1
|
Stins MF, Mtaja A, Mulendele E, Mwimbe D, Pinilla-Monsalve GD, Mutengo M, Pardo CA, Chipeta J. Inflammation and Elevated Osteopontin in Plasma and CSF in Cerebral Malaria Compared to Plasmodium-Negative Neurological Infections. Int J Mol Sci 2024; 25:9620. [PMID: 39273566 PMCID: PMC11394774 DOI: 10.3390/ijms25179620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/26/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024] Open
Abstract
Cerebral malaria in young African children is associated with high mortality, and persisting neurological deficits often remain in survivors. Sequestered Plasmodium-infected red blood cells lead to cerebrovascular inflammation and subsequent neuroinflammation. Brain inflammation can play a role in the pathogenesis of neurologic sequelae. Therefore, we assessed a select set of proinflammatory analytes (IP10, IL23, MIP3α, GRO, MCP-1, and osteopontin in both the plasma and cerebrospinal fluid(CSF) of Zambian children with cerebral malaria and compared this with children with neurological symptoms that were negative for Plasmodium falciparum (non-cerebral malaria). Several similarities in plasma and CSF levels were found, as were some striking differences. We confirmed that IP10 levels were higher in the plasma of cerebral malaria patients, but this was not found in CSF. Levels of osteopontin were elevated in both the plasma and CSF of CM patients compared to the non-CM patients. These results show again a highly inflammatory environment in both groups but a different profile for CM when compared to non-cerebral malaria. Osteopontin may play an important role in neurological inflammation in CM and the resulting sequelae. Therefore, osteopontin could be a valid target for further biomarker research and potentially for therapeutic interventions in neuroinflammatory infections.
Collapse
Affiliation(s)
- Monique F. Stins
- Malaria Research Institute, Johns Hopkins School of Public Health, 615N Wolfe Street, Baltimore, MD 21205, USA
- Biomedical Research Institute of Southern California, Oceanside, CA 92046, USA
| | - Agnes Mtaja
- University Teaching Hospital Malaria Research Unit (SMUTH-MRU), Department of Pediatrics and Child Health, University of Zambia School of Medicine, Lusaka P.O. Box 50110, Zambia
| | - Evans Mulendele
- University Teaching Hospital Malaria Research Unit (SMUTH-MRU), Department of Pediatrics and Child Health, University of Zambia School of Medicine, Lusaka P.O. Box 50110, Zambia
| | - Daniel Mwimbe
- University Teaching Hospital Malaria Research Unit (SMUTH-MRU), Department of Pediatrics and Child Health, University of Zambia School of Medicine, Lusaka P.O. Box 50110, Zambia
| | - Gabriel D. Pinilla-Monsalve
- Division of Neuroimmunology and Neuroinfectious Diseases, Department of Neurology, Johns Hopkins School of Medicine, 600 N Wolfe Street, Baltimore, MD 21285, USA; (G.D.P.-M.); (C.A.P.)
- Department of Radiology, Faculty of Medicine, University of Montreal, 2900 Edouard Montpetit Blvd, Montreal, QC H3T 1J4, Canada
| | - Mable Mutengo
- University Teaching Hospital Malaria Research Unit (SMUTH-MRU), Department of Pediatrics and Child Health, University of Zambia School of Medicine, Lusaka P.O. Box 50110, Zambia
- Institute of Basic and Biomedical Sciences, Levy Mwanawasa Medical University, Lusaka P.O. Box 33991, Zambia
| | - Carlos A. Pardo
- Division of Neuroimmunology and Neuroinfectious Diseases, Department of Neurology, Johns Hopkins School of Medicine, 600 N Wolfe Street, Baltimore, MD 21285, USA; (G.D.P.-M.); (C.A.P.)
