1
|
Rojas L, Grüttner J, Ma’ayeh S, Xu F, Svärd SG. Dual RNA Sequencing Reveals Key Events When Different Giardia Life Cycle Stages Interact With Human Intestinal Epithelial Cells In Vitro. Front Cell Infect Microbiol 2022; 12:862211. [PMID: 35573800 PMCID: PMC9094438 DOI: 10.3389/fcimb.2022.862211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/31/2022] [Indexed: 12/02/2022] Open
Abstract
Giardia intestinalis is a protozoan parasite causing diarrheal disease, giardiasis, after extracellular infection of humans and other mammals’ intestinal epithelial cells (IECs) of the upper small intestine. The parasite has two main life cycle stages: replicative trophozoites and transmissive cysts. Differentiating parasites (encysting cells) and trophozoites have recently been shown to be present in the same regions of the upper small intestine, whereas most mature cysts are found further down in the intestinal system. To learn more about host-parasite interactions during Giardia infections, we used an in vitro model of the parasite’s interaction with host IECs (differentiated Caco-2 cells) and Giardia WB trophozoites, early encysting cells (7 h), and cysts. Dual RNA sequencing (Dual RNAseq) was used to identify differentially expressed genes (DEGs) in both Giardia and the IECs, which might relate to establishing infection and disease induction. In the human cells, the largest gene expression changes were found in immune and MAPK signaling, transcriptional regulation, apoptosis, cholesterol metabolism and oxidative stress. The different life cycle stages of Giardia induced a core of similar DEGs but at different levels and there are many life cycle stage-specific DEGs. The metabolic protein PCK1, the transcription factors HES7, HEY1 and JUN, the peptide hormone CCK and the mucins MUC2 and MUC5A are up-regulated in the IECs by trophozoites but not cysts. Cysts specifically induce the chemokines CCL4L2, CCL5 and CXCL5, the signaling protein TRKA and the anti-bacterial protein WFDC12. The parasite, in turn, up-regulated a large number of hypothetical genes, high cysteine membrane proteins (HCMPs) and oxidative stress response genes. Early encysting cells have unique DEGs compared to trophozoites (e.g. several uniquely up-regulated HCMPs) and interaction of these cells with IECs affected the encystation process. Our data show that different life cycle stages of Giardia induce different gene expression responses in the host cells and that the IECs in turn differentially affect the gene expression in trophozoites and early encysting cells. This life cycle stage-specific host-parasite cross-talk is an important aspect to consider during further studies of Giardia’s molecular pathogenesis.
Collapse
Affiliation(s)
- Laura Rojas
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Jana Grüttner
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | | | - Feifei Xu
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Staffan G. Svärd
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
- SciLifeLab, Uppsala University, Uppsala, Sweden
- *Correspondence: Staffan G. Svärd,
| |
Collapse
|
2
|
Davids BJ, Gilbert MA, Liu Q, Reiner DS, Smith AJ, Lauwaet T, Lee C, McArthur AG, Gillin FD. An atypical proprotein convertase in Giardia lamblia differentiation. Mol Biochem Parasitol 2010; 175:169-80. [PMID: 21075147 DOI: 10.1016/j.molbiopara.2010.11.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 10/29/2010] [Accepted: 11/05/2010] [Indexed: 01/24/2023]
Abstract
Proteolytic activity is important in the lifecycles of parasites and their interactions with hosts. Cysteine proteases have been best studied in Giardia, but other protease classes have been implicated in growth and/or differentiation. In this study, we employed bioinformatics to reveal the complete set of putative proteases in the Giardia genome. We identified 73 peptidase homologs distributed over 5 catalytic classes in the genome. Serial analysis of gene expression of the G. lamblia lifecycle found thirteen protease genes with significant transcriptional variation over the lifecycle, with only one serine protease transcript upregulated late in encystation. The translated gene sequence of this encystation-specific transcript was most similar to eukaryotic subtilisin-like proprotein convertases (SPC), although the typical catalytic triad was not identified. Epitope-tagged gSPC protein expressed in Giardia under its own promoter was upregulated during encystation with highest expression in cysts and it localized to encystation-specific secretory vesicles (ESV). Total gSPC from encysting cells produced proteolysis in gelatin gels that co-migrated with the epitope-tagged protease in immunoblots. Immuno-purified gSPC also had gelatinase activity. To test whether endogenous gSPC activity is involved in differentiation, trophozoites and cysts were exposed to the specific serine proteinase inhibitor 4-(2-aminoethyl)-benzenesulfonyl fluoride hydrochloride (AEBSF). After 21 h encystation, a significant decrease in ESV was observed with 1mM AEBSF and by 42 h the number of cysts was significantly reduced, but trophozoite growth was not inhibited. Concurrently, levels of cyst wall proteins 1 and 2, and AU1-tagged gSPC protein itself were decreased. Excystation of G. muris cysts was also significantly reduced in the presence of AEBSF. These results support the idea that serine protease activity is essential for Giardia encystation and excystation.
