1
|
Cheng H, Lyu Y, Liu Z, Li C, Qu K, Li S, Ahmed Z, Ma W, Qi X, Chen N, Lei C. A Whole-Genome Scan Revealed Genomic Features and Selection Footprints of Mengshan Cattle. Genes (Basel) 2024; 15:1113. [PMID: 39336704 PMCID: PMC11431585 DOI: 10.3390/genes15091113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
(1) Background: Mengshan cattle from the Yimeng mountainous region in China stand out as a unique genetic resource, known for their adaptive traits and environmental resilience. However, these cattle are currently endangered and comprehensive genomic characterization remains largely unexplored. This study aims to address this gap by investigating the genomic features and selection signals in Mengshan cattle. (2) Methods: Utilizing whole-genome resequencing data from 122 cattle, including 37 newly sequenced Mengshan cattle, we investigated population structure, genetic diversity, and selection signals. (3) Results: Our analyses revealed that current Mengshan cattle primarily exhibit European taurine cattle ancestry, with distinct genetic characteristics indicative of adaptive traits. We identified candidate genes associated with immune response, growth traits, meat quality, and neurodevelopment, shedding light on the genomic features underlying the unique attributes of Mengshan cattle. Enrichment analysis highlighted pathways related to insulin secretion, calcium signaling, and dopamine synapse, further elucidating the genetic basis of their phenotypic traits. (4) Conclusions: Our results provide valuable insights for further research and conservation efforts aimed at preserving this endangered genetic resource. This study enhances the understanding of population genetics and underscores the importance of genomic research in informing genetic resources and conservation initiatives for indigenous cattle breeds.
Collapse
Affiliation(s)
- Haijian Cheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (H.C.); (Y.L.); (Z.L.); (C.L.); (S.L.); (N.C.)
- Shandong Key Lab of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yang Lyu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (H.C.); (Y.L.); (Z.L.); (C.L.); (S.L.); (N.C.)
| | - Ziao Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (H.C.); (Y.L.); (Z.L.); (C.L.); (S.L.); (N.C.)
| | - Chuanqing Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (H.C.); (Y.L.); (Z.L.); (C.L.); (S.L.); (N.C.)
| | - Kaixing Qu
- Academy of Science and Technology, Chuxiong Normal University, Chuxiong 675099, China;
| | - Shuang Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (H.C.); (Y.L.); (Z.L.); (C.L.); (S.L.); (N.C.)
| | - Zulfiqar Ahmed
- Department of Livestock and Poultry Production, Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Rawalakot 12350, Pakistan;
| | - Weidong Ma
- Shaanxi Province Agriculture & Husbandry Breeding Farm, Baoji 722203, China;
| | - Xingshan Qi
- Animal Husbandry Bureau in Biyang County, Zhumadian 463700, China;
| | - Ningbo Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (H.C.); (Y.L.); (Z.L.); (C.L.); (S.L.); (N.C.)
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (H.C.); (Y.L.); (Z.L.); (C.L.); (S.L.); (N.C.)
| |
Collapse
|
2
|
Carvalho WA, Gaspar EB, Domingues R, Regitano LCA, Cardoso FF. Genetic factors underlying host resistance to Rhipicephalus microplus tick infestation in Braford cattle: a systems biology perspective. Mamm Genome 2024; 35:186-200. [PMID: 38480585 DOI: 10.1007/s00335-024-10030-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 01/29/2024] [Indexed: 05/29/2024]
Abstract
Approximately 80% of the world's cattle are raised in regions with a high risk of tick-borne diseases, resulting in significant economic losses due to parasitism by Rhipicephalus (Boophilus) microplus. However, the lack of a systemic biology approach hampers a comprehensive understanding of tick-host interactions that mediate tick resistance phenotypes. Here, we conducted a genome-wide association study (GWAS) of 2933 Braford cattle and found 340 single-nucleotide polymorphisms (SNPs) associated with tick counts. Gene expression analyses were performed on skin samples obtained from previously tick-exposed heifers with extremely high or low estimated breeding values for R. microplus counts. Evaluations were performed both before and after artificial infestation with ticks. Differentially expressed genes were found within 1-Mb windows centered at significant SNPs from GWAS. A total of 330 genes were related to the breakdown of homeostasis that was induced by larval attachment to bovine skin. Enrichment analysis pointed to a key role of proteolysis and signal transduction via JAK/STAT, NFKB and WNT/beta catenin signaling pathways. Integrative analysis on matrixEQTL revealed two cis-eQTLs and four significant SNPs in the genes peptidyl arginine deiminase type IV (PADI4) and LOC11449251. The integration of genomic data from QTL maps and transcriptome analyses has identified a set of twelve key genes that show significant associations with tick loads. These genes could be key candidates to improve the accuracy of genomic predictions for tick resistance in Braford cattle.
