1
|
Alijani M, Saffar B, Yosefi Darani H, Mahzounieh M, Fasihi-Ramandi M, Shakshi-Niaei M, Soltani S, Ghaemi A, Shirian S. Immunological evaluation of a novel multi-antigenic DNA vaccine encoding SAG1, SAG3, MIC4, GRA5, GRA7, AMA1and BAG1 against Toxoplasma gondii in BALB/c mice. Exp Parasitol 2023; 244:108409. [PMID: 36403800 DOI: 10.1016/j.exppara.2022.108409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/25/2022] [Accepted: 10/18/2022] [Indexed: 11/20/2022]
Abstract
Many recent studies have been conducted to find new DNA vaccines based on Toxoplasma gondii antigens. DNA vaccines encoding complex of different antigens showed better immune responses compared to single antigen vaccine. In this study, we constructed a DNA vaccine encoding SAG1, SAG3, MIC4, GRA5, GRA7, AMA1 and BAG1 against T. gondii, and evaluated the immune response it induced in BALB/c mice. For this purposes, thirty BALB/c mice were randomly divided into three groups containing tenmice each. There were two negative control groups (PBSand pVAX1 vector) and one vaccination group (pVAX1-MAF, Multantigenic Fragment). On days 0, 14 and 28, the mice were immunized intramuscularly, and 5 weeks later they were challenged with T. gondii RH strain. The immune responses were evaluated using lymphocyte proliferation assay, T-cell subsets detection, and measurement of antibody and cytokine levels. The results showed that mice immunized with pVAX1-MAF developed high levels of IL-2, IL-12, IgG and IFN- γ as well as CD3+CD4+ T cells. In addition, the survival time of mice immunized by pVAX1-MAF was longer than that control mice. In conclusion, our results show that the multiple DNA vaccine encodingSAG1, SAG3, mic4, GRA5, GRA7, AMA and BAG1effectively enhanced humoral and cellular immune responses, and prolonged the survival time. Together this would suggest that further investigation may result in a promising candidate vaccine to treat toxoplasmosis.
Collapse
Affiliation(s)
- Mohammadreza Alijani
- Graduated Student of Veterinary Medicine, Shahrekord University, Shahrekord, Iran; Shiraz Molecular Pathology Research Center, Dr Daneshbod Path Lab, Shiraz, Iran
| | - Behnaz Saffar
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Hossein Yosefi Darani
- Department of Parasitology, Faculty of Medicine, Esfahan University of Medical Science, Esfahan, Iran
| | - Mohammadreza Mahzounieh
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran.
| | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mostafa Shakshi-Niaei
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Sodabe Soltani
- Graduated Student of Genetics, Shahrekord University, Shahrekord, Iran
| | - Amir Ghaemi
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Sadegh Shirian
- Department of Pathology, School of Veterinary Pathology, Shahrekord University, Shahrekord, Iran; Shefa Neuroscience Research Center, Kahatm Al-Anbia Hospital, Tehran, Iran.
| |
Collapse
|
2
|
Warner RC, Chapman RC, Davis BN, Davis PH. REVIEW OF DNA VACCINE APPROACHES AGAINST THE PARASITE TOXOPLASMA GONDII. J Parasitol 2021; 107:882-903. [PMID: 34852176 DOI: 10.1645/20-157] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Toxoplasma gondii is an apicomplexan parasite that affects both humans and livestock. Transmitted to humans through ingestion, it is the second-leading cause of foodborne illness-related death. Currently, there exists no approved vaccine for humans or most livestock against the parasite. DNA vaccines, a type of subunit vaccine which uses segments of the pathogen's DNA to generate immunity, have shown varying degrees of experimental efficacy against infection caused by the parasite. This review compiles DNA vaccine efforts against Toxoplasma gondii, segmenting the analysis by parasite antigen, as well as a review of concomitant adjuvant usage. No single antigenic group was consistently more effective within in vivo trials relative to others.