Collapse
Affiliation(s)
- B J Davids
- Department of Pathology, University of California, San Diego, CA 92103-8416, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Abdul-Wahid A, Faubert G. Mucosal delivery of a transmission-blocking DNA vaccine encoding Giardia lamblia CWP2 by Salmonella typhimurium bactofection vehicle. Vaccine 2007; 25:8372-83. [PMID: 17996337 DOI: 10.1016/j.vaccine.2007.10.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 10/01/2007] [Accepted: 10/07/2007] [Indexed: 01/26/2023]
Abstract
In this study, we investigated the use of Salmonella typhimurium (STM1 strain) as a bactofection vehicle to deliver a transmission-blocking DNA vaccine (TBDV) plasmid to the intestinal immune system. The gene encoding the full length cyst wall protein-2 (CWP2) from Giardia lamblia was subcloned into the pCDNA3 mammalian expression vector and stably introduced into S. typhimurium STM1. Eight-week-old female BALB/c mice were orally immunized every 2 weeks, for a total of three immunizations. Vaccinated and control mice were sacrificed 1 week following the last injection. Administration of the DNA vaccine led to the production of CWP2-specific cellular immune responses characterized by a mixed Th1/Th2 response. Using ELISA, antigen-specific IgA and IgG antibodies were detected in intestinal secretions. Moreover, analysis of sera demonstrated that the DNA immunization also stimulated the production of CWP2-specific IgG antibodies that were mainly of the IgG2a isotype. Finally, challenge infection with live Giardia muris cysts revealed that mice receiving the CWP2-encoding DNA vaccine were able to reduce cyst shedding by approximately 60% compared to control mice. These results demonstrate, for the first time, the development of parasite transmission-blocking immunity at the intestinal level following the administration of a mucosal DNA vaccine delivered by S. typhimurium STM1.
Collapse
Affiliation(s)
- Aws Abdul-Wahid
- Institute of Parasitology, McGill University, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, Montréal, Québec, Canada H9X-3V9
| | | |
Collapse
|
4
|
Abdul-Wahid A, Faubert G. Characterization of the local immune response to cyst antigens during the acute and elimination phases of primary murine giardiasis. Int J Parasitol 2007; 38:691-703. [PMID: 18037419 DOI: 10.1016/j.ijpara.2007.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 08/31/2007] [Accepted: 10/01/2007] [Indexed: 10/22/2022]
Abstract
During the course of a giardial infection, the host's immune system is presented with a variety of Giardia antigens as trophozoites differentiate, through encysting cells, to form the infective cysts. Previous studies examining the host's immune response during giardial infections have focused on trophozoite-derived antigens (Ags). In this study, we were interested to determine if the host's immune system reacts to cyst Ags during the acute and elimination phases, when there is cyst shedding. For this purpose, we used antigenic extracts from trophozoites (Troph), encysting cells (ENC), and purified giardial cyst walls (PCW), as well as purified recombinant cyst wall protein 2 (rCWP2). Comparative analysis of the parasite extracts using SDS-PAGE analysis and surface-enhanced laser desorption/ionization time of flight mass spectrometry resulted in the detection of 175 protein entities, of which 26 were Troph-specific proteins, 17 ENC-specific proteins, and 31 were PCW-specific proteins. On the other hand, we detected 34 proteins shared between Troph and ENC, 19 proteins that were shared between ENC and PCW, and 29 proteins that were common to Troph and PCW. Finally, we detected 19 proteins that were shared by all three extract samples. BALB/c mice were infected with 10(5)Giardia muris cysts and sacrificed either at the acute or elimination phases of infection (days 12 and 40, respectively), and lymphocytes were isolated from the Peyer's patches (PP). Using flow cytometry, we detected significant increases in the number of PP-derived CD4(+) and CD19(+), but not CD8(+) lymphocytes. Quantification of the number of mucosal IL-4 and IFN-gamma secreting T-lymphocytes by enzyme-linked immunosorbent spot assay showed that these cells reacted by secreting similar levels of IL-4 and IFN-gamma, regardless of the Ag or the phase of infection. Analysis of intestinal humoral immune responses by ELISA resulted in the detection of Ag-specific IgA and IgG intestinal antibodies. Regardless of the Ag tested, a trend was consistently observed where the concentration of local antibodies was found to be slightly increased by the acute phase, where we detected approximately 200microg/mg of specific IgA and approximately 300ng/ml of specific IgG in intestinal lavage of infected mice. By the elimination phase, the amount of specific antibodies was found to increase to approximately 600microg/mg of specific IgA and approximately 1300ng/ml of specific IgG antibodies. Finally, we tested the biological activity of these antibodies and found that they were able to reduce the ability of trophozoites to differentiate into cysts in vitro. Collectively, we believe these results demonstrate for the first time the existence of significant cellular and humoral immune responses against Giardia cyst Ags that may contribute to the reduction of cyst shedding in infected animals.