Collapse
|
3
|
Raza A, Schulz BL, Nouwens A, Naseem MN, Kamran M, Mantilla Valdivieso EF, Kerr ED, Constantinoiu C, Jonsson NN, James P, Tabor AE. Application of quantitative proteomics to discover biomarkers for tick resistance in cattle. Front Immunol 2023; 14:1091066. [PMID: 36793724 PMCID: PMC9924087 DOI: 10.3389/fimmu.2023.1091066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/04/2023] [Indexed: 01/31/2023] Open
Abstract
Introduction Breeding for tick resistance is a sustainable alternative to control cattle ticks due to widespread resistance to acaricidal drugs and the lack of a protective vaccine. The most accurate method used to characterise the phenotype for tick resistance in field studies is the standard tick count, but this is labour-intensive and can be hazardous to the operator. Efficient genetic selection requires reliable phenotyping or biomarker(s) for accurately identifying tick-resistant cattle. Although breed-specific genes associated with tick resistance have been identified, the mechanisms behind tick resistance have not yet been fully characterised. Methods This study applied quantitative proteomics to examine the differential abundance of serum and skin proteins using samples from naïve tick-resistant and -susceptible Brangus cattle at two-time points following tick exposure. The proteins were digested into peptides, followed by identification and quantification using sequential window acquisition of all theoretical fragment ion mass spectrometry. Results Resistant naïve cattle had a suite of proteins associated with immune response, blood coagulation and wound healing that were significantly (adjusted P < 10- 5) more abundant compared with susceptible naïve cattle. These proteins included complement factors (C3, C4, C4a), alpha-1-acid glycoprotein (AGP), beta-2-glycoprotein-1, keratins (KRT1 & KRT3) and fibrinogens (alpha & beta). The mass spectrometry findings were validated by identifying differences in the relative abundance of selected serum proteins with ELISA. The proteins showing a significantly different abundance in resistant cattle following early and prolonged tick exposures (compared to resistant naïve) were associated with immune response, blood coagulation, homeostasis, and wound healing. In contrast, susceptible cattle developed some of these responses only after prolonged tick exposure. Discussion Resistant cattle were able to transmigrate immune-response related proteins towards the tick bite sites, which may prevent tick feeding. Significantly differentially abundant proteins identified in this research in resistant naïve cattle may provide a rapid and efficient protective response to tick infestation. Physical barrier (skin integrity and wound healing) mechanisms and systemic immune responses were key contributors to resistance. Immune response-related proteins such as C4, C4a, AGP and CGN1 (naïve samples), CD14, GC and AGP (post-infestation) should be further investigated as potential biomarkers for tick resistance.
Collapse
Affiliation(s)
- Ali Raza
- Queensland Alliance for Agriculture & Food Innovation, Centre for Animal Science, The University of Queensland, St Lucia, QLD, Australia
| | - Benjamin L Schulz
- The University of Queensland, School of Chemistry and Molecular Biosciences, St. Lucia, QLD, Australia
| | - Amanda Nouwens
- The University of Queensland, School of Chemistry and Molecular Biosciences, St. Lucia, QLD, Australia
| | - Muhammad Noman Naseem
- Queensland Alliance for Agriculture & Food Innovation, Centre for Animal Science, The University of Queensland, St Lucia, QLD, Australia
| | - Muhammad Kamran
- Queensland Alliance for Agriculture & Food Innovation, Centre for Animal Science, The University of Queensland, St Lucia, QLD, Australia
| | - Emily F Mantilla Valdivieso
- Queensland Alliance for Agriculture & Food Innovation, Centre for Animal Science, The University of Queensland, St Lucia, QLD, Australia
| | - Edward D Kerr
- The University of Queensland, School of Chemistry and Molecular Biosciences, St. Lucia, QLD, Australia
| | - Constantin Constantinoiu
- College of Public Health, Medical & Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Nicholas N Jonsson
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Peter James
- Queensland Alliance for Agriculture & Food Innovation, Centre for Animal Science, The University of Queensland, St Lucia, QLD, Australia
| | - Ala E Tabor
- Queensland Alliance for Agriculture & Food Innovation, Centre for Animal Science, The University of Queensland, St Lucia, QLD, Australia.,The University of Queensland, School of Chemistry and Molecular Biosciences, St. Lucia, QLD, Australia
| |
Collapse
|
4
|
Davoudi P, Do DN, Rathgeber B, Colombo SM, Sargolzaei M, Plastow G, Wang Z, Karimi K, Hu G, Valipour S, Miar Y. Genome-wide detection of copy number variation in American mink using whole-genome sequencing. BMC Genomics 2022; 23:649. [PMID: 36096727 PMCID: PMC9468235 DOI: 10.1186/s12864-022-08874-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/05/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Copy number variations (CNVs) represent a major source of genetic diversity and contribute to the phenotypic variation of economically important traits in livestock species. In this study, we report the first genome-wide CNV analysis of American mink using whole-genome sequence data from 100 individuals. The analyses were performed by three complementary software programs including CNVpytor, DELLY and Manta. RESULTS A total of 164,733 CNVs (144,517 deletions and 20,216 duplications) were identified representing 5378 CNV regions (CNVR) after merging overlapping CNVs, covering 47.3 Mb (1.9%) of the mink autosomal genome. Gene Ontology and KEGG pathway enrichment analyses of 1391 genes that overlapped CNVR revealed potential role of CNVs in a wide range of biological, molecular and cellular functions, e.g., pathways related to growth (regulation of actin cytoskeleton, and cAMP signaling pathways), behavior (axon guidance, circadian entrainment, and glutamatergic synapse), lipid metabolism (phospholipid binding, sphingolipid metabolism and regulation of lipolysis in adipocytes), and immune response (Wnt signaling, Fc receptor signaling, and GTPase regulator activity pathways). Furthermore, several CNVR-harbored genes associated with fur characteristics and development (MYO5A, RAB27B, FGF12, SLC7A11, EXOC2), and immune system processes (SWAP70, FYN, ORAI1, TRPM2, and FOXO3). CONCLUSIONS This study presents the first genome-wide CNV map of American mink. We identified 5378 CNVR in the mink genome and investigated genes that overlapped with CNVR. The results suggest potential links with mink behaviour as well as their possible impact on fur quality and immune response. Overall, the results provide new resources for mink genome analysis, serving as a guideline for future investigations in which genomic structural variations are present.
