1
|
Alterations in Small Intestine and Liver Morphology, Immunolocalization of Leptin, Ghrelin and Nesfatin-1 as Well as Immunoexpression of Tight Junction Proteins in Intestinal Mucosa after Gastrectomy in Rat Model. J Clin Med 2021; 10:jcm10020272. [PMID: 33450994 PMCID: PMC7828391 DOI: 10.3390/jcm10020272] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/01/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023] Open
Abstract
The stomach is responsible for the processing of nutrients as well as for the secretion of various hormones which are involved in many activities throughout the gastrointestinal tract. Experimental adult male Wistar rats (n = 6) underwent a modified gastrectomy, while control rats (n = 6) were sham-operated. After six weeks, changes in small intestine (including histomorphometrical parameters of the enteric nervous plexuses) and liver morphology, immunolocalization of leptin, ghrelin and nesfatin-1 as well as proteins forming adherens and tight junctions (E-cadherin, zonula occludens-1, occludin, marvelD3) in intestinal mucosa were evaluated. A number of effects on small intestine morphology, enteric nervous system ganglia, hormones and proteins expression were found, showing intestinal enteroplasticity and neuroplasticity associated with changes in gastrointestinal tract condition. The functional changes in intestinal mucosa and the enteric nervous system could be responsible for the altered intestinal barrier and hormonal responses following gastrectomy. The results suggest that more complicated regulatory mechanisms than that of compensatory mucosal hypertrophy alone are involved.
Collapse
|
2
|
Idrizaj E, Garella R, Squecco R, Baccari MC. Adipocytes-released Peptides Involved in the Control of Gastrointestinal Motility. Curr Protein Pept Sci 2019; 20:614-629. [PMID: 30663565 DOI: 10.2174/1389203720666190121115356] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 12/18/2022]
Abstract
The present review focuses on adipocytes-released peptides known to be involved in the control of gastrointestinal motility, acting both centrally and peripherally. Thus, four peptides have been taken into account: leptin, adiponectin, nesfatin-1, and apelin. The discussion of the related physiological or pathophysiological roles, based on the most recent findings, is intended to underlie the close interactions among adipose tissue, central nervous system, and gastrointestinal tract. The better understanding of this complex network, as gastrointestinal motor responses represent peripheral signals involved in the regulation of food intake through the gut-brain axis, may also furnish a cue for the development of either novel therapeutic approaches in the treatment of obesity and eating disorders or potential diagnostic tools.
Collapse
Affiliation(s)
- Eglantina Idrizaj
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
| | - Rachele Garella
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
| | - Roberta Squecco
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
| | - Maria Caterina Baccari
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
| |
Collapse
|
3
|
Gut adaptation after metabolic surgery and its influences on the brain, liver and cancer. Nat Rev Gastroenterol Hepatol 2018; 15:606-624. [PMID: 30181611 DOI: 10.1038/s41575-018-0057-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metabolic surgery is the best treatment for long-term weight loss maintenance and comorbidity control. Metabolic operations were originally intended to change anatomy to alter behaviour, but we now understand that the anatomical changes can modulate physiology to change behaviour. They are no longer considered only mechanically restrictive and/or malabsorptive procedures; rather, they are considered metabolic procedures involving complex physiological changes, whereby gut adaptation influences signalling pathways in several other organs, including the liver and the brain, regulating hunger, satiation, satiety, body weight, glucose metabolism and immune functions. The integrative physiology of gut adaptation after these operations consists of a complex mechanistic web of communication between gut hormones, bile acids, gut microbiota, the brain and both enteric and central nervous systems. The understanding of nutrient sensing via enteroendocrine cells, the enteric nervous system, hypothalamic peptides and adipose tissue and of the role of inflammation has advanced our knowledge of this integrative physiology. In this Review, we focus on the adaptation of gut physiology to the anatomical alterations from Roux-en-Y gastric bypass and vertical sleeve gastrectomy and the influence of these procedures on food intake, weight loss, nonalcoholic fatty liver disease (NAFLD) and cancer. We also aim to demonstrate the underlying mechanisms that could explain how metabolic surgery could be used as a therapeutic option in NAFLD and certain obesity-related cancers.
