4) hindgut perfusion via the caudal mesenteric artery. RESULTS Dihydroethidium staining was significantly elevated within duodenal mucosa at 3-day post-SCI. Molar flux of [14C]-urea was significantly elevated in duodenum and proximal colon at 3-day post-SCI, while molar flux of [3H]-inulin was significantly elevated only in duodenum at 3-day post-SCI. Barrier permeability was mirrored by a significant increase in the expression of pore-forming TJ protein claudin-2 in duodenum and proximal colon at 3-day post-SCI. Claudin-2 expression remained significantly elevated in proximal colon at 3-week post-SCI. Expression of the barrier-forming TJ protein occludin was significantly reduced in duodenum at 3-day post-SCI. Caudal mesenteric artery flow was unchanged by SCI at 3 days or 3 weeks despite significant reductions in mean arterial pressure. CONCLUSION These data show that T3-SCI provokes elevated mucosal oxidative stress, altered expression of TJ proteins, and elevated intestinal barrier permeability in the proximal intestine. In contrast, mucosal oxidative stress and intestinal barrier permeability were unchanged in the hindgut after SCI. This regional heterogeneity may result from differential sensitivity to reduced mesenteric perfusion, though further studies are required to establish a causal link. Understanding regional differences in intestinal pathophysiology is essential for developing effective treatments and standards of care for individuals with SCI.
Collapse
Affiliation(s)
- Jackson B Radler
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, 500 University Dr., H109, Hershey, PA, 17033, USA
| | - Amanda R McBride
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, 500 University Dr., H109, Hershey, PA, 17033, USA
- Cooper Medical School of Rowan University, Camden, NJ, 08103, USA
| | - Kushal Saha
- Division of Gastroenterology and Hepatology, Department of Medicine, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Prashant Nighot
- Division of Gastroenterology and Hepatology, Department of Medicine, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Gregory M Holmes
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, 500 University Dr., H109, Hershey, PA, 17033, USA.
| |
Collapse
|
2
|
Holmes GM, Willing LB, Horvath N, Hajnal A. Feasibility Study of Bariatric Surgery in a Rat Model of Spinal Cord Injury to Achieve Beneficial Body Weight Outcome. Neurotrauma Rep 2022; 3:292-298. [PMID: 36060457 PMCID: PMC9438445 DOI: 10.1089/neur.2022.0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Affiliation(s)
- Gregory M. Holmes
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| | - Lisa B. Willing
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| | - Nelli Horvath
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| | - Andras Hajnal
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
3
|
Gillis RA, Dezfuli G, Bellusci L, Vicini S, Sahibzada N. Brainstem Neuronal Circuitries Controlling Gastric Tonic and Phasic Contractions: A Review. Cell Mol Neurobiol 2022; 42:333-360. [PMID: 33813668 PMCID: PMC9595174 DOI: 10.1007/s10571-021-01084-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/18/2021] [Indexed: 11/30/2022]
Abstract
This review is on how current knowledge of brainstem control of gastric mechanical function unfolded over nearly four decades from the perspective of our research group. It describes data from a multitude of different types of studies involving retrograde neuronal tracing, microinjection of drugs, whole-cell recordings from rodent brain slices, receptive relaxation reflex, accommodation reflex, c-Fos experiments, immunohistochemical methods, electron microscopy, transgenic mice, optogenetics, and GABAergic signaling. Data obtained indicate the following: (1) nucleus tractus solitarius (NTS)-dorsal motor nucleus of the vagus (DMV) noradrenergic connection is required for reflex control of the fundus; (2) second-order nitrergic neurons in the NTS are also required for reflex control of the fundus; (3) a NTS GABAergic connection is required for reflex control of the antrum; (4) a single DMV efferent pathway is involved in brainstem control of gastric mechanical function under most experimental conditions excluding the accommodation reflex. Dual-vagal effectors controlling cholinergic and non-adrenergic and non-cholinergic (NANC) input to the stomach may be part of the circuitry of this reflex. (5) GABAergic signaling within the NTS via Sst-GABA interneurons determine the basal (resting) state of gastric tone and phasic contractions. (6) For the vagal-vagal reflex to become operational, an endogenous opioid in the NTS is released and the activity of Sst-GABA interneurons is suppressed. From the data, we suggest that the CNS has the capacity to provide region-specific control over the proximal (fundus) and distal (antrum) stomach through engaging phenotypically different efferent inputs to the DMV.