Collapse
Affiliation(s)
- Pourya Davoudi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Duy Ngoc Do
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Bruce Rathgeber
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Stefanie M Colombo
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Mehdi Sargolzaei
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
- Select Sires Inc., Plain City, OH, USA
| | - Graham Plastow
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Zhiquan Wang
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Karim Karimi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Guoyu Hu
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Shafagh Valipour
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Younes Miar
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada.
| |
Collapse
|
5
|
Mantilla Valdivieso EF, Ross EM, Raza A, Naseem MN, Kamran M, Hayes BJ, Jonsson NN, James P, Tabor AE. Transcriptional changes in the peripheral blood leukocytes from Brangus cattle before and after tick challenge with Rhipicephalus australis. BMC Genomics 2022; 23:454. [PMID: 35725367 PMCID: PMC9208207 DOI: 10.1186/s12864-022-08686-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/06/2022] [Indexed: 11/15/2022] Open
Abstract
Background Disease emergence and production loss caused by cattle tick infestations have focused attention on genetic selection strategies to breed beef cattle with increased tick resistance. However, the mechanisms behind host responses to tick infestation have not been fully characterised. Hence, this study examined gene expression profiles of peripheral blood leukocytes from tick-naive Brangus steers (Bos taurus x Bos indicus) at 0, 3, and 12 weeks following artificial tick challenge experiments with Rhipicephalus australis larvae. The aim of the study was to investigate the effect of tick infestation on host leukocyte response to explore genes associated with the expression of high and low host resistance to ticks. Results Animals with high (HR, n = 5) and low (LR, n = 5) host resistance were identified after repeated tick challenge. A total of 3644 unique differentially expressed genes (FDR < 0.05) were identified in the comparison of tick-exposed (both HR and LR) and tick-naive steers for the 3-week and 12-week infestation period. Enrichment analyses showed genes were involved in leukocyte chemotaxis, coagulation, and inflammatory response. The IL-17 signalling, and cytokine-cytokine interactions pathways appeared to be relevant in protection and immunopathology to tick challenge. Comparison of HR and LR phenotypes at timepoints of weeks 0, 3, and 12 showed there were 69, 8, and 4 differentially expressed genes, respectively. Most of these genes were related to immune, tissue remodelling, and angiogenesis functions, suggesting this is relevant in the development of resistance or susceptibility to tick challenge. Conclusions This study showed the effect of tick infestation on Brangus cattle with variable phenotypes of host resistance to R. australis ticks. Steers responded to infestation by expressing leukocyte genes related to chemotaxis, cytokine secretion, and inflammatory response. The altered expression of genes from the bovine MHC complex in highly resistant animals at pre- and post- infestation stages also supports the relevance of this genomic region for disease resilience. Overall, this study offers a resource of leukocyte gene expression data on matched tick-naive and tick-infested steers relevant for the improvement of tick resistance in composite cattle. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08686-3.
Collapse
Affiliation(s)
- Emily F Mantilla Valdivieso
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, St Lucia, Queensland, 4072, Australia.
| | - Elizabeth M Ross
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, St Lucia, Queensland, 4072, Australia
| | - Ali Raza
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, St Lucia, Queensland, 4072, Australia
| | - Muhammad Noman Naseem
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, St Lucia, Queensland, 4072, Australia
| | - Muhammad Kamran
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, St Lucia, Queensland, 4072, Australia
| | - Ben J Hayes
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, St Lucia, Queensland, 4072, Australia
| | - Nicholas N Jonsson
- University of Glasgow, Institute of Biodiversity Animal Health and Comparative Medicine, Glasgow, G61 1QH, UK.
| | - Peter James
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, St Lucia, Queensland, 4072, Australia
| | - Ala E Tabor
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, St Lucia, Queensland, 4072, Australia. .,The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia, Queensland, 4072, Australia.