Collapse
Affiliation(s)
- Rosalie C Warner
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska, 68182
| | - Ryan C Chapman
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska, 68182
| | - Brianna N Davis
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska, 68182
| | - Paul H Davis
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska, 68182
| |
Collapse
|
3
|
The immune response against Toxoplasma gondii in BALB/c mice induced by mannose-modified nanoliposome of excreted/secreted antigens. Parasitol Res 2021; 120:2855-2861. [PMID: 34185155 DOI: 10.1007/s00436-021-07232-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/21/2021] [Indexed: 10/21/2022]
Abstract
This study aimed to compare the immune response against Toxoplasma gondii (T. gondii) in BALB/c mice induced by excreted/secreted (E/S) antigens and mannose-modified nanoliposome of E/S antigens. Here, E/S antigens and mannose-modified nanoliposome of E/S antigens were firstly prepared, and then BALB/c female inbred mice were separately immunized. In the next step, anti-E/S antigen antibodies and the relative expression levels of IL-10 and IL-12 mRNA were detected by ELISA and real-time PCR, respectively. After immunization, mice were intraperitoneally challenged with 102 tachyzoites of T. gondii, and the survival rate was recorded. The ELISA analysis showed significant differences between the levels of anti-E/S antigen antibodies in the mice immunized by E/S antigens and those immunized by mannose-modified nanoliposome of E/S antigens at days 7, 10, 20, 25, and 30 (P < 0.05). Real-time PCR analysis showed that the relative expression of IL-10 was significantly decreased during 20 days. Yet, the relative expression of IL-12 was significantly increased during 20 days (P < 0.05). In T. gondii challenge test, significant differences were found between the survival rates of mice immunized by E/S antigens and mice immunized by mannose-modified nanoliposome with E/S antigens. This project evidenced that mannose-modified nanoliposome of E/S antigens induced a more powerful immune response against T. gondii in BALB/c mice when compared with excreted/secreted antigens alone.
Collapse
|
4
|
Foroutan M, Barati M, Ghaffarifar F. Enhancing immune responses by a novel multi-epitope ROP8 DNA vaccine plus interleukin-12 plasmid as a genetic adjuvant against acute Toxoplasma gondii infection in BALB/c mice. Microb Pathog 2020; 147:104435. [PMID: 32768514 DOI: 10.1016/j.micpath.2020.104435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/27/2020] [Accepted: 08/02/2020] [Indexed: 01/24/2023]
Abstract
BACKGROUND Toxoplasmosis is a widespread zoonotic infection, caused by an obligate intracellular protozoan. The infection is often asymptomatic in immunocompetent individuals, although in persons with impaired immune system may lead to severe and progressive complications. Constant attempts of scientists have made valuable findings in the development of Toxoplasma gondii (T. gondii) candidate vaccines. However, an effective vaccine has not been successfully developed yet. In the current study, we tested the co-delivery of a novel multi-epitope pcROP8 DNA vaccine with a plasmid encoding IL-12 (pcIL-12) to assess the immune responses in BALB/c mice against acute T. gondii infection. METHODS BALB/c mice were immunized on days 0, 21, and 42. The immune responses of both vaccinated and control groups were evaluated using cytokine and antibody measurements, lymphocyte proliferation assay, and survival time. RESULTS The findings demonstrated that immunization with multi-epitope pcROP8 significantly enhanced the level of anti-T. gondii antibodies, TH1-type cellular immune responses, lymphocyte proliferation, and prolonged survival time, compared to control groups (P < 0.05). Furthermore, the use of pcIL-12 as a genetic adjuvant led to enhancements of the above-mentioned immune responses in BALB/c mice (P < 0.05). CONCLUSIONS The co-administration of pcIL-12 with multi-epitope pcROP8 vaccine, could successfully enhance the level of protection. Thus, this immunization regimen may represent an effective vaccine strategy against acute T. gondii infection.
Collapse
Affiliation(s)
- Masoud Foroutan
- Infectious Diseases Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Mohammad Barati
- Infectious Diseases Research Center, AJA University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Ghaffarifar
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
5
|
Pagheh AS, Sarvi S, Sharif M, Rezaei F, Ahmadpour E, Dodangeh S, Omidian Z, Hassannia H, Mehrzadi S, Daryani A. Toxoplasma gondii surface antigen 1 (SAG1) as a potential candidate to develop vaccine against toxoplasmosis: A systematic review. Comp Immunol Microbiol Infect Dis 2020; 69:101414. [PMID: 31958746 DOI: 10.1016/j.cimid.2020.101414] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 12/13/2022]
Abstract
Toxoplasma gondii is an intracellular parasite that infects a broad range of animal species and humans. As the main surface antigen of the tachyzoite, SAG1 is involved in the process of recognition, adhesion and invasion of host cells. The aim of the current systematic review study is to clarify the latest status of studies in the literature regarding SAG1-associated recombinant proteins or SAG1-associated recombinant DNAs as potential vaccines against toxoplasmosis. Data were systematically collected from six databases including PubMed, Science Direct, Web of Science, Google Scholar, EBSCO and Scopus, up to 1st of January 2019. A total of 87 articles were eligible for inclusion criteria in the current systematic review. The most common antigens used for experimental cocktail vaccines together with SAG1 were ROP2 and SAG2. In addition, the most parasite strains used were RH and ME49. Freund's adjuvant and cholera toxin have been predominantly utilized. Furthermore, regarding the animal models, route and dose of vaccination, challenge methods, measurement of immune responses and cyst burden have been discussed in the text. Most of these experimental vaccines induce immune responses and have a high degree of protection against parasite infections, increase survival rates and duration and reduce cyst burdens. The data demonstrated that SAG1 antigen has a high potential for use as a vaccine and provided a promising approach for protecting humans and animals against toxoplasmosis.