Collapse
Affiliation(s)
- Aws Abdul-Wahid
- Institute of Parasitology, McGill University, Montréal, Que., Canada H9X-3V9
| | | |
Collapse
|
5
|
Lee P, Faubert GM. Oral immunization of BALB/c mice by intragastric delivery of Streptococcus gordonii-expressing Giardia cyst wall protein 2 decreases cyst shedding in challenged mice. FEMS Microbiol Lett 2006; 265:225-36. [PMID: 17081198 DOI: 10.1111/j.1574-6968.2006.00490.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Giardia lamblia (Giardia duodenalis or Giardia intestinalis) is a protozoan parasite of vertebrates with broad host specificity. Specific antibodies directed against cyst antigens can interfere with the cyst wall-building process. In this study, we engineered Streptococcus gordonii to express a 26 kDa fragment of cyst wall protein 2 (CWP2), containing a relevant B cell epitope, on the cell surface. This is the first report of S. gordonii expressing a protein of parasite origin. As S. gordonii was intended for intestinal delivery of CWP2, it was determined that this oral commensal bacterium is able to persist in the murine intestine for 30 days. Immunization with recombinant streptococci expressing the 26 kDa fragment resulted in higher antibody levels. Specific anti-CWP2 IgA antibodies were detected in fecal samples and anti-CWP2 IgG antibodies were detected in serum demonstrating the efficacy of S. gordonii for intragastric antigen delivery. In a pilot challenge experiment, immunized mice demonstrated a significant 70% reduction in cyst output.
Collapse
Affiliation(s)
- Peter Lee
- Institute of Parasitology, McGill University, Macdonald Campus, Ste-Anne de Bellevue, QC, Canada
| | | |
Collapse
|
6
|
Lee P, Faubert GM. Expression of the Giardia lamblia cyst wall protein 2 in Lactococcus lactis. MICROBIOLOGY-SGM 2006; 152:1981-1990. [PMID: 16804173 DOI: 10.1099/mic.0.28877-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this study, Lactococcus lactis was engineered to express Giardia lamblia cyst wall protein 2 (CWP2) at three different subcellular locations, intracellular, secreted or cell-surface-anchored, using nisin as an inducing agent. CWP2 expression did not appear to be detrimental to L. lactis viability. No particular subcellular location of CWP2 expression offered any advantages over the others with respect to decreased toxicity towards the bacteria. All recombinant lactococci experienced a similar reduction in growth rate when induced. It was determined whether recombinant lactococcal cells engineered for cell surface expression of CWP2 were capable of inducing a CWP2-specific mucosal IgA antibody response. Recombinant lactococci were successful at inducing CWP2-specific IgA antibodies. Moreover, in a pilot challenge experiment, mice immunized with these recombinant lactococci demonstrated a significant (63 %) reduction in cyst output. Thus, it has been demonstrated that G. lamblia CWP2 may be expressed in L. lactis and that recombinant lactococcal cells elicit Giardia-specific antibodies which reduce cyst shedding in a murine model.
Collapse
Affiliation(s)
- Peter Lee
- Institute of Parasitology, McGill University, Macdonald Campus, 21 111 Lakeshore Rd, Ste-Anne de Bellevue, Québec H9X 3V9, Canada
| | - Gaétan M Faubert
- Institute of Parasitology, McGill University, Macdonald Campus, 21 111 Lakeshore Rd, Ste-Anne de Bellevue, Québec H9X 3V9, Canada
| |
Collapse
|
7
|
Abdul-Wahid A, Faubert GM. Similarity in cyst wall protein (CWP) trafficking between encysting Giardia duodenalis trophozoites and CWP-expressing human embryonic kidney-293 cells. Biochem Biophys Res Commun 2004; 324:1069-80. [PMID: 15485664 DOI: 10.1016/j.bbrc.2004.09.167] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2004] [Indexed: 10/26/2022]
Abstract
Cyst wall proteins 1 and 2 (CWP1 and CWP2) are major constituents of the giardial cyst wall and are expressed with similar kinetics by encysting trophozoites. In the present study, we were interested to determine if the expression of giardial CWPs as heterologous proteins in a higher eukaryotic cell would result in their trafficking across the secretory pathway, as is the case in encysting trophozoites. Recombinant (r)CWP1 and rPro-CWP2 were detected in the lysate and culture media of transfected HEK-293 cells. We then conducted intracellular localization experiments using confocal microscopy and found that the proteins were trafficked in membrane enclosed vesicles across the secretory pathway and released to the culture medium by transfected HEK-293 cells. We then dissected the rCWP1 and rPro-CWP2 molecules to identify the portion(s) responsible for their secretion and found that the putative N-terminal signal peptide was sufficient for directing the secretion of rCWP1, while both the putative N-terminal signal peptide and the 13kDa C-terminal regions were necessary for the secretion of rPro-CWP2 by transfected HEK-293 cells. Taken together, these results demonstrate the degree of conservation of signal peptide recognition between lower and higher eukaryotes.
