1
|
Type I Interferons Suppress Anti-parasitic Immunity and Can Be Targeted to Improve Treatment of Visceral Leishmaniasis. Cell Rep 2021; 30:2512-2525.e9. [PMID: 32101732 PMCID: PMC7981274 DOI: 10.1016/j.celrep.2020.01.099] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 11/28/2019] [Accepted: 01/28/2020] [Indexed: 12/13/2022] Open
Abstract
Type I interferons (IFNs) play critical roles in anti-viral and anti-tumor immunity. However, they also suppress protective immune responses in some infectious diseases. Here, we identify type I IFNs as major upstream regulators of CD4+ T cells from visceral leishmaniasis (VL) patients. Furthermore, we report that mice deficient in type I IFN signaling have significantly improved control of Leishmania donovani, a causative agent of human VL, associated with enhanced IFNγ but reduced IL-10 production by parasite-specific CD4+ T cells. Importantly, we identify a small-molecule inhibitor that can be used to block type I IFN signaling during established infection and acts synergistically with conventional anti-parasitic drugs to improve parasite clearance and enhance anti-parasitic CD4+ T cell responses in mice and humans. Thus, manipulation of type I IFN signaling is a promising strategy for improving disease outcome in VL patients.
Collapse
|
2
|
Schleicher U, Liese J, Justies N, Mischke T, Haeberlein S, Sebald H, Kalinke U, Weiss S, Bogdan C. Type I Interferon Signaling Is Required for CpG-Oligodesoxynucleotide-Induced Control of Leishmania major, but Not for Spontaneous Cure of Subcutaneous Primary or Secondary L. major Infection. Front Immunol 2018; 9:79. [PMID: 29459858 PMCID: PMC5807663 DOI: 10.3389/fimmu.2018.00079] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/11/2018] [Indexed: 01/11/2023] Open
Abstract
We previously showed that in mice infected with Leishmania major type I interferons (IFNs) initiate the innate immune response to the parasite at day 1 and 2 of infection. Here, we investigated which type I IFN subtypes are expressed during the first 8 weeks of L. major infection and whether type I IFNs are essential for a protective immune response and clinical cure of the disease. In self-healing C57BL/6 mice infected with a high dose of L. major, IFN-α4, IFN-α5, IFN-α11, IFN-α13, and IFN-β mRNA were most prominently regulated during the course of infection. In C57BL/6 mice deficient for IFN-β or the IFN-α/β-receptor chain 1 (IFNAR1), development of skin lesions and parasite loads in skin, draining lymph node, and spleen was indistinguishable from wild-type (WT) mice. In line with the clinical findings, C57BL/6 IFN-β−/−, IFNAR1−/−, and WT mice exhibited similar mRNA expression levels of IFN-γ, interleukin (IL)-4, IL-12, IL-13, inducible nitric oxide synthase, and arginase 1 during the acute and late phase of the infection. Also, myeloid dendritic cells from WT and IFNAR1−/− mice produced comparable amounts of IL-12p40/p70 protein upon exposure to L. major in vitro. In non-healing BALB/c WT mice, the mRNAs of IFN-α subtypes (α2, α4, α5, α6, and α9) were rapidly induced after high-dose L. major infection. However, genetic deletion of IFNAR1 or IFN-β did not alter the progressive course of infection seen in WT BALB/c mice. Finally, we tested whether type I IFNs and/or IL-12 are required for the prophylactic effect of CpG-oligodesoxynucleotides (ODN) in BALB/c mice. Local and systemic administration of CpG-ODN 1668 protected WT and IFN-β−/− mice equally well from progressive leishmaniasis. By contrast, the protective effect of CpG-ODN 1668 was lost in BALB/c IFNAR1−/− (despite a sustained suppression of IL-4) and in BALB/c IL-12p35−/− mice. From these data, we conclude that IFN-β and IFNAR1 signaling are dispensable for a curative immune response to L. major in C57BL/6 mice and irrelevant for disease development in BALB/c mice, whereas IL-12 and IFN-α subtypes are essential for the disease prevention by CpG-ODNs in this mouse strain.