| |
Collapse
|
6
|
Turner N, Abeysinghe P, Peiris H, Vaswani K, Sadowski P, Cameron N, McGhee N, Logan J, Mitchell MD. Proteomic profiling of plasma-derived small extracellular vesicles: a novel tool for understanding the systemic effects of tick burden in cattle. J Anim Sci 2022; 100:6511758. [PMID: 35045163 PMCID: PMC8867580 DOI: 10.1093/jas/skac015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/14/2022] [Indexed: 11/25/2022] Open
Abstract
Cattle ticks pose a significant threat to the health and profitability of cattle herds globally. The investigation of factors leading to natural tick resistance in cattle is directed toward targeted breeding strategies that may combat cattle tick infestation on the genetic level. Exosomes (EXs), small extracellular vesicles (EVs) of 50 to 150 nm diameter, are released from all cell types into biofluids such as blood plasma and milk, have been successfully used in diagnostic and prognostic studies in humans, and can provide essential information regarding the overall health state of animals. Mass spectrometry (MS) is a highly sensitive proteomics application that can be used to identify proteins in a complex mixture and is particularly useful for biomarker development. In this proof of principle study, EXs were isolated from the blood plasma of cattle (Bos taurus) with high (HTR) and low tick resistance (LTR) (n = 3/group). Cattle were classified as HTR or LTR using a tick scoring system, and EXs isolated from the cattle blood plasma using an established protocol. EXs were subjected to MS analysis in data-dependent acquisition mode and protein search performed using Protein Pilot against the B. taurus proteome. A total of 490 unique proteins were identified across all samples. Of these, proteins present in all replicates from each group were selected for further analysis (HTR = 121; LTR = 130). Gene ontology analysis was performed using PANTHER GO online software tool. Proteins unique to HTR and LTR cattle were divided by protein class, of which 50% were associated with immunity/defense in the HTR group, whereas this protein class was not detected in EXs from LTR cattle. Similarly, unique proteins in HTR cattle were associated with B-cell activation, immunoglobins, immune response, and cellular iron ion homeostasis. In LTR cattle, unique exosomal proteins were associated with actin filament binding, purine nucleotide binding, plasma membrane protein complex, and carbohydrate derivative binding. This is the first study to demonstrate that MS analysis of EXs derived from the blood plasma of HTR and LTR cattle can be successfully applied to profile the systemic effects of tick burden. Cattle ticks are a significant burden to cattle industries globally. Current methods to treat cattle ticks are costly and inefficient in the long term. It has been noted that while some cattle may exhibit a natural resistance to ticks, others carry a heavy tick burden. The study of small extracellular vesicles, or exosomes (EXs), isolated from cattle blood plasma provides a noninvasive way of analyzing changes at the cellular level and may be of use in understanding the systemic effects of tick burden or factors leading to natural resistance. The aim of this study was to assess high (HTR) and low tick resistance (LTR) cattle identified using a tick burden scoring system by analyzing the protein content of circulating EXs via qualitative proteomics analysis. We found that a class of proteins related to defense/immunity comprised 50% of proteins unique to HTR cattle, while this protein class was not detected in proteins unique to LTR cattle. Additionally, epidermal growth factor–calcium-binding protein domains were 2-fold increased in LTR cattle compared with HTR cattle, indicating a possible mechanism for widespread metabolic change. This is the first study to employ proteomic analysis of exosomal cargo as an approach to understanding the systemic effects of tick burden in cattle.
Collapse
Affiliation(s)
- Natalie Turner
- Centre for Children's Health Research (CCHR), Queensland University of Technology (QUT), South Brisbane, QLD, Australia
| | - Pevindu Abeysinghe
- Centre for Children's Health Research (CCHR), Queensland University of Technology (QUT), South Brisbane, QLD, Australia
| | - Hassendrini Peiris
- Centre for Children's Health Research (CCHR), Queensland University of Technology (QUT), South Brisbane, QLD, Australia
| | - Kanchan Vaswani
- Centre for Children's Health Research (CCHR), Queensland University of Technology (QUT), South Brisbane, QLD, Australia
| | - Pawel Sadowski
- Central Analytical Research Facility (CARF), QUT Gardens Point, Brisbane City, QLD, Australia
| | | | | | - Jayden Logan
- Centre for Children's Health Research (CCHR), Queensland University of Technology (QUT), South Brisbane, QLD, Australia
| | - Murray D Mitchell
- Centre for Children's Health Research (CCHR), Queensland University of Technology (QUT), South Brisbane, QLD, Australia
| |
Collapse
|
7
|
Cavani L, Braz CU, Giglioti R, Okino CH, Gulias-Gomes CC, Caetano AR, Oliveira MCDS, Cardoso FF, de Oliveira HN. Genomic Study of Babesia bovis Infection Level and Its Association With Tick Count in Hereford and Braford Cattle. Front Immunol 2020; 11:1905. [PMID: 33013839 PMCID: PMC7493685 DOI: 10.3389/fimmu.2020.01905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/15/2020] [Indexed: 11/13/2022] Open
Abstract
Bovine babesiosis is a tick-borne disease caused by intraerythrocytic protozoa and leads to substantial economic losses for the livestock industry throughout the world. Babesia bovis is considered the most pathogenic species, which causes bovine babesiosis in Brazil. Genomic data could be used to evaluate the viability of improving resistance against B. bovis infection level (IB) through genomic selection, and, for that, knowledge of genetic parameters is needed. Furthermore, genome-wide association studies (GWAS) could be conducted to provide a better understanding of the genetic basis of the host response to B. bovis infection. No previous work in quantitative genetics of B. bovis infection was found. Thus, the objective of this study was to estimate the genetic correlation between IB and tick count (TC), evaluate predictive ability and applicability of genomic selection, and perform GWAS in Hereford and Braford cattle. The single-step genomic best linear unbiased prediction method was used, which allows the estimation of both breeding values and marker effects. Standard phenotyping was conducted for both traits. IB quantifications from the blood of 1,858 animals were carried using quantitative PCR assays. For TC, one to three subsequent tick counts were performed by manually counting adult female ticks on one side of each animal's body that was naturally exposed to ticks. Animals were genotyped using the Illumina BovineSNP50 panel. The posterior mean of IB heritability, estimated by the Bayesian animal model in a bivariate analysis, was low (0.10), and the estimations of genetic correlation between IB and TC were also low (0.15). The cross-validation genomic prediction accuracy for IB ranged from 0.18 to 0.35 and from 0.29 to 0.32 using k-means and random clustering, respectively, suggesting that genomic predictions could be used as a tool to improve genetics for IB, especially if a larger training population is developed. The top 10 single nucleotide polymorphisms from the GWAS explained 5.04% of total genetic variance for IB, which were located on chromosomes 1, 2, 5, 6, 12, 17, 18, 16, 24, and 26. Some candidate genes participate in immunity system pathways indicating that those genes are involved in resistance to B. bovis in cattle. Although the genetic correlation between IB and TC was weak, some candidate genes for IB were also reported in tick infestation studies, and they were also involved in biological resistance processes. This study contributes to improving genetic knowledge regarding infection by B. bovis in cattle.