Collapse
|
4
|
Liu DR, Xu XJ, Yao SK. Increased intestinal mucosal leptin levels in patients with diarrhea-predominant irritable bowel syndrome. World J Gastroenterol 2018; 24:46-57. [PMID: 29358881 PMCID: PMC5757124 DOI: 10.3748/wjg.v24.i1.46] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/08/2017] [Accepted: 11/21/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To measure the leptin levels in patients with diarrhea-predominant irritable bowel syndrome (IBS-D) and analyze the relationship of leptin with clinical features, visceral sensitivity, mast cells, and nerve fibers.
METHODS Forty-two patients with IBS-D fulfilling the Rome III criteria and 20 age- and sex-matched healthy controls underwent clinical and psychological evaluations using validated questionnaires (including IBS Symptom Severity Scale, IBS-specific Quality of Life, Hamilton Anxiety Scale, and Hamilton Depression Scale), along with colonoscopy, colonic mucosal biopsy, and visceral sensitivity testing. Serum leptin levels were assayed using enzyme-linked immunosorbent assay. Mucosal leptin expression and localization were evaluated using immunohistochemistry and immunofluorescence. Mucosal leptin mRNA levels were quantified using quantitative real-time reverse transcription polymerase chain reaction. Mast cell counts and activation rates were investigated by toluidine blue staining. Correlation analyses between these parameters were performed.
RESULTS There were no statistically significant differences in age, gender, or body mass index between the IBS-D group and the control group. The median IBS Symptom Severity Scale score in the IBS-D group was 225.0 (range, 100-475). IBS-D patients had significantly increased anxiety [IBS-D: median, 6.5; interquartile range (IQR), 3.3; control: median, 2.0; IQR, 2.0; P < 0.001] and depression (IBS-D: median, 7.0; IQR, 3.0; control: median, 3.0; IQR, 2.0; P < 0.001) scores. IBS-D patients had significantly lower first sensation threshold (IBS-D: median, 50.6; IQR, 25.9; control: median, 80.5; IQR, 18.6; P < 0.001), defecation sensation threshold (IBS-D: median, 91.5; IQR, 29.3; control: median, 155.0; IQR, 21.1; P < 0.001) and maximum tolerable threshold (IBS-D: median, 163.2; IQR, 71.2; control: median, 226.2; IQR, 39.3; P < 0.001). Mucosal leptin expression, as reflected by integrated optical density (IBS-D: median, 4424.71; IQR, 4533.63; control: median, 933.65; IQR, 888.10; P < 0.001), leptin mRNA expression (IBS-D: median, 1.1226; IQR, 1.6351; control: median, 0.8947; IQR, 0.4595; P = 0.009), and mast cell activation rate (IBS-D: median, 71.2%; IQR, 12.9%; control group: median, 59.4%; IQR, 18.88%; P < 0.001) were significantly increased in IBS-D patients. The colocalization of leptin and leptin receptors was observed on mast cells and PGP9.5-positive nerve fibers in the intestinal mucosa. Also, leptin expression was positively correlated with anxiety, depression, and the mast cell activation rate, but negatively correlated with the defecation sensation threshold and the maximum tolerance threshold during visceral sensitivity testing (adjusted P < 0.0038).
CONCLUSION Increased levels of mucosal leptin may interact with mast cells and the nervous system to contribute to the pathogenesis of IBS-D.