Collapse
Affiliation(s)
- A Abdul-Wahid
- Institute of Parasitology, McGill University, MacDonald Campus, 21,111 Lakeshore Road, Montréal, Quebec, Canada H9X 3V9
| | | |
Collapse
|
8
|
Davids BJ, Mehta K, Fesus L, McCaffery JM, Gillin FD. Dependence of Giardia lamblia encystation on novel transglutaminase activity. Mol Biochem Parasitol 2004; 136:173-80. [PMID: 15478797 DOI: 10.1016/j.molbiopara.2004.03.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Earlier, we found that three protein disulfide isomerases (PDI) from Giardia lamblia (gPDI) also have transglutaminase (TGase) activity in vitro. We now show that differentiating Giardia cells contain isopeptide bonds (epsilon(gamma-glutamyl)lysine), the biological product of TGase activity that results in irreversible crosslinking of proteins in vivo. HPLC analyses showed the highest isopeptide bond content in cells encysting for 21 h, indicating an important role for TGase early in encystation. We were not able to detect isopeptide bonds in water-resistant cysts, possibly because they could not be extracted. One of the hallmarks of early encystation is the formation of encystation secretory vesicles (ESV) that transport nascent cyst wall proteins (CWPs) to the outer cell surface. ImmunoEM and live-cell immunofluorescence assays of encysting parasites revealed that gPDIs 1-3 are located in ESV and that gPDI-2 is also novel in that it is localized on the cell surface. Cystamine, a widely used TGase inhibitor, caused a dose-dependent inhibition of ESV formation by 21 h, thereby preventing development of trophozoites into cysts. Since cystamine (0.5-1 mM) inhibited the TGase activity of recombinant gPDIs 1-3 in vitro, PDIs appear to be the physiologic targets of cystamine. We found that when parasites were treated with cystamine, CWPs were not processed normally. These data suggest that TGase-catalyzed reactions may be needed for either the machinery that processes CWP precursors or their recruitment to ESV.
Collapse
Affiliation(s)
- B J Davids
- Department of Pathology, Division of Infectious Diseases, UCSD Medical Center, University of California, CTF-C 403, 214 Dickinson Street, San Diego, CA 92103-8416, USA.
| | | | | | | | | |
Collapse
|
9
|
Weiland MEL, Palm JED, Griffiths WJ, McCaffery JM, Svärd SG. Characterisation of alpha-1 giardin: an immunodominant Giardia lamblia annexin with glycosaminoglycan-binding activity. Int J Parasitol 2003; 33:1341-51. [PMID: 14527517 DOI: 10.1016/s0020-7519(03)00201-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Alpha-1 giardin is an immunodominant protein in the intestinal protozoan parasite Giardia lamblia. The Triage((R)) parasite panel, used to detect copro-antigens in stool from giardiasis patients, reacts with an epitope between amino acids 160 and 200 in alpha-1 giardin. This region of the protein is also highly immunogenic during human infections. Alpha-1 giardin is related to annexins and like many other annexins it was shown to be plasma membrane associated. Immunoelectron and immunofluorescence microscopy revealed that some alpha-1 giardin are displayed on the surface of recently excysted cells. Recombinant alpha-1 giardin displayed a Ca(2+)-dependent binding to glycosaminoglycans (GAGs), in particular heparan sulphate, a common GAG in the intestinal tract. Recombinant alpha-1 giardin bound to thin sections of human small intestine, a binding which could be inhibited by adding increasing concentrations of sulphated sugars. A surface associated trypsin activated Giardia lectin (taglin) has been suggested to be important for G. lamblia attachment. In this study we show that a monoclonal antibody that inhibits taglin recognises alpha-1 and alpha-2 giardin. Thus, alpha-1 giardin is a highly immunoreactive GAG-binding protein, which may play a key role in the parasite-host interaction. Our results further show a conserved function of annexins from lower to higher eukaryotes.
Collapse
Affiliation(s)
- Malin E-L Weiland
- Microbiology and Tumor Biology Center, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
10
|
Reiner DS, McCaffery JM, Gillin FD. Reversible interruption of Giardia lamblia cyst wall protein transport in a novel regulated secretory pathway. Cell Microbiol 2001; 3:459-72. [PMID: 11437832 DOI: 10.1046/j.1462-5822.2001.00129.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To survive in the environment and infect a new host, Giardia lamblia secretes an extracellular cyst wall using a poorly understood pathway. The two cyst wall proteins (CWPs) form disulphide-bonded heterodimers and are exported via novel encystation-specific secretory vesicles (ESVs). Exposure of eukaryotic cells to dithiothreitol (DTT) blocks the formation of disulphide bonds in nascent proteins that accumulate in the endoplasmic reticulum (ER) and induces an unfolded protein response (UPR). Proteins that have exited the ER are not susceptible. Exposure to DTT inhibits ESV formation by > 85%. Addition of DTT to encysting cells causes rapid (t1/2 < 10 min), reversible disappearance of ESVs, correlated with reduction of CWPs to monomers and reformation of CWP oligomers upon removal of DTT. Neither CWPs nor ESVs are affected by mercaptoethanesulphonic acid, a strong reducing agent that does not penetrate cells. DTT does not inhibit the overall protein secretory pathway, and recovery does not require new protein synthesis. We found evidence of protein disulphide isomerases in the ESV and the surface of encysting cells, in which they may catalyse initial CWP folding and recovery from DTT. This is the first suggestion of non-CWP proteins in ESVs and of enzymes on the giardial surface. DTT treatment did not stimulate a UPR, suggesting that Giardia may have diverged before the advent of this conserved form of ER quality control.
Collapse
Affiliation(s)
- D S Reiner
- Department of Pathology, Division of Infectious Diseases, University of California San Diego, School of Medicine, San Diego, CA 92103-8416, USA
| | | | | |
Collapse
|
11
|
Abstract
Recently, a Giardia vaccine has become commercially available in the USA for prevention of clinical signs of giardiasis and reduction of cyst shedding in dogs and cats. The vaccine is based upon the current state of knowledge of Giardia antigenicity and immunology. Here, Merle Olson, Howard Ceri and Douglas Morck describe studies that led to the development of this vaccine and subsequent efficacy studies. Immunoprophylaxis and immunotherapeutic application of the vaccine are discussed.