Collapse
Affiliation(s)
- Ligia Cavani
- School of Agricultural and Veterinary Sciences, São Paulo State University (Unesp), Jaboticabal, Brazil
| | - Camila Urbano Braz
- School of Agricultural and Veterinary Sciences, São Paulo State University (Unesp), Jaboticabal, Brazil
| | - Rodrigo Giglioti
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Pecuária Sudeste, São Carlos, Brazil
| | - Cintia Hiromi Okino
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Pecuária Sudeste, São Carlos, Brazil
| | | | | | | | | | | |
Collapse
|
8
|
Burrow HM, Mans BJ, Cardoso FF, Birkett MA, Kotze AC, Hayes BJ, Mapholi N, Dzama K, Marufu MC, Githaka NW, Djikeng A. Towards a new phenotype for tick resistance in beef and dairy cattle: a review. ANIMAL PRODUCTION SCIENCE 2019. [DOI: 10.1071/an18487] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
About 80% of the world’s cattle are affected by ticks and tick-borne diseases, both of which cause significant production losses. Cattle host resistance to ticks is the most important factor affecting the economics of tick control, but it is largely neglected in tick-control programs due to technical difficulties and costs associated with identifying individual-animal variation in resistance. The present paper reviews the scientific literature to identify factors affecting resistance of cattle to ticks and the biological mechanisms of host tick resistance, to develop alternative phenotype(s) for tick resistance. If new cost-effective phenotype(s) can be developed and validated, then tick resistance of cattle could be genetically improved using genomic selection, and incorporated into breeding objectives to simultaneously improve cattle productive attributes and tick resistance. The phenotype(s) could also be used to improve tick control by using cattle management. On the basis of the present review, it is recommended that three possible phenotypes (haemolytic analysis; measures of skin hypersensitivity reactions; simplified artificial tick infestations) be further developed to determine their practical feasibility for consistently, cost-effectively and reliably measuring cattle tick resistance in thousands of individual animals in commercial and smallholder farmer herds in tropical and subtropical areas globally. During evaluation of these potential new phenotypes, additional measurements should be included to determine the possibility of developing a volatile-based resistance phenotype, to simultaneously improve cattle resistance to both ticks and biting flies. Because the current measurements of volatile chemistry do not satisfy the requirements of a simple, cost-effective phenotype for use in commercial cattle herds, consideration should also be given to inclusion of potentially simpler measures to enable indirect genetic selection for volatile-based resistance to ticks.
Collapse
|
9
|
Calcium and Ca 2+/Calmodulin-dependent kinase II as targets for helminth parasite control. Biochem Soc Trans 2018; 46:1743-1751. [PMID: 30420417 DOI: 10.1042/bst20180480] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/07/2018] [Accepted: 10/01/2018] [Indexed: 11/17/2022]
Abstract
In eukaryotes, effective calcium homeostasis is critical for many key biological processes. There is an added level of complexity in parasites, particularly multicellular helminth worms, which modulate calcium levels while inhabiting the host microenvironment. Parasites ensure efficient calcium homeostasis through gene products, such as the calmodulin-dependent kinases (CaMK), the main focus of this review. The importance of CaMK is becoming increasingly apparent from recent functional studies of helminth and protozoan parasites. Investigations on the molecular regulation of calcium and the role of CaMK are important for both supplementing current drug regimens and finding new antiparasitic compounds. Whereas calcium regulators, including CaMK, are well characterised in mammalian systems, knowledge of their functional properties in parasites is increasing but is still in its infancy.
