1
|
Tsotsokou G, Fassea M, Papatheodoropoulos C. Muscarinic Modulation of Network Excitability and Short-Term Dynamics in the Dorsal and Ventral Hippocampus. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001367. [PMID: 39758582 PMCID: PMC11696349 DOI: 10.17912/micropub.biology.001367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Academic Contribution Register] [Received: 09/25/2024] [Revised: 12/06/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025]
Abstract
Cholinergic transmission fundamentally modulates information processing in the brain via muscarinic receptors. Using in vitro electrophysiological recordings of population spikes from the CA1 region, we found that the muscarinic receptor agonist carbachol (CCh, 1 μM) enhances the basal excitation level in the dorsal but not ventral hippocampus. Using a frequency stimulation protocol, we found that CCh transforms depression of neuronal output into facilitation (at 3-30 Hz) in the ventral hippocampus while only lessening depression in the dorsal hippocampus, suggesting that muscarinic transmission boosts basal neuronal activation in the dorsal hippocampus and strongly facilitates the output of the ventral hippocampus in a frequency-dependent manner.
Collapse
Affiliation(s)
- Giota Tsotsokou
- Laboratory of Physiology, Department of Medicine, University of Patras, Pátrai, West Greece, Greece
| | - Milena Fassea
- Laboratory of Physiology, Department of Medicine, University of Patras, Pátrai, West Greece, Greece
| | | |
Collapse
|
2
|
Qian XH, Liu XL, Chen G, Chen SD, Tang HD. Injection of amyloid-β to lateral ventricle induces gut microbiota dysbiosis in association with inhibition of cholinergic anti-inflammatory pathways in Alzheimer's disease. J Neuroinflammation 2022; 19:236. [PMID: 36171620 PMCID: PMC9520842 DOI: 10.1186/s12974-022-02599-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/23/2022] [Accepted: 09/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common neurodegenerative disease and its pathogenesis is still unclear. There is dysbiosis of gut microbiota in AD patients. More importantly, dysbiosis of the gut microbiota has been observed not only in AD patients, but also in patients with mild cognitive impairment (MCI). However, the mechanism of gut microbiota dysbiosis in AD is poorly understood. Cholinergic anti-inflammatory pathway is an important pathway for the central nervous system (CNS) regulation of peripheral immune homeostasis, especially in the gut. Therefore, we speculated that dysfunction of cholinergic anti-inflammatory pathway is a potential pathway for dysbiosis of the gut microbiota in AD. METHODS In this study, we constructed AD model mice by injecting Aβ1-42 into the lateral ventricle, and detected the cognitive level of mice by the Morris water maze test. In addition, 16S rDNA high-throughput analysis was used to detect the gut microbiota abundance of each group at baseline, 2 weeks and 4 weeks after surgery. Furthermore, immunofluorescence and western blot were used to detect alteration of intestinal structure of mice, cholinergic anti-inflammatory pathway, and APP process of brain and colon in each group. RESULTS Aβ1-42 i.c.v induced cognitive impairment and neuron damage in the brain of mice. At the same time, Aβ1-42 i.c.v induced alteration of gut microbiota at 4 weeks after surgery, while there was no difference at the baseline and 2 weeks after surgery. In addition, changes in colon structure and increased levels of pro-inflammatory factors were detected in Aβ1-42 treatment group, accompanied by inhibition of cholinergic anti-inflammatory pathways. Amyloidogenic pathways in both the brain and colon were accelerated in Aβ1-42 treatment group. CONCLUSIONS The present findings suggested that Aβ in the CNS can induce gut microbiota dysbiosis, alter intestinal structure and accelerate the amyloidogenic pathways, which were related to inhibiting cholinergic anti-inflammatory pathways.