Collapse
Affiliation(s)
- M E Olson
- Departments of Microbiology and Infectious Diseases and Biological Sciences, University of Calgary, Alberta, Canada.
| | | | | |
Collapse
|
12
|
Abstract
The intestinal protozoan Giardia duodenalis is a widespread opportunistic parasite of humans and animals. This parasite inhabits the upper part of the small intestine and has a direct life cycle. After ingestion of cysts, which are the infective stage, the trophozoites emerge from the cysts in the duodenum and attach to the small intestinal mucosa of the host. Since the migration of trophozoites from the lumen of the intestine into surrounding tissues is an unusual occurrence, the immune response to Giardia remains localized. The identification of antigens that play a role in acquired immunity has been difficult because of the occurrence of antigenic variation and because, Giardia being an ubiquitous organism, it is possible that the antigenic profiles of isolates from different geographic areas will vary. Innate-immunity mechanisms play a role in the control and/or severity of the infection. Both humoral and cell-mediated immune responses play a role in acquired immunity, but the mechanisms involved are unknown. A variety of serological assays have been used to detect circulating antibodies in serum. Because of the biological characteristics of the parasite and the lack of suitable antigens, the sensitivity of serological assays remains poor. On the other hand, detection of antigens in feces of infected patients has met with success. Commercial kits are available, and they are reported to be more sensitive than microscopic examination for the detection of giardiasis on a single specimen.
Collapse
|
13
|
Eckmann L, Laurent F, Langford TD, Hetsko ML, Smith JR, Kagnoff MF, Gillin FD. Nitric oxide production by human intestinal epithelial cells and competition for arginine as potential determinants of host defense against the lumen-dwelling pathogen Giardia lamblia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:1478-87. [PMID: 10640765 DOI: 10.4049/jimmunol.164.3.1478] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Giardia lamblia infection of the human small intestine is a common protozoan cause of diarrheal disease worldwide. Although infection is luminal and generally self-limiting, and secretory Abs are thought to be important in host defense, other defense mechanisms probably affect the duration of infection and the severity of symptoms. Because intestinal epithelial cells produce NO, and its stable end products, nitrite and nitrate, are detectable mainly on the apical side, we tested the hypothesis that NO production may constitute a host defense against G. lamblia. Several NO donors, but not their control compounds, inhibited giardial growth without affecting viability, suggesting that NO is cytostatic rather than cytotoxic for G. lamblia. NO donors also inhibited giardial differentiation induced by modeling crucial environmental factors, i. e., encystation induced by bile and alkaline pH, and excystation in response to gastric pH followed by alkaline pH and protease. Despite the potent antigiardial activity of NO, G. lamblia is not simply a passive target for host-produced NO, but has strategies to evade this potential host defense. Thus, in models of human intestinal epithelium, G. lamblia inhibited epithelial NO production by consuming arginine, the crucial substrate used by epithelial NO synthase to form NO. These studies define NO and arginine as central components in a novel cross-talk between a luminal pathogen and host intestinal epithelium.
Collapse
Affiliation(s)
- L Eckmann
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
The intestinal protozoan Giardia duodenalis is a widespread opportunistic parasite of humans and animals. This parasite inhabits the upper part of the small intestine and has a direct life cycle. After ingestion of cysts, which are the infective stage, the trophozoites emerge from the cysts in the duodenum and attach to the small intestinal mucosa of the host. Since the migration of trophozoites from the lumen of the intestine into surrounding tissues is an unusual occurrence, the immune response to Giardia remains localized. The identification of antigens that play a role in acquired immunity has been difficult because of the occurrence of antigenic variation and because, Giardia being an ubiquitous organism, it is possible that the antigenic profiles of isolates from different geographic areas will vary. Innate-immunity mechanisms play a role in the control and/or severity of the infection. Both humoral and cell-mediated immune responses play a role in acquired immunity, but the mechanisms involved are unknown. A variety of serological assays have been used to detect circulating antibodies in serum. Because of the biological characteristics of the parasite and the lack of suitable antigens, the sensitivity of serological assays remains poor. On the other hand, detection of antigens in feces of infected patients has met with success. Commercial kits are available, and they are reported to be more sensitive than microscopic examination for the detection of giardiasis on a single specimen.