Collapse
Affiliation(s)
- Richard A. Gillis
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Ghazaul Dezfuli
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Lorenza Bellusci
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Stefano Vicini
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, 20007, USA.
| | - Niaz Sahibzada
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20007, USA
| |
Collapse
|
4
|
Hoey RF, Hubscher CH. Investigation of Bowel Function with Anorectal Manometry in a Rat Spinal Cord Contusion Model. J Neurotrauma 2020; 37:1971-1982. [PMID: 32515264 DOI: 10.1089/neu.2020.7145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bowel dysfunction after chronic spinal cord injury (SCI) is a common source of morbidity and rehospitalization. Typical complications include constipation, fecal impaction, incontinence, abdominal distention, autonomic dysreflexia, and the necessity of interventions (i.e., suppositories, digital stimulation) to defecate. Numerous surveys have confirmed that the remediation of bowel complications is more highly valued for quality of life than improvements in walking. Much of what is known about bowel function after SCI for diagnosis and research in humans has been gained using anorectal manometry (ARM) procedures. However, ARM has been underutilized in pre-clinical animal work. Therefore, a novel combination of outcome measures was examined in the current study that incorporates functional output of the bowel (weekly fecal measurements), weight gain (pre-injury to terminal weight), and terminal ARM measurement with external anal sphincter electromyography under urethane anesthesia. The results indicate higher fecal output after contusion during the sub-acute period (4-7 days) post-injury, changes in the composition of the feces, and functionally obstructive responses in a specific section of the rectum (increased baseline pressure, increased frequency of contraction, and reduced ability to trigger a giant contraction to a distension stimulus). These results demonstrate significant bowel dysfunction in the rodent SCI contusion model that is consistent with data from human research. Thus, the combined measurement protocol enables the detection of changes and can be used, with minimal cost, to assess effectiveness of therapeutic interventions on bowel complications.
Collapse
Affiliation(s)
- Robert F Hoey
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Charles H Hubscher
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA.,Kentucky Spinal Cord Injury Research Center, Louisville, Kentucky, USA
| |
Collapse
|
5
|
Chase Dosing of Lipid Formulations to Enhance Oral Bioavailability of Nilotinib in Rats. Pharm Res 2020; 37:124. [PMID: 32524365 DOI: 10.1007/s11095-020-02841-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/18/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE Lipid-based formulations (LBF) have shown oral bioavailability enhancement of lipophilic drugs, but not necessarily in the case of hydrophobic drugs. This study explored the potential of lipid vehicles to improve the bioavailability of the hydrophobic drug nilotinib comparing a chase dosing approach and lipid suspensions. METHODS Nilotinib in vivo bioavailability in rats was determined after administering an aqueous suspension chase dosed with blank olive oil, Captex 1000, Peceol or Capmul MCM, respectively. Absolute bioavailability was determined (relative to an intravenous formulation). Pharmacokinetic parameters were compared to lipid suspensions. RESULTS Compared to the lipid suspensions, the chase dosed lipids showed a 2- to 7-fold higher bioavailability. Both long chain chase dosed excipients also significantly increased the bioavailability up to 2-fold compared to the aqueous suspension. Deconvolution of the pharmacokinetic data indicated that chase dosing of nilotinib resulted in prolonged absorption compared to the aqueous suspension. CONCLUSION Chase dosed LBF enhanced the in vivo bioavailability of nilotinib. Long chain lipids showed superior performance compared to medium chain lipids. Chase dosing appeared to prolong the absorption phase of the drug. Therefore, chase dosing of LBF is favourable compared to lipid suspensions for 'brick dust' molecules such as nilotinib. Graphical Abstract The potential of bio-enabling lipid vehicles, administered via chase dosing and lipid suspensions, has been evaluated as an approach to enhance oral bioavailability of nilotinib.
Collapse
|
6
|
Besecker EM, Blanke EN, Deiter GM, Holmes GM. Gastric vagal afferent neuropathy following experimental spinal cord injury. Exp Neurol 2019; 323:113092. [PMID: 31697943 DOI: 10.1016/j.expneurol.2019.113092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/11/2019] [Accepted: 10/23/2019] [Indexed: 01/01/2023]
Abstract
Dramatic impairment of gastrointestinal (GI) function accompanies high-thoracic spinal cord injury (T3-SCI). The vagus nerve contains mechano- and chemosensory fibers as well as the motor fibers necessary for the central nervous system (CNS) control of GI reflexes. Cell bodies for the vagal afferent fibers are located within the nodose gangla (NG) and the majority of vagal afferent axons are unmyelinated C fibers that are sensitive to capsaicin through activation of transient receptor potential vanilloid-1 (TRPV1) channels. Vagal afferent fibers also express receptors for GI hormones, including cholecystokinin (CCK). Previously, T3-SCI provokes a transient GI inflammatory response as well as a reduction of both gastric emptying and centrally-mediated vagal responses to GI peptides, including CCK. TRPV1 channels and CCK-A receptors (CCKar) expressed in vagal afferents are upregulated in models of visceral inflammation. The present study investigated whether T3-SCI attenuates peripheral vagal afferent sensitivity through plasticity of TRPV1 and CCK receptors. Vagal afferent response to graded mechanical stimulation of the stomach was significantly attenuated by T3-SCI at 3-day and 3-week recovery. Immunocytochemical labeling for CCKar and TRPV1 demonstrated expression on dissociated gastric-projecting NG neurons. Quantitative assessment of mRNA expression by qRT-PCR revealed significant elevation of CCKar and TRPV1 in the whole NG following T3-SCI in 3-day recovery, but levels returned to normal after 3-weeks. Three days after injury, systemic administration of CCK-8 s showed a significantly diminished gastric vagal afferent response in T3-SCI rats compared to control rats while systemic capsaicin infusion revealed a significant elevation of vagal response in T3-SCI vs control rats. These findings demonstrate that T3-SCI provokes peripheral remodeling and prolonged alterations in the response of vagal afferent fibers to the physiological signals associated with digestion.