Collapse
Affiliation(s)
- Abdol Sattar Pagheh
- Infectious Disease Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Shahabeddin Sarvi
- Toxoplasmosis Research Center, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehdi Sharif
- Department of Parasitology, School of Medicine, Sari Branch, Islamic AZAD University, Sari, Iran
| | - Fatemeh Rezaei
- Toxoplasmosis Research Center, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ehsan Ahmadpour
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Dodangeh
- Toxoplasmosis Research Center, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Omidian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Hadi Hassannia
- Immunonogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Daryani
- Toxoplasmosis Research Center, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran..
| |
Collapse
|
6
|
Foroutan M, Ghaffarifar F, Sharifi Z, Dalimi A, Jorjani O. Rhoptry antigens as Toxoplasma gondii vaccine target. Clin Exp Vaccine Res 2019; 8:4-26. [PMID: 30775347 PMCID: PMC6369123 DOI: 10.7774/cevr.2019.8.1.4] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 07/10/2018] [Accepted: 01/14/2019] [Indexed: 01/14/2023] Open
Abstract
Toxoplasmosis is a cosmopolitan zoonotic infection, caused by a unicellular protozoan parasite known as Toxoplasma gondii that belongs to the phylum Apicomplexa. It is estimated that over one-third of the world's population has been exposed and are latently infected with the parasite. In humans, toxoplasmosis is predominantly asymptomatic in immunocompetent persons, while among immunocompromised individuals may be cause severe and progressive complications with poor prognosis. Moreover, seronegative pregnant mothers are other risk groups for acquiring the infection. The life cycle of T. gondii is very complex, indicating the presence of a plurality of antigenic epitopes. Despite of great advances, recognize and construct novel vaccines for prevent and control of toxoplasmosis in both humans and animals is still remains a great challenge for researchers to select potential protein sequences as the ideal antigens. Notably, in several past years, constant efforts of researchers have made considerable advances to elucidate the different aspects of the cell and molecular biology of T. gondii mainly on microneme antigens, dense granule antigens, surface antigens, and rhoptry proteins (ROP). These attempts thereby provided great impetus to the present focus on vaccine development, according to the defined subcellular components of the parasite. Although, currently there is no commercial vaccine for use in humans. Among the main identified T. gondii antigens, ROPs appear as a putative vaccine candidate that are vital for invasion procedure as well as survival within host cells. Overall, it is estimated that they occupy about 1%–30% of the total parasite cell volume. In this review, we have summarized the recent progress of ROP-based vaccine development through various strategies from DNA vaccines, epitope or multi epitope-based vaccines, recombinant protein vaccines to vaccines based on live-attenuated vectors and prime-boost strategies in different mouse models.
Collapse
Affiliation(s)
- Masoud Foroutan
- Abadan School of Medical Sciences, Abadan, Iran.,Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Ghaffarifar
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zohreh Sharifi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Abdolhosein Dalimi
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ogholniaz Jorjani
- Laboratory Science Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
7
|
Pan M, Lyu C, Zhao J, Shen B. Sixty Years (1957-2017) of Research on Toxoplasmosis in China-An Overview. Front Microbiol 2017; 8:1825. [PMID: 28993763 PMCID: PMC5622193 DOI: 10.3389/fmicb.2017.01825] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/06/2017] [Indexed: 01/12/2023] Open
Abstract
Toxoplasma gondii is a ubiquitous zoonotic pathogen belonging to apicomplexan parasites. Infection in humans and animals may cause abortion and other severe symptoms under certain circumstances, leading to great economical losses and public health problems. T. gondii was first discovered in China in 1955 and the corresponding work was published in 1957. Since then, a lot of work has been done on this parasite and the diseases it causes. This review summarizes the major progress made by Chinese scientists over the last 60 years, and gives our perspectives on what should be done in the near future. A wide variety of diagnostic approaches were designed, including the ones to detect T. gondii specific antibodies in host sera, and T. gondii specific antigens or DNA in tissue and environmental samples. Further work will be needed to translate some of the laboratory assays into reliable products for clinic uses. Epidemiological studies were extensively done in China and the sero-prevalence in humans increased over the years, but is still below the world average, likely due to the unique eating and cooking habits. Infection rates were shown to be fairly high in meat producing animals such as, pigs, sheep, and chickens, as well as in the definitive host cats. Numerous subunit vaccines in the form of recombinant proteins or DNA vaccines were developed, but none of them is satisfactory in the current form. Live attenuated parasites using genetically modified strains may be a better option for vaccine design. The strains isolated from China are dominated by the ToxoDB #9 genotype, but it likely contains multiple subtypes since different ToxoDB #9 strains exhibited phenotypic differences. Further studies are needed to understand the general biology, as well as the unique features of strains prevalent in China.