Collapse
Affiliation(s)
- Xiao-Hang Qian
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiao-Li Liu
- Department of Neurology, Shanghai Fengxian District Central Hospital, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai, 201406, China
| | - Guang Chen
- The Second Hospital of Anhui Medical University, Anhui, 230601, China
| | - Sheng-di Chen
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Hui-Dong Tang
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Medical Center on Aging of Ruijin Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
3
|
Reid HMO, Chen-Mack N, Snowden T, Christie BR. Understanding Changes in Hippocampal Interneurons Subtypes in the Pathogenesis of Alzheimer's Disease: A Systematic Review. Brain Connect 2021; 11:159-179. [PMID: 33559520 DOI: 10.1089/brain.2020.0879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/26/2022] Open
Abstract
Background: It is becoming increasingly recognized that there is significant interneuron degeneration in Alzheimer's disease. As the hippocampus is integral for learning and memory, we performed a systematic review of primary literature focused on the relationship between Alzheimer's and hippocampal interneurons. In this study, we summarize the experimental work performed to date and identify opportunities for future experiments. Objectives: This PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)-style systematic review seeks to summarize the findings of all accessible research focused on cholecystokinin (CCK), neuropeptide Y (NPY), parvalbumin (PV), and somatostatin (SOM) interneurons in the hippocampal formation. Results: One thousand five hundred ninety-three articles were pulled from PubMed, PsycInfo, and Web of Science, based on three blocks of search terms. There were 45 articles that met all the predetermined inclusion/exclusion criteria. There is strong evidence that PV interneurons are affected early in the disease by toxic amyloid beta (Aβ) fragments; SOM interneurons are affected indirectly while the SOM neuropeptide may act to slowly worsen toxic Aβ fragment accumulation, whereas NPY- and CCK-positive interneurons are affected later in the progression of the disease. Conclusions: Fewer studies have been performed on NPY and CCK interneurons, and there is room for further investigations regarding the role of PV interneurons in Alzheimer's to help resolve contradictory findings. This review found that PV interneurons are affected early in the disease, but only in Alzheimer's precursor protein but not tau models. NPY and CCK interneurons were found to be affected later in the disease, and SOM interneurons vary greatly. Future studies may consider reporting immunohistochemical studies inclusive of either cell location or morphology-as well as marker to give a more robust picture of the disease.
Collapse
Affiliation(s)
- Hannah M O Reid
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Nathan Chen-Mack
- Island Medical Program and Department of Cellular and Physiological Sciences, University of British Columbia, Victoria, British Columbia, Canada
| | - Taylor Snowden
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Brian R Christie
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Island Medical Program and Department of Cellular and Physiological Sciences, University of British Columbia, Victoria, British Columbia, Canada
| |
Collapse
|
4
|
Cadmium induced ROS alters M1 and M3 receptors, leading to SN56 cholinergic neuronal loss, through AChE variants disruption. Toxicology 2018; 394:54-62. [DOI: 10.1016/j.tox.2017.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/09/2017] [Revised: 12/04/2017] [Accepted: 12/14/2017] [Indexed: 12/18/2022]
|
5
|
Prades R, Guerrero S, Araya E, Molina C, Salas E, Zurita E, Selva J, Egea G, López-Iglesias C, Teixidó M, Kogan MJ, Giralt E. Delivery of gold nanoparticles to the brain by conjugation with a peptide that recognizes the transferrin receptor. Biomaterials 2012; 33:7194-205. [PMID: 22795856 DOI: 10.1016/j.biomaterials.2012.06.063] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/23/2012] [Accepted: 06/22/2012] [Indexed: 11/18/2022]
Abstract
The treatment of Alzheimer's disease and many other brain-related disorders is limited because of the presence of the blood-brain barrier, which highly regulate the crossing of drugs. Metal nanoparticles have unique features that could contribute to the development of new therapies for these diseases. Nanoparticles have the capacity to carry several molecules of a drug; furthermore, their unique physico-chemical properties allow, for example, photothermal therapy to produce molecular surgery to destroy tumor cells and toxic structures. Recently, we demonstrated that gold nanoparticles conjugated to the peptide CLPFFD are useful to destroy the toxic aggregates of β-amyloid, similar to the ones found in the brains of patients with Alzheimer's disease. However, nanoparticles, like many other compounds, have null or very low capacity to cross the blood-brain barrier. In order to devise a strategy to improve drug delivery to the brain, here we introduced the peptide sequence THRPPMWSPVWP into the gold nanoparticle-CLPFFD conjugate. This peptide sequence interacts with the transferrin receptor present in the microvascular endothelial cells of the blood-brain barrier, thus causing an increase in the permeability of the conjugate in brain, as shown by experiments in vitro and in vivo. Our results are highly relevant for the therapeutic applications of gold nanoparticles for molecular surgery in the treatment of neurodegenerative diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Roger Prades