Collapse
Affiliation(s)
- De-Rong Liu
- Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xiao-Juan Xu
- Department of Gastroenterology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Shu-Kun Yao
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
5
|
Excitability and Synaptic Transmission in the Enteric Nervous System: Does Diet Play a Role? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 891:201-11. [PMID: 27379647 DOI: 10.1007/978-3-319-27592-5_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Changes in diet are a challenge to the gastrointestinal tract which needs to alter its processing mechanisms to continue to process nutrients and maintain health. In particular, the enteric nervous system (ENS) needs to adapt its motor and secretory programs to deal with changes in nutrient type and load in order to optimise nutrient absorption.The nerve circuits in the gut are complex, and the numbers and types of neurons make recordings of specific cell types difficult, time-consuming, and prone to sampling errors. Nonetheless, traditional research methods like intracellular electrophysiological approaches have provided the basis for our understanding of the ENS circuitry. In particular, animal models of intestinal inflammation have shown us that we can document changes to neuronal excitability and synaptic transmission.Recent studies examining diet-induced changes to ENS programming have opted to use fast imaging techniques to reveal changes in neuron function. Advances in imaging techniques using voltage- or calcium-sensitive dyes to record neuronal activity promise to overcome many limitations inherent to electrophysiological approaches. Imaging techniques allow access to a wide range of ENS phenotypes and to the changes they undergo during dietary challenges. These sorts of studies have shown that dietary variation or obesity can change how the ENS processes information-in effect reprogramming the ENS. In this review, the data gathered from intracellular recordings will be compared with measurements made using imaging techniques in an effort to determine if the lessons learnt from inflammatory changes are relevant to the understanding of diet-induced reprogramming.
Collapse
|
6
|
Fournel A, Drougard A, Duparc T, Marlin A, Brierley SM, Castro J, Le-Gonidec S, Masri B, Colom A, Lucas A, Rousset P, Cenac N, Vergnolle N, Valet P, Cani PD, Knauf C. Apelin targets gut contraction to control glucose metabolism via the brain. Gut 2017; 66:258-269. [PMID: 26565000 PMCID: PMC5284480 DOI: 10.1136/gutjnl-2015-310230] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/02/2015] [Accepted: 09/22/2015] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The gut-brain axis is considered as a major regulatory checkpoint in the control of glucose homeostasis. The detection of nutrients and/or hormones in the duodenum informs the hypothalamus of the host's nutritional state. This process may occur via hypothalamic neurons modulating central release of nitric oxide (NO), which in turn controls glucose entry into tissues. The enteric nervous system (ENS) modulates intestinal contractions in response to various stimuli, but the importance of this interaction in the control of glucose homeostasis via the brain is unknown. We studied whether apelin, a bioactive peptide present in the gut, regulates ENS-evoked contractions, thereby identifying a new physiological partner in the control of glucose utilisation via the hypothalamus. DESIGN We measured the effect of apelin on electrical and mechanical duodenal responses via telemetry probes and isotonic sensors in normal and obese/diabetic mice. Changes in hypothalamic NO release, in response to duodenal contraction modulated by apelin, were evaluated in real time with specific amperometric probes. Glucose utilisation in tissues was measured with orally administrated radiolabeled glucose. RESULTS In normal and obese/diabetic mice, glucose utilisation is improved by the decrease of ENS/contraction activities in response to apelin, which generates an increase in hypothalamic NO release. As a consequence, glucose entry is significantly increased in the muscle. CONCLUSIONS Here, we identify a novel mode of communication between the intestine and the hypothalamus that controls glucose utilisation. Moreover, our data identified oral apelin administration as a novel potential target to treat metabolic disorders.