Collapse
Affiliation(s)
- Emily M Besecker
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA 17033, United States of America; Department of Health Sciences, Gettysburg College, Gettysburg, PA 17325, United States of America
| | - Emily N Blanke
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA 17033, United States of America
| | - Gina M Deiter
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA 17033, United States of America
| | - Gregory M Holmes
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA 17033, United States of America.
| |
Collapse
|
7
|
Holmes GM, Blanke EN. Gastrointestinal dysfunction after spinal cord injury. Exp Neurol 2019; 320:113009. [PMID: 31299180 PMCID: PMC6716787 DOI: 10.1016/j.expneurol.2019.113009] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/13/2019] [Accepted: 07/07/2019] [Indexed: 12/12/2022]
Abstract
The gastrointestinal tract of vertebrates is a heterogeneous organ system innervated to varying degrees by a local enteric neural network as well as extrinsic parasympathetic and sympathetic neural circuits located along the brainstem and spinal axis. This diverse organ system serves to regulate the secretory and propulsive reflexes integral to the digestion and absorption of nutrients. The quasi-segmental distribution of the neural circuits innervating the gastrointestinal (GI) tract produces varying degrees of dysfunction depending upon the level of spinal cord injury (SCI). At all levels of SCI, GI dysfunction frequently presents life-long challenges to individuals coping with injury. Growing attention to the profound changes that occur across the entire physiology of individuals with SCI reveals profound knowledge gaps in our understanding of the temporal dimensions and magnitude of organ-specific co-morbidities following SCI. It is essential to understand and identify these broad pathophysiological changes in order to develop appropriate evidence-based strategies for management by clinicians, caregivers and individuals living with SCI. This review summarizes the neurophysiology of the GI tract in the uninjured state and the pathophysiology associated with the systemic effects of SCI.
Collapse
Affiliation(s)
- Gregory M Holmes
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA 17033, United states of America.
| | - Emily N Blanke
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA 17033, United states of America
| |
Collapse
|
8
|
Arbizu RA, Nurko S, Heinz N, Amicangelo M, Rodriguez L. Same day versus next day antroduodenal manometry results in children with upper gastrointestinal symptoms: A prospective study. Neurogastroenterol Motil 2019; 31:e13521. [PMID: 30537362 DOI: 10.1111/nmo.13521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 10/16/2018] [Accepted: 11/06/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND We evaluated the changes in antroduodenal manometry (ADM) parameters and interpretation when the test is performed the day of catheter placement and the following day. METHODS Catheter was placed endoscopically under anesthesia and recorded on day 1 and repeated on day 2. Study parameters including antrum and small bowel motility index (MI) during fasting, meal, postprandial, erythromycin (EES), and octreotide (OCT) challenge phases, the presence of the phase III of the migrating motor complex (MMC), visual postprandial response, and study interpretation were compared between both days. KEY RESULTS Twenty patients were studied. Antrum and small bowel MI during fasting, postprandial, and EES challenge phases were significantly higher on day 2 than on day 1 (P < 0.05). The proportion of patients having a phase III of the MMC was significantly higher on day 2 compared to day 1 (65% vs 15%; P = 0.006). Study interpretation changed from day 1 to day 2. On day 1, 70% of the patients had a normal study and 30% had an abnormal study. On day 2, 67% of the patients with an abnormal study on day 1 changed to normal and 33% remained abnormal. All patients with a normal study on day 1 remained normal on day 2. CONCLUSIONS AND INFERENCES ADM parameters are affected the day of catheter placement. The MI and presence of the phase III of the MMC were significantly higher on day 2 compared to day 1. Overall, ADM study interpretation changed from day 1 to day 2 in 20% of the patients.
Collapse
Affiliation(s)
- Ricardo A Arbizu
- Center for Motility and Gastrointestinal Functional Disorders, Division of Gastroenterology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Samuel Nurko
- Center for Motility and Gastrointestinal Functional Disorders, Division of Gastroenterology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Nicole Heinz
- Center for Motility and Gastrointestinal Functional Disorders, Division of Gastroenterology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Maureen Amicangelo
- Center for Motility and Gastrointestinal Functional Disorders, Division of Gastroenterology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Leonel Rodriguez
- Center for Motility and Gastrointestinal Functional Disorders, Division of Gastroenterology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
9
|
Opportunities and Challenges for Single-Unit Recordings from Enteric Neurons in Awake Animals. MICROMACHINES 2018; 9:mi9090428. [PMID: 30424361 PMCID: PMC6187697 DOI: 10.3390/mi9090428] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/17/2018] [Accepted: 08/23/2018] [Indexed: 12/18/2022]
Abstract
Advanced electrode designs have made single-unit neural recordings commonplace in modern neuroscience research. However, single-unit resolution remains out of reach for the intrinsic neurons of the gastrointestinal system. Single-unit recordings of the enteric (gut) nervous system have been conducted in anesthetized animal models and excised tissue, but there is a large physiological gap between awake and anesthetized animals, particularly for the enteric nervous system. Here, we describe the opportunity for advancing enteric neuroscience offered by single-unit recording capabilities in awake animals. We highlight the primary challenges to microelectrodes in the gastrointestinal system including structural, physiological, and signal quality challenges, and we provide design criteria recommendations for enteric microelectrodes.