Collapse
Affiliation(s)
- Ming Pan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Congcong Lyu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
- Key Laboratory of Preventive Medicine in Hubei ProvinceWuhan, China
- Hubei Cooperative Innovation Center for Sustainable Pig ProductionWuhan, China
| | - Bang Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
- Key Laboratory of Preventive Medicine in Hubei ProvinceWuhan, China
| |
Collapse
|
8
|
Ahmadpour E, Sarvi S, Hashemi Soteh MB, Sharif M, Rahimi MT, Valadan R, Tehrani M, Khalilian A, Montazeri M, Daryani A. Evaluation of the immune response in BALB/c mice induced by a novel DNA vaccine expressing GRA14 againstToxoplasma gondii. Parasite Immunol 2017; 39. [DOI: 10.1111/pim.12419] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 01/20/2017] [Indexed: 12/13/2022]
Affiliation(s)
- E. Ahmadpour
- Immunology Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | - S. Sarvi
- Toxoplasmosis Research Center; Mazandaran University of Medical Sciences; Sari Iran
| | - M. B. Hashemi Soteh
- Molecular and Cell Biology Research Center; Mazandaran University of Medical Sciences; Sari Iran
| | - M. Sharif
- Toxoplasmosis Research Center; Mazandaran University of Medical Sciences; Sari Iran
| | - M. T. Rahimi
- School of Medicine; Shahroud University of Medical Sciences; Shahroud Iran
| | - R. Valadan
- Molecular and Cell Biology Research Center; Mazandaran University of Medical Sciences; Sari Iran
| | - M. Tehrani
- Molecular and Cell Biology Research Center; Mazandaran University of Medical Sciences; Sari Iran
| | - A. Khalilian
- Biostatistics Department; Mazandaran University of Medical Sciences; Sari Iran
| | - M. Montazeri
- Toxoplasmosis Research Center; Mazandaran University of Medical Sciences; Sari Iran
| | - A. Daryani
- Toxoplasmosis Research Center; Mazandaran University of Medical Sciences; Sari Iran
| |
Collapse
|
9
|
Escalona E, Sáez D, Oñate A. Immunogenicity of a Multi-Epitope DNA Vaccine Encoding Epitopes from Cu-Zn Superoxide Dismutase and Open Reading Frames of Brucella abortus in Mice. Front Immunol 2017; 8:125. [PMID: 28232837 PMCID: PMC5298974 DOI: 10.3389/fimmu.2017.00125] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/25/2017] [Indexed: 01/08/2023] Open
Abstract
Brucellosis is a bacterial zoonotic disease affecting several mammalian species that is transmitted to humans by direct or indirect contact with infected animals or their products. In cattle, brucellosis is almost invariably caused by Brucella abortus. Live, attenuated Brucella vaccines are commonly used to prevent illness in cattle, but can cause abortions in pregnant animals. It is, therefore, desirable to design an effective and safer vaccine against Brucella. We have used specific Brucella antigens that induce immunity and protection against B. abortus. A novel recombinant multi-epitope DNA vaccine specific for brucellosis was developed. To design the vaccine construct, we employed bioinformatics tools to predict epitopes present in Cu-Zn superoxide dismutase and in the open reading frames of the genomic island-3 (BAB1_0260, BAB1_0270, BAB1_0273, and BAB1_0278) of Brucella. We successfully designed a multi-epitope DNA plasmid vaccine chimera that encodes and expresses 21 epitopes. This DNA vaccine induced a specific humoral and cellular immune response in BALB/c mice. It induced a typical T-helper 1 response, eliciting production of immunoglobulin G2a and IFN-γ particularly associated with the Th1 cell subset of CD4+ T cells. The production of IL-4, an indicator of Th2 activation, was not detected in splenocytes. Therefore, it is reasonable to suggest that the vaccine induced a predominantly Th1 response. The vaccine induced a statistically significant level of protection in BALB/c mice when challenged with B. abortus 2308. This is the first use of an in silico strategy to a design a multi-epitope DNA vaccine against B. abortus.