Collapse
Affiliation(s)
- Ulrike Schleicher
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.,Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Jan Liese
- Abteilung Mikrobiologie und Hygiene, Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Freiburg, Freiburg, Germany
| | - Nicole Justies
- Abteilung Mikrobiologie und Hygiene, Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Freiburg, Freiburg, Germany
| | - Thomas Mischke
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Simone Haeberlein
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Heidi Sebald
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ulrich Kalinke
- Institut für Experimentelle Infektionsforschung, TWINCORE, Zentrum für Experimentelle und Klinische Infektionsforschung, eine Gemeinschaftseinrichtung vom Helmholtz Zentrum für Infektionsforschung und der Medizinischen Hochschule Hannover, Hannover, Germany
| | - Siegfried Weiss
- Abteilung für Molekulare Immunologie, Helmholtz Zentrum für Infektionsforschung, Braunschweig, Germany
| | - Christian Bogdan
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.,Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
3
|
Abstract
Dengue provides the most abundant example in human medicine and the greatest human illness burden caused by the phenomenon of intrinsic antibody-dependent infection enhancement (iADE). In this immunopathological phenomenon infection of monocytes or macrophages using infectious immune complexes suppresses innate antiviral systems, permitting logarithmic intracellular growth of dengue virus. The four dengue viruses evolved from a common ancestor yet retain similar ecology and pathogenicity, but although infection with one virus provides short-term cross-protection against infection with a different type, millions of secondary dengue infections occur worldwide each year. When individuals are infected in the virtual absence of cross-protective dengue antibodies, the dengue vascular permeability syndrome (DVPS) may ensue. This occurs in around 2 to 4% of second heterotypic dengue infections. A complete understanding of the biologic mechanism of iADE, dengue biology, and the mechanism of host responses to dengue infection should lead to a comprehensive and complete understanding of the pathogenesis of DVPS. A crucial emphasis must be placed on understanding ADE. Clinical and epidemiological observations of DVPS define the research questions and provide research parameters. This article will review knowledge related to dengue ADE and point to areas where there has been little research progress. These observations relate to the two stages of dengue illnesses: afferent phenomena are those that promote the success of the microorganism to infect and survive; efferent phenomena are those mounted by the host to inhibit infection and replication and to eliminate the infectious agent and infected tissues. Data will be discussed as "knowns" and "unknowns."
Collapse
|
4
|
Dey R, Natarajan G, Bhattacharya P, Cummings H, Dagur PK, Terrazas C, Selvapandiyan A, McCoy JP, Duncan R, Satoskar AR, Nakhasi HL. Characterization of cross-protection by genetically modified live-attenuated Leishmania donovani parasites against Leishmania mexicana. THE JOURNAL OF IMMUNOLOGY 2014; 193:3513-27. [PMID: 25156362 DOI: 10.4049/jimmunol.1303145] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Previously, we showed that genetically modified live-attenuated Leishmania donovani parasite cell lines (LdCen(-/-) and Ldp27(-/-)) induce a strong cellular immunity and provide protection against visceral leishmaniasis in mice. In this study, we explored the mechanism of cross-protection against cutaneous lesion-causing Leishmania mexicana. Upon challenge with wild-type L. mexicana, mice immunized either for short or long periods showed significant protection. Immunohistochemical analysis of ears from immunized/challenged mice exhibited significant influx of macrophages, as well as cells expressing MHC class II and inducible NO synthase, suggesting an induction of potent host-protective proinflammatory responses. In contrast, substantial inhibition of IL-10, IL-4, and IL-13 expression and the absence of degranulated mast cells and less influx of eosinophils within the ears of immunized/challenged mice suggested a controlled anti-inflammatory response. L. mexicana Ag-stimulated lymph node cell culture from the immunized/challenged mice revealed induction of IFN-γ secretion by the CD4 and CD8 T cells compared with non-immunized/challenged mice. We also observed suppression of Th2 cytokines in the culture supernatants of immunized/challenged lymph nodes compared with non-immunized/challenged mice. Adoptively transferred total T cells from immunized mice conferred strong protection in recipient mice against L. mexicana infection, suggesting that attenuated L. donovani can provide protection against heterologous L. mexicana parasites by induction of a strong T cell response. Furthermore, bone marrow-derived dendritic cells infected with LdCen(-/-) and Ldp27(-/-) parasites were capable of inducing a strong proinflammatory response leading to the proliferation of Th1 cells. These studies demonstrate the potential of live-attenuated L. donovani parasites as pan-Leishmania species vaccines.