Collapse
|
10
|
Besecker EM, White AR, Holmes GM. Diminished gastric prokinetic response to ghrelin in a rat model of spinal cord injury. Neurogastroenterol Motil 2018; 30:e13258. [PMID: 29205695 PMCID: PMC5878704 DOI: 10.1111/nmo.13258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/01/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Patients with cervical or high-thoracic spinal cord injury (SCI) often present reduced gastric emptying and early satiety. Ghrelin provokes motility via gastric vagal neurocircuitry and ghrelin receptor agonists offer a therapeutic option for gastroparesis. We have previously shown that experimental high-thoracic injury (T3-SCI) diminishes sensitivity to another gastrointestinal peptide, cholecystokinin. This study tests the hypothesis that T3-SCI impairs the vagally mediated response to ghrelin. METHODS We investigated ghrelin sensitivity in control and T3-SCI rats at 3-days or 3-weeks after injury utilizing: (i) acute (3-day post-injury) fasting and post-prandial serum levels of ghrelin; (ii) in vivo gastric reflex recording following intravenous or central brainstem ghrelin; and (iii) in vitro whole cell recording of neurons within the dorsal motor nucleus of the vagus (DMV). KEY RESULTS The 2-day food intake of T3-SCI rats was reduced while fasting serum ghrelin levels were higher than in controls. Intravenous and fourth ventricle ghrelin increased in vivo gastric motility in fasted 3-day control rats but not fasted T3-SCI rats. In vitro recording of DMV neurons from 3-day T3-SCI rats were insensitive to exogenous ghrelin. For each measure, vagal responses returned after 3-weeks. CONCLUSIONS AND INFERENCES Hypophagia accompanying T3-SCI produces a significant and physiologically appropriate elevation in serum ghrelin levels. However, higher ghrelin levels did not translate into increased gastric motility in the acute stage of T3-SCI. We propose that this may reflect diminished sensitivity of peripheral vagal afferents to ghrelin or a reduction in the responsiveness of medullary gastric vagal neurocircuitry following T3-SCI.
Collapse
Affiliation(s)
- Emily M. Besecker
- Department of Neural and Behavioral Sciences, Penn State University
College of Medicine, Hershey, PA 17033,Department of Health Sciences, Gettysburg College, Gettysburg, PA
17325
| | - Amanda R. White
- Department of Neural and Behavioral Sciences, Penn State University
College of Medicine, Hershey, PA 17033
| | - Gregory M. Holmes
- Department of Neural and Behavioral Sciences, Penn State University
College of Medicine, Hershey, PA 17033,Corresponding Author: Dr. Gregory M. Holmes, Penn State
University College of Medicine, 500 University Dr., H181, Hershey, PA 17033,
Tel: +1 717 531-6413, fax; +1 717 531-5184,
| |
Collapse
|
11
|
Qi H, Mariager CØ, Lindhardt J, Nielsen PM, Stødkilde‐Jørgensen H, Laustsen C. Effects of anesthesia on renal function and metabolism in rats assessed by hyperpolarized
MRI. Magn Reson Med 2018. [DOI: 10.1002/mrm.27165] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Haiyun Qi
- MR Research Centre, Department of Clinical MedicineAarhus UniversityAarhus Denmark
| | | | - Jakob Lindhardt
- MR Research Centre, Department of Clinical MedicineAarhus UniversityAarhus Denmark
| | - Per Mose Nielsen
- MR Research Centre, Department of Clinical MedicineAarhus UniversityAarhus Denmark
| | | | - Christoffer Laustsen
- MR Research Centre, Department of Clinical MedicineAarhus UniversityAarhus Denmark
| |
Collapse
|
12
|
Zádori ZS, Gyires K. In Vivo Measurement of Intragastric Pressure with a Rubber Balloon in the Anesthetized Rat. ACTA ACUST UNITED AC 2018; 57:21.12.1-6.17.11. [DOI: 10.1002/0471140856.tx2112s57] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zoltán S. Zádori
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University Budapest Hungary
| | - Klára Gyires
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University Budapest Hungary
| |
Collapse
|
13
|
White AR, Holmes GM. Anatomical and Functional Changes to the Colonic Neuromuscular Compartment after Experimental Spinal Cord Injury. J Neurotrauma 2018; 35:1079-1090. [PMID: 29205096 DOI: 10.1089/neu.2017.5369] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A profound reduction in colorectal transit time accompanies spinal cord injury (SCI), yet the colonic alterations after SCI have yet to be understood fully. The loss of descending supraspinal input to lumbosacral neural circuits innervating the colon is recognized as one causal mechanism. Remodeling of the colonic enteric nervous system/smooth muscle junction in response to inflammation, however, is recognized as one factor leading to colonic dysmotility in other pathophysiological models. We investigated the alterations to the neuromuscular junction in rats with experimental high-thoracic (T3) SCI. One day to three weeks post-injury, both injured and age-matched controls underwent in vivo experimentation followed by tissue harvest for histological evaluation. Spontaneous colonic contractions were reduced significantly in the proximal and distal colon of T3-SCI rats. Histological evaluation of proximal and distal colon demonstrated significant reductions of colonic mucosal crypt depth and width. Markers of intestinal inflammation were assayed by qRT-PCR. Specifically, Icam1, Ccl2 (MCP-1), and Ccl3 (MIP-1α) mRNA was acutely elevated after T3-SCI. Smooth muscle thickness and collagen content of the colon were increased significantly in T3-SCI rats. Colonic cross sections immunohistochemically processed for the pan-neuronal marker HuC/D displayed a significant decrease in colonic enteric neuron density that became more pronounced at three weeks after injury. Our data suggest that post-SCI inflammation and remodeling of the enteric neuromuscular compartment accompanies SCI. These morphological changes may provoke the diminished colonic motility that occurs during this same period, possibly through the disruption of intrinsic neuromuscular control of the colon.