- Institute for Research in Biomedicine, Barcelona Science Park, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Villette V, Poindessous-Jazat F, Bellessort B, Roullot E, Peterschmitt Y, Epelbaum J, Stéphan A, Dutar P. A new neuronal target for beta-amyloid peptide in the rat hippocampus. Neurobiol Aging 2012; 33:1126.e1-14. [DOI: 10.1016/j.neurobiolaging.2011.11.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/27/2011] [Revised: 11/10/2011] [Accepted: 11/20/2011] [Indexed: 02/03/2023]
|
7
|
Yamashita A, Fuchs E, Taira M, Yamamoto T, Hayashi M. Somatostatin-immunoreactive senile plaque-like structures in the frontal cortex and nucleus accumbens of aged tree shrews and Japanese macaques. J Med Primatol 2012; 41:147-57. [PMID: 22512242 DOI: 10.1111/j.1600-0684.2012.00540.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Previously, we demonstrated decreased expression of somatostatin mRNA in aged macaque brain, particularly in the prefrontal cortex. To investigate whether or not this age-dependent decrease in mRNA is related to morphological changes, we analyzed somatostatin cells in the cerebra of aged Japanese macaques and compared them with those in rats and tree shrews, the latter of which are closely related to primates. METHODS Brains of aged macaques, tree shrews, and rats were investigated by immunohistochemistry with special emphasis on somatostatin. RESULTS We observed degenerating somatostatin-immunoreactive cells in the cortices of aged macaques and tree shrews. Somatostatin-immunoreactive senile plaque-like structures were found in areas 6 and 8 and in the nucleus accumbens of macaques, as well as in the nucleus accumbens and the cortex of aged tree shrews, where amyloid accumulations were observed. CONCLUSIONS Somatostatin degenerations may be related to amyloid accumulations and may play roles in impairments of cognitive functions during aging.
Collapse
Affiliation(s)
- Akiko Yamashita
- Division of Applied System Neuroscience, Nihon University School of Medicine, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
8
|
Chambon C, Wegener N, Gravius A, Danysz W. Behavioural and cellular effects of exogenous amyloid-β peptides in rodents. Behav Brain Res 2011; 225:623-41. [PMID: 21884730 DOI: 10.1016/j.bbr.2011.08.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/14/2011] [Revised: 08/10/2011] [Accepted: 08/16/2011] [Indexed: 12/29/2022]
Abstract
A better understanding of Alzheimer's disease (AD) and the development of disease modifying therapies are some of the biggest challenges of the 21st century. One of the core features of AD are amyloid plaques composed of amyloid-beta (Aβ) peptides. The first hypothesis proposed that cognitive deficits are linked to plaque-development and transgenic mice have been generated to study this link, thereby providing a good model to develop new therapeutic approaches. Since later it was recognised that in AD patients the cognitive deficit is rather correlated to soluble amyloid levels, consequently, a new hypothesis appeared associating the earliest amyloid toxicity to these soluble species. The purpose of this review is to give a summary of behavioural and cellular data obtained after soluble Aβ peptide administration into rodents' brain, thereby showing that this model is a valid tool to investigate AD pathology when no plaques are present. Additionally, this method offers an excellent, efficient model to test compounds which could act at such early stages of the disease.
Collapse
Affiliation(s)
- Caroline Chambon
- In Vivo Pharmacology, Merz Pharmaceuticals GmbH, Eckenheimer Landstrasse 100, D-60318 Frankfurt am Main, Germany.
| | | | | | | |
Collapse
|
9
|
Rekik L, Daguin-Nerrière V, Petit JY, Brachet P. γ-Aminobutyric acid type B receptor changes in the rat striatum and substantia nigra following intrastriatal quinolinic acid lesions. J Neurosci Res 2011; 89:524-35. [PMID: 21290407 DOI: 10.1002/jnr.22574] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/22/2010] [Revised: 10/25/2010] [Accepted: 11/05/2010] [Indexed: 12/16/2023]
Abstract
Changes in the regional distribution of the metabotropic GABA type B receptors (GABA(B)) were investigated in a rat model of Huntington's disease. Animals received a unilateral intrastriatal injection of quinolinic acid (QA), and GABA(B) immunoreactivity was monitored 3, 11, and 21 days postinjection in the striatum and substantia nigra (SN). Two antibodies, recognizing either the GABA(B1) or the GABA(B2) receptor subtypes, were used. QA injection rapidly induced a protracted increase in GABA(B1) or GABA(B2) immunoreactivity in the lesioned striatum, despite the neuronal loss. In the SN, a continuous increase in GABA(B1) and GABA(B2) immunoreactivity was observed at all time points in the ipsilateral pars reticulata (SNr), whereas the pars compacta (SNc) was unaffected by this phenomenon. This increase was supported by a densitometric analysis. At day 21 postlesion induction, intensely labeled stellate cells and processes were found in the ipsilateral SNr, in addition to immunoreactive neurons. Double labeling of GABA(B1) and glial fibrillary acidic protein (GFAP) showed that the stellate cells were reactive astrocytes. Hence, part of the sustained increase in GABA(B) immunoreactivity that takes place in the SNr and possibly the striatum may be ascribed to reactive astrocytes. It is suggested that GABA(B) receptors are up-regulated in these reactive astrocytes and that agonists might influence the extent of this astroglial reaction.