Collapse
Affiliation(s)
- G Faubert
- Institute of Parasitology, Macdonald Campus of McGill University, Ste. Anne-de-Bellevue, Qu¿ebec, Canada H9X 3V9.
| |
Collapse
|
15
|
Boone JH, Wilkins TD, Nash TE, Brandon JE, Macias EA, Jerris RC, Lyerly DM. TechLab and alexon Giardia enzyme-linked immunosorbent assay kits detect cyst wall protein 1. J Clin Microbiol 1999; 37:611-4. [PMID: 9986821 PMCID: PMC84490 DOI: 10.1128/jcm.37.3.611-614.1999] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A Giardia lamblia antigen detected by the TechLab Giardia Test (TechLab, Inc., Blacksburg, Va.) and the Alexon ProSpecT Giardia microplate assay (Alexon, Inc., Sunnyvale, Calif.) was purified by immunoaffinity chromatography from supernatant fluids of encystment cultures. Two major proteins (Mr 22,000 and 26,000) were observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Coomassie staining that did not resemble the GSA65 antigen reportedly detected by the Alexon test. These proteins reacted intensely with the monoclonal antibodies used in both commercial enzyme-linked immunosorbent assays (ELISAs). Both proteins had identical N-terminal amino acid sequences and were identified as cyst wall protein 1 (CWP1). The 26-kDa form appeared early during encystment followed by the appearance of the 22-kDa form. Recombinant CWP1 (Mr 26,000) was strongly positive in both commercial tests. CWP1 was stable in human stool specimens, resistant to degradation by proteases and N- and O-glycanases, and unaffected by oxidation with sodium periodate. Two minor proteins with Mrs of 32,000 and 39,000 were detected in CWP1 preparations by using a sensitive fluorescent protein stain. Both were identified as CWP2, and neither reacted with the monoclonal antibodies from the commercial tests. We analyzed 535 stool specimens for CWP1 by using both commercial ELISAs and resolved discrepant results by using routine ova and parasite examination (O&P) and on immunofluorescence antibody assay. The presence of CWP1 correlated well between both ELISAs (98.7% correlation). Our results demonstrate that both commercial ELISAs detect CWP1, which is a useful diagnostic marker because it is highly stable, is secreted in large amounts by encysting trophozoites, and correlates well with O&P.
Collapse
Affiliation(s)
- J H Boone
- TechLab, Inc., Corporate Research Center, Blacksburg, Virginia 24060-6364, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Svärd SG, Meng TC, Hetsko ML, McCaffery JM, Gillin FD. Differentiation-associated surface antigen variation in the ancient eukaryote Giardia lamblia. Mol Microbiol 1998; 30:979-89. [PMID: 9988475 DOI: 10.1046/j.1365-2958.1998.01125.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Encystation of Giardia lamblia is required for survival outside the host, whereas excystation initiates infection. The dormant cyst was considered an adaptation to external survival and passage through the stomach. However, we found previously that trophozoites which had recovered after completion of the life cycle had switched their major variant surface protein (VSP), called TSA 417, but neither the timing nor the molecular mechanism of switching had been elucidated. Here we demonstrate that TSA 417 predominates in cysts, but is downregulated during the stage of excystation that models cyst arrival in the small intestine. Transcripts of new VSPs appear late in encystation, and during and after excystation. Trophozoites appear to prepare for switching during encystation, when the major VSP on the cell surface diminishes and is internalized in lysosome-like vacuoles. As short-range DNA rearrangements were not detected, giardial VSP switching during differentiation appears to resemble the in situ switching of surface glycoproteins in African trypanosomes. We also report a unique extended 15 nucleotide polyadenylation signal in all VSP transcripts, but not in other known giardial genes. Antigenic variation during encystation-excystation may be a novel form of immune evasion that could help explain the common occurrence of reinfection by Giardia and other parasites with similar life cycles.
Collapse
Affiliation(s)
- S G Svärd
- Department of Pathology, University of California at San Diego, 92103-8416, USA
| | | | | | | | | |
Collapse
|
17
|
Hetsko ML, McCaffery JM, Svärd SG, Meng TC, Que X, Gillin FD. Cellular and transcriptional changes during excystation of Giardia lamblia in vitro. Exp Parasitol 1998; 88:172-83. [PMID: 9562420 DOI: 10.1006/expr.1998.4246] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Excystation of Giardia lamblia entails differentiation of dormant cysts into parasitic trophozoites. Despite its importance for infection, this transformation is not understood at the cellular or molecular levels. In these studies, we report that excystation entails detection of environmental stimuli across the tough extracellular cyst wall leading to highly coordinated physiological, structural, and molecular responses. We found that novel cytoplasmic rearrangements and changes in individual species of mRNA and in cytoplasmic pH occur within the cyst wall in the earliest stage of excystation, in response to conditions modeling cyst ingestion and passage into the human stomach. This suggests that cysts do not contain all the mRNA needed for excystation and emergence and supports our hypothesis that external stimuli, including hydrogen ions, may penetrate or be perceived across the cyst wall. In contrast, changes in cyst wall structure or proteins were detected only later in excystation, in the stage that models passage into the human small intestine, where trophozoites can emerge and survive. These findings show that excystation of G. lamblia is a highly complex and active process and provide important insights into its cellular and molecular components.