Collapse
Affiliation(s)
- Amanda R White
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine , Hershey, Pennsylvania
| | - Gregory M Holmes
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine , Hershey, Pennsylvania
| |
Collapse
|
14
|
Besecker EM, Deiter GM, Pironi N, Cooper TK, Holmes GM. Mesenteric vascular dysregulation and intestinal inflammation accompanies experimental spinal cord injury. Am J Physiol Regul Integr Comp Physiol 2017; 312:R146-R156. [PMID: 27834292 PMCID: PMC5283935 DOI: 10.1152/ajpregu.00347.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/26/2016] [Accepted: 11/04/2016] [Indexed: 01/23/2023]
Abstract
Cervical and high thoracic spinal cord injury (SCI) drastically impairs autonomic nervous system function. Individuals with SCI at thoracic spinal level 5 (T5) or higher often present cardiovascular disorders that include resting systemic arterial hypotension. Gastrointestinal (GI) tissues are critically dependent upon adequate blood flow and even brief periods of visceral hypoxia triggers GI dysmotility. The aim of this study was to test the hypothesis that T3-SCI induces visceral hypoperfusion, diminished postprandial vascular reflexes, and concomitant visceral inflammation. We measured in vivo systemic arterial blood pressure and superior mesenteric artery (SMA) and duodenal blood flow in anesthetized T3-SCI rats at 3 days and 3 wk postinjury either fasted or following enteral feeding of a liquid mixed-nutrient meal (Ensure). In separate cohorts of fasted T3-SCI rats, markers of intestinal inflammation were assayed by qRT-PCR. Our results show that T3-SCI rats displayed significantly reduced SMA blood flow under all experimental conditions (P < 0.05). Specifically, the anticipated elevation of SMA blood flow in response to duodenal nutrient infusion (postprandial hyperemia) was either delayed or absent after T3-SCI. The dysregulated SMA blood flow in acutely injured T3-SCI rats coincides with abnormal intestinal morphology and elevation of inflammatory markers, all of which resolve after 3 wk. Specifically, Icam1, Ccl2 (MCP-1), and Ccl3 (MIP-1α) were acutely elevated following T3-SCI. Our data suggest that arterial hypotension diminishes mesenteric blood flow necessary to meet mucosal demands at rest and during digestion. The resulting GI ischemia and low-grade inflammation may be an underlying pathology leading to GI dysfunction seen following acute T3-SCI.
Collapse
Affiliation(s)
- Emily M Besecker
- Department of Neural & Behavioral Sciences, Penn State University College of Medicine, Hershey, Pennsylvania
- Department of Health Sciences, Gettysburg College, Gettysburg, Pennsylvania
| | - Gina M Deiter
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, Pennsylvania
| | - Nicole Pironi
- Department of Biology, Muhlenberg College, Allentown, Pennsylvania
| | - Timothy K Cooper
- Department of Comparative Medicine, Penn State University College of Medicine, Hershey, Pennsylvania Hershey, Pennsylvania; and
| | - Gregory M Holmes
- Department of Neural & Behavioral Sciences, Penn State University College of Medicine, Hershey, Pennsylvania;
| |
Collapse
|
15
|
Browning KN, Travagli RA. Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Compr Physiol 2015; 4:1339-68. [PMID: 25428846 DOI: 10.1002/cphy.c130055] [Citation(s) in RCA: 331] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although the gastrointestinal (GI) tract possesses intrinsic neural plexuses that allow a significant degree of autonomy over GI functions, the central nervous system (CNS) provides extrinsic neural inputs that regulate, modulate, and control these functions. While the intestines are capable of functioning in the absence of extrinsic inputs, the stomach and esophagus are much more dependent upon extrinsic neural inputs, particularly from parasympathetic and sympathetic pathways. The sympathetic nervous system exerts a predominantly inhibitory effect upon GI muscle and provides a tonic inhibitory influence over mucosal secretion while, at the same time, regulates GI blood flow via neurally mediated vasoconstriction. The parasympathetic nervous system, in contrast, exerts both excitatory and inhibitory control over gastric and intestinal tone and motility. Although GI functions are controlled by the autonomic nervous system and occur, by and large, independently of conscious perception, it is clear that the higher CNS centers influence homeostatic control as well as cognitive and behavioral functions. This review will describe the basic neural circuitry of extrinsic inputs to the GI tract as well as the major CNS nuclei that innervate and modulate the activity of these pathways. The role of CNS-centered reflexes in the regulation of GI functions will be discussed as will modulation of these reflexes under both physiological and pathophysiological conditions. Finally, future directions within the field will be discussed in terms of important questions that remain to be resolved and advances in technology that may help provide these answers.