Collapse
Affiliation(s)
- Ranadhir Dey
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993
| | - Gayathri Natarajan
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 42310
| | - Parna Bhattacharya
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993
| | - Hannah Cummings
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 42310
| | - Pradeep K Dagur
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - César Terrazas
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 42310
| | | | - John P McCoy
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Robert Duncan
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993
| | - Abhay R Satoskar
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 42310;
| | - Hira L Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993;
| |
Collapse
|
5
|
Favila MA, Geraci NS, Zeng E, Harker B, Condon D, Cotton RN, Jayakumar A, Tripathi V, McDowell MA. Human dendritic cells exhibit a pronounced type I IFN signature following Leishmania major infection that is required for IL-12 induction. THE JOURNAL OF IMMUNOLOGY 2014; 192:5863-72. [PMID: 24808365 DOI: 10.4049/jimmunol.1203230] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Leishmania major-infected human dendritic cells (DCs) exhibit a marked induction of IL-12, ultimately promoting a robust Th1-mediated response associated with parasite killing and protective immunity. The host cell transcription machinery associated with the specific IL-12 induction observed during L. major infection remains to be thoroughly elucidated. In this study, we used Affymetrix GeneChip (Affymetrix) to globally assess the host cell genes and pathways associated with early L. major infection in human myeloid-derived DCs. Our data revealed 728 genes were significantly differentially expressed and molecular signaling pathway revealed that the type I IFN pathway was significantly enriched. Addition of a neutralizing type I IFN decoy receptor blocked the expression of IRF7 and IL-12p40 during DC infection, indicating the L. major-induced expression of IL-12p40 is dependent upon the type I IFN signaling pathway. In stark contrast, IL-12p40 expression is not elicited by L. donovani, the etiological agent of deadly visceral leishmaniasis. Therefore, we examined the gene expression profile for several IFN response genes in L. major versus L. donovani DC infections. Our data revealed that L. major, but not L. donovani, induces expression of IRF2, IRF7, and IFIT5, implicating the regulation of type I IFN-associated signaling pathways as mediating factors toward the production of IL-12.
Collapse
Affiliation(s)
- Michelle A Favila
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556; and
| | - Nicholas S Geraci
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556; and
| | - Erliang Zeng
- Genomics and Bioinformatics Core Facility, University of Notre Dame, Notre Dame, IN 46556
| | - Brent Harker
- Genomics and Bioinformatics Core Facility, University of Notre Dame, Notre Dame, IN 46556
| | - David Condon
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556; and
| | - Rachel N Cotton
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556; and
| | - Asha Jayakumar
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556; and
| | - Vinita Tripathi
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556; and
| | - Mary Ann McDowell
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556; and
| |
Collapse
|
6
|
Alexander J, Brombacher F. T helper1/t helper2 cells and resistance/susceptibility to leishmania infection: is this paradigm still relevant? Front Immunol 2012; 3:80. [PMID: 22566961 PMCID: PMC3342373 DOI: 10.3389/fimmu.2012.00080] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 03/28/2012] [Indexed: 11/13/2022] Open
Abstract
Work in large part on Leishmania major in the 1980s identified two distinct apparently counter-regulatory CD4+ T cell populations, T helper (h)1 and Th2, that controlled resistance/susceptibility to infection respectively. However, the generation of IL-4−/− mice in the 1990s questioned the paramount role of this Th2 archetypal cytokine in the non-healing response to Leishmania infection. The more recent characterization of CD4+ T cell regulatory populations and further effector CD4+ T helper populations, Th17, Th9, and T follicular (f)h cells as well as the acknowledged plasticity in T helper cell function has further added to the complexity of host pathogen interactions. These interactions are complicated by the multiplicity of cells that respond to CD4+ T cell subset signatory cytokines, as well as the diversity of Leishmania species that are often subject to significantly different immune-regulatory controls. In this article we review current knowledge with regard to the role of CD4+ T cells and their products during Leishmania infection. In particular we update on our studies using conditional IL-4Rα gene-deficient mice that have allowed dissection of the cell interplay dictating the disease outcomes of the major Leishmania species infecting humans.