| | - James Chipeta
- University Teaching Hospital Malaria Research Unit (SMUTH-MRU), Department of Pediatrics and Child Health, University of Zambia School of Medicine, Lusaka P.O. Box 50110, Zambia
| |
Collapse
|
2
|
Kumar SP, Babu PP. Aberrant Dopamine Receptor Signaling Plays Critical Role in the Impairment of Striatal Neurons in Experimental Cerebral Malaria. Mol Neurobiol 2020; 57:5069-5083. [PMID: 32833186 DOI: 10.1007/s12035-020-02076-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/14/2020] [Indexed: 01/19/2023]
Abstract
One-fourth survivors of cerebral malaria (CM) retain long-term cognitive and behavioral deficits. Structural abnormalities in striatum are reported in 80% of children with CM. Dopamine receptors (D1 and D2) are widely expressed in striatal medium spiny neurons (MSNs) that regulate critical physiological functions related to behavior and cognition. Dysregulation of dopamine receptors alters the expression of downstream proteins such as dopamine- and cAMP-regulated phosphoprotein (DARPP), Ca2+/calmodulin-dependent protein kinase II alpha (CaMKIIα), and p25/cyclin-dependent kinase 5 (cdk5). However, the role of dopamine receptor signaling dysfunction on the outcome of striatal neuron degeneration is unknown underlying the pathophysiology of CM. Using experimental CM (ECM), the present study attempted to understand the role of aberrant dopamine receptor signaling and its possible relation in causing MSNs morphological impairment. The effect of antimalarial drug artemether (ARM) rescue therapy was also assessed after ECM on the outcome of dopamine receptors downstream signaling. ECM was induced in C57BL/6 mice (male and female) infecting with Plasmodium berghei ANKA (PbA) parasite that reiterates the clinical setting of CM. We demonstrated that ECM caused a significant increase in the expression of D1, D2 receptors, phosphorylated DARPP, p25, cdk5, CaMKIIα, and D1-D2 heteromers. A substantial increase in neuronal damage observed in the dorsolateral striatum region of ECM brains (particularly in MSNs) as revealed by increased Fluoro-Jade C staining, reduced dendritic spine density, and impaired dendritic arborization with varicosities. While the ARM rescue therapy significantly altered the effects of ECM induced dopamine receptor signaling dysfunction and neurodegeneration. Overall, our data suggest that dysregulation of dopamine receptor signaling plays an important role in the degeneration of MSNs, and the ARM rescue therapy might provide better insights to develop effective therapeutic strategies for CM.
Collapse
Affiliation(s)
- Simhadri Praveen Kumar
- Neuroscience Laboratory (F-23/71), Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Phanithi Prakash Babu
- Neuroscience Laboratory (F-23/71), Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India.
| |
Collapse
|
3
|
Eeka P, Phanithi PB. Cytotoxic T Lymphocyte Granzyme-b mediates neuronal cell death during Plasmodium berghei ANKA induced experimental cerebral malaria. Neurosci Lett 2018; 664:58-65. [DOI: 10.1016/j.neulet.2017.11.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 10/26/2017] [Accepted: 11/08/2017] [Indexed: 12/17/2022]
|
4
|
Hempel C, Hoyer N, Kildemoes A, Jendresen CB, Kurtzhals JAL. Systemic and Cerebral Vascular Endothelial Growth Factor Levels Increase in Murine Cerebral Malaria along with Increased Calpain and Caspase Activity and Can be Reduced by Erythropoietin Treatment. Front Immunol 2014; 5:291. [PMID: 24995009 PMCID: PMC4062992 DOI: 10.3389/fimmu.2014.00291] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 06/03/2014] [Indexed: 12/20/2022] Open
Abstract
The pathogenesis of cerebral malaria (CM) includes compromised microvascular perfusion, increased inflammation, cytoadhesion, and endothelial activation. These events cause blood-brain barrier disruption and neuropathology and associations with the vascular endothelial growth factor (VEGF) signaling pathway have been shown. We studied this pathway in mice infected with Plasmodium berghei ANKA causing murine CM with or without the use of erythropoietin (EPO) as adjunct therapy. ELISA and western blotting was used for quantification of VEGF and relevant proteins in brain and plasma. CM increased levels of VEGF in brain and plasma and decreased plasma levels of soluble VEGF receptor 2. EPO treatment normalized VEGF receptor 2 levels and reduced brain VEGF levels. Hypoxia-inducible factor (HIF)-1α was significantly upregulated whereas cerebral HIF-2α and EPO levels remained unchanged. Furthermore, we noticed increased caspase-3 and calpain activity in terminally ill mice, as measured by protease-specific cleavage of α-spectrin and p35. In conclusion, we detected increased cerebral and systemic VEGF as well as HIF-1α, which in the brain were reduced to normal in EPO-treated mice. Also caspase and calpain activity was reduced markedly in EPO-treated mice.