Collapse
Affiliation(s)
- Emilia Escalona
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Darwin Sáez
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Angel Oñate
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
10
|
Immunological evaluation of a DNA cocktail vaccine with co-delivery of calcium phosphate nanoparticles (CaPNs) against the Toxoplasma gondii RH strain in BALB/c mice. Parasitol Res 2016; 116:609-616. [PMID: 27909791 DOI: 10.1007/s00436-016-5325-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 11/08/2016] [Indexed: 10/20/2022]
Abstract
Many recent studies have been conducted to evaluate protective immunity mediated by DNA vaccines against toxoplasmosis. Cocktail DNA vaccines showed better immune responses compared to single vaccines. The objective of the current study was to evaluate the protective efficacy of rhomboid 4 (ROM4) and cocktail DNA vaccines (ROM4 + GRA14) of the Toxoplasma gondii RH strain with or without coated calcium phosphate nanoparticles (CaPNs) as the adjuvant to improve the immunogenicity against the T. gondii RH strain in BALB/c mice. Cocktail DNA vaccines of pcROM4 + pcGRA14 of the T. gondii RH strain were constructed. CaPNs were synthesized and the cocktail DNA vaccine was coated with the adjuvant of CaPNs. Immunogenicity and the protective effects of cocktail DNA vaccines with or without CaPNs against lethal challenge were evaluated in BALB/c mice. pcROM4 and cocktail DNA vaccine coated with CaPNs significantly enhanced cellular and humoral immune responses against Toxoplasma compared to pcROM4 and cocktail DNA vaccine without CaPNs (p < 0.05). These findings indicate that the survival time of immunized mice after challenge with the RH strain of T. gondii was increased compared to that of controls and the DNA vaccine provided significant protection in mice (p < 0.05). The CaPN-based cocktail DNA vaccine of pcROM4 + pcGRA14 showed the longest survival time compared to the other groups. Co-immunization with CaPN-based cocktail DNA vaccine (pcROM4 + pcGRA14) boosted immune responses and increased the protective efficacy against acute toxoplasmosis in BALB/c mice compared to both single gene and bivalent DNA vaccine without nano-adjuvants.
Collapse
|
11
|
Rashid I, Moiré N, Héraut B, Dimier-Poisson I, Mévélec MN. Enhancement of the protective efficacy of a ROP18 vaccine against chronic toxoplasmosis by nasal route. Med Microbiol Immunol 2016; 206:53-62. [PMID: 27757545 DOI: 10.1007/s00430-016-0483-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/11/2016] [Indexed: 10/20/2022]
Abstract
Infection with the parasite Toxoplasma gondii causes serious public health problems and is of great economic importance worldwide. No vaccine is currently available, so the design of efficient vaccine strategies is still a topical question. In this study, we evaluated the immunoprophylactic potential of a T. gondii virulence factor, the rhoptry kinase ROP18, in a mouse model of chronic toxoplasmosis: first using a recombinant protein produced in Schneider insect cells adjuvanted with poly I:C emulsified in Montanide SV71 by a parenteral route or adjuvanted with cholera toxin by the nasal route and second using a DNA plasmid encoding ROP18 adjuvanted with GM-CSF ± IL-12 DNA. If both intranasal and subcutaneous recombinant ROP18 immunizations induced predominantly anti-ROP18 IgG1 antibodies and generated a mixed systemic Th1-/Th2-type cellular immune response characterized by the production of IFN-γ, IL-2, Il-10 and IL-5, only intranasal vaccination induced a mucosal (IgA) humoral response in intestinal washes associated with a significant brain cyst reduction (50 %) after oral challenge with T. gondii cysts. DNA immunization induced antibodies and redirected the cellular immune response toward a Th1-type response (production of IFN-γ and IL-2) but did not confer protection. These results suggest that ROP18 could be a component of a subunit vaccine against toxoplasmosis and that strategies designed to enhance mucosal protective immune responses could lead to more encouraging results.