Collapse
|
10
|
Tabor AE, Ali A, Rehman G, Rocha Garcia G, Zangirolamo AF, Malardo T, Jonsson NN. Cattle Tick Rhipicephalus microplus-Host Interface: A Review of Resistant and Susceptible Host Responses. Front Cell Infect Microbiol 2017; 7:506. [PMID: 29322033 PMCID: PMC5732177 DOI: 10.3389/fcimb.2017.00506] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 11/22/2017] [Indexed: 01/12/2023] Open
Abstract
Ticks are able to transmit tick-borne infectious agents to vertebrate hosts which cause major constraints to public and livestock health. The costs associated with mortality, relapse, treatments, and decreased production yields are economically significant. Ticks adapted to a hematophagous existence after the vertebrate hemostatic system evolved into a multi-layered defense system against foreign invasion (pathogens and ectoparasites), blood loss, and immune responses. Subsequently, ticks evolved by developing an ability to suppress the vertebrate host immune system with a devastating impact particularly for exotic and crossbred cattle. Host genetics defines the immune responsiveness against ticks and tick-borne pathogens. To gain an insight into the naturally acquired resistant and susceptible cattle breed against ticks, studies have been conducted comparing the incidence of tick infestation on bovine hosts from divergent genetic backgrounds. It is well-documented that purebred and crossbred Bos taurus indicus cattle are more resistant to ticks and tick-borne pathogens compared to purebred European Bos taurus taurus cattle. Genetic studies identifying Quantitative Trait Loci markers using microsatellites and SNPs have been inconsistent with very low percentages relating phenotypic variation with tick infestation. Several skin gene expression and immunological studies have been undertaken using different breeds, different samples (peripheral blood, skin with tick feeding), infestation protocols and geographic environments. Susceptible breeds were commonly found to be associated with the increased expression of toll like receptors, MHC Class II, calcium binding proteins, and complement factors with an increased presence of neutrophils in the skin following tick feeding. Resistant breeds had higher levels of T cells present in the skin prior to tick infestation and thus seem to respond to ticks more efficiently. The skin of resistant breeds also contained higher numbers of eosinophils, mast cells and basophils with up-regulated proteases, cathepsins, keratins, collagens and extracellular matrix proteins in response to feeding ticks. Here we review immunological and molecular determinants that explore the cattle tick Rhipicephalus microplus-host resistance phenomenon as well as contemplating new insights and future directions to study tick resistance and susceptibility, in order to facilitate interventions for tick control.
Collapse
Affiliation(s)
- Ala E Tabor
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia.,Centre for Comparative Genomics, Murdoch University, Perth, WA, Australia
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan.,Escola de Enfermagem de Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Gauhar Rehman
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Gustavo Rocha Garcia
- Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Thiago Malardo
- Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Nicholas N Jonsson
- Institute of Biodiversity, Animal Health and Comparative Medicine, The University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
11
|
Analyses of reaction norms reveal new chromosome regions associated with tick resistance in cattle. Animal 2017; 12:205-214. [PMID: 28701235 DOI: 10.1017/s1751731117001562] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Despite single nucleotide polymorphism (SNP) availability and frequent cost reduction has allowed genome-wide association studies even in complex traits as tick resistance, the use of this information source in SNP by environment interaction context is unknown for many economically important traits in cattle. We aimed at identifying putative genomic regions explaining differences in tick resistance in Hereford and Braford cattle under SNP by environment point of view as well as to identify candidate genes derived from outliers/significant markers. The environment was defined as contemporary group means of tick counts, since they seemed to be the most appropriate entities to describe the environmental gradient in beef cattle. A total of 4363 animals having tick counts (n=10 673) originated from 197 sires and 3966 dams were used. Genotypes were acquired on 3591 of these cattle. From top 1% SNPs (410) having the greatest effects in each environment, 75 were consistently relevant in all environments, which indicated SNP by environment interaction. The outliers/significant SNPs were mapped on chromosomes 1, 2, 5, 6, 7, 9, 11, 13, 14, 15, 16, 18, 21, 23, 24, 26 and 28, and potential candidate genes were detected across environments. The presence of SNP by environment interaction for tick resistance indicates that genetic expression of resistance depends upon tick burden. Markers with major portion of genetic variance explained across environments appeared to be close to genes with different direct or indirect functions related to immune system, inflammatory process and mechanisms of tissue destruction/repair, such as energy metabolism and cell differentiation.
Collapse
|
12
|
Proteomics approach to the study of cattle tick adaptation to white tailed deer. BIOMED RESEARCH INTERNATIONAL 2013; 2013:319812. [PMID: 24364032 PMCID: PMC3865695 DOI: 10.1155/2013/319812] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 11/08/2013] [Indexed: 01/20/2023]
Abstract
Cattle ticks, Rhipicephalus (Boophilus) microplus, are a serious threat to animal health and production. Some ticks feed on a single host species while others such as R. microplus infest multiple hosts. White tailed deer (WTD) play a role in the maintenance and expansion of cattle tick populations. However, cattle ticks fed on WTD show lower weight and reproductive performance when compared to ticks fed on cattle, suggesting the existence of host factors that affect tick feeding and reproduction. To elucidate these factors, a proteomics approach was used to characterize tick and host proteins in R. microplus ticks fed on cattle and WTD. The results showed that R. microplus ticks fed on cattle have overrepresented tick proteins involved in blood digestion and reproduction when compared to ticks fed on WTD, while host proteins were differentially represented in ticks fed on cattle or WTD. Although a direct connection cannot be made between differentially represented tick and host proteins, these results suggested that differentially represented host proteins together with other host factors could be associated with higher R. microplus tick feeding and reproduction observed in ticks fed on cattle.