Collapse
Affiliation(s)
- Audren Fournel
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse Cedex 4, France,NeuroMicrobiota, European Associated Laboratory (EAL) INSERM/UCL,Université Paul Sabatier, Toulouse, France
| | - Anne Drougard
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse Cedex 4, France,NeuroMicrobiota, European Associated Laboratory (EAL) INSERM/UCL,Université Paul Sabatier, Toulouse, France
| | - Thibaut Duparc
- NeuroMicrobiota, European Associated Laboratory (EAL) INSERM/UCL,Université Catholique de Louvain (UCL), Louvain Drug Research Institute, LDRI, Metabolism and Nutrition research group, WELBIO (Walloon Excellence in Life sciences and BIOtechnology), Brussels, Belgium
| | - Alysson Marlin
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse Cedex 4, France,NeuroMicrobiota, European Associated Laboratory (EAL) INSERM/UCL,Université Paul Sabatier, Toulouse, France
| | - Stuart M Brierley
- Visceral Pain Group, Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australia Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia,Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, South Australia, Australia,Discipline of Physiology, Faculty of Health Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Joel Castro
- Visceral Pain Group, Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australia Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Sophie Le-Gonidec
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse Cedex 4, France,NeuroMicrobiota, European Associated Laboratory (EAL) INSERM/UCL,Université Paul Sabatier, Toulouse, France
| | - Bernard Masri
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1037, Centre de Recherches en Cancérologie de Toulouse (CRCT), CHU Rangueil, Toulouse, Cedex 4, France
| | - André Colom
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse Cedex 4, France,NeuroMicrobiota, European Associated Laboratory (EAL) INSERM/UCL,Université Paul Sabatier, Toulouse, France
| | - Alexandre Lucas
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse Cedex 4, France,NeuroMicrobiota, European Associated Laboratory (EAL) INSERM/UCL,Université Paul Sabatier, Toulouse, France
| | - Perrine Rousset
- Université Paul Sabatier, Toulouse, France,Institut National de la Santé et de la Recherche Médicale (INSERM), U1043, Centre de Physiopathologie de Toulouse Purpan (CPTP), CHU Purpan, Toulouse, Cedex 03, France
| | - Nicolas Cenac
- Université Paul Sabatier, Toulouse, France,Institut National de la Santé et de la Recherche Médicale (INSERM), U1043, Centre de Physiopathologie de Toulouse Purpan (CPTP), CHU Purpan, Toulouse, Cedex 03, France
| | - Nathalie Vergnolle
- Université Paul Sabatier, Toulouse, France,Institut National de la Santé et de la Recherche Médicale (INSERM), U1043, Centre de Physiopathologie de Toulouse Purpan (CPTP), CHU Purpan, Toulouse, Cedex 03, France
| | - Philippe Valet
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse Cedex 4, France,NeuroMicrobiota, European Associated Laboratory (EAL) INSERM/UCL,Université Paul Sabatier, Toulouse, France
| | - Patrice D Cani
- NeuroMicrobiota, European Associated Laboratory (EAL) INSERM/UCL,Université Catholique de Louvain (UCL), Louvain Drug Research Institute, LDRI, Metabolism and Nutrition research group, WELBIO (Walloon Excellence in Life sciences and BIOtechnology), Brussels, Belgium
| | - Claude Knauf
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse Cedex 4, France,NeuroMicrobiota, European Associated Laboratory (EAL) INSERM/UCL,Université Paul Sabatier, Toulouse, France
| |
Collapse
|
7
|
Buckley MM, O'Brien R, Devlin M, Creed AA, Rae MG, Hyland NP, Quigley EMM, McKernan DP, O'Malley D. Leptin modifies the prosecretory and prokinetic effects of the inflammatory cytokine interleukin-6 on colonic function in Sprague-Dawley rats. Exp Physiol 2016; 101:1477-1491. [PMID: 27676233 DOI: 10.1113/ep085917] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/23/2016] [Indexed: 03/03/2025]
Abstract
What is the central question of this study? Does crosstalk exist between leptin and interleukin-6 in colonic enteric neurons, and is this a contributory factor in gastrointestinal dysfunction associated with irritable bowel syndrome? What is the main finding and its importance? Leptin ameliorates the prosecretory and prokinetic effects of the pro-inflammatory cytokine interleukin-6 on rat colon. Leptin also suppresses the neurostimulatory effects of irritable bowel syndrome plasma, which has elevated concentrations of interleukin-6, on enteric neurons. This may indicate a regulatory role for leptin in immune-mediated bowel dysfunction. In addition to its role in regulating energy homeostasis, the