Collapse
Affiliation(s)
- Imran Rashid
- ISP, INRA, Université de Tours, UMR 1282, 37380, Nouzilly, France
| | - Nathalie Moiré
- ISP, INRA, Université de Tours, UMR 1282, 37380, Nouzilly, France
| | - Bruno Héraut
- ISP, INRA, Université de Tours, UMR 1282, 37380, Nouzilly, France
| | | | | |
Collapse
|
12
|
Chen J, Li ZY, Petersen E, Huang SY, Zhou DH, Zhu XQ. DNA vaccination with genes encoding Toxoplasma gondii antigens ROP5 and GRA15 induces protective immunity against toxoplasmosis in Kunming mice. Expert Rev Vaccines 2015; 14:617-24. [PMID: 25749394 DOI: 10.1586/14760584.2015.1011133] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES To evaluate the protective efficacy of a DNA vaccine encoding Toxoplasma gondii rhoptry protein 5 (ROP5) and GRA15 antigens. METHODS We constructed eukaryotic plasmids expressing pVAX-ROP5 and pVAX-GRA15, and measured the immune responses to these DNA vaccines. RESULTS Kunming mice immunized with pVAX-ROP5 or pVAX-GRA15 showed significantly increased serum IgG2a titers; Th1 responses association with the production of IFN-γ, IL-2, IL12 p40 and IL-12 p70; cell-mediated cytotoxic activity with increased frequencies of IFN-γ secreting CD8(+) T cells (CD8(+) IFN-γ+ T cells), as well as prolonged survival time (19.4 ± 4.9 days for ROP5; 17.8 ± 3.8 days for GRA15) and brain cyst reduction (57.4% for ROP5; 65.9% for GRA15) compared to control mice. Co-administration with pVAX-ROP5 and pVAX-GRA15 boosted the cellular and humoral immune responses, and significantly increased cyst reduction (79%) and prolonged the survival of immunized mice (22.7 ± 7.2 days). CONCLUSION Co-immunization of pVAX-ROP5 and pVAX-GRA15 increase the protective efficacy.
Collapse
Affiliation(s)
- Jia Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | | | | | | | | | | |
Collapse
|
13
|
Kur J, Holec-Gąsior L, Hiszczyńska-Sawicka E. Current status of toxoplasmosis vaccine development. Expert Rev Vaccines 2014; 8:791-808. [DOI: 10.1586/erv.09.27] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
14
|
Zhang NZ, Chen J, Wang M, Petersen E, Zhu XQ. Vaccines against Toxoplasma gondii: new developments and perspectives. Expert Rev Vaccines 2013; 12:1287-99. [PMID: 24093877 DOI: 10.1586/14760584.2013.844652] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Toxoplasmosis caused by the protozoan Toxoplasma gondii is a major public health problem, infecting one-third of the world human beings, and leads to abortion in domestic animals. A vaccine strategy would be an ideal tool for improving disease control. Many efforts have been made to develop vaccines against T. gondii to reduce oocyst shedding in cats and tissue cyst formation in mammals over the last 20 years, but only a live-attenuated vaccine based on the S48 strain has been licensed for veterinary use. Here, the authors review the recent development of T. gondii vaccines in cats, food-producing animals and mice, and present its future perspectives. However, a single or only a few antigen candidates revealed by various experimental studies are limited by only eliciting partial protective immunity against T. gondii. Future studies of T. gondii vaccines should include as many CTL epitopes as the live attenuated vaccines.
Collapse
Affiliation(s)
- Nian-Zhang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | | | | | | | | |
Collapse
|
15
|
Induction of protective immune responses by a multiantigenic DNA vaccine encoding GRA7 and ROP1 of Toxoplasma gondii. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:666-74. [PMID: 22419676 DOI: 10.1128/cvi.05385-11] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Toxoplasma gondii is distributed worldwide and infects most species of warm-blooded animals, including humans. The heavy incidence and severe or lethal damage caused by T. gondii infection clearly indicates the need for the development of a vaccine. To evaluate the protective efficacy of a multiantigenic DNA vaccine expressing GRA7 and ROP1 of T. gondii with or without a plasmid encoding murine interleukin-12 (pIL12), we constructed DNA vaccines using the eukaryotic plasmids pGRA7, pROP1, and pGRA7-ROP1. Mice immunized with pGRA7, pROP1, or pGRA7-ROP1 showed significantly increased serum IgG2a titers; production of gamma interferon (IFN-γ), IL-10, and tumor necrosis factor alpha (TNF-α); in vitro T cell proliferation; and survival, as well as decreased cyst burdens in the brain, compared to mice immunized with either the empty plasmid, pIL12, or vector with pIL12 (vector+pIL12). Moreover, mice immunized with the multiantigenic DNA vaccine pGRA7-ROP1 had higher IgG2a titers, production of IFN-γ and TNF-α, survival time, and cyst reduction rate compared to those of mice vaccinated with either pGRA7 or pROP1 alone. Furthermore, mice immunized with either a pGRA7-ROP1+pIL12 or a single-gene vaccine combined with pIL12 showed greater Th1 immune response and protective efficacy than the single-gene-vaccinated groups. Our data suggest that the multiantigenic DNA antigen pGRA7-ROP1 was more effective in stimulating host protective immune responses than separately injected single antigens, and that IL-12 serves as a good DNA adjuvant.