Collapse
Affiliation(s)
- Letaïef Rekik
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia.
| | | | | | | |
Collapse
|
10
|
Poirier GL, Amin E, Good MA, Aggleton JP. Early-onset dysfunction of retrosplenial cortex precedes overt amyloid plaque formation in Tg2576 mice. Neuroscience 2011; 174:71-83. [PMID: 21093545 PMCID: PMC4235255 DOI: 10.1016/j.neuroscience.2010.11.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/06/2010] [Revised: 10/24/2010] [Accepted: 11/10/2010] [Indexed: 02/04/2023]
Abstract
A mouse model of amyloid pathology was used to first examine using a cross sectional design changes in retrosplenial cortex activity in transgenic mice aged 5, 11, 17, and 23 months. Attention focused on: (1) overt amyloid labeled with β-amyloid((1-42)) and Congo Red staining, (2) metabolic function assessed by the enzyme, cytochrome oxidase, and (3) neuronal activity as assessed indirectly by the immediate-early gene (IEG), c-Fos. Changes in cytochrome oxidase and c-Fos activity were observed in the retrosplenial cortex in Tg2576 mice as early as 5 months of age, long before evidence of plaque formation. Subsequent analyses concentrating on this early dysfunction revealed at 5 months pervasive, amyloid precursor protein (APP)-derived peptide accumulation in the retrosplenial cortex and selective afferents (anterior thalamus, hippocampus), which was associated with the observed c-Fos hyporeactivity. These findings indicate that retrosplenial cortex dysfunction occurs during early stages of amyloid production in Tg2576 mice and may contribute to cognitive dysfunction.
Collapse
Affiliation(s)
- G L Poirier
- School of Psychology, Cardiff University, 70 Park Place, Cardiff, Wales, CF10 3AT, UK.
| | | | | | | |
Collapse
|
11
|
Szego EM, Csorba A, Janáky T, Kékesi KA, Abrahám IM, Mórotz GM, Penke B, Palkovits M, Murvai U, Kellermayer MSZ, Kardos J, Juhász GD. Effects of estrogen on beta-amyloid-induced cholinergic cell death in the nucleus basalis magnocellularis. Neuroendocrinology 2011; 93:90-105. [PMID: 20938166 DOI: 10.1159/000321119] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/18/2010] [Accepted: 09/08/2010] [Indexed: 12/13/2022]
Abstract
Alzheimer disease is characterized by accumulation of β-amyloid (Aβ) and cognitive dysfunctions linked to early loss of cholinergic neurons. As estrogen-based hormone replacement therapy has beneficial effects on cognition of demented patients, and it may prevent memory impairments, we investigated the effect of estrogen-pretreatment on Aβ-induced cholinergic neurodegeneration in the nucleus basalis magnocellularis (NBM). We tested which Aβ species induces the more pronounced cholinotoxic effect in vivo. We injected different Aβ assemblies in the NBM of mice, and measured cholinergic cell and cortical fiber loss. Spherical Aβ oligomers had the most toxic effect. Pretreatment of ovariectomized mice with estrogen before Aβ injection decreased cholinergic neuron loss and partly prevented fiber degeneration. By using proteomics, we searched for proteins involved in estrogen-mediated protection and in Aβ toxicity 24 h following injection. The change in expression of, e.g., DJ-1, NADH ubiquinone oxidoreductase, ATP synthase, phosphatidylethanolamine-binding protein 1, protein phosphatase 2A and dimethylarginine dimethylaminohydrolase 1 support our hypothesis that Aβ induces mitochondrial dysfunction, decreases MAPK signaling, and increases NOS activation in NBM. On the other hand, altered expression of, e.g., MAP kinase kinase 1 and 2, protein phosphatase 1 and 2A by Aβ might increase MAPK suppression and NOS signaling in the cortical target area. Estrogen pretreatment reversed most of the changes in the proteome in both areas. Our experiments suggest that regulation of the MAPK pathway, mitochondrial pH and NO production may all contribute to Aβ toxicity, and their regulation can be prevented partly by estrogen pretreatment.