Collapse
Affiliation(s)
- M L Hetsko
- Department of Pathology, University of California at San Diego, 92103-8416, USA
| | | | | | | | | | | |
Collapse
|
18
|
Luján HD, Mowatt MR, Nash TE. Mechanisms of Giardia lamblia differentiation into cysts. Microbiol Mol Biol Rev 1997; 61:294-304. [PMID: 9293183 PMCID: PMC232612 DOI: 10.1128/mmbr.61.3.294-304.1997] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Microbiologists have long been intrigued by the ability of parasitic organisms to adapt to changes in the environment. Since most parasites occupy several niches during their journey between vectors and hosts, they have developed adaptive responses which allow them to survive under adverse conditions. Therefore, the life cycles of protozoan and helminthic parasites are excellent models with which to study numerous mechanisms involved in cell differentiation, such as the regulation of gene expression, signal transduction pathways, and organelle biogenesis. Unfortunately, many of these studies are very difficult because the conditions needed to elicit developmental changes in parasites remain undetermined in most cases. Recently, several interesting findings were reported on the process of differentiation of Giardia lamblia trophozoites into cysts. G. lamblia is a flagellated protozoan that inhabits the upper small intestine of its vertebrate host and is a major cause of enteric disease worldwide. It belongs to the earliest identified lineage among eukaryotes and therefore offers a unique insight into the progression from primitive to more complex eukaryotic cells. The discovery of a specific stimulus that induces trophozoites to differentiate into cysts, the identification and characterization of encystation-specific molecules, the elucidation of novel biochemical pathways, and the development of useful reagents and techniques have made this parasite an excellent model with which to study differentiation in eukaryotic cells. In this review, we summarize the most recent fundings on several aspects of Giardia differentiation and discuss the significance of these findings within the context of current knowledge in the field.
Collapse
Affiliation(s)
- H D Luján
- Department of Biological Chemistry, School of Medicine, National University of Córdoba, Argentina
| | | | | |
Collapse
|
19
|
Abstract
Giardia lamblia is an extremely primitive or early-diverging eukaryote that has been considered to have no typical ER or Golgi apparatus, although it is a complex and highly developed cell. Both the trophozoite and cyst have unusual surface proteins that enable these stages to survive in very different and hostile environments. We found that G. lamblia forms novel encystation-specific secretory vesicles and can sort cyst wall proteins to a regulated secretory pathway distinct from the constitutive pathway used to transport the variable cysteine-rich protein to the trophozoite surface. Our studies, utilizing novel ultrastructural methods that preserve the endomembranes, as well as IEM, support the idea that G. lamblia has many of the endomembrane protein transport elements and sorting functions of higher cells and that these appeared very early in the evolution of eukaryotic cells.
Collapse
Affiliation(s)
- F D Gillin
- Department of Pathology, University of California at San Diego Medical Center 92103-8416, USA
| | | | | |
Collapse
|
20
|
Erlandsen SL, Macechko PT, van Keulen H, Jarroll EL. Formation of the Giardia cyst wall: studies on extracellular assembly using immunogold labeling and high resolution field emission SEM. J Eukaryot Microbiol 1996; 43:416-29. [PMID: 8822813 DOI: 10.1111/j.1550-7408.1996.tb05053.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Encystment of the intestinal protozoan, Giardia, is a key step in the life cycle that enables this parasite to be transmitted from host to host via either fecal oral, waterborne, or foodborne transmission. The process of encystment was studied by localizing cyst wall specific antigens with immunofluorescence for light microscopy and immunogold staining for field emission scanning electron microscopy. Chronological sampling of Giardia cultures stimulated with endogenous bile permitted identification of an intracellular and extracellular phase in cyst wall formation, a process which required a total of 14-16 h. The intracellular phase lasted for 8-10 h, while the extracellular phase, involved the appearance of cyst wall antigen on the trophozoite membrane, and the assembly of the filamentous layer, a process requiring an additional 4-6 h for completion of mature cysts. The extracellular phase was initiated with the appearance of cyst wall antigen on small protrusions of the trophozoite membrane (approximately 15 nm), which became enlarged with time to caplike structures ranging up to 100 nm in diameter. Caplike structures involved with filament growth were detected over the entire surface of the trophozoite including the adhesive disc and flagella. Encysting cells rounded up, lost attachment to the substratum, and became enclosed in a layer of filaments. Late stages in encystment included a "tailed" cyst in which flagella were not fully retracted into the cyst. Clusters of cysts were seen in which filaments at the surface of one cyst were connected with the surface of adjacent cysts or the "tailed" processes of adjacent cysts, suggesting that the growth of cyst wall filaments may be at the terminal end. In conclusion, the process of encystment has been shown to consist of two morphologically different stages (intracellular and extracellular) which requires 16 h for completion. Further investigation of the extracellular stage with regard to assembly of the filamentous layer of the cyst wall may lead to innovative methods for interfering with production of an intact functional cyst wall, and thereby, regulation of viable Giardia cyst release from the host.
Collapse
Affiliation(s)
- S L Erlandsen
- Department of Cell Biology and Neuroanatomy, University of Minnesota School of Medicine, Minneapolis 55455, USA.