Collapse
Affiliation(s)
- Kirsteen N Browning
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | | |
Collapse
|
16
|
Toti L, Travagli RA. Gastric dysregulation induced by microinjection of 6-OHDA in the substantia nigra pars compacta of rats is determined by alterations in the brain-gut axis. Am J Physiol Gastrointest Liver Physiol 2014; 307:G1013-23. [PMID: 25277799 PMCID: PMC4865236 DOI: 10.1152/ajpgi.00258.2014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Idiopathic Parkinson's disease (PD) is a late-onset, chronic, and progressive motor dysfunction attributable to loss of nigrostriatal dopamine neurons. Patients with PD experience significant gastrointestinal (GI) issues, including gastroparesis. We aimed to evaluate whether 6-hydroxy-dopamine (6-OHDA)-induced degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) induces gastric dysmotility via dysfunctions of the brain-gut axis. 6-OHDA microinjection into the SNpc induced a >90% decrease in tyrosine hydroxylase-immunoreactivity (IR) on the injection site. The [13C]-octanoic acid breath test showed a delayed gastric emptying 4 wk after the 6-OHDA treatment. In control rats, microinjection of the indirect sympathomimetic, tyramine, in the dorsal vagal complex (DVC) decreased gastric tone and motility; this inhibition was prevented by the fourth ventricular application of either a combination of α1- and α2- or a combination of D1 and D2 receptor antagonists. Conversely, in 6-OHDA-treated rats, whereas DVC microinjection of tyramine had reduced effects on gastric tone or motility, DVC microinjection of thyrotropin-releasing hormone induced a similar increase in motility as in control rats. In 6-OHDA-treated rats, there was a decreased expression of choline acetyl transferase (ChAT)-IR and neuronal nitric oxide synthase (NOS)-IR in DVC neurons but an increase in dopamine-β-hydroxylase-IR in the A2 area. Within the myenteric plexus of the esophagus, stomach, and duodenum, there were no changes in the total number of neurons; however, the percentage of NOS-IR neurons increased, whereas that of ChAT-IR decreased. Our data suggest that the delayed gastric emptying in a 6-OHDA rat model of PD may be caused by neurochemical and neurophysiological alterations in the brain-gut axis.
Collapse
Affiliation(s)
- Luca Toti
- Department of Neural and Behavioral Sciences, Penn State, College of Medicine, Hershey, Pennsylvania
| | - R. Alberto Travagli
- Department of Neural and Behavioral Sciences, Penn State, College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
17
|
Holmes GM, Swartz EM, McLean MS. Fabrication and implantation of miniature dual-element strain gages for measuring in vivo gastrointestinal contractions in rodents. J Vis Exp 2014:51739. [PMID: 25285858 DOI: 10.3791/51739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Gastrointestinal dysfunction remains a major cause of morbidity and mortality. Indeed, gastrointestinal (GI) motility in health and disease remains an area of productive research with over 1,400 published animal studies in just the last 5 years. Numerous techniques have been developed for quantifying smooth muscle activity of the stomach, small intestine, and colon. In vitro and ex vivo techniques offer powerful tools for mechanistic studies of GI function, but outside the context of the integrated systems inherent to an intact organism. Typically, measuring in vivo smooth muscle contractions of the stomach has involved an anesthetized preparation coupled with the introduction of a surgically placed pressure sensor, a static pressure load such as a mildly inflated balloon or by distending the stomach with fluid under barostatically-controlled feedback. Yet many of these approaches present unique disadvantages regarding both the interpretation of results as well as applicability for in vivo use in conscious experimental animal models. The use of dual element strain gages that have been affixed to the serosal surface of the GI tract has offered numerous experimental advantages, which may continue to outweigh the disadvantages. Since these gages are not commercially available, this video presentation provides a detailed, step-by-step guide to the fabrication of the current design of these gages. The strain gage described in this protocol is a design for recording gastric motility in rats. This design has been modified for recording smooth muscle activity along the entire GI tract and requires only subtle variation in the overall fabrication. Representative data from the entire GI tract are included as well as discussion of analysis methods, data interpretation and presentation.