Collapse
Affiliation(s)
- Eva M Szego
- Laboratory of Proteomics, Eötvös Loránd University, Budapest, Hungary.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Perez JL, Carrero I, Gonzalo P, Arevalo-Serrano J, Sanz-Anquela JM, Ortega J, Rodriguez M, Gonzalo-Ruiz A. Soluble oligomeric forms of beta-amyloid (Abeta) peptide stimulate Abeta production via astrogliosis in the rat brain. Exp Neurol 2009; 223:410-21. [PMID: 19879263 DOI: 10.1016/j.expneurol.2009.10.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/13/2009] [Revised: 09/29/2009] [Accepted: 10/17/2009] [Indexed: 10/20/2022]
Abstract
The aim of this study was to investigate the interaction between beta-amyloid (Abeta) peptide and astrogliosis in early stages of Abeta toxicity. In Wistar rats, anaesthetised with equitesine, a single microinjection of Abeta1-42 oligomers was placed into the retrosplenial cortex. Control animals were injected with Abeta42-1 peptide into the corresponding regions of cerebral cortex. Immunocytochemical analysis revealed an intense Abeta immunoreactivity (IR) at the level of Abeta1-42 injection site, increasing from the first 24 h to later (72 h) time point. Control injection showed a light staining surrounding the injection site. In Abeta oligomers-treated animals, Abeta-immunopositive product also accumulates in cortical cells, particularly in frontal and temporal cortices at an early (24 h) time point. Abeta-IR structures-like diffuse aggregates forms were also observed in hippocampus and in several cortical areas, increasing from the first 24 h to later (72 h) time point. In control animals no specific staining was seen neither in cortical cells nor in structures-like diffuse aggregates forms. Injections of Abeta oligomers also induce activation of astrocytes surrounding and infiltrating the injection site. Astrocyte activation is evidenced by morphological changes and upregulation of glial fibrillary acidic protein (GFAP). By GFAP immunoblotting we detected two immunopositive protein bands, at 50 and 48 kDa molecular mass. Confocal analysis also showed that GFAP co-localized with Abeta-IR material in a time-dependent manner. In conclusion, our results indicate that astrocyte activation might have a critical role in the mechanisms of Abeta-induced neurodegeneration, and that should be further studied as possible targets for therapeutic intervention in AD.
Collapse
Affiliation(s)
- J L Perez
- Laboratory of Neuroanatomy, Institute of Neuroscience of Castilla and León, Valladolid University (Campus of Soria), Spain
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Hunter S, Friedland RP, Brayne C. Time for a change in the research paradigm for Alzheimer's disease: the value of a chaotic matrix modeling approach. CNS Neurosci Ther 2009; 16:254-62. [PMID: 20002628 DOI: 10.1111/j.1755-5949.2009.00117.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/01/2023] Open
Abstract
The amyloid cascade hypothesis, based on the genetic data from early onset, familial forms of the disease, has been the dominant model for many years and involves over production and deposition of the beta amyloid protein as causal in the disease process. However, it does not apply very well to the more common, later onset, sporadic form of the disease, where a wider range of factors appear to be involved in disease progression. Over recent years, data illustrating reciprocal interactions between the amyloid precursor protein (APP) and its various metabolites with many factors involved in normal synaptic plasticity have emerged. These feedback relationships have the potential to affect the complex kinase cascades involved in every aspect of neuronal function. Further, data regarding the multiple roles of the presenilins have the potential to allow the over expression and deposition of the amyloid beta protein to be both a cause and consequence of disease progression, with relevance in both sporadic and familial of Alzheimer's disease (AD). Disease progression might be better explained by a chaotic matrix of factors and raises the question again whether AD should be approached as a single entity or as a syndrome, with important consequences for disease identification and treatment.
Collapse
Affiliation(s)
- Sally Hunter
- Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge, Forvie Site, Robinson Way, Cambridge, United Kingdom.
| | | | | |
Collapse
|