adipokine leptin modifies gastrointestinal (GI) function. Indeed, leptin-resistant obese humans and leptin-deficient obese mice exhibit altered GI motility. In the functional GI disorder irritable bowel syndrome (IBS), circulating leptin concentrations are reported to differ from those of healthy control subjects. Additionally, IBS patients display altered cytokine profiles, including elevated circulating concentrations of the pro-inflammatory cytokine interleukin-6 (IL-6), which bears structural homology and similarities in intracellular signalling to leptin. This study aimed to investigate interactions between leptin and IL-6 in colonic neurons and their possible contribution to IBS pathophysiology. The functional effects of leptin and IL-6 on colonic contractility and absorptosecretory function were assessed in organ baths and Ussing chambers in Sprague-Dawley rat colon. Calcium imaging and immunohistochemical techniques were used to investigate the neural regulation of GI function by these signalling molecules. Our findings provide a neuromodulatory role for leptin in submucosal neurons, where it inhibited the stimulatory effects of IL-6. Functionally, this translated to suppression of IL-6-evoked potentiation of veratridine-induced secretory currents. Leptin also attenuated IL-6-induced colonic contractions, although it had little direct effect on myenteric neurons. Calcium responses evoked by IBS plasma in both myenteric and submucosal neurons were also suppressed by leptin, possibly through interactions with IL-6, which is elevated in IBS plasma. As leptin has the capacity to ameliorate the neurostimulatory effects of soluble mediators in IBS plasma and modulated IL-6-evoked changes in bowel function, leptin may have a role in immune-mediated bowel dysfunction in IBS patients.
Collapse
Affiliation(s)
- Maria M Buckley
- Department of Physiology, University College Cork, Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Rebecca O'Brien
- Department of Physiology, University College Cork, Cork, Ireland
| | - Michelle Devlin
- Department of Physiology, University College Cork, Cork, Ireland
| | - Aisling A Creed
- Department of Physiology, University College Cork, Cork, Ireland
| | - Mark G Rae
- Department of Physiology, University College Cork, Cork, Ireland
| | - Niall P Hyland
- APC Microbiome Institute, University College Cork, Cork, Ireland
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Eamonn M M Quigley
- APC Microbiome Institute, University College Cork, Cork, Ireland
- Lynda K. and David M. Underwood Center for Digestive Disorders, Division of Gastroenterology and Hepatology, Houston Methodist Hospital and Weill Cornell Medical College, Houston, TX, USA
| | - Declan P McKernan
- Department of Pharmacology & Therapeutics, National University of Ireland, Galway, Ireland
| | - Dervla O'Malley
- Department of Physiology, University College Cork, Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
8
|
Saraç S, Atamer A, Atamer Y, Can AS, Bilici A, Taçyildiz İ, Koçyiğit Y, Yenice N. Leptin levels and lipoprotein profiles in patients with cholelithiasis. J Int Med Res 2015; 43:385-92. [DOI: 10.1177/0300060514561134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 11/02/2014] [Indexed: 02/01/2023] Open
Abstract
Objective To determine the relationships between serum leptin and levels of lipoprotein(a) [Lp(a)], apolipoprotein A-1 (ApoA-1) and apolipoprotein B (ApoB) in patients with cholelithiasis. Methods Patients with ultrasound-confirmed cholelithiasis and controls frequency-matched for age, sex, body mass index, fasting blood glucose and haemoglobin A1c levels were recruited. Fasting blood samples from all study participants were assayed for glucose, haemoglobin A1c, total cholesterol, high density lipoprotein-cholesterol (HDL-C) and triglyceride. Serum Lp(a), ApoA-1 and ApoB levels were measured using nephelometric assays; serum leptin was measured using an enzyme-linked immunosorbent assay. Results A total of 90 patients with cholelithiasis and 50 controls were included in the study. Serum levels of leptin, Lp(a), total cholesterol, triglyceride and ApoB were significantly increased, and levels of ApoA-1 and HDL-C were significantly decreased, in patients with cholelithiasis compared with controls. Serum leptin in patients with cholelithiasis were significantly positively correlated with Lp(a) and ApoB and negatively correlated with ApoA-1. Conclusions Patients with cholelithiasis have higher leptin levels and an altered lipoprotein profile compared with controls, with increased leptin levels being associated with increased Lp(a) and ApoB levels, and decreased ApoA-1 levels, in those with cholelithiasis.