Collapse
Affiliation(s)
- Gregory M Holmes
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine;
| | - Emily M Swartz
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine
| | - Margaret S McLean
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine
| |
Collapse
|
18
|
Rectal hyposensitivity for non-noxious stimuli, postprandial hypersensitivity and its correlation with symptoms in complete spinal cord injury with neurogenic bowel dysfunction. Spinal Cord 2012; 51:94-8. [PMID: 22929208 DOI: 10.1038/sc.2012.98] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
STUDY DESIGN Prospective clinical study. OBJECTIVES To assess fasting and postprandial (PP) perception of rectal distension and its correlation with symptoms in patients with spinal cord injury (SCI) and neurogenic bowel dysfunction compared to ten healthy subjects (HS). SETTING Experimental Medicine and Motility Unit, Mexico General Hospital and National Institute of Rehabilitation. METHODS Twenty patients with complete SCI at cervical, thoracic and lumbar levels [American Spinal Injury Association (ASIA) A] were studied. Rectal sensitivity was evaluated with a barostat. RESULTS In SCI patients, while lower the rectal tone more time was used for defecate (R=0.50, P=0.048) and more PP episodes of fecal incontinence occur (R=0.54, P=0.030). The thresholds for non-noxious stimuli of first (23.6 mmHg, CI 19.5-27.7) vs 14.0 (CI 10.9-17.1), P=0.004; gas (27.9 mmHg, CI 19.9-35.8) vs 17.9 mmHg (CI 14.25-21.69), P=0.02 and urge-to-defecate sensation (33.2 mmHg, CI 27.5-38.8) vs 22.4 mmHg (CI 17.9-26.9), P=0.01 were reported by SCI patients at higher pressure than HS, respectively. SCI patients reported PP pain sensation at a lower pressure than controls (27.8 mmHg, CI 21.5-34.2 vs 36.5 mmHg, CI 31.8-41.2), P=0.04. CONCLUSION SCI patients preserve rectal sensation, present rectal hyposensitivity for non-noxious stimuli and PP hypersensitivity. Lower rectal tone was related to the time used for defecate and with fecal incontinence. The results suggest that an intact neural transmission between the spinal cord and higher centres is indispensable for noxious stimulus, but not for non-noxious stimuli. Also, barostat sensitivity studies can complement ASIA criteria to verify a complete injury.
Collapse
|
19
|
Holmes GM. Upper gastrointestinal dysmotility after spinal cord injury: is diminished vagal sensory processing one culprit? Front Physiol 2012; 3:277. [PMID: 22934031 PMCID: PMC3429051 DOI: 10.3389/fphys.2012.00277] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 06/27/2012] [Indexed: 12/12/2022] Open
Abstract
Despite the widely recognized prevalence of gastric, colonic, and anorectal dysfunction after spinal cord injury (SCI), significant knowledge gaps persist regarding the mechanisms leading to post-SCI gastrointestinal (GI) impairments. Briefly, the regulation of GI function is governed by a mix of parasympathetic, sympathetic, and enteric neurocircuitry. Unlike the intestines, the stomach is dominated by parasympathetic (vagal) control whereby gastric sensory information is transmitted via the afferent vagus nerve to neurons of the nucleus tractus solitarius (NTS). The NTS integrates this sensory information with signals from throughout the central nervous system. Glutamatergic and GABAergic NTS neurons project to other nuclei, including the preganglionic parasympathetic neurons of the dorsal motor nucleus of the vagus (DMV). Finally, axons from the DMV project to gastric myenteric neurons, again, through the efferent vagus nerve. SCI interrupts descending input to the lumbosacral spinal cord neurons that modulate colonic motility and evacuation reflexes. In contrast, vagal neurocircuitry remains anatomically intact after injury. This review presents evidence that unlike the post-SCI loss of supraspinal control which leads to colonic and anorectal dysfunction, gastric dysmotility occurs as an indirect or secondary pathology following SCI. Specifically, emerging data points toward diminished sensitivity of vagal afferents to GI neuroactive peptides, neurotransmitters and, possibly, macronutrients. The neurophysiological properties of rat vagal afferent neurons are highly plastic and can be altered by injury or energy balance. A reduction of vagal afferent signaling to NTS neurons may ultimately bias NTS output toward unregulated GABAergic transmission onto gastric-projecting DMV neurons. The resulting gastroinhibitory signal may be one mechanism leading to upper GI dysmotility following SCI.