Collapse
|
13
|
Brannan JL, Holman PJ, Olafson PU, Pruett JH, Riggs PK. Evaluation of methods for the isolation of high quality RNA from bovine and cervine hide biopsies. J Parasitol 2012; 99:19-23. [PMID: 22924936 DOI: 10.1645/ge-3132.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Molecular investigations of the ruminant response to ectoparasites at the parasite-host interface are critically dependent upon the quality of RNA. The complexity of ruminant skin decreases the capacity to obtain high quality RNA from biopsy samples, which directly affects the reliability of data produced by gene expression experiments. Two methods for isolating total RNA from skin were compared and the use of 4M guanidinium isothiocyanate (GITC) during frozen storage of the specimens was evaluated. In addition, the best procedure for RNA isolation from bovine skin punch biopsies was also tested on white-tailed deer skin biopsies. Skin biopsy punches were collected and frozen prior to pulverization for RNA isolation. Total RNA quantity and integrity were determined by spectrophotometry and capillary electrophoresis technology, respectively. Significantly increased total RNA yield (P < 0.05) and higher integrity (P < 0.05) were obtained with a TRI Reagent® isolation method. Freezing and subsequent storage of bovine skin punch biopsies in 4 M GITC did not affect the amount or integrity of total RNA recovered by either RNA isolation method. However, quantity and integrity of total RNA extracted with the TRI Reagent method were again significantly higher than with the alternate technique, confirming it as the superior method. The TRI Reagent isolation method also yielded high quality total RNA from white-tailed deer skin punch biopsies, suggesting the usefulness of this method for obtaining RNA of a quality suitable for gene expression studies in other ruminant species.
Collapse
Affiliation(s)
- Jaime L Brannan
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843-4467, USA
| | | | | | | | | |
Collapse
|
14
|
Bagnall NH, Kotze AC. Evaluation of reference genes for real-time PCR quantification of gene expression in the Australian sheep blowfly, Lucilia cuprina. MEDICAL AND VETERINARY ENTOMOLOGY 2010; 24:176-181. [PMID: 20604863 DOI: 10.1111/j.1365-2915.2010.00866.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The Australian sheep blowfly, Lucilia cuprina (Wiedemann) (Diptera: Calliphoridae), is an important pest of sheep in Australia and other parts of the world. However, the paucity of information on many fundamental molecular aspects of this species limits the ability to exploit functional genomics techniques for the discovery of new drug targets for its control. The present study aimed to facilitate gene expression studies in this species by identifying the most suitable reference genes for normalization of mRNA expression data. Quantitative real-time polymerase chain reaction (PCR) was performed with 11 genes across RNA samples from eggs, L1, L3, pupae and adult life stages, and two normalization programs, Normfinder and geNorm, were then applied to the data. The results showed an ideal set of genes (18S rRNA, 28S rRNA, GST1, beta-tubulin and RPLPO) for data normalization across all life stages. The most suitable reference genes for studies within specific life stages were also identified. GAPDH was shown to be a poor reference gene. The reference gene recommendations in this study will be of use to laboratories investigating gene expression in L. cuprina and related blowfly species.
Collapse
Affiliation(s)
- N H Bagnall
- CSIRO (Commonwealth Scientific & Industrial Research Organization) Livestock Industries, St. Lucia, Brisbane, Queensland 4067, Australia
| | | |
Collapse
|
15
|
Cantacessi C, Campbell BE, Young ND, Jex AR, Hall RS, Presidente PJA, Zawadzki JL, Zhong W, Aleman-Meza B, Loukas A, Sternberg PW, Gasser RB. Differences in transcription between free-living and CO2-activated third-stage larvae of Haemonchus contortus. BMC Genomics 2010; 11:266. [PMID: 20420710 PMCID: PMC2880303 DOI: 10.1186/1471-2164-11-266] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 04/27/2010] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The disease caused by Haemonchus contortus, a blood-feeding nematode of small ruminants, is of major economic importance worldwide. The infective third-stage larva (L3) of this gastric nematode is enclosed in a cuticle (sheath) and, once ingested with herbage by the host, undergoes an exsheathment process that marks the transition from the free-living (L3) to the parasitic (xL3) stage. This study explored changes in gene transcription associated with this transition and predicted, based on comparative analysis, functional roles for key transcripts in the metabolic pathways linked to larval development. RESULTS Totals of 101,305 (L3) and 105,553 (xL3) expressed sequence tags (ESTs) were determined using 454 sequencing technology, and then assembled and annotated; the most abundant transcripts encoded transthyretin-like, calcium-binding EF-hand, NAD(P)-binding and nucleotide-binding proteins as well as homologues of Ancylostoma-secreted proteins (ASPs). Using an in silico-subtractive analysis, 560 and 685 sequences were shown to be uniquely represented in the L3 and xL3 stages, respectively; the transcripts encoded ribosomal proteins, collagens and elongation factors (in L3), and mainly peptidases and other enzymes of amino acid catabolism (in xL3). Caenorhabditis elegans orthologues of transcripts that were uniquely transcribed in each L3 and xL3 were predicted to interact with a total of 535 other genes, all of which were involved in embryonic development. CONCLUSION The present study indicated that some key transcriptional alterations taking place during the transition from the L3 to the xL3 stage of H. contortus involve genes predicted to be linked to the development of neuronal tissue (L3 and xL3), formation of the cuticle (L3) and digestion of host haemoglobin (xL3). Future efforts using next-generation sequencing and bioinformatic technologies should provide the efficiency and depth of coverage required for the determination of the complete transcriptomes of different developmental stages and/or tissues of H. contortus as well as the genome of this important parasitic nematode. Such advances should lead to a significantly improved understanding of the molecular biology of H. contortus and, from an applied perspective, to novel methods of intervention.