Collapse
|
16
|
Toxoplasma gondii: the vaccine potential of three trivalent antigen-cocktails composed of recombinant ROP2, ROP4, GRA4 and SAG1 proteins against chronic toxoplasmosis in BALB/c mice. Exp Parasitol 2012; 131:133-8. [PMID: 22445587 DOI: 10.1016/j.exppara.2012.02.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Revised: 02/26/2012] [Accepted: 02/27/2012] [Indexed: 01/18/2023]
Abstract
Toxoplasmosis is one of the world's most widespread zoonoses caused by protozoan parasite Toxoplasma gondii. The development of an effective vaccine for controlling toxoplasmosis is an extremely important issue due to the serious clinical and veterinary outcomes of this parasitosis. The objective of this study was evaluation of vaccine potential of three trivalent subunit recombinant vaccines composed of rROP2+rGRA4+rSAG1, rROP2+rROP4+rGRA4 and rROP2+rROP4+rSAG1 against chronic toxoplasmosis in BALB/c (H-2(d)) mice. All tested vaccines provided a partial protection against challenge with tissue cysts of the low virulence DX T. gondii strain, but the strongest level of protection was induced by the mixtures of both rhoptry proteins (rROP2 and rROP4) administered with the dense granule rGRA4 antigen or the main surface rSAG1 protein. The average parasite burden in these groups of vaccinated BALB/c mice was reduced by 84% and 77%, respectively, compared to the control PBS-injected animals. The vaccine-induced protection was correlated with the development of cellular and humoral immune responses demonstrated by the antigen-specific in vitro proliferation of spleen cells, the specific antigen-induced in vitro synthesis of Th1-type cytokines, IFN-γ and IL-2, and the generation of the high titers of systemic antigen-specific IgG1 and IgG2a antibodies. This study completed and confirmed our earlier investigations in C3H/HeJ (H-2(k)) and C57BL/6 (H-2(b)) mouse strains on the utility of the tested trivalent recombinant antigen-cocktails as potential vaccines against chronic toxoplasmosis and showed that particularly rROP2+rROP4+rGRA4 and rROP2+rROP4+rSAG1 protein-combinations are very effective in the development of a high level of protection irrespective of the genetic backgrounds and innate resistance to toxoplasmosis of the laboratory mice. It makes these two mixtures of recombinant antigens very promising for further experiments.
Collapse
|
17
|
Abstract
Despite many years of research, human DNA vaccines have yet to fulfill their early promise. Over the past 15 years, multiple generations of DNA vaccines have been developed and tested in preclinical models for prophylactic and therapeutic applications in the areas of infectious disease and cancer, but have failed in the clinic. Thus, while DNA vaccines have achieved successful licensure for veterinary applications, their poor immunogenicity in humans when compared with traditional protein-based vaccines has hindered their progress. Many strategies have been attempted to improve DNA vaccine potency including use of more efficient promoters and codon optimization, addition of traditional or genetic adjuvants, electroporation, intradermal delivery and various prime-boost strategies. This review summarizes these advances in DNA vaccine technologies and attempts to answer the question of when DNA vaccines might eventually be licensed for human use.
Collapse
Affiliation(s)
- Fadi Saade
- Vaxine Pty Ltd, Bedford Park, Adelaide 5042, Australia
| | - Nikolai Petrovsky
- Vaxine Pty Ltd, Bedford Park, Adelaide 5042, Australia
- Department of Diabetes and Endocrinology, Flinders Medical Centre/Flinders University, Adelaide 5042, Australia
| |
Collapse
|
18
|
Evaluation of three recombinant multi-antigenic vaccines composed of surface and secretory antigens of Toxoplasma gondii in murine models of experimental toxoplasmosis. Vaccine 2011; 29:821-30. [DOI: 10.1016/j.vaccine.2010.11.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 07/16/2010] [Accepted: 11/02/2010] [Indexed: 11/24/2022]
|
19
|
|
20
|
The protective effect of a Toxoplasma gondii SAG1 plasmid DNA vaccine in mice is enhanced with IL-18. Res Vet Sci 2010; 89:93-7. [DOI: 10.1016/j.rvsc.2010.01.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2008] [Revised: 12/20/2009] [Accepted: 01/12/2010] [Indexed: 11/24/2022]
|
21
|
Jongert E, Roberts CW, Gargano N, Förster-Waldl E, Förster-Wald E, Petersen E. Vaccines against Toxoplasma gondii: challenges and opportunities. Mem Inst Oswaldo Cruz 2010; 104:252-66. [PMID: 19430651 DOI: 10.1590/s0074-02762009000200019] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 12/04/2008] [Indexed: 12/21/2022] Open
Abstract
Development of vaccines against Toxoplasma gondii infection in humans is of high priority, given the high burden of disease in some areas of the world like South America, and the lack of effective drugs with few adverse effects. Rodent models have been used in research on vaccines against T. gondii over the past decades. However, regardless of the vaccine construct, the vaccines have not been able to induce protective immunity when the organism is challenged with T. gondii, either directly or via a vector. Only a few live, attenuated T. gondii strains used for immunization have been able to confer protective immunity, which is measured by a lack of tissue cysts after challenge. Furthermore, challenge with low virulence strains, especially strains with genotype II, will probably be insufficient to provide protection against the more virulent T. gondii strains, such as those with genotypes I or II, or those genotypes from South America not belonging to genotype I, II or III. Future studies should use animal models besides rodents, and challenges should be performed with at least one genotype II T. gondii and one of the more virulent genotypes. Endpoints like maternal-foetal transmission and prevention of eye disease are important in addition to the traditional endpoint of survival or reduction in numbers of brain cysts after challenge.