Collapse
Affiliation(s)
- Serdar Saraç
- Termal Vocational School, Yalova University, Yalova, Turkey
| | - Aytaç Atamer
- Termal Vocational School, Yalova University, Yalova, Turkey
| | - Yildiz Atamer
- Termal Vocational School, Yalova University, Yalova, Turkey
| | | | - Aslan Bilici
- Department of Radiology, Faculty of Medicine, Dicle University, Diyarbakir, Turkey
| | - İbrahim Taçyildiz
- Department of General Surgery, Faculty of Medicine, Dicle University, Diyarbakir, Turkey
| | - Yüksel Koçyiğit
- Department of Physiology, Faculty of Medicine, Dicle University, Diyarbakir, Turkey
| | - Necati Yenice
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, Harran University, Urfa, Turkey
| |
Collapse
|
9
|
Neunlist M, Schemann M. Nutrient-induced changes in the phenotype and function of the enteric nervous system. J Physiol 2014; 592:2959-65. [PMID: 24907307 DOI: 10.1113/jphysiol.2014.272948] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The enteric nervous system (ENS) integrates numerous sensory signals in order to control and maintain normal gut functions. Nutrients are one of the prominent factors which determine the chemical milieu in the lumen and, after absorption, also within the gut wall. This review summarizes current knowledge on the impact of key nutrients on ENS functions and phenotype, covering their acute and long-term effects. Enteric neurones contain the molecular machinery to respond specifically to nutrients. These transporters and receptors are not expressed exclusively in the ENS but are also present in other cells such as enteroendocrine cells (EECs) and extrinsic sensory nerves, signalling satiety or hunger. Glucose, amino acids and fatty acids all activate enteric neurones, as suggested by enhanced c-Fos expression or spike discharge. These excitatory effects are the result of a direct neuronal activation but also involve the activation of EECs which, upon activation by luminal nutrients, release mediators such as ghrelin, cholecystokinin or serotonin. The presence or absence of nutrients in the intestinal lumen induces long-term changes in neurotransmitter expression, excitability, neuronal survival and ultimately impact upon gut motility, secretion or intestinal permeability. Together with EECs and vagal nerves, the ENS must be recognized as an important player initiating concerted responses to nutrients. It remains to be studied how, for instance, nutrient-induced changes in the ENS may influence additional gut functions such as intestinal barrier repair, intestinal epithelial stem cell proliferation/differentiation and also the signalling of extrinsic nerves to brain regions which control food intake.
Collapse
Affiliation(s)
- Michel Neunlist
- INSERM, U913, Nantes, F-44093, France Université Nantes, Nantes, F-44093, France CHU Nantes, HôtelDieu, Institut des Maladies de l'Appareil Digestif, Nantes, F-44093, France Centre de Recherche en Nutrition Humaine, Nantes, F-44093, France
| | - Michael Schemann
- Lehrstuhl für Humanbiologie, Technische Universität München, Liesel-Beckmann-Straße 4, 85350, Freising-Weihenstephan, Germany
| |
Collapse
|
10
|
Reichardt F, Baudry C, Gruber L, Mazzuoli G, Moriez R, Scherling C, Kollmann P, Daniel H, Kisling S, Haller D, Neunlist M, Schemann M. Properties of myenteric neurones and mucosal functions in the distal colon of diet-induced obese mice. J Physiol 2013; 591:5125-39. [PMID: 23940384 DOI: 10.1113/jphysiol.2013.262733] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Colonic transit and mucosal integrity are believed to be impaired in obesity. However, a comprehensive assessment of altered colonic functions, inflammatory changes and neuronal signalling of obese animals is missing. In mice, we studied the impact of diet-induced obesity (DIO) on: (i) in vivo colonic transit; (ii) signalling in the myenteric plexus by recording responses to nicotine and 