Collapse
Affiliation(s)
- Casper Hempel
- Centre for Medical Parasitology, Department of Clinical Microbiology, Copenhagen University Hospital , Copenhagen , Denmark ; Department of International Health, Immunology and Microbiology, University of Copenhagen , Copenhagen , Denmark
| | - Nils Hoyer
- Centre for Medical Parasitology, Department of Clinical Microbiology, Copenhagen University Hospital , Copenhagen , Denmark ; Department of International Health, Immunology and Microbiology, University of Copenhagen , Copenhagen , Denmark
| | - Anna Kildemoes
- Centre for Medical Parasitology, Department of Clinical Microbiology, Copenhagen University Hospital , Copenhagen , Denmark ; Department of International Health, Immunology and Microbiology, University of Copenhagen , Copenhagen , Denmark
| | - Charlotte Bille Jendresen
- Centre for Medical Parasitology, Department of Clinical Microbiology, Copenhagen University Hospital , Copenhagen , Denmark ; Department of International Health, Immunology and Microbiology, University of Copenhagen , Copenhagen , Denmark
| | - Jørgen Anders Lindholm Kurtzhals
- Centre for Medical Parasitology, Department of Clinical Microbiology, Copenhagen University Hospital , Copenhagen , Denmark ; Department of International Health, Immunology and Microbiology, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
5
|
Hempel C, Hyttel P, Staalsø T, Nyengaard JR, Kurtzhals JAL. Erythropoietin treatment alleviates ultrastructural myelin changes induced by murine cerebral malaria. Malar J 2012; 11:216. [PMID: 22741599 PMCID: PMC3502138 DOI: 10.1186/1475-2875-11-216] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 04/03/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cerebral malaria (CM) is a severe complication of malaria with considerable mortality. In addition to acute encephalopathy, survivors frequently suffer from neurological sequelae. The pathogenesis is incompletely understood, hampering the development of an effective, adjunctive therapy, which is not available at present. Previously, erythropoietin (EPO) was reported to significantly improve the survival and outcome in a murine CM model. The study objectives were to assess myelin thickness and ultrastructural morphology in the corpus callosum in murine CM and to adress the effects of EPO treatment in this context. METHODS The study consisted of two groups of Plasmodium berghei-infected mice and two groups of uninfected controls that were either treated with EPO or placebo (n = 4 mice/group). In the terminal phase of murine CM the brains were removed and processed for electron microscopy. Myelin sheaths in the corpus callosum were analysed with transmission electron microscopy and stereology. RESULTS The infection caused clinical CM, which was counteracted by EPO. The total number of myelinated axons was identical in the four groups and mice with CM did not have reduced mean thickness of the myelin sheaths. Instead, CM mice had significantly increased numbers of abnormal myelin sheaths, whereas EPO-treated mice were indistinguishable from uninfected mice. Furthermore, mice with CM had frequent and severe axonal injury, pseudopodic endothelial cells, perivascular oedemas and intracerebral haemorrhages. CONCLUSIONS EPO treatment reduced clinical signs of CM and reduced cerebral pathology. Murine CM does not reduce the general thickness of myelin sheaths in the corpus callosum.
Collapse
Affiliation(s)
- Casper Hempel
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen University Hospital, Denmark.
| | | | | | | | | |
Collapse
|
6
|
Grau GER, Craig AG. Cerebral malaria pathogenesis: revisiting parasite and host contributions. Future Microbiol 2012; 7:291-302. [DOI: 10.2217/fmb.11.155] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Cerebral malaria is one of a number of clinical syndromes associated with infection by human malaria parasites of the genus Plasmodium. The etiology of cerebral malaria derives from sequestration of parasitized red cells in brain microvasculature and is thought to be enhanced by the proinflammatory status of the host and virulence characteristics of the infecting parasite variant. In this article we examine the range of factors thought to influence the development of Plasmodium falciparum cerebral malaria in humans and review the evidence to support their role.
Collapse
Affiliation(s)
- Georges Emile Raymond Grau
- Vascular Immunology Unit, Department of Pathology, Sydney Medical School, The University of Sydney, Camperdown NSW 2042, Australia
- La Jolla Infectious Disease Institute, San Diego, CA 92109, USA
| | | |
Collapse
|
7
|
Nogo-A expression in the brain of mice with cerebral malaria. PLoS One 2011; 6:e25728. [PMID: 21980529 PMCID: PMC3183069 DOI: 10.1371/journal.pone.0025728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 09/09/2011] [Indexed: 02/07/2023] Open
Abstract
Cerebral malaria (CM) is associated with a high rate of transient or persistent neurological sequelae. Nogo-A, a protein that is highly expressed in the endoplasmic reticulum (ER) of the mammalian central nervous system (CNS), is involved in neuronal regeneration and synaptic plasticity in the injured CNS. The current study investigates the role of Nogo-A in the course of experimental CM. C57BL/6J mice were infected with Plasmodium berghei ANKA blood stages. Brain homogenates of mice with different clinical severity levels of CM, infected animals without CM and control animals were analyzed for Nogo-A up-regulation by Western blotting and immunohistochemistry. Brain regions with Nogo-A upregulation were evaluated by transmission electron microscopy. Densitometric analysis of Western blots yielded a statistically significant upregulation of Nogo-A in mice showing moderate to severe CM. The number of neurons and oligodendrocytes positive for Nogo-A did not differ significantly between the studied groups. However, mice with severe CM showed a significantly higher number of cells with intense Nogo-A staining in the brain stem. In this region ultrastructural alterations of the ER were regularly observed. Nogo-A is upregulated during the early course of experimental CM. In the brain stem of severely affected animals increased Nogo-A expression and ultrastructural changes of the ER were observed. These data indicate a role of Nogo-A in neuronal stress response during experimental CM.