Collapse
Affiliation(s)
- James Alexander
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde Glasgow, UK
| | | |
Collapse
|
7
|
Cortez M, Huynh C, Fernandes MC, Kennedy KA, Aderem A, Andrews NW. Leishmania promotes its own virulence by inducing expression of the host immune inhibitory ligand CD200. Cell Host Microbe 2011; 9:463-71. [PMID: 21669395 DOI: 10.1016/j.chom.2011.04.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 04/01/2011] [Accepted: 04/19/2011] [Indexed: 10/18/2022]
Abstract
Leishmania parasites infect macrophages, cells normally involved in innate defense against pathogens. Leishmania amazonensis and Leishmania major cause severe or mild disease, respectively, consistent with each parasite's ability to survive within activated macrophages. The mechanisms underlying increased virulence of L. amazonensis are mostly unknown. We show that L. amazonensis promotes its own survival by inducing expression of CD200, an immunoregulatory molecule that inhibits macrophage activation. L. amazonensis does not form typical nonhealing lesions in CD200(-/-) mice and cannot replicate in CD200(-/-) macrophages, an effect reversed by exogenous administration of soluble CD200-Fc. The less virulent L. major does not induce CD200 expression and forms small, self-healing lesions in both wild-type and CD200(-/-) mice. Notably, CD200-Fc injection transforms the course of L. major infection to one resembling L. amazonensis, with large, nonhealing lesions. CD200-dependent iNOS inhibition allows parasite growth in macrophages, identifying a mechanism for the increased virulence of L. amazonensis.
Collapse
Affiliation(s)
- Mauro Cortez
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | |
Collapse
|
8
|
Grangeiro de Carvalho E, Bonin M, Kremsner PG, Kun JFJ. Plasmodium falciparum-infected erythrocytes and IL-12/IL-18 induce diverse transcriptomes in human NK cells: IFN-α/β pathway versus TREM signaling. PLoS One 2011; 6:e24963. [PMID: 21949811 PMCID: PMC3174986 DOI: 10.1371/journal.pone.0024963] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 08/24/2011] [Indexed: 11/18/2022] Open
Abstract
The protective immunity of natural killer (NK) cells against malarial infections is thought to be due to early production of type II interferon (IFN) and possibly direct NK cell cytotoxicity. To better understand this mechanism, a microarray analysis was conducted on NK cells from healthy donors PBMCs that were co-cultured with P. falciparum 3D7-infected erythrocytes. A very similar pattern of gene expression was observed among all donors for each treatment in three replicas. Parasites particularly modulated genes involved in IFN-α/β signaling as well as molecules involved in the activation of interferon regulatory factors, pathways known to play a role in the antimicrobial immune response. This pattern of transcription was entirely different from that shown by NK cells treated with IL-12 and IL-18, in which IFN-γ- and TREM-1-related genes were over-expressed. These results suggest that P. falciparum parasites and the cytokines IL-12 and IL-18 have diverse imprints on the transcriptome of human primary NK cells. IFN-α-related genes are the prominent molecules induced by parasites on NK cells and arise as candidate biomarkers that merit to be further investigated as potential new tools in malaria control.
Collapse
MESH Headings
- Biomarkers/metabolism
- Blotting, Western
- Computational Biology
- Cytokines/genetics
- Cytokines/metabolism
- Erythrocytes/immunology
- Erythrocytes/parasitology
- Flow Cytometry
- Gene Expression Profiling
- Humans
- Interferon-alpha/genetics
- Interferon-alpha/metabolism
- Interferon-gamma/genetics
- Interferon-gamma/metabolism
- Interleukin-12/pharmacology
- Interleukin-18/pharmacology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/parasitology
- Lymphocyte Activation
- Malaria, Falciparum/immunology
- Malaria, Falciparum/metabolism
- Malaria, Falciparum/parasitology
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Oligonucleotide Array Sequence Analysis
- Plasmodium falciparum/genetics
- Plasmodium falciparum/immunology
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Signal Transduction
- Triggering Receptor Expressed on Myeloid Cells-1
Collapse
|
9
|
Haque A, Best SE, Ammerdorffer A, Desbarrieres L, de Oca MM, Amante FH, de Labastida Rivera F, Hertzog P, Boyle GM, Hill GR, Engwerda CR. Type I interferons suppress CD4+ T-cell-dependent parasite control during blood-stage Plasmodium infection. Eur J Immunol 2011; 41:2688-98. [DOI: 10.1002/eji.201141539] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 05/13/2011] [Accepted: 06/10/2011] [Indexed: 11/11/2022]
|