2-methyl-5-hydroxytryptamine (2-methyl-5-HT), together with the expression of tryptophan hydroxylase (TPH) 1 and 2, serotonin reuptake transporter, choline acetyltransferase and the paired box gene 4; and (iii) expression of proinflammatory cytokines, epithelial permeability and density of macrophages, mast cells and enterochromaffin cells. Compared with controls, colon transit and neuronal sensitivity to nicotine and 2-methyl-5-HT were enhanced in DIO mice fed for 12 weeks. This was associated with increased tissue acetylcholine and 5-hydroxytryptamine (5-HT) content, and increased expression of TPH1 and TPH2. In DIO mice, upregulation of proinflammatory cytokines was found in fat tissue, but not in the gut wall. Accordingly, mucosal permeability or integrity was unaltered without signs of immune cell infiltration in the gut wall. Body weight showed positive correlations with adipocyte markers, tissue levels of 5-HT and acetylcholine, and the degree of neuronal sensitization. DIO mice fed for 4 weeks showed no neuronal sensitization, had no signs of gut wall inflammation and showed a smaller increase in leptin, interleukin-6 and monocyte chemoattractant protein 1 expression in fat tissue. DIO is associated with faster colonic transit and impacts on acetylcholine and 5-HT metabolism with enhanced responsiveness of enteric neurones to both mediators after 12 weeks of feeding. Our study demonstrates neuronal plasticity in DIO prior to the development of a pathological histology or abnormal mucosal functions. This questions the common assumption that increased mucosal inflammation and permeability initiate functional disorders in obesity.
Collapse
Affiliation(s)
- François Reichardt
- Professor M. Schemann: Lehrstuhl für Humanbiologie, Technische Universität München, Liesel-Beckmann-Straße 4, 85350 Freising-Weihenstephan, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Florian V, Caroline F, Francis C, Camille S, Fabielle A. Leptin modulates enteric neurotransmission in the rat proximal colon: an in vitro study. ACTA ACUST UNITED AC 2013; 185:73-8. [PMID: 23816465 DOI: 10.1016/j.regpep.2013.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 03/21/2013] [Accepted: 06/20/2013] [Indexed: 12/13/2022]
Abstract
Leptin has been shown to modulate gastrointestinal functions including nutrient absorption, growth, and inflammation and to display complex effects on gut motility. Leptin receptors have also been identified within the enteric nervous system (ENS), which plays a crucial role in digestive functions. Although leptin has recently been shown to activate neurons in the ENS, the precise mechanisms involved are so far unknown. Therefore, the aim of the present study was to determine the effects of leptin on rat proximal colon smooth muscle and enteric neuron activities. The effects of exogenous leptin on tone and on responses to transmural nerve stimulation (TNS) of isolated circular smooth muscle of proximal colon in rats were investigated using an organ bath technique. The effects of a physiological concentration (0.1 μM) of leptin were also studied on tone and TNS-induced relaxation in the presence of atropine, hexamethonium, L-N(G)-nitroarginine methyl ester (L-NAME) and capsazepine. Leptin caused a slight but significant decrease in tone, TNS-induced relaxation and contraction in a concentration-dependent manner in colonic preparations. Cholinergic antagonists abolished the effects of 0.1 μM leptin on TNS-induced relaxation. This concentration of leptin had no further effect on relaxation in the presence of L-NAME. In the presence of capsazepine, leptin had no further effect either on tone or relaxation compared to the drug alone. In conclusion, leptin modulates the activity of enteric inhibitory and excitatory neurons in proximal colon. These effects may be mediated through nitrergic neurons. Intrinsic primary afferent neurons may be involved.