Collapse
|
8
|
Grab DJ, Chakravorty SJ, van der Heyde H, Stins MF. How can microbial interactions with the blood-brain barrier modulate astroglial and neuronal function? Cell Microbiol 2011; 13:1470-8. [DOI: 10.1111/j.1462-5822.2011.01661.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
9
|
Medana IM, Day NPJ, Roberts R, Sachanonta N, Turley H, Pongponratn E, Hien TT, White NJ, Turner GDH. Induction of the vascular endothelial growth factor pathway in the brain of adults with fatal falciparum malaria is a non-specific response to severe disease. Histopathology 2010; 57:282-94. [PMID: 20716170 PMCID: PMC2941727 DOI: 10.1111/j.1365-2559.2010.03619.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Medana I M, Day N P J, Roberts R, Sachanonta N, Turley H, Pongponratn E, Hien T T, White N J. & Turner G D H (2010) Histopathology57, 282–294 Induction of the vascular endothelial growth factor pathway in the brain of adults with fatal falciparum malaria is a non-specific response to severe disease
Collapse
Affiliation(s)
- Isabelle M Medana
- Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, Oxford, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Medana IM, Day NPJ, Hien TT, White NJ, Turner GDH. Erythropoietin and its receptors in the brainstem of adults with fatal falciparum malaria. Malar J 2009; 8:261. [PMID: 19930602 PMCID: PMC2785829 DOI: 10.1186/1475-2875-8-261] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 11/22/2009] [Indexed: 12/14/2022] Open
Abstract
Background Facilitation of endogenous neuroprotective pathways, such as the erythropoietin (Epo) pathway, has been proposed as adjuvant treatment strategies in cerebral malaria. Whether different endogenous protein expression levels of Epo or differences in the abundance of its receptor components could account for the extent of structural neuropathological changes or neurological complications in adults with severe malaria was investigated. Methods High sensitivity immunohistochemistry was used to assess the frequency, distribution and concordance of Epo and components of its homodimeric and heteromeric receptors, Epo receptor and CD131, within the brainstem of adults who died of severe malaria. The following relationships with Epo and its receptor components were also defined: (i) sequestration and indicators of hypoxia; (ii) vascular damage in the form of plasma protein leakage and haemorrhage; (iii) clinical complications and neuropathological features of severe malaria disease. Brainstems of patients dying in the UK from unrelated non-infectious causes were examined for comparison. Results The incidence of endogenous Epo in parenchymal brain cells did not greatly differ between severe malaria and non-neurological UK controls at the time of death. However, EpoR and CD131 labelling of neurons was greater in severe malaria compared with non-neurological controls (P = .009). EpoR labelling of vessels was positively correlated with admission peripheral parasite count (P = .01) and cerebral sequestration (P < .0001). There was a strong negative correlation between arterial oxygen saturation and EpoR labelling of glia (P = .001). There were no significant correlations with indicators of vascular damage, neuronal chromatolysis, axonal swelling or vital organ failure. Conclusion Cells within the brainstem of severe malaria patients showed protein expression of Epo and its receptor components. However, the incidence of endogeneous expression did not reflect protection from vascular or neuronal injury, and/or clinical manifestations, such as coma. These findings do not provide support for Epo as an adjuvant neuroprotective agent in adults with severe malaria.
Collapse
Affiliation(s)
- Isabelle M Medana
- Nuffield Department of Clinical Laboratory Sciences, The John Radcliffe Hospital, University of Oxford, Oxford, UK.
| | | | | | | | | |
Collapse
|
11
|
Predominance of interferon-related responses in the brain during murine malaria, as identified by microarray analysis. Infect Immun 2008; 76:1812-24. [PMID: 18299338 DOI: 10.1128/iai.01650-07] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cerebral malaria (CM) can be a fatal manifestation of Plasmodium falciparum infection. We examined global gene expression patterns during fatal murine CM (FMCM) and noncerebral malaria (NCM) by microarray analysis. There was differential expression of a number of genes, including some not yet characterized in the pathogenesis of FMCM. Some gene induction was observed during Plasmodium berghei infection regardless of the development of CM, and there was a predominance of genes linked to interferon responses, even in NCM. However, upon real-time PCR validation and quantitation, these genes were much more highly expressed in FMCM than in NCM. The observed changes included genes belonging to pathways such as interferon signaling, major histocompatibility complex processing and presentation, apoptosis, and immunomodulatory and antimicrobial processes. We further characterized differentially expressed genes by examining the cellular source of their expression as well as their temporal expression patterns during the course of malaria infection. These data identify a number of novel genes that represent interesting candidates for further investigation in FMCM.
Collapse
|