Collapse
Affiliation(s)
- Gregory M. Holmes
- Neural and Behavioral Sciences, Penn State University College of MedicineHershey, PA, USA
| |
Collapse
|
20
|
Lin LC, Li SH, Wu YT, Kuo KL, Tsai TH. Pharmacokinetics and urine metabolite identification of dehydroevodiamine in the rat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:1595-1604. [PMID: 22283510 DOI: 10.1021/jf204365m] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This study investigates the oral bioavailability and characterizes urine metabolites of dehydroevodiamine (DeHE), one of the bioactive alkaloids isolated from the fruit of Evodia rutaecarpa . A freely moving rat model coupled with an automated blood sample system was used to evaluate the pharmacokinetics of DeHE. High-performance liquid chromatography (HPLC), mass spectrometry (MS), and nuclear magnetic resonance (NMR) spectrometry were applied to determine DeHE and its metabolites. The averaged oral bioavailability of DeHE (100 and 500 mg/kg) in the freely moving rats was approximately 15.35%. Cumulative fecal and urinary excretions of unchanged DeHE were 6 and 0.5%, respectively, after a single oral dose (500 mg/kg) of DeHE. The protein binding of DeHE in rat plasma was 65.6 ± 6.5%. Six metabolites, including five DeHE-O-glucuronides and one DeHE-sulfate, were identified after oral administration. The structures of two glucuronide conjugates, DeHE-10-O-glucuronide (M3) and DeHE-11-O-glucuronide (M4), and one sulfate conjugate, DeHE-12-sulfate (M6), were assigned. The findings indicate that the oral bioavailability of DeHE was much higher than that of evodiamine, and hydroxylation and conjugative metabolism were essential for the urinary elimination of DeHE.
Collapse
Affiliation(s)
- Lie-Chwen Lin
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
21
|
Huerta-Franco MR, Vargas-Luna M, Montes-Frausto JB, Flores-Hernández C, Morales-Mata I. Electrical bioimpedance and other techniques for gastric emptying and motility evaluation. World J Gastrointest Pathophysiol 2012; 3:10-8. [PMID: 22368782 PMCID: PMC3284521 DOI: 10.4291/wjgp.v3.i1.10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Revised: 12/06/2011] [Accepted: 02/08/2012] [Indexed: 02/06/2023] Open
Abstract
The aim of this article is to identify non-invasive, inexpensive, highly sensitive and accurate techniques for evaluating and diagnosing gastric diseases. In the case of the stomach, there are highly sensitive and specific methods for assessing gastric motility and emptying (GME). However, these methods are invasive, expensive and/or not technically feasible for all clinicians and patients. We present a summary of the most relevant international information on non-invasive methods and techniques for clinically evaluating GME. We particularly emphasize the potential of gastric electrical bioimpedance (EBI). EBI was initially used mainly in gastric emptying studies and was essentially abandoned in favor of techniques such as electrogastrography and the gold standard, scintigraphy. The current research evaluating the utility of gastric EBI either combines this technique with other frequently used techniques or uses new methods for gastric EBI signal analysis. In this context, we discuss our results and those of other researchers who have worked with gastric EBI. In this review article, we present the following topics: (1) a description of the oldest methods and procedures for evaluating GME; (2) an explanation of the methods currently used to evaluate gastric activity; and (3) a perspective on the newest trends and techniques in clinical and research GME methods. We conclude that gastric EBI is a highly effective non-invasive, easy to use and inexpensive technique for assessing GME.
Collapse
|
22
|
Gourcerol G, Adelson DW, Million M, Wang L, Taché Y. Modulation of gastric motility by brain-gut peptides using a novel non-invasive miniaturized pressure transducer method in anesthetized rodents. Peptides 2011; 32:737-46. [PMID: 21262308 PMCID: PMC3060955 DOI: 10.1016/j.peptides.2011.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 01/11/2011] [Accepted: 01/11/2011] [Indexed: 01/18/2023]
Abstract
Acute in vivo measurements are often the initial, most practicable approach used to investigate the effects of novel compounds or genetic manipulations on the regulation of gastric motility. Such acute methods typically involve either surgical implantation of devices or require intragastric perfusion of solutions, which can substantially alter gastric activity and may require extended periods of time to allow stabilization or recovery of the preparation. We validated a simple, non-invasive novel method to measure acutely gastric contractility, using a solid-state catheter pressure transducer inserted orally into the gastric corpus, in fasted, anesthetized rats or mice. The area under the curve of the phasic component (pAUC) of intragastric pressure (IGP) was obtained from continuous manometric recordings of basal activity and in responses to central or peripheral activation of cholinergic pathways, or to abdominal surgery. In rats, intravenous ghrelin or intracisternal injection of the thyrotropin-releasing hormone agonist, RX-77368, significantly increased pAUC while coeliotomy and cacal palpation induced a rapid onset inhibition of phasic activity lasting for the 1-h recording period. In mice, RX-77368 injected into the lateral brain ventricle induced high-amplitude contractions, and carbachol injected intraperitoneally increased pAUC significantly, while coeliotomy and cecal palpation inhibited baseline contractile activity. In wild-type mice, cold exposure (15 min) increased gastric phasic activity and tone, while there was no gastric response in corticotropin releasing factor (CRF)-overexpressing mice, a model of chronic stress. Thus, the novel solid-state manometric approach provides a simple, reliable means for acute pharmacological studies of gastric motility effects in rodents. Using this method we established in mice that the gastric motility response to central vagal activation is impaired under chronic expression of CRF.
Collapse
Affiliation(s)
- Guillaume Gourcerol
- CURE/Digestive Diseases Research Center, and Center for Neurobiology of Stress, Department of Medicine, Division of Digestive Diseases, University of California, Los Angeles, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | | | | | | | | |
Collapse
|