Collapse
Affiliation(s)
- Erik Jongert
- Laboratory for Toxoplasmosis, Pasteur Institute of Brussels, Scientific Institute for Public Health, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
22
|
Wang H, He S, Yao Y, Cong H, Zhao H, Li T, Zhu XQ. Toxoplasma gondii: Protective effect of an intranasal SAG1 and MIC4 DNA vaccine in mice. Exp Parasitol 2009; 122:226-32. [DOI: 10.1016/j.exppara.2009.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 02/19/2009] [Accepted: 04/04/2009] [Indexed: 10/20/2022]
|
23
|
Fang R, Nie H, Wang Z, Tu P, Zhou D, Wang L, He L, Zhou Y, Zhao J. Protective immune response in BALB/c mice induced by a suicidal DNA vaccine of the MIC3 gene of Toxoplasma gondii. Vet Parasitol 2009; 164:134-40. [PMID: 19592172 DOI: 10.1016/j.vetpar.2009.06.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 06/03/2009] [Accepted: 06/11/2009] [Indexed: 11/18/2022]
Abstract
To evaluate the protective efficiency of a suicidal DNA vaccine against protozoal parasite Toxoplasma gondii, the microneme protein 3 (MIC3) gene was cloned into suicidal vector pSCA1 and conventional DNA vaccine vector pcDNA3.1+ respectively, their protection against T. gondii challenge were assessed in this study. The recombinant plasmids named pSCA/MIC3 and pcDNA/MIC3 were transfected into BHK-21 cells. The expression of MIC3 in BHK-21 cells was confirmed by RT-PCR and indirect immunofluorescence test. Then BALB/c mice were immunized with pSCA/MIC3 or pcDNA/MIC3. Anti-Tg-MIC3 antibodies were detected by indirect ELISA and the cell immune response were examined by lymphocyte proliferation assay and real time RT-PCR. The results showed that the titre of anti-Tg-MIC3 antibodies, stimulation index (SI) of lymphocyte proliferation response and IFN-gamma expression level induced by pSCA/MIC3 and pcDNA/MIC3 were significantly higher than controls (P<0.05), whereas IL-4 expression level in BALB/c mice immunized with either pSCA/MIC3 or pcDNA/MIC3 was lower than that in control group. After a lethal challenge against T. gondii, survival time of the mice immunized with this suicidal DNA vaccine pSCA/MIC3 and conventional DNA vaccine pcDNA/MIC3 were significantly prolonged in comparison with the control groups (P<0.05), but the difference of protective immune response in BALB/c mice between pSCA/MIC3 and pcDNA/MIC3 was not statistically significant (P>0.05). The findings demonstrated that like conventional DNA vaccine pcDNA/MIC3, suicidal DNA vaccine pSCA/MIC3 also provided favourable efficacy, but it could improve the biosafety of conventional vaccines. This result suggested that suicidal DNA vaccine pSCA/MIC3 is a potential candidate vaccine against toxoplasmosis.
Collapse
Affiliation(s)
- Rui Fang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Protective effect of a DNA vaccine delivered in attenuated Salmonella typhimurium against Toxoplasma gondii infection in mice. Vaccine 2008; 26:4541-8. [DOI: 10.1016/j.vaccine.2008.06.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 06/04/2008] [Accepted: 06/10/2008] [Indexed: 11/23/2022]
|