Collapse
Affiliation(s)
- Voinot Florian
- Université de Strasbourg, Institut Pluridisciplinaire Hubert Curien, 23 rue Becquerel, 67087 Strasbourg, France; CNRS, UMR7178, 67037 Strasbourg, France
| | | | | | | | | |
Collapse
|
12
|
Voinot F, Fischer C, Schmidt C, Ehret-Sabatier L, Angel F. Controlled ingestion of kaolinite (5%) modulates enteric nitrergic innervation in rats. Fundam Clin Pharmacol 2013; 28:405-13. [DOI: 10.1111/fcp.12040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 05/02/2013] [Accepted: 06/04/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Florian Voinot
- Université de Strasbourg; IPHC-DEPE; 23 rue Becquerel 67087 Strasbourg France
- CNRS; UMR7178; 67037 Strasbourg France
| | - Caroline Fischer
- Université de Strasbourg; IPHC-DEPE; 23 rue Becquerel 67087 Strasbourg France
- CNRS; UMR7178; 67037 Strasbourg France
| | - Camille Schmidt
- Université de Strasbourg; IPHC-DEPE; 23 rue Becquerel 67087 Strasbourg France
- CNRS; UMR7178; 67037 Strasbourg France
| | - Laurence Ehret-Sabatier
- CNRS; UMR7178; 67037 Strasbourg France
- Université de Strasbourg; IPHC-DSA; 25 rue Becquerel 67087 Strasbourg France
| | - Fabielle Angel
- Université de Strasbourg; IPHC-DEPE; 23 rue Becquerel 67087 Strasbourg France
- CNRS; UMR7178; 67037 Strasbourg France
| |
Collapse
|
13
|
Baudry C, Reichardt F, Marchix J, Bado A, Schemann M, des Varannes SB, Neunlist M, Moriez R. Diet-induced obesity has neuroprotective effects in murine gastric enteric nervous system: involvement of leptin and glial cell line-derived neurotrophic factor. J Physiol 2011; 590:533-44. [PMID: 22124147 DOI: 10.1113/jphysiol.2011.219717] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Nutritional factors can induce profound neuroplastic changes in the enteric nervous system (ENS), responsible for changes in gastrointestinal (GI) motility. However, long-term effects of a nutritional imbalance leading to obesity, such as Western diet (WD), upon ENS phenotype and control of GI motility remain unknown. Therefore, we investigated the effects of WD-induced obesity (DIO) on ENS phenotype and function as well as factors involved in functional plasticity. Mice were fed with normal diet (ND) or WD for 12 weeks. GI motility was assessed in vivo and ex vivo. Myenteric neurons and glia were analysed with immunohistochemical methods using antibodies against Hu, neuronal nitric oxide synthase (nNOS), Sox-10 and with calcium imaging techniques. Leptin and glial cell line-derived neurotrophic factor (GDNF) were studied using immunohistochemical, biochemical or PCR methods in mice and primary culture of ENS. DIO prevented the age-associated decrease in antral nitrergic neurons observed in ND mice. Nerve stimulation evoked a stronger neuronal Ca(2+) response in WD compared to ND mice. DIO induced an NO-dependent increase in gastric emptying and neuromuscular transmission in the antrum without any change in small intestinal transit. During WD but not ND, a time-dependent increase in leptin and GDNF occurred in the antrum. Finally, we showed that leptin increased GDNF production in the ENS and induced neuroprotective effects mediated in part by GDNF. These results demonstrate that DIO induces neuroplastic changes in the antrum leading to an NO-dependent acceleration of gastric emptying. In addition, DIO induced neuroplasticity in the ENS is likely to involve leptin and GDNF.
Collapse
Affiliation(s)
- Charlotte Baudry
- Inserm, U913, Institut F´ed´eratif de Recherche Th´erapeutique, IFR26 Nantes, France
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Voinot F, Fischer C, Bœuf A, Schmidt C, Delval-Dubois V, Reichardt F, Liewig N, Chaumande B, Ehret-Sabatier L, Lignot JH, Angel F. Effects of controlled ingestion of kaolinite (5%) on food intake, gut morphology and in vitro motility in rats. Fundam Clin Pharmacol 2011; 26:565-76. [DOI: 10.1111/j.1472-8206.2011.00978.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|