Collapse
Affiliation(s)
- Cinzia Cantacessi
- Department of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia
| | - Bronwyn E Campbell
- Department of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia
| | - Neil D Young
- Department of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia
| | - Aaron R Jex
- Department of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia
| | - Ross S Hall
- Department of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia
| | | | - Jodi L Zawadzki
- Department of Primary Industries, Attwood, Victoria, Australia
| | - Weiwei Zhong
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, USA
| | | | - Alex Loukas
- James Cook University, Cairns, Queensland, Australia
| | - Paul W Sternberg
- Biology Division, California Institute of Technology, Pasadena, California, USA
| | - Robin B Gasser
- Department of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia
| |
Collapse
|
16
|
Kongsuwan K, Josh P, Colgrave ML, Bagnall NH, Gough J, Burns B, Pearson R. Activation of several key components of the epidermal differentiation pathway in cattle following infestation with the cattle tick, Rhipicephalus (Boophilus) microplus. Int J Parasitol 2010; 40:499-507. [DOI: 10.1016/j.ijpara.2009.10.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 10/04/2009] [Accepted: 10/08/2009] [Indexed: 12/26/2022]
|
17
|
Carvalho WA, Maruyama SR, Franzin AM, Abatepaulo ARR, Anderson JM, Ferreira BR, Ribeiro JMC, Moré DD, Augusto Mendes Maia A, Valenzuela JG, Garcia GR, de Miranda Santos IKF. Rhipicephalus (Boophilus) microplus: clotting time in tick-infested skin varies according to local inflammation and gene expression patterns in tick salivary glands. Exp Parasitol 2010; 124:428-35. [PMID: 20045690 DOI: 10.1016/j.exppara.2009.12.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 11/26/2009] [Accepted: 12/23/2009] [Indexed: 10/20/2022]
Abstract
Ticks deposit saliva at the site of their attachment to a host in order to inhibit haemostasis, inflammation and innate and adaptive immune responses. The anti-haemostatic properties of tick saliva have been described by many studies, but few show that tick infestations or its anti-haemostatic components exert systemic effects in vivo. In the present study, we extended these observations and show that, compared with normal skin, bovine hosts that are genetically susceptible to tick infestations present an increase in the clotting time of blood collected from the immediate vicinity of haemorrhagic feeding pools in skin infested with different developmental stages of Rhipicepahlus microplus; conversely, we determined that clotting time of tick-infested skin from genetically resistant bovines was shorter than that of normal skin. Coagulation and inflammation have many components in common and we determined that in resistant bovines, eosinophils and basophils, which are known to contain tissue factor, are recruited in greater numbers to the inflammatory site of tick bites than in susceptible hosts. Finally, we correlated the observed differences in clotting times with the expression profiles of transcripts for putative anti-haemostatic proteins in different developmental stages of R. microplus fed on genetically susceptible and resistant hosts: we determined that transcripts coding for proteins similar to these molecules are overrepresented in salivary glands from nymphs and males fed on susceptible bovines. Our data indicate that ticks are able to modulate their host's local haemostatic reactions. In the resistant phenotype, larger amounts of inflammatory cells are recruited and expression of anti-coagulant molecules is decreased tick salivary glands, features that can hamper the tick's blood meal.
Collapse
Affiliation(s)
- Wanessa Araújo Carvalho
- Departament of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Comparative immunogenicity of Haemaphysalis longicornis and Rhipicephalus (Boophilus) microplus calreticulins. Vet Parasitol 2009; 164:282-90. [PMID: 19560273 DOI: 10.1016/j.vetpar.2009.05.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 04/07/2009] [Accepted: 05/22/2009] [Indexed: 11/24/2022]
Abstract
The ticks Rhipicephalus (Boophilus) microplus and Haemaphysalis longicornis are blood-sucking ectoparasites of bovines, causing serious damages to the livestock production. The main control method for these ticks is based on acaricides. However, the use of vaccines has been studied as a promising control strategy. Calreticulin (CRT) is a multifunctional, predominantly intracellular protein present in almost all cells of animals. The secretion of CRT during feeding might be linked to the modulation of the parasite-host interaction. In the present study, recombinant CRTs of R. microplus (rBmCRT) and H. longicornis (rHlCRT) were expressed in Escherichia coli and purified by ion exchange chromatography and used for the immunization of bovines and mouse. ELISA demonstrated that both rCRTs are recognized by the sera of immunized bovines. In silico, despite the difference in amino acid sequences, antigenic index analysis of HlCRT and BmCRT using the Jameson-Wolf algorithm indicated that both proteins were very similar in antigenicity index, although six different epitopes between the tick CRTs have been inferred. These data were corroborated by competitive ELISA analyses, which suggest the presence of different epitopes within the proteins. Western blot analyses showed that anti-rBmCRT and anti-rHlCRT bovine sera also recognized the native proteins in larvae extracts and, moreover, sera of bovines immunized with saliva and extract of salivary glands recognized both recombinant CRTs. Thus, mouse and bovine immune system recognized rCRTs, resulting in the production of antibodies with similar specificity for both recombinant proteins, although different epitopes could be distinguished between rBmCRT and rHlCRT.
Collapse
|