| | | | | | | |
Collapse
|
21
|
Meng TC, Hetsko ML, Gillin FD. Inhibition of Giardia lamblia excystation by antibodies against cyst walls and by wheat germ agglutinin. Infect Immun 1996; 64:2151-7. [PMID: 8675320 PMCID: PMC174049 DOI: 10.1128/iai.64.6.2151-2157.1996] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Although excystation is crucial to the initiation of infection by Giardia lamblia, little is known about the regulation of this important process. We have been able to reliably induce excystation in vitro by mimicking cyst passage through the stomach and upper small intestine by the exposure of in vitro-derived cysts to an acidic, reducing environment (stage I) followed by protease treatment at a slightly alkaline pH (stage II). Preexposure of cysts to polyclonal rabbit antiserum against purified cyst walls (PCWs) or to wheat germ agglutinin (WGA) inhibited excystation by > 90%. Adsorption of either ligand with PCWs eliminated inhibition, demonstrating specificity for cyst wall epitopes. Inhibition by WGA was reversed by either chitotriose or sialic acid, while inhibition by polyclonal antibodies against PCWs (anti-PCW) was reversed only by sialic acid, which also inhibited binding of both ligands to intact cysts and to cyst wall antigens in immunoblots. Binding of anti-PCW did not affect acidification of cyst cytoplasm during stage I. Exposure of cysts to anti-PCW and WGA prior to, but not after, stage II was sufficient to inhibit excystation, and inhibition could be partially reversed by increasing the protease concentration during stage II. A 7- to 10-fold higher proportion of WGA- and anti-PCW-treated cysts than control cysts remained intact after stage II. Our results suggest that these ligands, which bind cyst wall epitopes, inhibit excystation, most likely by interfering with proteolysis of cyst wall glycoproteins during stage II.
Collapse
Affiliation(s)
- T C Meng
- Division of Infectious Diseases, Department of Medicine, University of California at San Diego Medical Center, 92103-8416, USA
| | | | | |
Collapse
|
22
|
Abstract
The flagellate Giardia duodenalis has been considered for many years to be a commensal living in the lumen of the small intestine of its host. It is only 25 years ago that it was accepted that Giardia is a significant pathogen of humans. Knowledge that Giardia can elicit an immune response that would probably contribute to the onset or absence of symptoms is not much older. The use of animal models to study the disease in the laboratory, together with the production of the whole life cycle in a test tube, have contributed greatly to our present knowledge of the immune responses to Giardia and of antigens that are specific to the trophozoite or cyst stages. In this review, Gaétan Faubert focuses on studies published since the last review in Parasitology Today in 1988, and examines the roles played by the humoral and cell-mediated immune responses in the control of the infection. It also covers the immunodiagnostic assays that have been recently developed on the basis of advances in our knowledge of the antigens of Giardia.
Collapse
Affiliation(s)
- G M Faubert
- Institute of Parasitology, McGill University, Macdonald Campus, 21111 Lakeshore Boulevard, Sainte Anne-de-Bellevue, Québec, Canada.
| |
Collapse
|
23
|
Luján HD, Mowatt MR, Conrad JT, Bowers B, Nash TE. Identification of a novel Giardia lamblia cyst wall protein with leucine-rich repeats. Implications for secretory granule formation and protein assembly into the cyst wall. J Biol Chem 1995; 270:29307-13. [PMID: 7493963 DOI: 10.1074/jbc.270.49.29307] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Giardia lamblia trophozoites, like most intestinal parasitic protozoa, undergo fundamental biological changes to survive outside the intestine of their mammalian host by differentiating into infective cysts. This complex process entails the coordinated production, processing, and transport of cyst wall constituents for assembly into a protective cyst wall. Yet, little is known about this process and the identity of cyst wall constituents. We previously identified a 26-kDa cyst wall protein, CWP1. In the present work, using monoclonal antibodies to cyst wall antigens, we cloned the gene that encodes a novel 39-kDa cyst wall protein, CWP2. Expression of CWP1 and CWP2 was induced during encystation with identical kinetics. Soon after synthesis, these two proteins combine to form a stable complex, which is concentrated within the encystation-specific secretory granules before incorporation into the cyst wall. Both proteins contain five tandem copies of a 24-residue leucine-rich repeat, a motif implicated in protein-protein interactions. Unlike CWP1, CWP2 has an extremely basic 121-residue COOH-terminal extension that might be involved in the sorting of these proteins to the secretory granules.
Collapse
Affiliation(s)
- H D Luján
- Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
24
|
Mowatt MR, Luján HD, Cotten DB, Bowers B, Yee J, Nash TE, Stibbs HH. Developmentally regulated expression of a Giardia lamblia cyst wall protein gene. Mol Microbiol 1995; 15:955-63. [PMID: 7596296 DOI: 10.1111/j.1365-2958.1995.tb02364.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The protozoan Giardia lamblia is an obligate parasite of the mammalian small intestine. We studied the expression of a gene that encodes a protein component of the cyst wall, a complex structure assembled during the differentiation of trophozoites to cysts and which is critical to survival of the parasite outside its mammalian host. Transcripts from the cyst wall protein gene increase more than 100-fold during encystation, reaching a maximum between 5 and 24 hours after induction. Cyst wall protein expression also increases dramatically during encystation, and, prior to its incorporation into the nascent cyst wall, the protein is contained within the encystation-specific vesicles of encysting trophozoites. The sequence of the cloned gene predicts an acidic, leucine-rich polypeptide of M(r) 26,000 that contains 5.3 tandemly arranged copies of a degenerate 24-amino-acid repeat. A hydrophobic amino-terminal peptide probably serves as the initial signal that targets this protein to a secretory pathway involving vesicular localization during encystation and, ultimately, secretion to form the cyst wall.
Collapse
Affiliation(s)
- M R Mowatt
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|